Make sure omap cpufreq driver initializes after cpufreq framework and governors
[linux-ginger.git] / drivers / firewire / net.c
blobcbaf420c36c531d4c09d612b62bca003dd86896e
1 /*
2 * IPv4 over IEEE 1394, per RFC 2734
4 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
6 * based on eth1394 by Ben Collins et al
7 */
9 #include <linux/bug.h>
10 #include <linux/device.h>
11 #include <linux/ethtool.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/highmem.h>
15 #include <linux/in.h>
16 #include <linux/ip.h>
17 #include <linux/jiffies.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/mutex.h>
22 #include <linux/netdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/spinlock.h>
26 #include <asm/unaligned.h>
27 #include <net/arp.h>
29 #define FWNET_MAX_FRAGMENTS 25 /* arbitrary limit */
30 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16 * 1024 ? 4 : 2)
32 #define IEEE1394_BROADCAST_CHANNEL 31
33 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
34 #define IEEE1394_MAX_PAYLOAD_S100 512
35 #define FWNET_NO_FIFO_ADDR (~0ULL)
37 #define IANA_SPECIFIER_ID 0x00005eU
38 #define RFC2734_SW_VERSION 0x000001U
40 #define IEEE1394_GASP_HDR_SIZE 8
42 #define RFC2374_UNFRAG_HDR_SIZE 4
43 #define RFC2374_FRAG_HDR_SIZE 8
44 #define RFC2374_FRAG_OVERHEAD 4
46 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */
47 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
48 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */
49 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */
51 #define RFC2734_HW_ADDR_LEN 16
53 struct rfc2734_arp {
54 __be16 hw_type; /* 0x0018 */
55 __be16 proto_type; /* 0x0806 */
56 u8 hw_addr_len; /* 16 */
57 u8 ip_addr_len; /* 4 */
58 __be16 opcode; /* ARP Opcode */
59 /* Above is exactly the same format as struct arphdr */
61 __be64 s_uniq_id; /* Sender's 64bit EUI */
62 u8 max_rec; /* Sender's max packet size */
63 u8 sspd; /* Sender's max speed */
64 __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */
65 __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */
66 __be32 sip; /* Sender's IP Address */
67 __be32 tip; /* IP Address of requested hw addr */
68 } __attribute__((packed));
70 /* This header format is specific to this driver implementation. */
71 #define FWNET_ALEN 8
72 #define FWNET_HLEN 10
73 struct fwnet_header {
74 u8 h_dest[FWNET_ALEN]; /* destination address */
75 __be16 h_proto; /* packet type ID field */
76 } __attribute__((packed));
78 /* IPv4 and IPv6 encapsulation header */
79 struct rfc2734_header {
80 u32 w0;
81 u32 w1;
84 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
85 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
86 #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16)
87 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
88 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
90 #define fwnet_set_hdr_lf(lf) ((lf) << 30)
91 #define fwnet_set_hdr_ether_type(et) (et)
92 #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16)
93 #define fwnet_set_hdr_fg_off(fgo) (fgo)
95 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
97 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
98 unsigned ether_type)
100 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
101 | fwnet_set_hdr_ether_type(ether_type);
104 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
105 unsigned ether_type, unsigned dg_size, unsigned dgl)
107 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
108 | fwnet_set_hdr_dg_size(dg_size)
109 | fwnet_set_hdr_ether_type(ether_type);
110 hdr->w1 = fwnet_set_hdr_dgl(dgl);
113 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
114 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
116 hdr->w0 = fwnet_set_hdr_lf(lf)
117 | fwnet_set_hdr_dg_size(dg_size)
118 | fwnet_set_hdr_fg_off(fg_off);
119 hdr->w1 = fwnet_set_hdr_dgl(dgl);
122 /* This list keeps track of what parts of the datagram have been filled in */
123 struct fwnet_fragment_info {
124 struct list_head fi_link;
125 u16 offset;
126 u16 len;
129 struct fwnet_partial_datagram {
130 struct list_head pd_link;
131 struct list_head fi_list;
132 struct sk_buff *skb;
133 /* FIXME Why not use skb->data? */
134 char *pbuf;
135 u16 datagram_label;
136 u16 ether_type;
137 u16 datagram_size;
140 static DEFINE_MUTEX(fwnet_device_mutex);
141 static LIST_HEAD(fwnet_device_list);
143 struct fwnet_device {
144 struct list_head dev_link;
145 spinlock_t lock;
146 enum {
147 FWNET_BROADCAST_ERROR,
148 FWNET_BROADCAST_RUNNING,
149 FWNET_BROADCAST_STOPPED,
150 } broadcast_state;
151 struct fw_iso_context *broadcast_rcv_context;
152 struct fw_iso_buffer broadcast_rcv_buffer;
153 void **broadcast_rcv_buffer_ptrs;
154 unsigned broadcast_rcv_next_ptr;
155 unsigned num_broadcast_rcv_ptrs;
156 unsigned rcv_buffer_size;
158 * This value is the maximum unfragmented datagram size that can be
159 * sent by the hardware. It already has the GASP overhead and the
160 * unfragmented datagram header overhead calculated into it.
162 unsigned broadcast_xmt_max_payload;
163 u16 broadcast_xmt_datagramlabel;
166 * The CSR address that remote nodes must send datagrams to for us to
167 * receive them.
169 struct fw_address_handler handler;
170 u64 local_fifo;
172 /* List of packets to be sent */
173 struct list_head packet_list;
175 * List of packets that were broadcasted. When we get an ISO interrupt
176 * one of them has been sent
178 struct list_head broadcasted_list;
179 /* List of packets that have been sent but not yet acked */
180 struct list_head sent_list;
182 struct list_head peer_list;
183 struct fw_card *card;
184 struct net_device *netdev;
187 struct fwnet_peer {
188 struct list_head peer_link;
189 struct fwnet_device *dev;
190 u64 guid;
191 u64 fifo;
193 /* guarded by dev->lock */
194 struct list_head pd_list; /* received partial datagrams */
195 unsigned pdg_size; /* pd_list size */
197 u16 datagram_label; /* outgoing datagram label */
198 unsigned max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
199 int node_id;
200 int generation;
201 unsigned speed;
204 /* This is our task struct. It's used for the packet complete callback. */
205 struct fwnet_packet_task {
207 * ptask can actually be on dev->packet_list, dev->broadcasted_list,
208 * or dev->sent_list depending on its current state.
210 struct list_head pt_link;
211 struct fw_transaction transaction;
212 struct rfc2734_header hdr;
213 struct sk_buff *skb;
214 struct fwnet_device *dev;
216 int outstanding_pkts;
217 unsigned max_payload;
218 u64 fifo_addr;
219 u16 dest_node;
220 u8 generation;
221 u8 speed;
225 * saddr == NULL means use device source address.
226 * daddr == NULL means leave destination address (eg unresolved arp).
228 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
229 unsigned short type, const void *daddr,
230 const void *saddr, unsigned len)
232 struct fwnet_header *h;
234 h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
235 put_unaligned_be16(type, &h->h_proto);
237 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
238 memset(h->h_dest, 0, net->addr_len);
240 return net->hard_header_len;
243 if (daddr) {
244 memcpy(h->h_dest, daddr, net->addr_len);
246 return net->hard_header_len;
249 return -net->hard_header_len;
252 static int fwnet_header_rebuild(struct sk_buff *skb)
254 struct fwnet_header *h = (struct fwnet_header *)skb->data;
256 if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
257 return arp_find((unsigned char *)&h->h_dest, skb);
259 fw_notify("%s: unable to resolve type %04x addresses\n",
260 skb->dev->name, be16_to_cpu(h->h_proto));
261 return 0;
264 static int fwnet_header_cache(const struct neighbour *neigh,
265 struct hh_cache *hh)
267 struct net_device *net;
268 struct fwnet_header *h;
270 if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
271 return -1;
272 net = neigh->dev;
273 h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
274 h->h_proto = hh->hh_type;
275 memcpy(h->h_dest, neigh->ha, net->addr_len);
276 hh->hh_len = FWNET_HLEN;
278 return 0;
281 /* Called by Address Resolution module to notify changes in address. */
282 static void fwnet_header_cache_update(struct hh_cache *hh,
283 const struct net_device *net, const unsigned char *haddr)
285 memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
288 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
290 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
292 return FWNET_ALEN;
295 static const struct header_ops fwnet_header_ops = {
296 .create = fwnet_header_create,
297 .rebuild = fwnet_header_rebuild,
298 .cache = fwnet_header_cache,
299 .cache_update = fwnet_header_cache_update,
300 .parse = fwnet_header_parse,
303 /* FIXME: is this correct for all cases? */
304 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
305 unsigned offset, unsigned len)
307 struct fwnet_fragment_info *fi;
308 unsigned end = offset + len;
310 list_for_each_entry(fi, &pd->fi_list, fi_link)
311 if (offset < fi->offset + fi->len && end > fi->offset)
312 return true;
314 return false;
317 /* Assumes that new fragment does not overlap any existing fragments */
318 static struct fwnet_fragment_info *fwnet_frag_new(
319 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
321 struct fwnet_fragment_info *fi, *fi2, *new;
322 struct list_head *list;
324 list = &pd->fi_list;
325 list_for_each_entry(fi, &pd->fi_list, fi_link) {
326 if (fi->offset + fi->len == offset) {
327 /* The new fragment can be tacked on to the end */
328 /* Did the new fragment plug a hole? */
329 fi2 = list_entry(fi->fi_link.next,
330 struct fwnet_fragment_info, fi_link);
331 if (fi->offset + fi->len == fi2->offset) {
332 /* glue fragments together */
333 fi->len += len + fi2->len;
334 list_del(&fi2->fi_link);
335 kfree(fi2);
336 } else {
337 fi->len += len;
340 return fi;
342 if (offset + len == fi->offset) {
343 /* The new fragment can be tacked on to the beginning */
344 /* Did the new fragment plug a hole? */
345 fi2 = list_entry(fi->fi_link.prev,
346 struct fwnet_fragment_info, fi_link);
347 if (fi2->offset + fi2->len == fi->offset) {
348 /* glue fragments together */
349 fi2->len += fi->len + len;
350 list_del(&fi->fi_link);
351 kfree(fi);
353 return fi2;
355 fi->offset = offset;
356 fi->len += len;
358 return fi;
360 if (offset > fi->offset + fi->len) {
361 list = &fi->fi_link;
362 break;
364 if (offset + len < fi->offset) {
365 list = fi->fi_link.prev;
366 break;
370 new = kmalloc(sizeof(*new), GFP_ATOMIC);
371 if (!new) {
372 fw_error("out of memory\n");
373 return NULL;
376 new->offset = offset;
377 new->len = len;
378 list_add(&new->fi_link, list);
380 return new;
383 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
384 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
385 void *frag_buf, unsigned frag_off, unsigned frag_len)
387 struct fwnet_partial_datagram *new;
388 struct fwnet_fragment_info *fi;
390 new = kmalloc(sizeof(*new), GFP_ATOMIC);
391 if (!new)
392 goto fail;
394 INIT_LIST_HEAD(&new->fi_list);
395 fi = fwnet_frag_new(new, frag_off, frag_len);
396 if (fi == NULL)
397 goto fail_w_new;
399 new->datagram_label = datagram_label;
400 new->datagram_size = dg_size;
401 new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
402 if (new->skb == NULL)
403 goto fail_w_fi;
405 skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
406 new->pbuf = skb_put(new->skb, dg_size);
407 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
408 list_add_tail(&new->pd_link, &peer->pd_list);
410 return new;
412 fail_w_fi:
413 kfree(fi);
414 fail_w_new:
415 kfree(new);
416 fail:
417 fw_error("out of memory\n");
419 return NULL;
422 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
423 u16 datagram_label)
425 struct fwnet_partial_datagram *pd;
427 list_for_each_entry(pd, &peer->pd_list, pd_link)
428 if (pd->datagram_label == datagram_label)
429 return pd;
431 return NULL;
435 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
437 struct fwnet_fragment_info *fi, *n;
439 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
440 kfree(fi);
442 list_del(&old->pd_link);
443 dev_kfree_skb_any(old->skb);
444 kfree(old);
447 static bool fwnet_pd_update(struct fwnet_peer *peer,
448 struct fwnet_partial_datagram *pd, void *frag_buf,
449 unsigned frag_off, unsigned frag_len)
451 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
452 return false;
454 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
457 * Move list entry to beginnig of list so that oldest partial
458 * datagrams percolate to the end of the list
460 list_move_tail(&pd->pd_link, &peer->pd_list);
462 return true;
465 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
467 struct fwnet_fragment_info *fi;
469 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
471 return fi->len == pd->datagram_size;
474 /* caller must hold dev->lock */
475 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
476 u64 guid)
478 struct fwnet_peer *peer;
480 list_for_each_entry(peer, &dev->peer_list, peer_link)
481 if (peer->guid == guid)
482 return peer;
484 return NULL;
487 /* caller must hold dev->lock */
488 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
489 int node_id, int generation)
491 struct fwnet_peer *peer;
493 list_for_each_entry(peer, &dev->peer_list, peer_link)
494 if (peer->node_id == node_id &&
495 peer->generation == generation)
496 return peer;
498 return NULL;
501 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
502 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
504 max_rec = min(max_rec, speed + 8);
505 max_rec = min(max_rec, 0xbU); /* <= 4096 */
506 if (max_rec < 8) {
507 fw_notify("max_rec %x out of range\n", max_rec);
508 max_rec = 8;
511 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
515 static int fwnet_finish_incoming_packet(struct net_device *net,
516 struct sk_buff *skb, u16 source_node_id,
517 bool is_broadcast, u16 ether_type)
519 struct fwnet_device *dev;
520 static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
521 int status;
522 __be64 guid;
524 dev = netdev_priv(net);
525 /* Write metadata, and then pass to the receive level */
526 skb->dev = net;
527 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
530 * Parse the encapsulation header. This actually does the job of
531 * converting to an ethernet frame header, as well as arp
532 * conversion if needed. ARP conversion is easier in this
533 * direction, since we are using ethernet as our backend.
536 * If this is an ARP packet, convert it. First, we want to make
537 * use of some of the fields, since they tell us a little bit
538 * about the sending machine.
540 if (ether_type == ETH_P_ARP) {
541 struct rfc2734_arp *arp1394;
542 struct arphdr *arp;
543 unsigned char *arp_ptr;
544 u64 fifo_addr;
545 u64 peer_guid;
546 unsigned sspd;
547 u16 max_payload;
548 struct fwnet_peer *peer;
549 unsigned long flags;
551 arp1394 = (struct rfc2734_arp *)skb->data;
552 arp = (struct arphdr *)skb->data;
553 arp_ptr = (unsigned char *)(arp + 1);
554 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
555 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
556 | get_unaligned_be32(&arp1394->fifo_lo);
558 sspd = arp1394->sspd;
559 /* Sanity check. OS X 10.3 PPC reportedly sends 131. */
560 if (sspd > SCODE_3200) {
561 fw_notify("sspd %x out of range\n", sspd);
562 sspd = SCODE_3200;
564 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
566 spin_lock_irqsave(&dev->lock, flags);
567 peer = fwnet_peer_find_by_guid(dev, peer_guid);
568 if (peer) {
569 peer->fifo = fifo_addr;
571 if (peer->speed > sspd)
572 peer->speed = sspd;
573 if (peer->max_payload > max_payload)
574 peer->max_payload = max_payload;
576 spin_unlock_irqrestore(&dev->lock, flags);
578 if (!peer) {
579 fw_notify("No peer for ARP packet from %016llx\n",
580 (unsigned long long)peer_guid);
581 goto failed_proto;
585 * Now that we're done with the 1394 specific stuff, we'll
586 * need to alter some of the data. Believe it or not, all
587 * that needs to be done is sender_IP_address needs to be
588 * moved, the destination hardware address get stuffed
589 * in and the hardware address length set to 8.
591 * IMPORTANT: The code below overwrites 1394 specific data
592 * needed above so keep the munging of the data for the
593 * higher level IP stack last.
596 arp->ar_hln = 8;
597 /* skip over sender unique id */
598 arp_ptr += arp->ar_hln;
599 /* move sender IP addr */
600 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
601 /* skip over sender IP addr */
602 arp_ptr += arp->ar_pln;
604 if (arp->ar_op == htons(ARPOP_REQUEST))
605 memset(arp_ptr, 0, sizeof(u64));
606 else
607 memcpy(arp_ptr, net->dev_addr, sizeof(u64));
610 /* Now add the ethernet header. */
611 guid = cpu_to_be64(dev->card->guid);
612 if (dev_hard_header(skb, net, ether_type,
613 is_broadcast ? &broadcast_hw : &guid,
614 NULL, skb->len) >= 0) {
615 struct fwnet_header *eth;
616 u16 *rawp;
617 __be16 protocol;
619 skb_reset_mac_header(skb);
620 skb_pull(skb, sizeof(*eth));
621 eth = (struct fwnet_header *)skb_mac_header(skb);
622 if (*eth->h_dest & 1) {
623 if (memcmp(eth->h_dest, net->broadcast,
624 net->addr_len) == 0)
625 skb->pkt_type = PACKET_BROADCAST;
626 #if 0
627 else
628 skb->pkt_type = PACKET_MULTICAST;
629 #endif
630 } else {
631 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
632 skb->pkt_type = PACKET_OTHERHOST;
634 if (ntohs(eth->h_proto) >= 1536) {
635 protocol = eth->h_proto;
636 } else {
637 rawp = (u16 *)skb->data;
638 if (*rawp == 0xffff)
639 protocol = htons(ETH_P_802_3);
640 else
641 protocol = htons(ETH_P_802_2);
643 skb->protocol = protocol;
645 status = netif_rx(skb);
646 if (status == NET_RX_DROP) {
647 net->stats.rx_errors++;
648 net->stats.rx_dropped++;
649 } else {
650 net->stats.rx_packets++;
651 net->stats.rx_bytes += skb->len;
653 if (netif_queue_stopped(net))
654 netif_wake_queue(net);
656 return 0;
658 failed_proto:
659 net->stats.rx_errors++;
660 net->stats.rx_dropped++;
662 dev_kfree_skb_any(skb);
663 if (netif_queue_stopped(net))
664 netif_wake_queue(net);
666 return 0;
669 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
670 int source_node_id, int generation,
671 bool is_broadcast)
673 struct sk_buff *skb;
674 struct net_device *net = dev->netdev;
675 struct rfc2734_header hdr;
676 unsigned lf;
677 unsigned long flags;
678 struct fwnet_peer *peer;
679 struct fwnet_partial_datagram *pd;
680 int fg_off;
681 int dg_size;
682 u16 datagram_label;
683 int retval;
684 u16 ether_type;
686 hdr.w0 = be32_to_cpu(buf[0]);
687 lf = fwnet_get_hdr_lf(&hdr);
688 if (lf == RFC2374_HDR_UNFRAG) {
690 * An unfragmented datagram has been received by the ieee1394
691 * bus. Build an skbuff around it so we can pass it to the
692 * high level network layer.
694 ether_type = fwnet_get_hdr_ether_type(&hdr);
695 buf++;
696 len -= RFC2374_UNFRAG_HDR_SIZE;
698 skb = dev_alloc_skb(len + net->hard_header_len + 15);
699 if (unlikely(!skb)) {
700 fw_error("out of memory\n");
701 net->stats.rx_dropped++;
703 return -1;
705 skb_reserve(skb, (net->hard_header_len + 15) & ~15);
706 memcpy(skb_put(skb, len), buf, len);
708 return fwnet_finish_incoming_packet(net, skb, source_node_id,
709 is_broadcast, ether_type);
711 /* A datagram fragment has been received, now the fun begins. */
712 hdr.w1 = ntohl(buf[1]);
713 buf += 2;
714 len -= RFC2374_FRAG_HDR_SIZE;
715 if (lf == RFC2374_HDR_FIRSTFRAG) {
716 ether_type = fwnet_get_hdr_ether_type(&hdr);
717 fg_off = 0;
718 } else {
719 ether_type = 0;
720 fg_off = fwnet_get_hdr_fg_off(&hdr);
722 datagram_label = fwnet_get_hdr_dgl(&hdr);
723 dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
725 spin_lock_irqsave(&dev->lock, flags);
727 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
728 if (!peer)
729 goto bad_proto;
731 pd = fwnet_pd_find(peer, datagram_label);
732 if (pd == NULL) {
733 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
734 /* remove the oldest */
735 fwnet_pd_delete(list_first_entry(&peer->pd_list,
736 struct fwnet_partial_datagram, pd_link));
737 peer->pdg_size--;
739 pd = fwnet_pd_new(net, peer, datagram_label,
740 dg_size, buf, fg_off, len);
741 if (pd == NULL) {
742 retval = -ENOMEM;
743 goto bad_proto;
745 peer->pdg_size++;
746 } else {
747 if (fwnet_frag_overlap(pd, fg_off, len) ||
748 pd->datagram_size != dg_size) {
750 * Differing datagram sizes or overlapping fragments,
751 * discard old datagram and start a new one.
753 fwnet_pd_delete(pd);
754 pd = fwnet_pd_new(net, peer, datagram_label,
755 dg_size, buf, fg_off, len);
756 if (pd == NULL) {
757 retval = -ENOMEM;
758 peer->pdg_size--;
759 goto bad_proto;
761 } else {
762 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
764 * Couldn't save off fragment anyway
765 * so might as well obliterate the
766 * datagram now.
768 fwnet_pd_delete(pd);
769 peer->pdg_size--;
770 goto bad_proto;
773 } /* new datagram or add to existing one */
775 if (lf == RFC2374_HDR_FIRSTFRAG)
776 pd->ether_type = ether_type;
778 if (fwnet_pd_is_complete(pd)) {
779 ether_type = pd->ether_type;
780 peer->pdg_size--;
781 skb = skb_get(pd->skb);
782 fwnet_pd_delete(pd);
784 spin_unlock_irqrestore(&dev->lock, flags);
786 return fwnet_finish_incoming_packet(net, skb, source_node_id,
787 false, ether_type);
790 * Datagram is not complete, we're done for the
791 * moment.
793 spin_unlock_irqrestore(&dev->lock, flags);
795 return 0;
797 bad_proto:
798 spin_unlock_irqrestore(&dev->lock, flags);
800 if (netif_queue_stopped(net))
801 netif_wake_queue(net);
803 return 0;
806 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
807 int tcode, int destination, int source, int generation,
808 int speed, unsigned long long offset, void *payload,
809 size_t length, void *callback_data)
811 struct fwnet_device *dev = callback_data;
812 int rcode;
814 if (destination == IEEE1394_ALL_NODES) {
815 kfree(r);
817 return;
820 if (offset != dev->handler.offset)
821 rcode = RCODE_ADDRESS_ERROR;
822 else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
823 rcode = RCODE_TYPE_ERROR;
824 else if (fwnet_incoming_packet(dev, payload, length,
825 source, generation, false) != 0) {
826 fw_error("Incoming packet failure\n");
827 rcode = RCODE_CONFLICT_ERROR;
828 } else
829 rcode = RCODE_COMPLETE;
831 fw_send_response(card, r, rcode);
834 static void fwnet_receive_broadcast(struct fw_iso_context *context,
835 u32 cycle, size_t header_length, void *header, void *data)
837 struct fwnet_device *dev;
838 struct fw_iso_packet packet;
839 struct fw_card *card;
840 __be16 *hdr_ptr;
841 __be32 *buf_ptr;
842 int retval;
843 u32 length;
844 u16 source_node_id;
845 u32 specifier_id;
846 u32 ver;
847 unsigned long offset;
848 unsigned long flags;
850 dev = data;
851 card = dev->card;
852 hdr_ptr = header;
853 length = be16_to_cpup(hdr_ptr);
855 spin_lock_irqsave(&dev->lock, flags);
857 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
858 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
859 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
860 dev->broadcast_rcv_next_ptr = 0;
862 spin_unlock_irqrestore(&dev->lock, flags);
864 specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
865 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
866 ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
867 source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
869 if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
870 buf_ptr += 2;
871 length -= IEEE1394_GASP_HDR_SIZE;
872 fwnet_incoming_packet(dev, buf_ptr, length,
873 source_node_id, -1, true);
876 packet.payload_length = dev->rcv_buffer_size;
877 packet.interrupt = 1;
878 packet.skip = 0;
879 packet.tag = 3;
880 packet.sy = 0;
881 packet.header_length = IEEE1394_GASP_HDR_SIZE;
883 spin_lock_irqsave(&dev->lock, flags);
885 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
886 &dev->broadcast_rcv_buffer, offset);
888 spin_unlock_irqrestore(&dev->lock, flags);
890 if (retval < 0)
891 fw_error("requeue failed\n");
894 static struct kmem_cache *fwnet_packet_task_cache;
896 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
898 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
900 struct fwnet_device *dev;
901 unsigned long flags;
903 dev = ptask->dev;
905 spin_lock_irqsave(&dev->lock, flags);
906 list_del(&ptask->pt_link);
907 spin_unlock_irqrestore(&dev->lock, flags);
909 ptask->outstanding_pkts--; /* FIXME access inside lock */
911 if (ptask->outstanding_pkts > 0) {
912 u16 dg_size;
913 u16 fg_off;
914 u16 datagram_label;
915 u16 lf;
916 struct sk_buff *skb;
918 /* Update the ptask to point to the next fragment and send it */
919 lf = fwnet_get_hdr_lf(&ptask->hdr);
920 switch (lf) {
921 case RFC2374_HDR_LASTFRAG:
922 case RFC2374_HDR_UNFRAG:
923 default:
924 fw_error("Outstanding packet %x lf %x, header %x,%x\n",
925 ptask->outstanding_pkts, lf, ptask->hdr.w0,
926 ptask->hdr.w1);
927 BUG();
929 case RFC2374_HDR_FIRSTFRAG:
930 /* Set frag type here for future interior fragments */
931 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
932 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
933 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
934 break;
936 case RFC2374_HDR_INTFRAG:
937 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
938 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
939 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
940 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
941 break;
943 skb = ptask->skb;
944 skb_pull(skb, ptask->max_payload);
945 if (ptask->outstanding_pkts > 1) {
946 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
947 dg_size, fg_off, datagram_label);
948 } else {
949 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
950 dg_size, fg_off, datagram_label);
951 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
953 fwnet_send_packet(ptask);
954 } else {
955 dev_kfree_skb_any(ptask->skb);
956 kmem_cache_free(fwnet_packet_task_cache, ptask);
960 static void fwnet_write_complete(struct fw_card *card, int rcode,
961 void *payload, size_t length, void *data)
963 struct fwnet_packet_task *ptask;
965 ptask = data;
967 if (rcode == RCODE_COMPLETE)
968 fwnet_transmit_packet_done(ptask);
969 else
970 fw_error("fwnet_write_complete: failed: %x\n", rcode);
971 /* ??? error recovery */
974 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
976 struct fwnet_device *dev;
977 unsigned tx_len;
978 struct rfc2734_header *bufhdr;
979 unsigned long flags;
981 dev = ptask->dev;
982 tx_len = ptask->max_payload;
983 switch (fwnet_get_hdr_lf(&ptask->hdr)) {
984 case RFC2374_HDR_UNFRAG:
985 bufhdr = (struct rfc2734_header *)
986 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
987 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
988 break;
990 case RFC2374_HDR_FIRSTFRAG:
991 case RFC2374_HDR_INTFRAG:
992 case RFC2374_HDR_LASTFRAG:
993 bufhdr = (struct rfc2734_header *)
994 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
995 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
996 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
997 break;
999 default:
1000 BUG();
1002 if (ptask->dest_node == IEEE1394_ALL_NODES) {
1003 u8 *p;
1004 int generation;
1005 int node_id;
1007 /* ptask->generation may not have been set yet */
1008 generation = dev->card->generation;
1009 smp_rmb();
1010 node_id = dev->card->node_id;
1012 p = skb_push(ptask->skb, 8);
1013 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1014 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1015 | RFC2734_SW_VERSION, &p[4]);
1017 /* We should not transmit if broadcast_channel.valid == 0. */
1018 fw_send_request(dev->card, &ptask->transaction,
1019 TCODE_STREAM_DATA,
1020 fw_stream_packet_destination_id(3,
1021 IEEE1394_BROADCAST_CHANNEL, 0),
1022 generation, SCODE_100, 0ULL, ptask->skb->data,
1023 tx_len + 8, fwnet_write_complete, ptask);
1025 /* FIXME race? */
1026 spin_lock_irqsave(&dev->lock, flags);
1027 list_add_tail(&ptask->pt_link, &dev->broadcasted_list);
1028 spin_unlock_irqrestore(&dev->lock, flags);
1030 return 0;
1033 fw_send_request(dev->card, &ptask->transaction,
1034 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1035 ptask->generation, ptask->speed, ptask->fifo_addr,
1036 ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1038 /* FIXME race? */
1039 spin_lock_irqsave(&dev->lock, flags);
1040 list_add_tail(&ptask->pt_link, &dev->sent_list);
1041 spin_unlock_irqrestore(&dev->lock, flags);
1043 dev->netdev->trans_start = jiffies;
1045 return 0;
1048 static int fwnet_broadcast_start(struct fwnet_device *dev)
1050 struct fw_iso_context *context;
1051 int retval;
1052 unsigned num_packets;
1053 unsigned max_receive;
1054 struct fw_iso_packet packet;
1055 unsigned long offset;
1056 unsigned u;
1058 if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1059 /* outside OHCI posted write area? */
1060 static const struct fw_address_region region = {
1061 .start = 0xffff00000000ULL,
1062 .end = CSR_REGISTER_BASE,
1065 dev->handler.length = 4096;
1066 dev->handler.address_callback = fwnet_receive_packet;
1067 dev->handler.callback_data = dev;
1069 retval = fw_core_add_address_handler(&dev->handler, &region);
1070 if (retval < 0)
1071 goto failed_initial;
1073 dev->local_fifo = dev->handler.offset;
1076 max_receive = 1U << (dev->card->max_receive + 1);
1077 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1079 if (!dev->broadcast_rcv_context) {
1080 void **ptrptr;
1082 context = fw_iso_context_create(dev->card,
1083 FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1084 dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1085 if (IS_ERR(context)) {
1086 retval = PTR_ERR(context);
1087 goto failed_context_create;
1090 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1091 dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1092 if (retval < 0)
1093 goto failed_buffer_init;
1095 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1096 if (!ptrptr) {
1097 retval = -ENOMEM;
1098 goto failed_ptrs_alloc;
1101 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1102 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1103 void *ptr;
1104 unsigned v;
1106 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1107 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1108 *ptrptr++ = (void *)
1109 ((char *)ptr + v * max_receive);
1111 dev->broadcast_rcv_context = context;
1112 } else {
1113 context = dev->broadcast_rcv_context;
1116 packet.payload_length = max_receive;
1117 packet.interrupt = 1;
1118 packet.skip = 0;
1119 packet.tag = 3;
1120 packet.sy = 0;
1121 packet.header_length = IEEE1394_GASP_HDR_SIZE;
1122 offset = 0;
1124 for (u = 0; u < num_packets; u++) {
1125 retval = fw_iso_context_queue(context, &packet,
1126 &dev->broadcast_rcv_buffer, offset);
1127 if (retval < 0)
1128 goto failed_rcv_queue;
1130 offset += max_receive;
1132 dev->num_broadcast_rcv_ptrs = num_packets;
1133 dev->rcv_buffer_size = max_receive;
1134 dev->broadcast_rcv_next_ptr = 0U;
1135 retval = fw_iso_context_start(context, -1, 0,
1136 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1137 if (retval < 0)
1138 goto failed_rcv_queue;
1140 /* FIXME: adjust it according to the min. speed of all known peers? */
1141 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1142 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1143 dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1145 return 0;
1147 failed_rcv_queue:
1148 kfree(dev->broadcast_rcv_buffer_ptrs);
1149 dev->broadcast_rcv_buffer_ptrs = NULL;
1150 failed_ptrs_alloc:
1151 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1152 failed_buffer_init:
1153 fw_iso_context_destroy(context);
1154 dev->broadcast_rcv_context = NULL;
1155 failed_context_create:
1156 fw_core_remove_address_handler(&dev->handler);
1157 failed_initial:
1158 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1160 return retval;
1163 /* ifup */
1164 static int fwnet_open(struct net_device *net)
1166 struct fwnet_device *dev = netdev_priv(net);
1167 int ret;
1169 if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1170 ret = fwnet_broadcast_start(dev);
1171 if (ret)
1172 return ret;
1174 netif_start_queue(net);
1176 return 0;
1179 /* ifdown */
1180 static int fwnet_stop(struct net_device *net)
1182 netif_stop_queue(net);
1184 /* Deallocate iso context for use by other applications? */
1186 return 0;
1189 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1191 struct fwnet_header hdr_buf;
1192 struct fwnet_device *dev = netdev_priv(net);
1193 __be16 proto;
1194 u16 dest_node;
1195 unsigned max_payload;
1196 u16 dg_size;
1197 u16 *datagram_label_ptr;
1198 struct fwnet_packet_task *ptask;
1199 struct fwnet_peer *peer;
1200 unsigned long flags;
1202 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1203 if (ptask == NULL)
1204 goto fail;
1206 skb = skb_share_check(skb, GFP_ATOMIC);
1207 if (!skb)
1208 goto fail;
1211 * Make a copy of the driver-specific header.
1212 * We might need to rebuild the header on tx failure.
1214 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1215 skb_pull(skb, sizeof(hdr_buf));
1217 proto = hdr_buf.h_proto;
1218 dg_size = skb->len;
1220 /* serialize access to peer, including peer->datagram_label */
1221 spin_lock_irqsave(&dev->lock, flags);
1224 * Set the transmission type for the packet. ARP packets and IP
1225 * broadcast packets are sent via GASP.
1227 if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1228 || proto == htons(ETH_P_ARP)
1229 || (proto == htons(ETH_P_IP)
1230 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1231 max_payload = dev->broadcast_xmt_max_payload;
1232 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1234 ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
1235 ptask->generation = 0;
1236 ptask->dest_node = IEEE1394_ALL_NODES;
1237 ptask->speed = SCODE_100;
1238 } else {
1239 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1240 u8 generation;
1242 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1243 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1244 goto fail_unlock;
1246 generation = peer->generation;
1247 dest_node = peer->node_id;
1248 max_payload = peer->max_payload;
1249 datagram_label_ptr = &peer->datagram_label;
1251 ptask->fifo_addr = peer->fifo;
1252 ptask->generation = generation;
1253 ptask->dest_node = dest_node;
1254 ptask->speed = peer->speed;
1257 /* If this is an ARP packet, convert it */
1258 if (proto == htons(ETH_P_ARP)) {
1259 struct arphdr *arp = (struct arphdr *)skb->data;
1260 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1261 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1262 __be32 ipaddr;
1264 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1266 arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN;
1267 arp1394->max_rec = dev->card->max_receive;
1268 arp1394->sspd = dev->card->link_speed;
1270 put_unaligned_be16(dev->local_fifo >> 32,
1271 &arp1394->fifo_hi);
1272 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1273 &arp1394->fifo_lo);
1274 put_unaligned(ipaddr, &arp1394->sip);
1277 ptask->hdr.w0 = 0;
1278 ptask->hdr.w1 = 0;
1279 ptask->skb = skb;
1280 ptask->dev = dev;
1282 /* Does it all fit in one packet? */
1283 if (dg_size <= max_payload) {
1284 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1285 ptask->outstanding_pkts = 1;
1286 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1287 } else {
1288 u16 datagram_label;
1290 max_payload -= RFC2374_FRAG_OVERHEAD;
1291 datagram_label = (*datagram_label_ptr)++;
1292 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1293 datagram_label);
1294 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1295 max_payload += RFC2374_FRAG_HDR_SIZE;
1298 spin_unlock_irqrestore(&dev->lock, flags);
1300 ptask->max_payload = max_payload;
1301 fwnet_send_packet(ptask);
1303 return NETDEV_TX_OK;
1305 fail_unlock:
1306 spin_unlock_irqrestore(&dev->lock, flags);
1307 fail:
1308 if (ptask)
1309 kmem_cache_free(fwnet_packet_task_cache, ptask);
1311 if (skb != NULL)
1312 dev_kfree_skb(skb);
1314 net->stats.tx_dropped++;
1315 net->stats.tx_errors++;
1318 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1319 * causes serious problems" here, allegedly. Before that patch,
1320 * -ERRNO was returned which is not appropriate under Linux 2.6.
1321 * Perhaps more needs to be done? Stop the queue in serious
1322 * conditions and restart it elsewhere?
1324 return NETDEV_TX_OK;
1327 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1329 if (new_mtu < 68)
1330 return -EINVAL;
1332 net->mtu = new_mtu;
1333 return 0;
1336 static void fwnet_get_drvinfo(struct net_device *net,
1337 struct ethtool_drvinfo *info)
1339 strcpy(info->driver, KBUILD_MODNAME);
1340 strcpy(info->bus_info, "ieee1394");
1343 static const struct ethtool_ops fwnet_ethtool_ops = {
1344 .get_drvinfo = fwnet_get_drvinfo,
1347 static const struct net_device_ops fwnet_netdev_ops = {
1348 .ndo_open = fwnet_open,
1349 .ndo_stop = fwnet_stop,
1350 .ndo_start_xmit = fwnet_tx,
1351 .ndo_change_mtu = fwnet_change_mtu,
1354 static void fwnet_init_dev(struct net_device *net)
1356 net->header_ops = &fwnet_header_ops;
1357 net->netdev_ops = &fwnet_netdev_ops;
1358 net->watchdog_timeo = 2 * HZ;
1359 net->flags = IFF_BROADCAST | IFF_MULTICAST;
1360 net->features = NETIF_F_HIGHDMA;
1361 net->addr_len = FWNET_ALEN;
1362 net->hard_header_len = FWNET_HLEN;
1363 net->type = ARPHRD_IEEE1394;
1364 net->tx_queue_len = 10;
1365 SET_ETHTOOL_OPS(net, &fwnet_ethtool_ops);
1368 /* caller must hold fwnet_device_mutex */
1369 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1371 struct fwnet_device *dev;
1373 list_for_each_entry(dev, &fwnet_device_list, dev_link)
1374 if (dev->card == card)
1375 return dev;
1377 return NULL;
1380 static int fwnet_add_peer(struct fwnet_device *dev,
1381 struct fw_unit *unit, struct fw_device *device)
1383 struct fwnet_peer *peer;
1385 peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1386 if (!peer)
1387 return -ENOMEM;
1389 dev_set_drvdata(&unit->device, peer);
1391 peer->dev = dev;
1392 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1393 peer->fifo = FWNET_NO_FIFO_ADDR;
1394 INIT_LIST_HEAD(&peer->pd_list);
1395 peer->pdg_size = 0;
1396 peer->datagram_label = 0;
1397 peer->speed = device->max_speed;
1398 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1400 peer->generation = device->generation;
1401 smp_rmb();
1402 peer->node_id = device->node_id;
1404 spin_lock_irq(&dev->lock);
1405 list_add_tail(&peer->peer_link, &dev->peer_list);
1406 spin_unlock_irq(&dev->lock);
1408 return 0;
1411 static int fwnet_probe(struct device *_dev)
1413 struct fw_unit *unit = fw_unit(_dev);
1414 struct fw_device *device = fw_parent_device(unit);
1415 struct fw_card *card = device->card;
1416 struct net_device *net;
1417 bool allocated_netdev = false;
1418 struct fwnet_device *dev;
1419 unsigned max_mtu;
1420 int ret;
1422 mutex_lock(&fwnet_device_mutex);
1424 dev = fwnet_dev_find(card);
1425 if (dev) {
1426 net = dev->netdev;
1427 goto have_dev;
1430 net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1431 if (net == NULL) {
1432 ret = -ENOMEM;
1433 goto out;
1436 allocated_netdev = true;
1437 SET_NETDEV_DEV(net, card->device);
1438 dev = netdev_priv(net);
1440 spin_lock_init(&dev->lock);
1441 dev->broadcast_state = FWNET_BROADCAST_ERROR;
1442 dev->broadcast_rcv_context = NULL;
1443 dev->broadcast_xmt_max_payload = 0;
1444 dev->broadcast_xmt_datagramlabel = 0;
1446 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1448 INIT_LIST_HEAD(&dev->packet_list);
1449 INIT_LIST_HEAD(&dev->broadcasted_list);
1450 INIT_LIST_HEAD(&dev->sent_list);
1451 INIT_LIST_HEAD(&dev->peer_list);
1453 dev->card = card;
1454 dev->netdev = net;
1457 * Use the RFC 2734 default 1500 octets or the maximum payload
1458 * as initial MTU
1460 max_mtu = (1 << (card->max_receive + 1))
1461 - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1462 net->mtu = min(1500U, max_mtu);
1464 /* Set our hardware address while we're at it */
1465 put_unaligned_be64(card->guid, net->dev_addr);
1466 put_unaligned_be64(~0ULL, net->broadcast);
1467 ret = register_netdev(net);
1468 if (ret) {
1469 fw_error("Cannot register the driver\n");
1470 goto out;
1473 list_add_tail(&dev->dev_link, &fwnet_device_list);
1474 fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1475 net->name, (unsigned long long)card->guid);
1476 have_dev:
1477 ret = fwnet_add_peer(dev, unit, device);
1478 if (ret && allocated_netdev) {
1479 unregister_netdev(net);
1480 list_del(&dev->dev_link);
1482 out:
1483 if (ret && allocated_netdev)
1484 free_netdev(net);
1486 mutex_unlock(&fwnet_device_mutex);
1488 return ret;
1491 static void fwnet_remove_peer(struct fwnet_peer *peer)
1493 struct fwnet_partial_datagram *pd, *pd_next;
1495 spin_lock_irq(&peer->dev->lock);
1496 list_del(&peer->peer_link);
1497 spin_unlock_irq(&peer->dev->lock);
1499 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1500 fwnet_pd_delete(pd);
1502 kfree(peer);
1505 static int fwnet_remove(struct device *_dev)
1507 struct fwnet_peer *peer = dev_get_drvdata(_dev);
1508 struct fwnet_device *dev = peer->dev;
1509 struct net_device *net;
1510 struct fwnet_packet_task *ptask, *pt_next;
1512 mutex_lock(&fwnet_device_mutex);
1514 fwnet_remove_peer(peer);
1516 if (list_empty(&dev->peer_list)) {
1517 net = dev->netdev;
1518 unregister_netdev(net);
1520 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1521 fw_core_remove_address_handler(&dev->handler);
1522 if (dev->broadcast_rcv_context) {
1523 fw_iso_context_stop(dev->broadcast_rcv_context);
1524 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1525 dev->card);
1526 fw_iso_context_destroy(dev->broadcast_rcv_context);
1528 list_for_each_entry_safe(ptask, pt_next,
1529 &dev->packet_list, pt_link) {
1530 dev_kfree_skb_any(ptask->skb);
1531 kmem_cache_free(fwnet_packet_task_cache, ptask);
1533 list_for_each_entry_safe(ptask, pt_next,
1534 &dev->broadcasted_list, pt_link) {
1535 dev_kfree_skb_any(ptask->skb);
1536 kmem_cache_free(fwnet_packet_task_cache, ptask);
1538 list_for_each_entry_safe(ptask, pt_next,
1539 &dev->sent_list, pt_link) {
1540 dev_kfree_skb_any(ptask->skb);
1541 kmem_cache_free(fwnet_packet_task_cache, ptask);
1543 list_del(&dev->dev_link);
1545 free_netdev(net);
1548 mutex_unlock(&fwnet_device_mutex);
1550 return 0;
1554 * FIXME abort partially sent fragmented datagrams,
1555 * discard partially received fragmented datagrams
1557 static void fwnet_update(struct fw_unit *unit)
1559 struct fw_device *device = fw_parent_device(unit);
1560 struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1561 int generation;
1563 generation = device->generation;
1565 spin_lock_irq(&peer->dev->lock);
1566 peer->node_id = device->node_id;
1567 peer->generation = generation;
1568 spin_unlock_irq(&peer->dev->lock);
1571 static const struct ieee1394_device_id fwnet_id_table[] = {
1573 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1574 IEEE1394_MATCH_VERSION,
1575 .specifier_id = IANA_SPECIFIER_ID,
1576 .version = RFC2734_SW_VERSION,
1581 static struct fw_driver fwnet_driver = {
1582 .driver = {
1583 .owner = THIS_MODULE,
1584 .name = "net",
1585 .bus = &fw_bus_type,
1586 .probe = fwnet_probe,
1587 .remove = fwnet_remove,
1589 .update = fwnet_update,
1590 .id_table = fwnet_id_table,
1593 static const u32 rfc2374_unit_directory_data[] = {
1594 0x00040000, /* directory_length */
1595 0x1200005e, /* unit_specifier_id: IANA */
1596 0x81000003, /* textual descriptor offset */
1597 0x13000001, /* unit_sw_version: RFC 2734 */
1598 0x81000005, /* textual descriptor offset */
1599 0x00030000, /* descriptor_length */
1600 0x00000000, /* text */
1601 0x00000000, /* minimal ASCII, en */
1602 0x49414e41, /* I A N A */
1603 0x00030000, /* descriptor_length */
1604 0x00000000, /* text */
1605 0x00000000, /* minimal ASCII, en */
1606 0x49507634, /* I P v 4 */
1609 static struct fw_descriptor rfc2374_unit_directory = {
1610 .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1611 .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1612 .data = rfc2374_unit_directory_data
1615 static int __init fwnet_init(void)
1617 int err;
1619 err = fw_core_add_descriptor(&rfc2374_unit_directory);
1620 if (err)
1621 return err;
1623 fwnet_packet_task_cache = kmem_cache_create("packet_task",
1624 sizeof(struct fwnet_packet_task), 0, 0, NULL);
1625 if (!fwnet_packet_task_cache) {
1626 err = -ENOMEM;
1627 goto out;
1630 err = driver_register(&fwnet_driver.driver);
1631 if (!err)
1632 return 0;
1634 kmem_cache_destroy(fwnet_packet_task_cache);
1635 out:
1636 fw_core_remove_descriptor(&rfc2374_unit_directory);
1638 return err;
1640 module_init(fwnet_init);
1642 static void __exit fwnet_cleanup(void)
1644 driver_unregister(&fwnet_driver.driver);
1645 kmem_cache_destroy(fwnet_packet_task_cache);
1646 fw_core_remove_descriptor(&rfc2374_unit_directory);
1648 module_exit(fwnet_cleanup);
1650 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1651 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1652 MODULE_LICENSE("GPL");
1653 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);