2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include <linux/falloc.h>
44 #include "transaction.h"
45 #include "btrfs_inode.h"
47 #include "print-tree.h"
49 #include "ordered-data.h"
52 #include "ref-cache.h"
53 #include "compression.h"
55 struct btrfs_iget_args
{
57 struct btrfs_root
*root
;
60 static struct inode_operations btrfs_dir_inode_operations
;
61 static struct inode_operations btrfs_symlink_inode_operations
;
62 static struct inode_operations btrfs_dir_ro_inode_operations
;
63 static struct inode_operations btrfs_special_inode_operations
;
64 static struct inode_operations btrfs_file_inode_operations
;
65 static struct address_space_operations btrfs_aops
;
66 static struct address_space_operations btrfs_symlink_aops
;
67 static struct file_operations btrfs_dir_file_operations
;
68 static struct extent_io_ops btrfs_extent_io_ops
;
70 static struct kmem_cache
*btrfs_inode_cachep
;
71 struct kmem_cache
*btrfs_trans_handle_cachep
;
72 struct kmem_cache
*btrfs_transaction_cachep
;
73 struct kmem_cache
*btrfs_bit_radix_cachep
;
74 struct kmem_cache
*btrfs_path_cachep
;
77 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
78 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
79 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
80 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
81 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
82 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
83 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
84 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
87 static void btrfs_truncate(struct inode
*inode
);
88 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
89 static noinline
int cow_file_range(struct inode
*inode
,
90 struct page
*locked_page
,
91 u64 start
, u64 end
, int *page_started
,
92 unsigned long *nr_written
, int unlock
);
95 * a very lame attempt at stopping writes when the FS is 85% full. There
96 * are countless ways this is incorrect, but it is better than nothing.
98 int btrfs_check_free_space(struct btrfs_root
*root
, u64 num_required
,
106 spin_lock(&root
->fs_info
->delalloc_lock
);
107 total
= btrfs_super_total_bytes(&root
->fs_info
->super_copy
);
108 used
= btrfs_super_bytes_used(&root
->fs_info
->super_copy
);
116 if (used
+ root
->fs_info
->delalloc_bytes
+ num_required
> thresh
)
118 spin_unlock(&root
->fs_info
->delalloc_lock
);
123 * this does all the hard work for inserting an inline extent into
124 * the btree. The caller should have done a btrfs_drop_extents so that
125 * no overlapping inline items exist in the btree
127 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
128 struct btrfs_root
*root
, struct inode
*inode
,
129 u64 start
, size_t size
, size_t compressed_size
,
130 struct page
**compressed_pages
)
132 struct btrfs_key key
;
133 struct btrfs_path
*path
;
134 struct extent_buffer
*leaf
;
135 struct page
*page
= NULL
;
138 struct btrfs_file_extent_item
*ei
;
141 size_t cur_size
= size
;
143 unsigned long offset
;
144 int use_compress
= 0;
146 if (compressed_size
&& compressed_pages
) {
148 cur_size
= compressed_size
;
151 path
= btrfs_alloc_path();
155 btrfs_set_trans_block_group(trans
, inode
);
157 key
.objectid
= inode
->i_ino
;
159 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
160 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
162 inode_add_bytes(inode
, size
);
163 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
170 leaf
= path
->nodes
[0];
171 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
172 struct btrfs_file_extent_item
);
173 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
174 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
175 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
176 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
177 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
178 ptr
= btrfs_file_extent_inline_start(ei
);
183 while (compressed_size
> 0) {
184 cpage
= compressed_pages
[i
];
185 cur_size
= min_t(unsigned long, compressed_size
,
189 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
194 compressed_size
-= cur_size
;
196 btrfs_set_file_extent_compression(leaf
, ei
,
197 BTRFS_COMPRESS_ZLIB
);
199 page
= find_get_page(inode
->i_mapping
,
200 start
>> PAGE_CACHE_SHIFT
);
201 btrfs_set_file_extent_compression(leaf
, ei
, 0);
202 kaddr
= kmap_atomic(page
, KM_USER0
);
203 offset
= start
& (PAGE_CACHE_SIZE
- 1);
204 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
205 kunmap_atomic(kaddr
, KM_USER0
);
206 page_cache_release(page
);
208 btrfs_mark_buffer_dirty(leaf
);
209 btrfs_free_path(path
);
211 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
212 btrfs_update_inode(trans
, root
, inode
);
215 btrfs_free_path(path
);
221 * conditionally insert an inline extent into the file. This
222 * does the checks required to make sure the data is small enough
223 * to fit as an inline extent.
225 static int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
226 struct btrfs_root
*root
,
227 struct inode
*inode
, u64 start
, u64 end
,
228 size_t compressed_size
,
229 struct page
**compressed_pages
)
231 u64 isize
= i_size_read(inode
);
232 u64 actual_end
= min(end
+ 1, isize
);
233 u64 inline_len
= actual_end
- start
;
234 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
235 ~((u64
)root
->sectorsize
- 1);
237 u64 data_len
= inline_len
;
241 data_len
= compressed_size
;
244 actual_end
>= PAGE_CACHE_SIZE
||
245 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
247 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
249 data_len
> root
->fs_info
->max_inline
) {
253 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
254 aligned_end
, start
, &hint_byte
);
257 if (isize
> actual_end
)
258 inline_len
= min_t(u64
, isize
, actual_end
);
259 ret
= insert_inline_extent(trans
, root
, inode
, start
,
260 inline_len
, compressed_size
,
263 btrfs_drop_extent_cache(inode
, start
, aligned_end
, 0);
267 struct async_extent
{
272 unsigned long nr_pages
;
273 struct list_head list
;
278 struct btrfs_root
*root
;
279 struct page
*locked_page
;
282 struct list_head extents
;
283 struct btrfs_work work
;
286 static noinline
int add_async_extent(struct async_cow
*cow
,
287 u64 start
, u64 ram_size
,
290 unsigned long nr_pages
)
292 struct async_extent
*async_extent
;
294 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
295 async_extent
->start
= start
;
296 async_extent
->ram_size
= ram_size
;
297 async_extent
->compressed_size
= compressed_size
;
298 async_extent
->pages
= pages
;
299 async_extent
->nr_pages
= nr_pages
;
300 list_add_tail(&async_extent
->list
, &cow
->extents
);
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
320 static noinline
int compress_file_range(struct inode
*inode
,
321 struct page
*locked_page
,
323 struct async_cow
*async_cow
,
326 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
327 struct btrfs_trans_handle
*trans
;
331 u64 blocksize
= root
->sectorsize
;
333 u64 isize
= i_size_read(inode
);
335 struct page
**pages
= NULL
;
336 unsigned long nr_pages
;
337 unsigned long nr_pages_ret
= 0;
338 unsigned long total_compressed
= 0;
339 unsigned long total_in
= 0;
340 unsigned long max_compressed
= 128 * 1024;
341 unsigned long max_uncompressed
= 128 * 1024;
347 actual_end
= min_t(u64
, isize
, end
+ 1);
350 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
351 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
353 total_compressed
= actual_end
- start
;
355 /* we want to make sure that amount of ram required to uncompress
356 * an extent is reasonable, so we limit the total size in ram
357 * of a compressed extent to 128k. This is a crucial number
358 * because it also controls how easily we can spread reads across
359 * cpus for decompression.
361 * We also want to make sure the amount of IO required to do
362 * a random read is reasonably small, so we limit the size of
363 * a compressed extent to 128k.
365 total_compressed
= min(total_compressed
, max_uncompressed
);
366 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
367 num_bytes
= max(blocksize
, num_bytes
);
368 disk_num_bytes
= num_bytes
;
373 * we do compression for mount -o compress and when the
374 * inode has not been flagged as nocompress. This flag can
375 * change at any time if we discover bad compression ratios.
377 if (!btrfs_test_flag(inode
, NOCOMPRESS
) &&
378 btrfs_test_opt(root
, COMPRESS
)) {
380 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
382 ret
= btrfs_zlib_compress_pages(inode
->i_mapping
, start
,
383 total_compressed
, pages
,
384 nr_pages
, &nr_pages_ret
,
390 unsigned long offset
= total_compressed
&
391 (PAGE_CACHE_SIZE
- 1);
392 struct page
*page
= pages
[nr_pages_ret
- 1];
395 /* zero the tail end of the last page, we might be
396 * sending it down to disk
399 kaddr
= kmap_atomic(page
, KM_USER0
);
400 memset(kaddr
+ offset
, 0,
401 PAGE_CACHE_SIZE
- offset
);
402 kunmap_atomic(kaddr
, KM_USER0
);
408 trans
= btrfs_join_transaction(root
, 1);
410 btrfs_set_trans_block_group(trans
, inode
);
412 /* lets try to make an inline extent */
413 if (ret
|| total_in
< (actual_end
- start
)) {
414 /* we didn't compress the entire range, try
415 * to make an uncompressed inline extent.
417 ret
= cow_file_range_inline(trans
, root
, inode
,
418 start
, end
, 0, NULL
);
420 /* try making a compressed inline extent */
421 ret
= cow_file_range_inline(trans
, root
, inode
,
423 total_compressed
, pages
);
425 btrfs_end_transaction(trans
, root
);
428 * inline extent creation worked, we don't need
429 * to create any more async work items. Unlock
430 * and free up our temp pages.
432 extent_clear_unlock_delalloc(inode
,
433 &BTRFS_I(inode
)->io_tree
,
434 start
, end
, NULL
, 1, 0,
443 * we aren't doing an inline extent round the compressed size
444 * up to a block size boundary so the allocator does sane
447 total_compressed
= (total_compressed
+ blocksize
- 1) &
451 * one last check to make sure the compression is really a
452 * win, compare the page count read with the blocks on disk
454 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
455 ~(PAGE_CACHE_SIZE
- 1);
456 if (total_compressed
>= total_in
) {
459 disk_num_bytes
= total_compressed
;
460 num_bytes
= total_in
;
463 if (!will_compress
&& pages
) {
465 * the compression code ran but failed to make things smaller,
466 * free any pages it allocated and our page pointer array
468 for (i
= 0; i
< nr_pages_ret
; i
++) {
469 WARN_ON(pages
[i
]->mapping
);
470 page_cache_release(pages
[i
]);
474 total_compressed
= 0;
477 /* flag the file so we don't compress in the future */
478 btrfs_set_flag(inode
, NOCOMPRESS
);
483 /* the async work queues will take care of doing actual
484 * allocation on disk for these compressed pages,
485 * and will submit them to the elevator.
487 add_async_extent(async_cow
, start
, num_bytes
,
488 total_compressed
, pages
, nr_pages_ret
);
490 if (start
+ num_bytes
< end
&& start
+ num_bytes
< actual_end
) {
498 * No compression, but we still need to write the pages in
499 * the file we've been given so far. redirty the locked
500 * page if it corresponds to our extent and set things up
501 * for the async work queue to run cow_file_range to do
502 * the normal delalloc dance
504 if (page_offset(locked_page
) >= start
&&
505 page_offset(locked_page
) <= end
) {
506 __set_page_dirty_nobuffers(locked_page
);
507 /* unlocked later on in the async handlers */
509 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0);
517 for (i
= 0; i
< nr_pages_ret
; i
++) {
518 WARN_ON(pages
[i
]->mapping
);
519 page_cache_release(pages
[i
]);
527 * phase two of compressed writeback. This is the ordered portion
528 * of the code, which only gets called in the order the work was
529 * queued. We walk all the async extents created by compress_file_range
530 * and send them down to the disk.
532 static noinline
int submit_compressed_extents(struct inode
*inode
,
533 struct async_cow
*async_cow
)
535 struct async_extent
*async_extent
;
537 struct btrfs_trans_handle
*trans
;
538 struct btrfs_key ins
;
539 struct extent_map
*em
;
540 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
541 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
542 struct extent_io_tree
*io_tree
;
545 if (list_empty(&async_cow
->extents
))
548 trans
= btrfs_join_transaction(root
, 1);
550 while (!list_empty(&async_cow
->extents
)) {
551 async_extent
= list_entry(async_cow
->extents
.next
,
552 struct async_extent
, list
);
553 list_del(&async_extent
->list
);
555 io_tree
= &BTRFS_I(inode
)->io_tree
;
557 /* did the compression code fall back to uncompressed IO? */
558 if (!async_extent
->pages
) {
559 int page_started
= 0;
560 unsigned long nr_written
= 0;
562 lock_extent(io_tree
, async_extent
->start
,
563 async_extent
->start
+
564 async_extent
->ram_size
- 1, GFP_NOFS
);
566 /* allocate blocks */
567 cow_file_range(inode
, async_cow
->locked_page
,
569 async_extent
->start
+
570 async_extent
->ram_size
- 1,
571 &page_started
, &nr_written
, 0);
574 * if page_started, cow_file_range inserted an
575 * inline extent and took care of all the unlocking
576 * and IO for us. Otherwise, we need to submit
577 * all those pages down to the drive.
580 extent_write_locked_range(io_tree
,
581 inode
, async_extent
->start
,
582 async_extent
->start
+
583 async_extent
->ram_size
- 1,
591 lock_extent(io_tree
, async_extent
->start
,
592 async_extent
->start
+ async_extent
->ram_size
- 1,
595 * here we're doing allocation and writeback of the
598 btrfs_drop_extent_cache(inode
, async_extent
->start
,
599 async_extent
->start
+
600 async_extent
->ram_size
- 1, 0);
602 ret
= btrfs_reserve_extent(trans
, root
,
603 async_extent
->compressed_size
,
604 async_extent
->compressed_size
,
608 em
= alloc_extent_map(GFP_NOFS
);
609 em
->start
= async_extent
->start
;
610 em
->len
= async_extent
->ram_size
;
611 em
->orig_start
= em
->start
;
613 em
->block_start
= ins
.objectid
;
614 em
->block_len
= ins
.offset
;
615 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
616 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
617 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
620 spin_lock(&em_tree
->lock
);
621 ret
= add_extent_mapping(em_tree
, em
);
622 spin_unlock(&em_tree
->lock
);
623 if (ret
!= -EEXIST
) {
627 btrfs_drop_extent_cache(inode
, async_extent
->start
,
628 async_extent
->start
+
629 async_extent
->ram_size
- 1, 0);
632 ret
= btrfs_add_ordered_extent(inode
, async_extent
->start
,
634 async_extent
->ram_size
,
636 BTRFS_ORDERED_COMPRESSED
);
639 btrfs_end_transaction(trans
, root
);
642 * clear dirty, set writeback and unlock the pages.
644 extent_clear_unlock_delalloc(inode
,
645 &BTRFS_I(inode
)->io_tree
,
647 async_extent
->start
+
648 async_extent
->ram_size
- 1,
649 NULL
, 1, 1, 0, 1, 1, 0);
651 ret
= btrfs_submit_compressed_write(inode
,
653 async_extent
->ram_size
,
655 ins
.offset
, async_extent
->pages
,
656 async_extent
->nr_pages
);
659 trans
= btrfs_join_transaction(root
, 1);
660 alloc_hint
= ins
.objectid
+ ins
.offset
;
665 btrfs_end_transaction(trans
, root
);
670 * when extent_io.c finds a delayed allocation range in the file,
671 * the call backs end up in this code. The basic idea is to
672 * allocate extents on disk for the range, and create ordered data structs
673 * in ram to track those extents.
675 * locked_page is the page that writepage had locked already. We use
676 * it to make sure we don't do extra locks or unlocks.
678 * *page_started is set to one if we unlock locked_page and do everything
679 * required to start IO on it. It may be clean and already done with
682 static noinline
int cow_file_range(struct inode
*inode
,
683 struct page
*locked_page
,
684 u64 start
, u64 end
, int *page_started
,
685 unsigned long *nr_written
,
688 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
689 struct btrfs_trans_handle
*trans
;
692 unsigned long ram_size
;
695 u64 blocksize
= root
->sectorsize
;
697 u64 isize
= i_size_read(inode
);
698 struct btrfs_key ins
;
699 struct extent_map
*em
;
700 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
703 trans
= btrfs_join_transaction(root
, 1);
705 btrfs_set_trans_block_group(trans
, inode
);
707 actual_end
= min_t(u64
, isize
, end
+ 1);
709 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
710 num_bytes
= max(blocksize
, num_bytes
);
711 disk_num_bytes
= num_bytes
;
715 /* lets try to make an inline extent */
716 ret
= cow_file_range_inline(trans
, root
, inode
,
717 start
, end
, 0, NULL
);
719 extent_clear_unlock_delalloc(inode
,
720 &BTRFS_I(inode
)->io_tree
,
721 start
, end
, NULL
, 1, 1,
723 *nr_written
= *nr_written
+
724 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
731 BUG_ON(disk_num_bytes
>
732 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
734 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
736 while (disk_num_bytes
> 0) {
737 cur_alloc_size
= min(disk_num_bytes
, root
->fs_info
->max_extent
);
738 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
739 root
->sectorsize
, 0, alloc_hint
,
743 em
= alloc_extent_map(GFP_NOFS
);
745 em
->orig_start
= em
->start
;
747 ram_size
= ins
.offset
;
748 em
->len
= ins
.offset
;
750 em
->block_start
= ins
.objectid
;
751 em
->block_len
= ins
.offset
;
752 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
753 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
756 spin_lock(&em_tree
->lock
);
757 ret
= add_extent_mapping(em_tree
, em
);
758 spin_unlock(&em_tree
->lock
);
759 if (ret
!= -EEXIST
) {
763 btrfs_drop_extent_cache(inode
, start
,
764 start
+ ram_size
- 1, 0);
767 cur_alloc_size
= ins
.offset
;
768 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
769 ram_size
, cur_alloc_size
, 0);
772 if (root
->root_key
.objectid
==
773 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
774 ret
= btrfs_reloc_clone_csums(inode
, start
,
779 if (disk_num_bytes
< cur_alloc_size
)
782 /* we're not doing compressed IO, don't unlock the first
783 * page (which the caller expects to stay locked), don't
784 * clear any dirty bits and don't set any writeback bits
786 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
787 start
, start
+ ram_size
- 1,
788 locked_page
, unlock
, 1,
790 disk_num_bytes
-= cur_alloc_size
;
791 num_bytes
-= cur_alloc_size
;
792 alloc_hint
= ins
.objectid
+ ins
.offset
;
793 start
+= cur_alloc_size
;
797 btrfs_end_transaction(trans
, root
);
803 * work queue call back to started compression on a file and pages
805 static noinline
void async_cow_start(struct btrfs_work
*work
)
807 struct async_cow
*async_cow
;
809 async_cow
= container_of(work
, struct async_cow
, work
);
811 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
812 async_cow
->start
, async_cow
->end
, async_cow
,
815 async_cow
->inode
= NULL
;
819 * work queue call back to submit previously compressed pages
821 static noinline
void async_cow_submit(struct btrfs_work
*work
)
823 struct async_cow
*async_cow
;
824 struct btrfs_root
*root
;
825 unsigned long nr_pages
;
827 async_cow
= container_of(work
, struct async_cow
, work
);
829 root
= async_cow
->root
;
830 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
833 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
835 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
837 waitqueue_active(&root
->fs_info
->async_submit_wait
))
838 wake_up(&root
->fs_info
->async_submit_wait
);
840 if (async_cow
->inode
)
841 submit_compressed_extents(async_cow
->inode
, async_cow
);
844 static noinline
void async_cow_free(struct btrfs_work
*work
)
846 struct async_cow
*async_cow
;
847 async_cow
= container_of(work
, struct async_cow
, work
);
851 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
852 u64 start
, u64 end
, int *page_started
,
853 unsigned long *nr_written
)
855 struct async_cow
*async_cow
;
856 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
857 unsigned long nr_pages
;
859 int limit
= 10 * 1024 * 1042;
861 if (!btrfs_test_opt(root
, COMPRESS
)) {
862 return cow_file_range(inode
, locked_page
, start
, end
,
863 page_started
, nr_written
, 1);
866 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
|
867 EXTENT_DELALLOC
, 1, 0, GFP_NOFS
);
868 while (start
< end
) {
869 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
870 async_cow
->inode
= inode
;
871 async_cow
->root
= root
;
872 async_cow
->locked_page
= locked_page
;
873 async_cow
->start
= start
;
875 if (btrfs_test_flag(inode
, NOCOMPRESS
))
878 cur_end
= min(end
, start
+ 512 * 1024 - 1);
880 async_cow
->end
= cur_end
;
881 INIT_LIST_HEAD(&async_cow
->extents
);
883 async_cow
->work
.func
= async_cow_start
;
884 async_cow
->work
.ordered_func
= async_cow_submit
;
885 async_cow
->work
.ordered_free
= async_cow_free
;
886 async_cow
->work
.flags
= 0;
888 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
890 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
892 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
895 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
896 wait_event(root
->fs_info
->async_submit_wait
,
897 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
901 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
902 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
903 wait_event(root
->fs_info
->async_submit_wait
,
904 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
908 *nr_written
+= nr_pages
;
915 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
916 u64 bytenr
, u64 num_bytes
)
919 struct btrfs_ordered_sum
*sums
;
922 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
923 bytenr
+ num_bytes
- 1, &list
);
924 if (ret
== 0 && list_empty(&list
))
927 while (!list_empty(&list
)) {
928 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
929 list_del(&sums
->list
);
936 * when nowcow writeback call back. This checks for snapshots or COW copies
937 * of the extents that exist in the file, and COWs the file as required.
939 * If no cow copies or snapshots exist, we write directly to the existing
942 static int run_delalloc_nocow(struct inode
*inode
, struct page
*locked_page
,
943 u64 start
, u64 end
, int *page_started
, int force
,
944 unsigned long *nr_written
)
946 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
947 struct btrfs_trans_handle
*trans
;
948 struct extent_buffer
*leaf
;
949 struct btrfs_path
*path
;
950 struct btrfs_file_extent_item
*fi
;
951 struct btrfs_key found_key
;
963 path
= btrfs_alloc_path();
965 trans
= btrfs_join_transaction(root
, 1);
971 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
974 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
975 leaf
= path
->nodes
[0];
976 btrfs_item_key_to_cpu(leaf
, &found_key
,
978 if (found_key
.objectid
== inode
->i_ino
&&
979 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
984 leaf
= path
->nodes
[0];
985 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
986 ret
= btrfs_next_leaf(root
, path
);
991 leaf
= path
->nodes
[0];
997 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
999 if (found_key
.objectid
> inode
->i_ino
||
1000 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1001 found_key
.offset
> end
)
1004 if (found_key
.offset
> cur_offset
) {
1005 extent_end
= found_key
.offset
;
1009 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1010 struct btrfs_file_extent_item
);
1011 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1013 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1014 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1015 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1016 extent_end
= found_key
.offset
+
1017 btrfs_file_extent_num_bytes(leaf
, fi
);
1018 if (extent_end
<= start
) {
1022 if (disk_bytenr
== 0)
1024 if (btrfs_file_extent_compression(leaf
, fi
) ||
1025 btrfs_file_extent_encryption(leaf
, fi
) ||
1026 btrfs_file_extent_other_encoding(leaf
, fi
))
1028 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1030 if (btrfs_extent_readonly(root
, disk_bytenr
))
1032 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
1035 disk_bytenr
+= btrfs_file_extent_offset(leaf
, fi
);
1036 disk_bytenr
+= cur_offset
- found_key
.offset
;
1037 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1039 * force cow if csum exists in the range.
1040 * this ensure that csum for a given extent are
1041 * either valid or do not exist.
1043 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1046 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1047 extent_end
= found_key
.offset
+
1048 btrfs_file_extent_inline_len(leaf
, fi
);
1049 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1054 if (extent_end
<= start
) {
1059 if (cow_start
== (u64
)-1)
1060 cow_start
= cur_offset
;
1061 cur_offset
= extent_end
;
1062 if (cur_offset
> end
)
1068 btrfs_release_path(root
, path
);
1069 if (cow_start
!= (u64
)-1) {
1070 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1071 found_key
.offset
- 1, page_started
,
1074 cow_start
= (u64
)-1;
1077 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1078 struct extent_map
*em
;
1079 struct extent_map_tree
*em_tree
;
1080 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1081 em
= alloc_extent_map(GFP_NOFS
);
1082 em
->start
= cur_offset
;
1083 em
->orig_start
= em
->start
;
1084 em
->len
= num_bytes
;
1085 em
->block_len
= num_bytes
;
1086 em
->block_start
= disk_bytenr
;
1087 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1088 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1090 spin_lock(&em_tree
->lock
);
1091 ret
= add_extent_mapping(em_tree
, em
);
1092 spin_unlock(&em_tree
->lock
);
1093 if (ret
!= -EEXIST
) {
1094 free_extent_map(em
);
1097 btrfs_drop_extent_cache(inode
, em
->start
,
1098 em
->start
+ em
->len
- 1, 0);
1100 type
= BTRFS_ORDERED_PREALLOC
;
1102 type
= BTRFS_ORDERED_NOCOW
;
1105 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1106 num_bytes
, num_bytes
, type
);
1109 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1110 cur_offset
, cur_offset
+ num_bytes
- 1,
1111 locked_page
, 1, 1, 1, 0, 0, 0);
1112 cur_offset
= extent_end
;
1113 if (cur_offset
> end
)
1116 btrfs_release_path(root
, path
);
1118 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1119 cow_start
= cur_offset
;
1120 if (cow_start
!= (u64
)-1) {
1121 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1122 page_started
, nr_written
, 1);
1126 ret
= btrfs_end_transaction(trans
, root
);
1128 btrfs_free_path(path
);
1133 * extent_io.c call back to do delayed allocation processing
1135 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1136 u64 start
, u64 end
, int *page_started
,
1137 unsigned long *nr_written
)
1141 if (btrfs_test_flag(inode
, NODATACOW
))
1142 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1143 page_started
, 1, nr_written
);
1144 else if (btrfs_test_flag(inode
, PREALLOC
))
1145 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1146 page_started
, 0, nr_written
);
1148 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1149 page_started
, nr_written
);
1155 * extent_io.c set_bit_hook, used to track delayed allocation
1156 * bytes in this file, and to maintain the list of inodes that
1157 * have pending delalloc work to be done.
1159 static int btrfs_set_bit_hook(struct inode
*inode
, u64 start
, u64 end
,
1160 unsigned long old
, unsigned long bits
)
1163 * set_bit and clear bit hooks normally require _irqsave/restore
1164 * but in this case, we are only testeing for the DELALLOC
1165 * bit, which is only set or cleared with irqs on
1167 if (!(old
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1168 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1169 spin_lock(&root
->fs_info
->delalloc_lock
);
1170 BTRFS_I(inode
)->delalloc_bytes
+= end
- start
+ 1;
1171 root
->fs_info
->delalloc_bytes
+= end
- start
+ 1;
1172 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1173 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1174 &root
->fs_info
->delalloc_inodes
);
1176 spin_unlock(&root
->fs_info
->delalloc_lock
);
1182 * extent_io.c clear_bit_hook, see set_bit_hook for why
1184 static int btrfs_clear_bit_hook(struct inode
*inode
, u64 start
, u64 end
,
1185 unsigned long old
, unsigned long bits
)
1188 * set_bit and clear bit hooks normally require _irqsave/restore
1189 * but in this case, we are only testeing for the DELALLOC
1190 * bit, which is only set or cleared with irqs on
1192 if ((old
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1193 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1195 spin_lock(&root
->fs_info
->delalloc_lock
);
1196 if (end
- start
+ 1 > root
->fs_info
->delalloc_bytes
) {
1197 printk(KERN_INFO
"btrfs warning: delalloc account "
1199 (unsigned long long)end
- start
+ 1,
1200 (unsigned long long)
1201 root
->fs_info
->delalloc_bytes
);
1202 root
->fs_info
->delalloc_bytes
= 0;
1203 BTRFS_I(inode
)->delalloc_bytes
= 0;
1205 root
->fs_info
->delalloc_bytes
-= end
- start
+ 1;
1206 BTRFS_I(inode
)->delalloc_bytes
-= end
- start
+ 1;
1208 if (BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1209 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1210 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1212 spin_unlock(&root
->fs_info
->delalloc_lock
);
1218 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1219 * we don't create bios that span stripes or chunks
1221 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1222 size_t size
, struct bio
*bio
,
1223 unsigned long bio_flags
)
1225 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1226 struct btrfs_mapping_tree
*map_tree
;
1227 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1232 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1235 length
= bio
->bi_size
;
1236 map_tree
= &root
->fs_info
->mapping_tree
;
1237 map_length
= length
;
1238 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1239 &map_length
, NULL
, 0);
1241 if (map_length
< length
+ size
)
1247 * in order to insert checksums into the metadata in large chunks,
1248 * we wait until bio submission time. All the pages in the bio are
1249 * checksummed and sums are attached onto the ordered extent record.
1251 * At IO completion time the cums attached on the ordered extent record
1252 * are inserted into the btree
1254 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1255 struct bio
*bio
, int mirror_num
,
1256 unsigned long bio_flags
)
1258 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1261 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1267 * in order to insert checksums into the metadata in large chunks,
1268 * we wait until bio submission time. All the pages in the bio are
1269 * checksummed and sums are attached onto the ordered extent record.
1271 * At IO completion time the cums attached on the ordered extent record
1272 * are inserted into the btree
1274 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1275 int mirror_num
, unsigned long bio_flags
)
1277 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1278 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1282 * extent_io.c submission hook. This does the right thing for csum calculation
1283 * on write, or reading the csums from the tree before a read
1285 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1286 int mirror_num
, unsigned long bio_flags
)
1288 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1292 skip_sum
= btrfs_test_flag(inode
, NODATASUM
);
1294 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1297 if (!(rw
& (1 << BIO_RW
))) {
1298 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1299 return btrfs_submit_compressed_read(inode
, bio
,
1300 mirror_num
, bio_flags
);
1301 } else if (!skip_sum
)
1302 btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1304 } else if (!skip_sum
) {
1305 /* csum items have already been cloned */
1306 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1308 /* we're doing a write, do the async checksumming */
1309 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1310 inode
, rw
, bio
, mirror_num
,
1311 bio_flags
, __btrfs_submit_bio_start
,
1312 __btrfs_submit_bio_done
);
1316 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1320 * given a list of ordered sums record them in the inode. This happens
1321 * at IO completion time based on sums calculated at bio submission time.
1323 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1324 struct inode
*inode
, u64 file_offset
,
1325 struct list_head
*list
)
1327 struct list_head
*cur
;
1328 struct btrfs_ordered_sum
*sum
;
1330 btrfs_set_trans_block_group(trans
, inode
);
1331 list_for_each(cur
, list
) {
1332 sum
= list_entry(cur
, struct btrfs_ordered_sum
, list
);
1333 btrfs_csum_file_blocks(trans
,
1334 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1339 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
)
1341 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1343 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1347 /* see btrfs_writepage_start_hook for details on why this is required */
1348 struct btrfs_writepage_fixup
{
1350 struct btrfs_work work
;
1353 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1355 struct btrfs_writepage_fixup
*fixup
;
1356 struct btrfs_ordered_extent
*ordered
;
1358 struct inode
*inode
;
1362 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1366 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1367 ClearPageChecked(page
);
1371 inode
= page
->mapping
->host
;
1372 page_start
= page_offset(page
);
1373 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1375 lock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, GFP_NOFS
);
1377 /* already ordered? We're done */
1378 if (test_range_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1379 EXTENT_ORDERED
, 0)) {
1383 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1385 unlock_extent(&BTRFS_I(inode
)->io_tree
, page_start
,
1386 page_end
, GFP_NOFS
);
1388 btrfs_start_ordered_extent(inode
, ordered
, 1);
1392 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
1393 ClearPageChecked(page
);
1395 unlock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, GFP_NOFS
);
1398 page_cache_release(page
);
1402 * There are a few paths in the higher layers of the kernel that directly
1403 * set the page dirty bit without asking the filesystem if it is a
1404 * good idea. This causes problems because we want to make sure COW
1405 * properly happens and the data=ordered rules are followed.
1407 * In our case any range that doesn't have the ORDERED bit set
1408 * hasn't been properly setup for IO. We kick off an async process
1409 * to fix it up. The async helper will wait for ordered extents, set
1410 * the delalloc bit and make it safe to write the page.
1412 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1414 struct inode
*inode
= page
->mapping
->host
;
1415 struct btrfs_writepage_fixup
*fixup
;
1416 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1419 ret
= test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1424 if (PageChecked(page
))
1427 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1431 SetPageChecked(page
);
1432 page_cache_get(page
);
1433 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1435 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1439 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1440 struct inode
*inode
, u64 file_pos
,
1441 u64 disk_bytenr
, u64 disk_num_bytes
,
1442 u64 num_bytes
, u64 ram_bytes
,
1443 u8 compression
, u8 encryption
,
1444 u16 other_encoding
, int extent_type
)
1446 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1447 struct btrfs_file_extent_item
*fi
;
1448 struct btrfs_path
*path
;
1449 struct extent_buffer
*leaf
;
1450 struct btrfs_key ins
;
1454 path
= btrfs_alloc_path();
1457 ret
= btrfs_drop_extents(trans
, root
, inode
, file_pos
,
1458 file_pos
+ num_bytes
, file_pos
, &hint
);
1461 ins
.objectid
= inode
->i_ino
;
1462 ins
.offset
= file_pos
;
1463 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1464 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1466 leaf
= path
->nodes
[0];
1467 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1468 struct btrfs_file_extent_item
);
1469 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1470 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1471 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1472 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1473 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1474 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1475 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1476 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1477 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1478 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1479 btrfs_mark_buffer_dirty(leaf
);
1481 inode_add_bytes(inode
, num_bytes
);
1482 btrfs_drop_extent_cache(inode
, file_pos
, file_pos
+ num_bytes
- 1, 0);
1484 ins
.objectid
= disk_bytenr
;
1485 ins
.offset
= disk_num_bytes
;
1486 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1487 ret
= btrfs_alloc_reserved_extent(trans
, root
, leaf
->start
,
1488 root
->root_key
.objectid
,
1489 trans
->transid
, inode
->i_ino
, &ins
);
1492 btrfs_free_path(path
);
1496 /* as ordered data IO finishes, this gets called so we can finish
1497 * an ordered extent if the range of bytes in the file it covers are
1500 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1502 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1503 struct btrfs_trans_handle
*trans
;
1504 struct btrfs_ordered_extent
*ordered_extent
;
1505 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1509 ret
= btrfs_dec_test_ordered_pending(inode
, start
, end
- start
+ 1);
1513 trans
= btrfs_join_transaction(root
, 1);
1515 ordered_extent
= btrfs_lookup_ordered_extent(inode
, start
);
1516 BUG_ON(!ordered_extent
);
1517 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
))
1520 lock_extent(io_tree
, ordered_extent
->file_offset
,
1521 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1524 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1526 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1528 ret
= btrfs_mark_extent_written(trans
, root
, inode
,
1529 ordered_extent
->file_offset
,
1530 ordered_extent
->file_offset
+
1531 ordered_extent
->len
);
1534 ret
= insert_reserved_file_extent(trans
, inode
,
1535 ordered_extent
->file_offset
,
1536 ordered_extent
->start
,
1537 ordered_extent
->disk_len
,
1538 ordered_extent
->len
,
1539 ordered_extent
->len
,
1541 BTRFS_FILE_EXTENT_REG
);
1544 unlock_extent(io_tree
, ordered_extent
->file_offset
,
1545 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1548 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1549 &ordered_extent
->list
);
1551 mutex_lock(&BTRFS_I(inode
)->extent_mutex
);
1552 btrfs_ordered_update_i_size(inode
, ordered_extent
);
1553 btrfs_update_inode(trans
, root
, inode
);
1554 btrfs_remove_ordered_extent(inode
, ordered_extent
);
1555 mutex_unlock(&BTRFS_I(inode
)->extent_mutex
);
1558 btrfs_put_ordered_extent(ordered_extent
);
1559 /* once for the tree */
1560 btrfs_put_ordered_extent(ordered_extent
);
1562 btrfs_end_transaction(trans
, root
);
1566 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1567 struct extent_state
*state
, int uptodate
)
1569 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1573 * When IO fails, either with EIO or csum verification fails, we
1574 * try other mirrors that might have a good copy of the data. This
1575 * io_failure_record is used to record state as we go through all the
1576 * mirrors. If another mirror has good data, the page is set up to date
1577 * and things continue. If a good mirror can't be found, the original
1578 * bio end_io callback is called to indicate things have failed.
1580 struct io_failure_record
{
1585 unsigned long bio_flags
;
1589 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1590 struct page
*page
, u64 start
, u64 end
,
1591 struct extent_state
*state
)
1593 struct io_failure_record
*failrec
= NULL
;
1595 struct extent_map
*em
;
1596 struct inode
*inode
= page
->mapping
->host
;
1597 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1598 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1605 ret
= get_state_private(failure_tree
, start
, &private);
1607 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1610 failrec
->start
= start
;
1611 failrec
->len
= end
- start
+ 1;
1612 failrec
->last_mirror
= 0;
1613 failrec
->bio_flags
= 0;
1615 spin_lock(&em_tree
->lock
);
1616 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1617 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1618 free_extent_map(em
);
1621 spin_unlock(&em_tree
->lock
);
1623 if (!em
|| IS_ERR(em
)) {
1627 logical
= start
- em
->start
;
1628 logical
= em
->block_start
+ logical
;
1629 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1630 logical
= em
->block_start
;
1631 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1633 failrec
->logical
= logical
;
1634 free_extent_map(em
);
1635 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1636 EXTENT_DIRTY
, GFP_NOFS
);
1637 set_state_private(failure_tree
, start
,
1638 (u64
)(unsigned long)failrec
);
1640 failrec
= (struct io_failure_record
*)(unsigned long)private;
1642 num_copies
= btrfs_num_copies(
1643 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1644 failrec
->logical
, failrec
->len
);
1645 failrec
->last_mirror
++;
1647 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1648 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1651 if (state
&& state
->start
!= failrec
->start
)
1653 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1655 if (!state
|| failrec
->last_mirror
> num_copies
) {
1656 set_state_private(failure_tree
, failrec
->start
, 0);
1657 clear_extent_bits(failure_tree
, failrec
->start
,
1658 failrec
->start
+ failrec
->len
- 1,
1659 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1663 bio
= bio_alloc(GFP_NOFS
, 1);
1664 bio
->bi_private
= state
;
1665 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1666 bio
->bi_sector
= failrec
->logical
>> 9;
1667 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1670 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1671 if (failed_bio
->bi_rw
& (1 << BIO_RW
))
1676 BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1677 failrec
->last_mirror
,
1678 failrec
->bio_flags
);
1683 * each time an IO finishes, we do a fast check in the IO failure tree
1684 * to see if we need to process or clean up an io_failure_record
1686 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1689 u64 private_failure
;
1690 struct io_failure_record
*failure
;
1694 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1695 (u64
)-1, 1, EXTENT_DIRTY
)) {
1696 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1697 start
, &private_failure
);
1699 failure
= (struct io_failure_record
*)(unsigned long)
1701 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1703 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1705 failure
->start
+ failure
->len
- 1,
1706 EXTENT_DIRTY
| EXTENT_LOCKED
,
1715 * when reads are done, we need to check csums to verify the data is correct
1716 * if there's a match, we allow the bio to finish. If not, we go through
1717 * the io_failure_record routines to find good copies
1719 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1720 struct extent_state
*state
)
1722 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1723 struct inode
*inode
= page
->mapping
->host
;
1724 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1726 u64
private = ~(u32
)0;
1728 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1731 if (PageChecked(page
)) {
1732 ClearPageChecked(page
);
1735 if (btrfs_test_flag(inode
, NODATASUM
))
1738 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1739 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1)) {
1740 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1745 if (state
&& state
->start
== start
) {
1746 private = state
->private;
1749 ret
= get_state_private(io_tree
, start
, &private);
1751 kaddr
= kmap_atomic(page
, KM_USER0
);
1755 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1756 btrfs_csum_final(csum
, (char *)&csum
);
1757 if (csum
!= private)
1760 kunmap_atomic(kaddr
, KM_USER0
);
1762 /* if the io failure tree for this inode is non-empty,
1763 * check to see if we've recovered from a failed IO
1765 btrfs_clean_io_failures(inode
, start
);
1769 printk(KERN_INFO
"btrfs csum failed ino %lu off %llu csum %u "
1770 "private %llu\n", page
->mapping
->host
->i_ino
,
1771 (unsigned long long)start
, csum
,
1772 (unsigned long long)private);
1773 memset(kaddr
+ offset
, 1, end
- start
+ 1);
1774 flush_dcache_page(page
);
1775 kunmap_atomic(kaddr
, KM_USER0
);
1782 * This creates an orphan entry for the given inode in case something goes
1783 * wrong in the middle of an unlink/truncate.
1785 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
1787 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1790 spin_lock(&root
->list_lock
);
1792 /* already on the orphan list, we're good */
1793 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
1794 spin_unlock(&root
->list_lock
);
1798 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
1800 spin_unlock(&root
->list_lock
);
1803 * insert an orphan item to track this unlinked/truncated file
1805 ret
= btrfs_insert_orphan_item(trans
, root
, inode
->i_ino
);
1811 * We have done the truncate/delete so we can go ahead and remove the orphan
1812 * item for this particular inode.
1814 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
1816 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1819 spin_lock(&root
->list_lock
);
1821 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
1822 spin_unlock(&root
->list_lock
);
1826 list_del_init(&BTRFS_I(inode
)->i_orphan
);
1828 spin_unlock(&root
->list_lock
);
1832 spin_unlock(&root
->list_lock
);
1834 ret
= btrfs_del_orphan_item(trans
, root
, inode
->i_ino
);
1840 * this cleans up any orphans that may be left on the list from the last use
1843 void btrfs_orphan_cleanup(struct btrfs_root
*root
)
1845 struct btrfs_path
*path
;
1846 struct extent_buffer
*leaf
;
1847 struct btrfs_item
*item
;
1848 struct btrfs_key key
, found_key
;
1849 struct btrfs_trans_handle
*trans
;
1850 struct inode
*inode
;
1851 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
1853 path
= btrfs_alloc_path();
1858 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1859 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1860 key
.offset
= (u64
)-1;
1864 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1866 printk(KERN_ERR
"Error searching slot for orphan: %d"
1872 * if ret == 0 means we found what we were searching for, which
1873 * is weird, but possible, so only screw with path if we didnt
1874 * find the key and see if we have stuff that matches
1877 if (path
->slots
[0] == 0)
1882 /* pull out the item */
1883 leaf
= path
->nodes
[0];
1884 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
1885 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1887 /* make sure the item matches what we want */
1888 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
1890 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
1893 /* release the path since we're done with it */
1894 btrfs_release_path(root
, path
);
1897 * this is where we are basically btrfs_lookup, without the
1898 * crossing root thing. we store the inode number in the
1899 * offset of the orphan item.
1901 inode
= btrfs_iget_locked(root
->fs_info
->sb
,
1902 found_key
.offset
, root
);
1906 if (inode
->i_state
& I_NEW
) {
1907 BTRFS_I(inode
)->root
= root
;
1909 /* have to set the location manually */
1910 BTRFS_I(inode
)->location
.objectid
= inode
->i_ino
;
1911 BTRFS_I(inode
)->location
.type
= BTRFS_INODE_ITEM_KEY
;
1912 BTRFS_I(inode
)->location
.offset
= 0;
1914 btrfs_read_locked_inode(inode
);
1915 unlock_new_inode(inode
);
1919 * add this inode to the orphan list so btrfs_orphan_del does
1920 * the proper thing when we hit it
1922 spin_lock(&root
->list_lock
);
1923 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
1924 spin_unlock(&root
->list_lock
);
1927 * if this is a bad inode, means we actually succeeded in
1928 * removing the inode, but not the orphan record, which means
1929 * we need to manually delete the orphan since iput will just
1930 * do a destroy_inode
1932 if (is_bad_inode(inode
)) {
1933 trans
= btrfs_start_transaction(root
, 1);
1934 btrfs_orphan_del(trans
, inode
);
1935 btrfs_end_transaction(trans
, root
);
1940 /* if we have links, this was a truncate, lets do that */
1941 if (inode
->i_nlink
) {
1943 btrfs_truncate(inode
);
1948 /* this will do delete_inode and everything for us */
1953 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
1955 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
1957 btrfs_free_path(path
);
1961 * read an inode from the btree into the in-memory inode
1963 void btrfs_read_locked_inode(struct inode
*inode
)
1965 struct btrfs_path
*path
;
1966 struct extent_buffer
*leaf
;
1967 struct btrfs_inode_item
*inode_item
;
1968 struct btrfs_timespec
*tspec
;
1969 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1970 struct btrfs_key location
;
1971 u64 alloc_group_block
;
1975 path
= btrfs_alloc_path();
1977 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
1979 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
1983 leaf
= path
->nodes
[0];
1984 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1985 struct btrfs_inode_item
);
1987 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
1988 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
1989 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
1990 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
1991 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
1993 tspec
= btrfs_inode_atime(inode_item
);
1994 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
1995 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
1997 tspec
= btrfs_inode_mtime(inode_item
);
1998 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
1999 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2001 tspec
= btrfs_inode_ctime(inode_item
);
2002 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2003 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2005 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2006 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2007 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2008 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2010 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2012 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2013 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2015 alloc_group_block
= btrfs_inode_block_group(leaf
, inode_item
);
2016 BTRFS_I(inode
)->block_group
= btrfs_find_block_group(root
, 0,
2017 alloc_group_block
, 0);
2018 btrfs_free_path(path
);
2021 switch (inode
->i_mode
& S_IFMT
) {
2023 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2024 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2025 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2026 inode
->i_fop
= &btrfs_file_operations
;
2027 inode
->i_op
= &btrfs_file_inode_operations
;
2030 inode
->i_fop
= &btrfs_dir_file_operations
;
2031 if (root
== root
->fs_info
->tree_root
)
2032 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2034 inode
->i_op
= &btrfs_dir_inode_operations
;
2037 inode
->i_op
= &btrfs_symlink_inode_operations
;
2038 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2039 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2042 init_special_inode(inode
, inode
->i_mode
, rdev
);
2048 btrfs_free_path(path
);
2049 make_bad_inode(inode
);
2053 * given a leaf and an inode, copy the inode fields into the leaf
2055 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2056 struct extent_buffer
*leaf
,
2057 struct btrfs_inode_item
*item
,
2058 struct inode
*inode
)
2060 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2061 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2062 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2063 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2064 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2066 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2067 inode
->i_atime
.tv_sec
);
2068 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2069 inode
->i_atime
.tv_nsec
);
2071 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2072 inode
->i_mtime
.tv_sec
);
2073 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2074 inode
->i_mtime
.tv_nsec
);
2076 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2077 inode
->i_ctime
.tv_sec
);
2078 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2079 inode
->i_ctime
.tv_nsec
);
2081 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2082 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2083 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2084 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2085 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2086 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2087 btrfs_set_inode_block_group(leaf
, item
, BTRFS_I(inode
)->block_group
);
2091 * copy everything in the in-memory inode into the btree.
2093 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2094 struct btrfs_root
*root
, struct inode
*inode
)
2096 struct btrfs_inode_item
*inode_item
;
2097 struct btrfs_path
*path
;
2098 struct extent_buffer
*leaf
;
2101 path
= btrfs_alloc_path();
2103 ret
= btrfs_lookup_inode(trans
, root
, path
,
2104 &BTRFS_I(inode
)->location
, 1);
2111 leaf
= path
->nodes
[0];
2112 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2113 struct btrfs_inode_item
);
2115 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2116 btrfs_mark_buffer_dirty(leaf
);
2117 btrfs_set_inode_last_trans(trans
, inode
);
2120 btrfs_free_path(path
);
2126 * unlink helper that gets used here in inode.c and in the tree logging
2127 * recovery code. It remove a link in a directory with a given name, and
2128 * also drops the back refs in the inode to the directory
2130 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2131 struct btrfs_root
*root
,
2132 struct inode
*dir
, struct inode
*inode
,
2133 const char *name
, int name_len
)
2135 struct btrfs_path
*path
;
2137 struct extent_buffer
*leaf
;
2138 struct btrfs_dir_item
*di
;
2139 struct btrfs_key key
;
2142 path
= btrfs_alloc_path();
2148 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2149 name
, name_len
, -1);
2158 leaf
= path
->nodes
[0];
2159 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2160 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2163 btrfs_release_path(root
, path
);
2165 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
2167 dir
->i_ino
, &index
);
2169 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2170 "inode %lu parent %lu\n", name_len
, name
,
2171 inode
->i_ino
, dir
->i_ino
);
2175 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2176 index
, name
, name_len
, -1);
2185 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2186 btrfs_release_path(root
, path
);
2188 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2190 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2192 BTRFS_I(dir
)->log_dirty_trans
= trans
->transid
;
2194 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2198 btrfs_free_path(path
);
2202 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2203 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2204 btrfs_update_inode(trans
, root
, dir
);
2205 btrfs_drop_nlink(inode
);
2206 ret
= btrfs_update_inode(trans
, root
, inode
);
2207 dir
->i_sb
->s_dirt
= 1;
2212 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2214 struct btrfs_root
*root
;
2215 struct btrfs_trans_handle
*trans
;
2216 struct inode
*inode
= dentry
->d_inode
;
2218 unsigned long nr
= 0;
2220 root
= BTRFS_I(dir
)->root
;
2222 ret
= btrfs_check_free_space(root
, 1, 1);
2226 trans
= btrfs_start_transaction(root
, 1);
2228 btrfs_set_trans_block_group(trans
, dir
);
2229 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2230 dentry
->d_name
.name
, dentry
->d_name
.len
);
2232 if (inode
->i_nlink
== 0)
2233 ret
= btrfs_orphan_add(trans
, inode
);
2235 nr
= trans
->blocks_used
;
2237 btrfs_end_transaction_throttle(trans
, root
);
2239 btrfs_btree_balance_dirty(root
, nr
);
2243 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2245 struct inode
*inode
= dentry
->d_inode
;
2248 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2249 struct btrfs_trans_handle
*trans
;
2250 unsigned long nr
= 0;
2253 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2254 * the root of a subvolume or snapshot
2256 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
2257 inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
2261 ret
= btrfs_check_free_space(root
, 1, 1);
2265 trans
= btrfs_start_transaction(root
, 1);
2266 btrfs_set_trans_block_group(trans
, dir
);
2268 err
= btrfs_orphan_add(trans
, inode
);
2272 /* now the directory is empty */
2273 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2274 dentry
->d_name
.name
, dentry
->d_name
.len
);
2276 btrfs_i_size_write(inode
, 0);
2279 nr
= trans
->blocks_used
;
2280 ret
= btrfs_end_transaction_throttle(trans
, root
);
2282 btrfs_btree_balance_dirty(root
, nr
);
2291 * when truncating bytes in a file, it is possible to avoid reading
2292 * the leaves that contain only checksum items. This can be the
2293 * majority of the IO required to delete a large file, but it must
2294 * be done carefully.
2296 * The keys in the level just above the leaves are checked to make sure
2297 * the lowest key in a given leaf is a csum key, and starts at an offset
2298 * after the new size.
2300 * Then the key for the next leaf is checked to make sure it also has
2301 * a checksum item for the same file. If it does, we know our target leaf
2302 * contains only checksum items, and it can be safely freed without reading
2305 * This is just an optimization targeted at large files. It may do
2306 * nothing. It will return 0 unless things went badly.
2308 static noinline
int drop_csum_leaves(struct btrfs_trans_handle
*trans
,
2309 struct btrfs_root
*root
,
2310 struct btrfs_path
*path
,
2311 struct inode
*inode
, u64 new_size
)
2313 struct btrfs_key key
;
2316 struct btrfs_key found_key
;
2317 struct btrfs_key other_key
;
2318 struct btrfs_leaf_ref
*ref
;
2322 path
->lowest_level
= 1;
2323 key
.objectid
= inode
->i_ino
;
2324 key
.type
= BTRFS_CSUM_ITEM_KEY
;
2325 key
.offset
= new_size
;
2327 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2331 if (path
->nodes
[1] == NULL
) {
2336 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, path
->slots
[1]);
2337 nritems
= btrfs_header_nritems(path
->nodes
[1]);
2342 if (path
->slots
[1] >= nritems
)
2345 /* did we find a key greater than anything we want to delete? */
2346 if (found_key
.objectid
> inode
->i_ino
||
2347 (found_key
.objectid
== inode
->i_ino
&& found_key
.type
> key
.type
))
2350 /* we check the next key in the node to make sure the leave contains
2351 * only checksum items. This comparison doesn't work if our
2352 * leaf is the last one in the node
2354 if (path
->slots
[1] + 1 >= nritems
) {
2356 /* search forward from the last key in the node, this
2357 * will bring us into the next node in the tree
2359 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, nritems
- 1);
2361 /* unlikely, but we inc below, so check to be safe */
2362 if (found_key
.offset
== (u64
)-1)
2365 /* search_forward needs a path with locks held, do the
2366 * search again for the original key. It is possible
2367 * this will race with a balance and return a path that
2368 * we could modify, but this drop is just an optimization
2369 * and is allowed to miss some leaves.
2371 btrfs_release_path(root
, path
);
2374 /* setup a max key for search_forward */
2375 other_key
.offset
= (u64
)-1;
2376 other_key
.type
= key
.type
;
2377 other_key
.objectid
= key
.objectid
;
2379 path
->keep_locks
= 1;
2380 ret
= btrfs_search_forward(root
, &found_key
, &other_key
,
2382 path
->keep_locks
= 0;
2383 if (ret
|| found_key
.objectid
!= key
.objectid
||
2384 found_key
.type
!= key
.type
) {
2389 key
.offset
= found_key
.offset
;
2390 btrfs_release_path(root
, path
);
2395 /* we know there's one more slot after us in the tree,
2396 * read that key so we can verify it is also a checksum item
2398 btrfs_node_key_to_cpu(path
->nodes
[1], &other_key
, path
->slots
[1] + 1);
2400 if (found_key
.objectid
< inode
->i_ino
)
2403 if (found_key
.type
!= key
.type
|| found_key
.offset
< new_size
)
2407 * if the key for the next leaf isn't a csum key from this objectid,
2408 * we can't be sure there aren't good items inside this leaf.
2411 if (other_key
.objectid
!= inode
->i_ino
|| other_key
.type
!= key
.type
)
2414 leaf_start
= btrfs_node_blockptr(path
->nodes
[1], path
->slots
[1]);
2415 leaf_gen
= btrfs_node_ptr_generation(path
->nodes
[1], path
->slots
[1]);
2417 * it is safe to delete this leaf, it contains only
2418 * csum items from this inode at an offset >= new_size
2420 ret
= btrfs_del_leaf(trans
, root
, path
, leaf_start
);
2423 if (root
->ref_cows
&& leaf_gen
< trans
->transid
) {
2424 ref
= btrfs_alloc_leaf_ref(root
, 0);
2426 ref
->root_gen
= root
->root_key
.offset
;
2427 ref
->bytenr
= leaf_start
;
2429 ref
->generation
= leaf_gen
;
2432 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
2434 btrfs_free_leaf_ref(root
, ref
);
2440 btrfs_release_path(root
, path
);
2442 if (other_key
.objectid
== inode
->i_ino
&&
2443 other_key
.type
== key
.type
&& other_key
.offset
> key
.offset
) {
2444 key
.offset
= other_key
.offset
;
2450 /* fixup any changes we've made to the path */
2451 path
->lowest_level
= 0;
2452 path
->keep_locks
= 0;
2453 btrfs_release_path(root
, path
);
2460 * this can truncate away extent items, csum items and directory items.
2461 * It starts at a high offset and removes keys until it can't find
2462 * any higher than new_size
2464 * csum items that cross the new i_size are truncated to the new size
2467 * min_type is the minimum key type to truncate down to. If set to 0, this
2468 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2470 noinline
int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
2471 struct btrfs_root
*root
,
2472 struct inode
*inode
,
2473 u64 new_size
, u32 min_type
)
2476 struct btrfs_path
*path
;
2477 struct btrfs_key key
;
2478 struct btrfs_key found_key
;
2480 struct extent_buffer
*leaf
;
2481 struct btrfs_file_extent_item
*fi
;
2482 u64 extent_start
= 0;
2483 u64 extent_num_bytes
= 0;
2489 int pending_del_nr
= 0;
2490 int pending_del_slot
= 0;
2491 int extent_type
= -1;
2493 u64 mask
= root
->sectorsize
- 1;
2496 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
2497 path
= btrfs_alloc_path();
2501 /* FIXME, add redo link to tree so we don't leak on crash */
2502 key
.objectid
= inode
->i_ino
;
2503 key
.offset
= (u64
)-1;
2506 btrfs_init_path(path
);
2509 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2514 /* there are no items in the tree for us to truncate, we're
2517 if (path
->slots
[0] == 0) {
2526 leaf
= path
->nodes
[0];
2527 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2528 found_type
= btrfs_key_type(&found_key
);
2531 if (found_key
.objectid
!= inode
->i_ino
)
2534 if (found_type
< min_type
)
2537 item_end
= found_key
.offset
;
2538 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
2539 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2540 struct btrfs_file_extent_item
);
2541 extent_type
= btrfs_file_extent_type(leaf
, fi
);
2542 encoding
= btrfs_file_extent_compression(leaf
, fi
);
2543 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
2544 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
2546 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2548 btrfs_file_extent_num_bytes(leaf
, fi
);
2549 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2550 item_end
+= btrfs_file_extent_inline_len(leaf
,
2555 if (item_end
< new_size
) {
2556 if (found_type
== BTRFS_DIR_ITEM_KEY
)
2557 found_type
= BTRFS_INODE_ITEM_KEY
;
2558 else if (found_type
== BTRFS_EXTENT_ITEM_KEY
)
2559 found_type
= BTRFS_EXTENT_DATA_KEY
;
2560 else if (found_type
== BTRFS_EXTENT_DATA_KEY
)
2561 found_type
= BTRFS_XATTR_ITEM_KEY
;
2562 else if (found_type
== BTRFS_XATTR_ITEM_KEY
)
2563 found_type
= BTRFS_INODE_REF_KEY
;
2564 else if (found_type
)
2568 btrfs_set_key_type(&key
, found_type
);
2571 if (found_key
.offset
>= new_size
)
2577 /* FIXME, shrink the extent if the ref count is only 1 */
2578 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
2581 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2583 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
2584 if (!del_item
&& !encoding
) {
2585 u64 orig_num_bytes
=
2586 btrfs_file_extent_num_bytes(leaf
, fi
);
2587 extent_num_bytes
= new_size
-
2588 found_key
.offset
+ root
->sectorsize
- 1;
2589 extent_num_bytes
= extent_num_bytes
&
2590 ~((u64
)root
->sectorsize
- 1);
2591 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2593 num_dec
= (orig_num_bytes
-
2595 if (root
->ref_cows
&& extent_start
!= 0)
2596 inode_sub_bytes(inode
, num_dec
);
2597 btrfs_mark_buffer_dirty(leaf
);
2600 btrfs_file_extent_disk_num_bytes(leaf
,
2602 /* FIXME blocksize != 4096 */
2603 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
2604 if (extent_start
!= 0) {
2607 inode_sub_bytes(inode
, num_dec
);
2609 root_gen
= btrfs_header_generation(leaf
);
2610 root_owner
= btrfs_header_owner(leaf
);
2612 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2614 * we can't truncate inline items that have had
2618 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
2619 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
2620 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
2621 u32 size
= new_size
- found_key
.offset
;
2623 if (root
->ref_cows
) {
2624 inode_sub_bytes(inode
, item_end
+ 1 -
2628 btrfs_file_extent_calc_inline_size(size
);
2629 ret
= btrfs_truncate_item(trans
, root
, path
,
2632 } else if (root
->ref_cows
) {
2633 inode_sub_bytes(inode
, item_end
+ 1 -
2639 if (!pending_del_nr
) {
2640 /* no pending yet, add ourselves */
2641 pending_del_slot
= path
->slots
[0];
2643 } else if (pending_del_nr
&&
2644 path
->slots
[0] + 1 == pending_del_slot
) {
2645 /* hop on the pending chunk */
2647 pending_del_slot
= path
->slots
[0];
2655 ret
= btrfs_free_extent(trans
, root
, extent_start
,
2657 leaf
->start
, root_owner
,
2658 root_gen
, inode
->i_ino
, 0);
2662 if (path
->slots
[0] == 0) {
2665 btrfs_release_path(root
, path
);
2670 if (pending_del_nr
&&
2671 path
->slots
[0] + 1 != pending_del_slot
) {
2672 struct btrfs_key debug
;
2674 btrfs_item_key_to_cpu(path
->nodes
[0], &debug
,
2676 ret
= btrfs_del_items(trans
, root
, path
,
2681 btrfs_release_path(root
, path
);
2687 if (pending_del_nr
) {
2688 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
2691 btrfs_free_path(path
);
2692 inode
->i_sb
->s_dirt
= 1;
2697 * taken from block_truncate_page, but does cow as it zeros out
2698 * any bytes left in the last page in the file.
2700 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
2702 struct inode
*inode
= mapping
->host
;
2703 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2704 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2705 struct btrfs_ordered_extent
*ordered
;
2707 u32 blocksize
= root
->sectorsize
;
2708 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2709 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2715 if ((offset
& (blocksize
- 1)) == 0)
2720 page
= grab_cache_page(mapping
, index
);
2724 page_start
= page_offset(page
);
2725 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
2727 if (!PageUptodate(page
)) {
2728 ret
= btrfs_readpage(NULL
, page
);
2730 if (page
->mapping
!= mapping
) {
2732 page_cache_release(page
);
2735 if (!PageUptodate(page
)) {
2740 wait_on_page_writeback(page
);
2742 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2743 set_page_extent_mapped(page
);
2745 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
2747 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2749 page_cache_release(page
);
2750 btrfs_start_ordered_extent(inode
, ordered
, 1);
2751 btrfs_put_ordered_extent(ordered
);
2755 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
2757 if (offset
!= PAGE_CACHE_SIZE
) {
2759 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
2760 flush_dcache_page(page
);
2763 ClearPageChecked(page
);
2764 set_page_dirty(page
);
2765 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2769 page_cache_release(page
);
2774 int btrfs_cont_expand(struct inode
*inode
, loff_t size
)
2776 struct btrfs_trans_handle
*trans
;
2777 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2778 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2779 struct extent_map
*em
;
2780 u64 mask
= root
->sectorsize
- 1;
2781 u64 hole_start
= (inode
->i_size
+ mask
) & ~mask
;
2782 u64 block_end
= (size
+ mask
) & ~mask
;
2788 if (size
<= hole_start
)
2791 err
= btrfs_check_free_space(root
, 1, 0);
2795 btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
2798 struct btrfs_ordered_extent
*ordered
;
2799 btrfs_wait_ordered_range(inode
, hole_start
,
2800 block_end
- hole_start
);
2801 lock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2802 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
2805 unlock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2806 btrfs_put_ordered_extent(ordered
);
2809 trans
= btrfs_start_transaction(root
, 1);
2810 btrfs_set_trans_block_group(trans
, inode
);
2812 cur_offset
= hole_start
;
2814 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
2815 block_end
- cur_offset
, 0);
2816 BUG_ON(IS_ERR(em
) || !em
);
2817 last_byte
= min(extent_map_end(em
), block_end
);
2818 last_byte
= (last_byte
+ mask
) & ~mask
;
2819 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
2821 hole_size
= last_byte
- cur_offset
;
2822 err
= btrfs_drop_extents(trans
, root
, inode
,
2824 cur_offset
+ hole_size
,
2825 cur_offset
, &hint_byte
);
2828 err
= btrfs_insert_file_extent(trans
, root
,
2829 inode
->i_ino
, cur_offset
, 0,
2830 0, hole_size
, 0, hole_size
,
2832 btrfs_drop_extent_cache(inode
, hole_start
,
2835 free_extent_map(em
);
2836 cur_offset
= last_byte
;
2837 if (err
|| cur_offset
>= block_end
)
2841 btrfs_end_transaction(trans
, root
);
2842 unlock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2846 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
2848 struct inode
*inode
= dentry
->d_inode
;
2851 err
= inode_change_ok(inode
, attr
);
2855 if (S_ISREG(inode
->i_mode
) &&
2856 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
> inode
->i_size
) {
2857 err
= btrfs_cont_expand(inode
, attr
->ia_size
);
2862 err
= inode_setattr(inode
, attr
);
2864 if (!err
&& ((attr
->ia_valid
& ATTR_MODE
)))
2865 err
= btrfs_acl_chmod(inode
);
2869 void btrfs_delete_inode(struct inode
*inode
)
2871 struct btrfs_trans_handle
*trans
;
2872 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2876 truncate_inode_pages(&inode
->i_data
, 0);
2877 if (is_bad_inode(inode
)) {
2878 btrfs_orphan_del(NULL
, inode
);
2881 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
2883 btrfs_i_size_write(inode
, 0);
2884 trans
= btrfs_join_transaction(root
, 1);
2886 btrfs_set_trans_block_group(trans
, inode
);
2887 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, inode
->i_size
, 0);
2889 btrfs_orphan_del(NULL
, inode
);
2890 goto no_delete_lock
;
2893 btrfs_orphan_del(trans
, inode
);
2895 nr
= trans
->blocks_used
;
2898 btrfs_end_transaction(trans
, root
);
2899 btrfs_btree_balance_dirty(root
, nr
);
2903 nr
= trans
->blocks_used
;
2904 btrfs_end_transaction(trans
, root
);
2905 btrfs_btree_balance_dirty(root
, nr
);
2911 * this returns the key found in the dir entry in the location pointer.
2912 * If no dir entries were found, location->objectid is 0.
2914 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
2915 struct btrfs_key
*location
)
2917 const char *name
= dentry
->d_name
.name
;
2918 int namelen
= dentry
->d_name
.len
;
2919 struct btrfs_dir_item
*di
;
2920 struct btrfs_path
*path
;
2921 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2924 path
= btrfs_alloc_path();
2927 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir
->i_ino
, name
,
2932 if (!di
|| IS_ERR(di
))
2935 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
2937 btrfs_free_path(path
);
2940 location
->objectid
= 0;
2945 * when we hit a tree root in a directory, the btrfs part of the inode
2946 * needs to be changed to reflect the root directory of the tree root. This
2947 * is kind of like crossing a mount point.
2949 static int fixup_tree_root_location(struct btrfs_root
*root
,
2950 struct btrfs_key
*location
,
2951 struct btrfs_root
**sub_root
,
2952 struct dentry
*dentry
)
2954 struct btrfs_root_item
*ri
;
2956 if (btrfs_key_type(location
) != BTRFS_ROOT_ITEM_KEY
)
2958 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
2961 *sub_root
= btrfs_read_fs_root(root
->fs_info
, location
,
2962 dentry
->d_name
.name
,
2963 dentry
->d_name
.len
);
2964 if (IS_ERR(*sub_root
))
2965 return PTR_ERR(*sub_root
);
2967 ri
= &(*sub_root
)->root_item
;
2968 location
->objectid
= btrfs_root_dirid(ri
);
2969 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
2970 location
->offset
= 0;
2975 static noinline
void init_btrfs_i(struct inode
*inode
)
2977 struct btrfs_inode
*bi
= BTRFS_I(inode
);
2980 bi
->i_default_acl
= NULL
;
2985 bi
->logged_trans
= 0;
2986 bi
->delalloc_bytes
= 0;
2987 bi
->disk_i_size
= 0;
2989 bi
->index_cnt
= (u64
)-1;
2990 bi
->log_dirty_trans
= 0;
2991 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
, GFP_NOFS
);
2992 extent_io_tree_init(&BTRFS_I(inode
)->io_tree
,
2993 inode
->i_mapping
, GFP_NOFS
);
2994 extent_io_tree_init(&BTRFS_I(inode
)->io_failure_tree
,
2995 inode
->i_mapping
, GFP_NOFS
);
2996 INIT_LIST_HEAD(&BTRFS_I(inode
)->delalloc_inodes
);
2997 btrfs_ordered_inode_tree_init(&BTRFS_I(inode
)->ordered_tree
);
2998 mutex_init(&BTRFS_I(inode
)->extent_mutex
);
2999 mutex_init(&BTRFS_I(inode
)->log_mutex
);
3002 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
3004 struct btrfs_iget_args
*args
= p
;
3005 inode
->i_ino
= args
->ino
;
3006 init_btrfs_i(inode
);
3007 BTRFS_I(inode
)->root
= args
->root
;
3011 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
3013 struct btrfs_iget_args
*args
= opaque
;
3014 return args
->ino
== inode
->i_ino
&&
3015 args
->root
== BTRFS_I(inode
)->root
;
3018 struct inode
*btrfs_ilookup(struct super_block
*s
, u64 objectid
,
3019 struct btrfs_root
*root
, int wait
)
3021 struct inode
*inode
;
3022 struct btrfs_iget_args args
;
3023 args
.ino
= objectid
;
3027 inode
= ilookup5(s
, objectid
, btrfs_find_actor
,
3030 inode
= ilookup5_nowait(s
, objectid
, btrfs_find_actor
,
3036 struct inode
*btrfs_iget_locked(struct super_block
*s
, u64 objectid
,
3037 struct btrfs_root
*root
)
3039 struct inode
*inode
;
3040 struct btrfs_iget_args args
;
3041 args
.ino
= objectid
;
3044 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
3045 btrfs_init_locked_inode
,
3050 /* Get an inode object given its location and corresponding root.
3051 * Returns in *is_new if the inode was read from disk
3053 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
3054 struct btrfs_root
*root
, int *is_new
)
3056 struct inode
*inode
;
3058 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
3060 return ERR_PTR(-EACCES
);
3062 if (inode
->i_state
& I_NEW
) {
3063 BTRFS_I(inode
)->root
= root
;
3064 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
3065 btrfs_read_locked_inode(inode
);
3066 unlock_new_inode(inode
);
3077 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
3079 struct inode
*inode
;
3080 struct btrfs_inode
*bi
= BTRFS_I(dir
);
3081 struct btrfs_root
*root
= bi
->root
;
3082 struct btrfs_root
*sub_root
= root
;
3083 struct btrfs_key location
;
3086 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3087 return ERR_PTR(-ENAMETOOLONG
);
3089 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
3092 return ERR_PTR(ret
);
3095 if (location
.objectid
) {
3096 ret
= fixup_tree_root_location(root
, &location
, &sub_root
,
3099 return ERR_PTR(ret
);
3101 return ERR_PTR(-ENOENT
);
3102 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, &new);
3104 return ERR_CAST(inode
);
3109 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
3110 struct nameidata
*nd
)
3112 struct inode
*inode
;
3114 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3115 return ERR_PTR(-ENAMETOOLONG
);
3117 inode
= btrfs_lookup_dentry(dir
, dentry
);
3119 return ERR_CAST(inode
);
3121 return d_splice_alias(inode
, dentry
);
3124 static unsigned char btrfs_filetype_table
[] = {
3125 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
3128 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
3131 struct inode
*inode
= filp
->f_dentry
->d_inode
;
3132 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3133 struct btrfs_item
*item
;
3134 struct btrfs_dir_item
*di
;
3135 struct btrfs_key key
;
3136 struct btrfs_key found_key
;
3137 struct btrfs_path
*path
;
3140 struct extent_buffer
*leaf
;
3143 unsigned char d_type
;
3148 int key_type
= BTRFS_DIR_INDEX_KEY
;
3153 /* FIXME, use a real flag for deciding about the key type */
3154 if (root
->fs_info
->tree_root
== root
)
3155 key_type
= BTRFS_DIR_ITEM_KEY
;
3157 /* special case for "." */
3158 if (filp
->f_pos
== 0) {
3159 over
= filldir(dirent
, ".", 1,
3166 /* special case for .., just use the back ref */
3167 if (filp
->f_pos
== 1) {
3168 u64 pino
= parent_ino(filp
->f_path
.dentry
);
3169 over
= filldir(dirent
, "..", 2,
3175 path
= btrfs_alloc_path();
3178 btrfs_set_key_type(&key
, key_type
);
3179 key
.offset
= filp
->f_pos
;
3180 key
.objectid
= inode
->i_ino
;
3182 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3188 leaf
= path
->nodes
[0];
3189 nritems
= btrfs_header_nritems(leaf
);
3190 slot
= path
->slots
[0];
3191 if (advance
|| slot
>= nritems
) {
3192 if (slot
>= nritems
- 1) {
3193 ret
= btrfs_next_leaf(root
, path
);
3196 leaf
= path
->nodes
[0];
3197 nritems
= btrfs_header_nritems(leaf
);
3198 slot
= path
->slots
[0];
3206 item
= btrfs_item_nr(leaf
, slot
);
3207 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3209 if (found_key
.objectid
!= key
.objectid
)
3211 if (btrfs_key_type(&found_key
) != key_type
)
3213 if (found_key
.offset
< filp
->f_pos
)
3216 filp
->f_pos
= found_key
.offset
;
3218 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
3220 di_total
= btrfs_item_size(leaf
, item
);
3222 while (di_cur
< di_total
) {
3223 struct btrfs_key location
;
3225 name_len
= btrfs_dir_name_len(leaf
, di
);
3226 if (name_len
<= sizeof(tmp_name
)) {
3227 name_ptr
= tmp_name
;
3229 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
3235 read_extent_buffer(leaf
, name_ptr
,
3236 (unsigned long)(di
+ 1), name_len
);
3238 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
3239 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
3241 /* is this a reference to our own snapshot? If so
3244 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
3245 location
.objectid
== root
->root_key
.objectid
) {
3249 over
= filldir(dirent
, name_ptr
, name_len
,
3250 found_key
.offset
, location
.objectid
,
3254 if (name_ptr
!= tmp_name
)
3259 di_len
= btrfs_dir_name_len(leaf
, di
) +
3260 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
3262 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
3266 /* Reached end of directory/root. Bump pos past the last item. */
3267 if (key_type
== BTRFS_DIR_INDEX_KEY
)
3268 filp
->f_pos
= INT_LIMIT(typeof(filp
->f_pos
));
3274 btrfs_free_path(path
);
3278 int btrfs_write_inode(struct inode
*inode
, int wait
)
3280 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3281 struct btrfs_trans_handle
*trans
;
3284 if (root
->fs_info
->btree_inode
== inode
)
3288 trans
= btrfs_join_transaction(root
, 1);
3289 btrfs_set_trans_block_group(trans
, inode
);
3290 ret
= btrfs_commit_transaction(trans
, root
);
3296 * This is somewhat expensive, updating the tree every time the
3297 * inode changes. But, it is most likely to find the inode in cache.
3298 * FIXME, needs more benchmarking...there are no reasons other than performance
3299 * to keep or drop this code.
3301 void btrfs_dirty_inode(struct inode
*inode
)
3303 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3304 struct btrfs_trans_handle
*trans
;
3306 trans
= btrfs_join_transaction(root
, 1);
3307 btrfs_set_trans_block_group(trans
, inode
);
3308 btrfs_update_inode(trans
, root
, inode
);
3309 btrfs_end_transaction(trans
, root
);
3313 * find the highest existing sequence number in a directory
3314 * and then set the in-memory index_cnt variable to reflect
3315 * free sequence numbers
3317 static int btrfs_set_inode_index_count(struct inode
*inode
)
3319 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3320 struct btrfs_key key
, found_key
;
3321 struct btrfs_path
*path
;
3322 struct extent_buffer
*leaf
;
3325 key
.objectid
= inode
->i_ino
;
3326 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
3327 key
.offset
= (u64
)-1;
3329 path
= btrfs_alloc_path();
3333 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3336 /* FIXME: we should be able to handle this */
3342 * MAGIC NUMBER EXPLANATION:
3343 * since we search a directory based on f_pos we have to start at 2
3344 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3345 * else has to start at 2
3347 if (path
->slots
[0] == 0) {
3348 BTRFS_I(inode
)->index_cnt
= 2;
3354 leaf
= path
->nodes
[0];
3355 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3357 if (found_key
.objectid
!= inode
->i_ino
||
3358 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
3359 BTRFS_I(inode
)->index_cnt
= 2;
3363 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
3365 btrfs_free_path(path
);
3370 * helper to find a free sequence number in a given directory. This current
3371 * code is very simple, later versions will do smarter things in the btree
3373 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
3377 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
3378 ret
= btrfs_set_inode_index_count(dir
);
3383 *index
= BTRFS_I(dir
)->index_cnt
;
3384 BTRFS_I(dir
)->index_cnt
++;
3389 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
3390 struct btrfs_root
*root
,
3392 const char *name
, int name_len
,
3393 u64 ref_objectid
, u64 objectid
,
3394 u64 alloc_hint
, int mode
, u64
*index
)
3396 struct inode
*inode
;
3397 struct btrfs_inode_item
*inode_item
;
3398 struct btrfs_key
*location
;
3399 struct btrfs_path
*path
;
3400 struct btrfs_inode_ref
*ref
;
3401 struct btrfs_key key
[2];
3407 path
= btrfs_alloc_path();
3410 inode
= new_inode(root
->fs_info
->sb
);
3412 return ERR_PTR(-ENOMEM
);
3415 ret
= btrfs_set_inode_index(dir
, index
);
3417 return ERR_PTR(ret
);
3420 * index_cnt is ignored for everything but a dir,
3421 * btrfs_get_inode_index_count has an explanation for the magic
3424 init_btrfs_i(inode
);
3425 BTRFS_I(inode
)->index_cnt
= 2;
3426 BTRFS_I(inode
)->root
= root
;
3427 BTRFS_I(inode
)->generation
= trans
->transid
;
3433 BTRFS_I(inode
)->block_group
=
3434 btrfs_find_block_group(root
, 0, alloc_hint
, owner
);
3435 if ((mode
& S_IFREG
)) {
3436 if (btrfs_test_opt(root
, NODATASUM
))
3437 btrfs_set_flag(inode
, NODATASUM
);
3438 if (btrfs_test_opt(root
, NODATACOW
))
3439 btrfs_set_flag(inode
, NODATACOW
);
3442 key
[0].objectid
= objectid
;
3443 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
3446 key
[1].objectid
= objectid
;
3447 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
3448 key
[1].offset
= ref_objectid
;
3450 sizes
[0] = sizeof(struct btrfs_inode_item
);
3451 sizes
[1] = name_len
+ sizeof(*ref
);
3453 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
3457 if (objectid
> root
->highest_inode
)
3458 root
->highest_inode
= objectid
;
3460 inode
->i_uid
= current_fsuid();
3461 inode
->i_gid
= current_fsgid();
3462 inode
->i_mode
= mode
;
3463 inode
->i_ino
= objectid
;
3464 inode_set_bytes(inode
, 0);
3465 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
3466 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3467 struct btrfs_inode_item
);
3468 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
3470 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
3471 struct btrfs_inode_ref
);
3472 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
3473 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
3474 ptr
= (unsigned long)(ref
+ 1);
3475 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
3477 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3478 btrfs_free_path(path
);
3480 location
= &BTRFS_I(inode
)->location
;
3481 location
->objectid
= objectid
;
3482 location
->offset
= 0;
3483 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
3485 insert_inode_hash(inode
);
3489 BTRFS_I(dir
)->index_cnt
--;
3490 btrfs_free_path(path
);
3491 return ERR_PTR(ret
);
3494 static inline u8
btrfs_inode_type(struct inode
*inode
)
3496 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
3500 * utility function to add 'inode' into 'parent_inode' with
3501 * a give name and a given sequence number.
3502 * if 'add_backref' is true, also insert a backref from the
3503 * inode to the parent directory.
3505 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
3506 struct inode
*parent_inode
, struct inode
*inode
,
3507 const char *name
, int name_len
, int add_backref
, u64 index
)
3510 struct btrfs_key key
;
3511 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
3513 key
.objectid
= inode
->i_ino
;
3514 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
3517 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
3518 parent_inode
->i_ino
,
3519 &key
, btrfs_inode_type(inode
),
3523 ret
= btrfs_insert_inode_ref(trans
, root
,
3526 parent_inode
->i_ino
,
3529 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
3531 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
3532 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
3537 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
3538 struct dentry
*dentry
, struct inode
*inode
,
3539 int backref
, u64 index
)
3541 int err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
3542 inode
, dentry
->d_name
.name
,
3543 dentry
->d_name
.len
, backref
, index
);
3545 d_instantiate(dentry
, inode
);
3553 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
3554 int mode
, dev_t rdev
)
3556 struct btrfs_trans_handle
*trans
;
3557 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3558 struct inode
*inode
= NULL
;
3562 unsigned long nr
= 0;
3565 if (!new_valid_dev(rdev
))
3568 err
= btrfs_check_free_space(root
, 1, 0);
3572 trans
= btrfs_start_transaction(root
, 1);
3573 btrfs_set_trans_block_group(trans
, dir
);
3575 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3581 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3583 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
3584 BTRFS_I(dir
)->block_group
, mode
, &index
);
3585 err
= PTR_ERR(inode
);
3589 err
= btrfs_init_acl(inode
, dir
);
3595 btrfs_set_trans_block_group(trans
, inode
);
3596 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
3600 inode
->i_op
= &btrfs_special_inode_operations
;
3601 init_special_inode(inode
, inode
->i_mode
, rdev
);
3602 btrfs_update_inode(trans
, root
, inode
);
3604 dir
->i_sb
->s_dirt
= 1;
3605 btrfs_update_inode_block_group(trans
, inode
);
3606 btrfs_update_inode_block_group(trans
, dir
);
3608 nr
= trans
->blocks_used
;
3609 btrfs_end_transaction_throttle(trans
, root
);
3612 inode_dec_link_count(inode
);
3615 btrfs_btree_balance_dirty(root
, nr
);
3619 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
3620 int mode
, struct nameidata
*nd
)
3622 struct btrfs_trans_handle
*trans
;
3623 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3624 struct inode
*inode
= NULL
;
3627 unsigned long nr
= 0;
3631 err
= btrfs_check_free_space(root
, 1, 0);
3634 trans
= btrfs_start_transaction(root
, 1);
3635 btrfs_set_trans_block_group(trans
, dir
);
3637 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3643 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3645 dentry
->d_parent
->d_inode
->i_ino
,
3646 objectid
, BTRFS_I(dir
)->block_group
, mode
,
3648 err
= PTR_ERR(inode
);
3652 err
= btrfs_init_acl(inode
, dir
);
3658 btrfs_set_trans_block_group(trans
, inode
);
3659 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
3663 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3664 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
3665 inode
->i_fop
= &btrfs_file_operations
;
3666 inode
->i_op
= &btrfs_file_inode_operations
;
3667 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3669 dir
->i_sb
->s_dirt
= 1;
3670 btrfs_update_inode_block_group(trans
, inode
);
3671 btrfs_update_inode_block_group(trans
, dir
);
3673 nr
= trans
->blocks_used
;
3674 btrfs_end_transaction_throttle(trans
, root
);
3677 inode_dec_link_count(inode
);
3680 btrfs_btree_balance_dirty(root
, nr
);
3684 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
3685 struct dentry
*dentry
)
3687 struct btrfs_trans_handle
*trans
;
3688 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3689 struct inode
*inode
= old_dentry
->d_inode
;
3691 unsigned long nr
= 0;
3695 if (inode
->i_nlink
== 0)
3698 btrfs_inc_nlink(inode
);
3699 err
= btrfs_check_free_space(root
, 1, 0);
3702 err
= btrfs_set_inode_index(dir
, &index
);
3706 trans
= btrfs_start_transaction(root
, 1);
3708 btrfs_set_trans_block_group(trans
, dir
);
3709 atomic_inc(&inode
->i_count
);
3711 err
= btrfs_add_nondir(trans
, dentry
, inode
, 1, index
);
3716 dir
->i_sb
->s_dirt
= 1;
3717 btrfs_update_inode_block_group(trans
, dir
);
3718 err
= btrfs_update_inode(trans
, root
, inode
);
3723 nr
= trans
->blocks_used
;
3724 btrfs_end_transaction_throttle(trans
, root
);
3727 inode_dec_link_count(inode
);
3730 btrfs_btree_balance_dirty(root
, nr
);
3734 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
3736 struct inode
*inode
= NULL
;
3737 struct btrfs_trans_handle
*trans
;
3738 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3740 int drop_on_err
= 0;
3743 unsigned long nr
= 1;
3745 err
= btrfs_check_free_space(root
, 1, 0);
3749 trans
= btrfs_start_transaction(root
, 1);
3750 btrfs_set_trans_block_group(trans
, dir
);
3752 if (IS_ERR(trans
)) {
3753 err
= PTR_ERR(trans
);
3757 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3763 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3765 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
3766 BTRFS_I(dir
)->block_group
, S_IFDIR
| mode
,
3768 if (IS_ERR(inode
)) {
3769 err
= PTR_ERR(inode
);
3775 err
= btrfs_init_acl(inode
, dir
);
3779 inode
->i_op
= &btrfs_dir_inode_operations
;
3780 inode
->i_fop
= &btrfs_dir_file_operations
;
3781 btrfs_set_trans_block_group(trans
, inode
);
3783 btrfs_i_size_write(inode
, 0);
3784 err
= btrfs_update_inode(trans
, root
, inode
);
3788 err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
3789 inode
, dentry
->d_name
.name
,
3790 dentry
->d_name
.len
, 0, index
);
3794 d_instantiate(dentry
, inode
);
3796 dir
->i_sb
->s_dirt
= 1;
3797 btrfs_update_inode_block_group(trans
, inode
);
3798 btrfs_update_inode_block_group(trans
, dir
);
3801 nr
= trans
->blocks_used
;
3802 btrfs_end_transaction_throttle(trans
, root
);
3807 btrfs_btree_balance_dirty(root
, nr
);
3811 /* helper for btfs_get_extent. Given an existing extent in the tree,
3812 * and an extent that you want to insert, deal with overlap and insert
3813 * the new extent into the tree.
3815 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
3816 struct extent_map
*existing
,
3817 struct extent_map
*em
,
3818 u64 map_start
, u64 map_len
)
3822 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
3823 start_diff
= map_start
- em
->start
;
3824 em
->start
= map_start
;
3826 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
3827 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
3828 em
->block_start
+= start_diff
;
3829 em
->block_len
-= start_diff
;
3831 return add_extent_mapping(em_tree
, em
);
3834 static noinline
int uncompress_inline(struct btrfs_path
*path
,
3835 struct inode
*inode
, struct page
*page
,
3836 size_t pg_offset
, u64 extent_offset
,
3837 struct btrfs_file_extent_item
*item
)
3840 struct extent_buffer
*leaf
= path
->nodes
[0];
3843 unsigned long inline_size
;
3846 WARN_ON(pg_offset
!= 0);
3847 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
3848 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
3849 btrfs_item_nr(leaf
, path
->slots
[0]));
3850 tmp
= kmalloc(inline_size
, GFP_NOFS
);
3851 ptr
= btrfs_file_extent_inline_start(item
);
3853 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
3855 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
3856 ret
= btrfs_zlib_decompress(tmp
, page
, extent_offset
,
3857 inline_size
, max_size
);
3859 char *kaddr
= kmap_atomic(page
, KM_USER0
);
3860 unsigned long copy_size
= min_t(u64
,
3861 PAGE_CACHE_SIZE
- pg_offset
,
3862 max_size
- extent_offset
);
3863 memset(kaddr
+ pg_offset
, 0, copy_size
);
3864 kunmap_atomic(kaddr
, KM_USER0
);
3871 * a bit scary, this does extent mapping from logical file offset to the disk.
3872 * the ugly parts come from merging extents from the disk with the in-ram
3873 * representation. This gets more complex because of the data=ordered code,
3874 * where the in-ram extents might be locked pending data=ordered completion.
3876 * This also copies inline extents directly into the page.
3879 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
3880 size_t pg_offset
, u64 start
, u64 len
,
3886 u64 extent_start
= 0;
3888 u64 objectid
= inode
->i_ino
;
3890 struct btrfs_path
*path
= NULL
;
3891 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3892 struct btrfs_file_extent_item
*item
;
3893 struct extent_buffer
*leaf
;
3894 struct btrfs_key found_key
;
3895 struct extent_map
*em
= NULL
;
3896 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
3897 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3898 struct btrfs_trans_handle
*trans
= NULL
;
3902 spin_lock(&em_tree
->lock
);
3903 em
= lookup_extent_mapping(em_tree
, start
, len
);
3905 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
3906 spin_unlock(&em_tree
->lock
);
3909 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
3910 free_extent_map(em
);
3911 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
3912 free_extent_map(em
);
3916 em
= alloc_extent_map(GFP_NOFS
);
3921 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
3922 em
->start
= EXTENT_MAP_HOLE
;
3923 em
->orig_start
= EXTENT_MAP_HOLE
;
3925 em
->block_len
= (u64
)-1;
3928 path
= btrfs_alloc_path();
3932 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
3933 objectid
, start
, trans
!= NULL
);
3940 if (path
->slots
[0] == 0)
3945 leaf
= path
->nodes
[0];
3946 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3947 struct btrfs_file_extent_item
);
3948 /* are we inside the extent that was found? */
3949 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3950 found_type
= btrfs_key_type(&found_key
);
3951 if (found_key
.objectid
!= objectid
||
3952 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
3956 found_type
= btrfs_file_extent_type(leaf
, item
);
3957 extent_start
= found_key
.offset
;
3958 compressed
= btrfs_file_extent_compression(leaf
, item
);
3959 if (found_type
== BTRFS_FILE_EXTENT_REG
||
3960 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3961 extent_end
= extent_start
+
3962 btrfs_file_extent_num_bytes(leaf
, item
);
3963 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
3965 size
= btrfs_file_extent_inline_len(leaf
, item
);
3966 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
3967 ~((u64
)root
->sectorsize
- 1);
3970 if (start
>= extent_end
) {
3972 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3973 ret
= btrfs_next_leaf(root
, path
);
3980 leaf
= path
->nodes
[0];
3982 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3983 if (found_key
.objectid
!= objectid
||
3984 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3986 if (start
+ len
<= found_key
.offset
)
3989 em
->len
= found_key
.offset
- start
;
3993 if (found_type
== BTRFS_FILE_EXTENT_REG
||
3994 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3995 em
->start
= extent_start
;
3996 em
->len
= extent_end
- extent_start
;
3997 em
->orig_start
= extent_start
-
3998 btrfs_file_extent_offset(leaf
, item
);
3999 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
4001 em
->block_start
= EXTENT_MAP_HOLE
;
4005 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4006 em
->block_start
= bytenr
;
4007 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
4010 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
4011 em
->block_start
= bytenr
;
4012 em
->block_len
= em
->len
;
4013 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
4014 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
4017 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4021 size_t extent_offset
;
4024 em
->block_start
= EXTENT_MAP_INLINE
;
4025 if (!page
|| create
) {
4026 em
->start
= extent_start
;
4027 em
->len
= extent_end
- extent_start
;
4031 size
= btrfs_file_extent_inline_len(leaf
, item
);
4032 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
4033 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
4034 size
- extent_offset
);
4035 em
->start
= extent_start
+ extent_offset
;
4036 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
4037 ~((u64
)root
->sectorsize
- 1);
4038 em
->orig_start
= EXTENT_MAP_INLINE
;
4040 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4041 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
4042 if (create
== 0 && !PageUptodate(page
)) {
4043 if (btrfs_file_extent_compression(leaf
, item
) ==
4044 BTRFS_COMPRESS_ZLIB
) {
4045 ret
= uncompress_inline(path
, inode
, page
,
4047 extent_offset
, item
);
4051 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4055 flush_dcache_page(page
);
4056 } else if (create
&& PageUptodate(page
)) {
4059 free_extent_map(em
);
4061 btrfs_release_path(root
, path
);
4062 trans
= btrfs_join_transaction(root
, 1);
4066 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4069 btrfs_mark_buffer_dirty(leaf
);
4071 set_extent_uptodate(io_tree
, em
->start
,
4072 extent_map_end(em
) - 1, GFP_NOFS
);
4075 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
4082 em
->block_start
= EXTENT_MAP_HOLE
;
4083 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
4085 btrfs_release_path(root
, path
);
4086 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
4087 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
4088 "[%llu %llu]\n", (unsigned long long)em
->start
,
4089 (unsigned long long)em
->len
,
4090 (unsigned long long)start
,
4091 (unsigned long long)len
);
4097 spin_lock(&em_tree
->lock
);
4098 ret
= add_extent_mapping(em_tree
, em
);
4099 /* it is possible that someone inserted the extent into the tree
4100 * while we had the lock dropped. It is also possible that
4101 * an overlapping map exists in the tree
4103 if (ret
== -EEXIST
) {
4104 struct extent_map
*existing
;
4108 existing
= lookup_extent_mapping(em_tree
, start
, len
);
4109 if (existing
&& (existing
->start
> start
||
4110 existing
->start
+ existing
->len
<= start
)) {
4111 free_extent_map(existing
);
4115 existing
= lookup_extent_mapping(em_tree
, em
->start
,
4118 err
= merge_extent_mapping(em_tree
, existing
,
4121 free_extent_map(existing
);
4123 free_extent_map(em
);
4128 free_extent_map(em
);
4132 free_extent_map(em
);
4137 spin_unlock(&em_tree
->lock
);
4140 btrfs_free_path(path
);
4142 ret
= btrfs_end_transaction(trans
, root
);
4147 free_extent_map(em
);
4149 return ERR_PTR(err
);
4154 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
4155 const struct iovec
*iov
, loff_t offset
,
4156 unsigned long nr_segs
)
4161 static sector_t
btrfs_bmap(struct address_space
*mapping
, sector_t iblock
)
4163 return extent_bmap(mapping
, iblock
, btrfs_get_extent
);
4166 int btrfs_readpage(struct file
*file
, struct page
*page
)
4168 struct extent_io_tree
*tree
;
4169 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4170 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
4173 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
4175 struct extent_io_tree
*tree
;
4178 if (current
->flags
& PF_MEMALLOC
) {
4179 redirty_page_for_writepage(wbc
, page
);
4183 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4184 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
4187 int btrfs_writepages(struct address_space
*mapping
,
4188 struct writeback_control
*wbc
)
4190 struct extent_io_tree
*tree
;
4192 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4193 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
4197 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
4198 struct list_head
*pages
, unsigned nr_pages
)
4200 struct extent_io_tree
*tree
;
4201 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4202 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
4205 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4207 struct extent_io_tree
*tree
;
4208 struct extent_map_tree
*map
;
4211 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4212 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
4213 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
4215 ClearPagePrivate(page
);
4216 set_page_private(page
, 0);
4217 page_cache_release(page
);
4222 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4224 if (PageWriteback(page
) || PageDirty(page
))
4226 return __btrfs_releasepage(page
, gfp_flags
);
4229 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
4231 struct extent_io_tree
*tree
;
4232 struct btrfs_ordered_extent
*ordered
;
4233 u64 page_start
= page_offset(page
);
4234 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4236 wait_on_page_writeback(page
);
4237 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4239 btrfs_releasepage(page
, GFP_NOFS
);
4243 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
4244 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
4248 * IO on this page will never be started, so we need
4249 * to account for any ordered extents now
4251 clear_extent_bit(tree
, page_start
, page_end
,
4252 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4253 EXTENT_LOCKED
, 1, 0, GFP_NOFS
);
4254 btrfs_finish_ordered_io(page
->mapping
->host
,
4255 page_start
, page_end
);
4256 btrfs_put_ordered_extent(ordered
);
4257 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
4259 clear_extent_bit(tree
, page_start
, page_end
,
4260 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
4263 __btrfs_releasepage(page
, GFP_NOFS
);
4265 ClearPageChecked(page
);
4266 if (PagePrivate(page
)) {
4267 ClearPagePrivate(page
);
4268 set_page_private(page
, 0);
4269 page_cache_release(page
);
4274 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4275 * called from a page fault handler when a page is first dirtied. Hence we must
4276 * be careful to check for EOF conditions here. We set the page up correctly
4277 * for a written page which means we get ENOSPC checking when writing into
4278 * holes and correct delalloc and unwritten extent mapping on filesystems that
4279 * support these features.
4281 * We are not allowed to take the i_mutex here so we have to play games to
4282 * protect against truncate races as the page could now be beyond EOF. Because
4283 * vmtruncate() writes the inode size before removing pages, once we have the
4284 * page lock we can determine safely if the page is beyond EOF. If it is not
4285 * beyond EOF, then the page is guaranteed safe against truncation until we
4288 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct page
*page
)
4290 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
4291 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4292 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4293 struct btrfs_ordered_extent
*ordered
;
4295 unsigned long zero_start
;
4301 ret
= btrfs_check_free_space(root
, PAGE_CACHE_SIZE
, 0);
4308 size
= i_size_read(inode
);
4309 page_start
= page_offset(page
);
4310 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4312 if ((page
->mapping
!= inode
->i_mapping
) ||
4313 (page_start
>= size
)) {
4314 /* page got truncated out from underneath us */
4317 wait_on_page_writeback(page
);
4319 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4320 set_page_extent_mapped(page
);
4323 * we can't set the delalloc bits if there are pending ordered
4324 * extents. Drop our locks and wait for them to finish
4326 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
4328 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4330 btrfs_start_ordered_extent(inode
, ordered
, 1);
4331 btrfs_put_ordered_extent(ordered
);
4335 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
4338 /* page is wholly or partially inside EOF */
4339 if (page_start
+ PAGE_CACHE_SIZE
> size
)
4340 zero_start
= size
& ~PAGE_CACHE_MASK
;
4342 zero_start
= PAGE_CACHE_SIZE
;
4344 if (zero_start
!= PAGE_CACHE_SIZE
) {
4346 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
4347 flush_dcache_page(page
);
4350 ClearPageChecked(page
);
4351 set_page_dirty(page
);
4352 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4360 static void btrfs_truncate(struct inode
*inode
)
4362 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4364 struct btrfs_trans_handle
*trans
;
4366 u64 mask
= root
->sectorsize
- 1;
4368 if (!S_ISREG(inode
->i_mode
))
4370 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4373 btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
4374 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
4376 trans
= btrfs_start_transaction(root
, 1);
4377 btrfs_set_trans_block_group(trans
, inode
);
4378 btrfs_i_size_write(inode
, inode
->i_size
);
4380 ret
= btrfs_orphan_add(trans
, inode
);
4383 /* FIXME, add redo link to tree so we don't leak on crash */
4384 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, inode
->i_size
,
4385 BTRFS_EXTENT_DATA_KEY
);
4386 btrfs_update_inode(trans
, root
, inode
);
4388 ret
= btrfs_orphan_del(trans
, inode
);
4392 nr
= trans
->blocks_used
;
4393 ret
= btrfs_end_transaction_throttle(trans
, root
);
4395 btrfs_btree_balance_dirty(root
, nr
);
4399 * create a new subvolume directory/inode (helper for the ioctl).
4401 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
4402 struct btrfs_root
*new_root
, struct dentry
*dentry
,
4403 u64 new_dirid
, u64 alloc_hint
)
4405 struct inode
*inode
;
4409 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
4410 new_dirid
, alloc_hint
, S_IFDIR
| 0700, &index
);
4412 return PTR_ERR(inode
);
4413 inode
->i_op
= &btrfs_dir_inode_operations
;
4414 inode
->i_fop
= &btrfs_dir_file_operations
;
4417 btrfs_i_size_write(inode
, 0);
4419 error
= btrfs_update_inode(trans
, new_root
, inode
);
4423 d_instantiate(dentry
, inode
);
4427 /* helper function for file defrag and space balancing. This
4428 * forces readahead on a given range of bytes in an inode
4430 unsigned long btrfs_force_ra(struct address_space
*mapping
,
4431 struct file_ra_state
*ra
, struct file
*file
,
4432 pgoff_t offset
, pgoff_t last_index
)
4434 pgoff_t req_size
= last_index
- offset
+ 1;
4436 page_cache_sync_readahead(mapping
, ra
, file
, offset
, req_size
);
4437 return offset
+ req_size
;
4440 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
4442 struct btrfs_inode
*ei
;
4444 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
4448 ei
->logged_trans
= 0;
4449 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
4450 ei
->i_acl
= BTRFS_ACL_NOT_CACHED
;
4451 ei
->i_default_acl
= BTRFS_ACL_NOT_CACHED
;
4452 INIT_LIST_HEAD(&ei
->i_orphan
);
4453 return &ei
->vfs_inode
;
4456 void btrfs_destroy_inode(struct inode
*inode
)
4458 struct btrfs_ordered_extent
*ordered
;
4459 WARN_ON(!list_empty(&inode
->i_dentry
));
4460 WARN_ON(inode
->i_data
.nrpages
);
4462 if (BTRFS_I(inode
)->i_acl
&&
4463 BTRFS_I(inode
)->i_acl
!= BTRFS_ACL_NOT_CACHED
)
4464 posix_acl_release(BTRFS_I(inode
)->i_acl
);
4465 if (BTRFS_I(inode
)->i_default_acl
&&
4466 BTRFS_I(inode
)->i_default_acl
!= BTRFS_ACL_NOT_CACHED
)
4467 posix_acl_release(BTRFS_I(inode
)->i_default_acl
);
4469 spin_lock(&BTRFS_I(inode
)->root
->list_lock
);
4470 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
4471 printk(KERN_ERR
"BTRFS: inode %lu: inode still on the orphan"
4472 " list\n", inode
->i_ino
);
4475 spin_unlock(&BTRFS_I(inode
)->root
->list_lock
);
4478 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
4482 printk(KERN_ERR
"btrfs found ordered "
4483 "extent %llu %llu on inode cleanup\n",
4484 (unsigned long long)ordered
->file_offset
,
4485 (unsigned long long)ordered
->len
);
4486 btrfs_remove_ordered_extent(inode
, ordered
);
4487 btrfs_put_ordered_extent(ordered
);
4488 btrfs_put_ordered_extent(ordered
);
4491 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
4492 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
4495 static void init_once(void *foo
)
4497 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
4499 inode_init_once(&ei
->vfs_inode
);
4502 void btrfs_destroy_cachep(void)
4504 if (btrfs_inode_cachep
)
4505 kmem_cache_destroy(btrfs_inode_cachep
);
4506 if (btrfs_trans_handle_cachep
)
4507 kmem_cache_destroy(btrfs_trans_handle_cachep
);
4508 if (btrfs_transaction_cachep
)
4509 kmem_cache_destroy(btrfs_transaction_cachep
);
4510 if (btrfs_bit_radix_cachep
)
4511 kmem_cache_destroy(btrfs_bit_radix_cachep
);
4512 if (btrfs_path_cachep
)
4513 kmem_cache_destroy(btrfs_path_cachep
);
4516 struct kmem_cache
*btrfs_cache_create(const char *name
, size_t size
,
4517 unsigned long extra_flags
,
4518 void (*ctor
)(void *))
4520 return kmem_cache_create(name
, size
, 0, (SLAB_RECLAIM_ACCOUNT
|
4521 SLAB_MEM_SPREAD
| extra_flags
), ctor
);
4524 int btrfs_init_cachep(void)
4526 btrfs_inode_cachep
= btrfs_cache_create("btrfs_inode_cache",
4527 sizeof(struct btrfs_inode
),
4529 if (!btrfs_inode_cachep
)
4531 btrfs_trans_handle_cachep
=
4532 btrfs_cache_create("btrfs_trans_handle_cache",
4533 sizeof(struct btrfs_trans_handle
),
4535 if (!btrfs_trans_handle_cachep
)
4537 btrfs_transaction_cachep
= btrfs_cache_create("btrfs_transaction_cache",
4538 sizeof(struct btrfs_transaction
),
4540 if (!btrfs_transaction_cachep
)
4542 btrfs_path_cachep
= btrfs_cache_create("btrfs_path_cache",
4543 sizeof(struct btrfs_path
),
4545 if (!btrfs_path_cachep
)
4547 btrfs_bit_radix_cachep
= btrfs_cache_create("btrfs_radix", 256,
4548 SLAB_DESTROY_BY_RCU
, NULL
);
4549 if (!btrfs_bit_radix_cachep
)
4553 btrfs_destroy_cachep();
4557 static int btrfs_getattr(struct vfsmount
*mnt
,
4558 struct dentry
*dentry
, struct kstat
*stat
)
4560 struct inode
*inode
= dentry
->d_inode
;
4561 generic_fillattr(inode
, stat
);
4562 stat
->dev
= BTRFS_I(inode
)->root
->anon_super
.s_dev
;
4563 stat
->blksize
= PAGE_CACHE_SIZE
;
4564 stat
->blocks
= (inode_get_bytes(inode
) +
4565 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
4569 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
4570 struct inode
*new_dir
, struct dentry
*new_dentry
)
4572 struct btrfs_trans_handle
*trans
;
4573 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
4574 struct inode
*new_inode
= new_dentry
->d_inode
;
4575 struct inode
*old_inode
= old_dentry
->d_inode
;
4576 struct timespec ctime
= CURRENT_TIME
;
4580 /* we're not allowed to rename between subvolumes */
4581 if (BTRFS_I(old_inode
)->root
->root_key
.objectid
!=
4582 BTRFS_I(new_dir
)->root
->root_key
.objectid
)
4585 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
4586 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
) {
4590 /* to rename a snapshot or subvolume, we need to juggle the
4591 * backrefs. This isn't coded yet
4593 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
4596 ret
= btrfs_check_free_space(root
, 1, 0);
4600 trans
= btrfs_start_transaction(root
, 1);
4602 btrfs_set_trans_block_group(trans
, new_dir
);
4604 btrfs_inc_nlink(old_dentry
->d_inode
);
4605 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
4606 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
4607 old_inode
->i_ctime
= ctime
;
4609 ret
= btrfs_unlink_inode(trans
, root
, old_dir
, old_dentry
->d_inode
,
4610 old_dentry
->d_name
.name
,
4611 old_dentry
->d_name
.len
);
4616 new_inode
->i_ctime
= CURRENT_TIME
;
4617 ret
= btrfs_unlink_inode(trans
, root
, new_dir
,
4618 new_dentry
->d_inode
,
4619 new_dentry
->d_name
.name
,
4620 new_dentry
->d_name
.len
);
4623 if (new_inode
->i_nlink
== 0) {
4624 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
4630 ret
= btrfs_set_inode_index(new_dir
, &index
);
4634 ret
= btrfs_add_link(trans
, new_dentry
->d_parent
->d_inode
,
4635 old_inode
, new_dentry
->d_name
.name
,
4636 new_dentry
->d_name
.len
, 1, index
);
4641 btrfs_end_transaction_throttle(trans
, root
);
4647 * some fairly slow code that needs optimization. This walks the list
4648 * of all the inodes with pending delalloc and forces them to disk.
4650 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
)
4652 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
4653 struct btrfs_inode
*binode
;
4654 struct inode
*inode
;
4656 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
4659 spin_lock(&root
->fs_info
->delalloc_lock
);
4660 while (!list_empty(head
)) {
4661 binode
= list_entry(head
->next
, struct btrfs_inode
,
4663 inode
= igrab(&binode
->vfs_inode
);
4665 list_del_init(&binode
->delalloc_inodes
);
4666 spin_unlock(&root
->fs_info
->delalloc_lock
);
4668 filemap_flush(inode
->i_mapping
);
4672 spin_lock(&root
->fs_info
->delalloc_lock
);
4674 spin_unlock(&root
->fs_info
->delalloc_lock
);
4676 /* the filemap_flush will queue IO into the worker threads, but
4677 * we have to make sure the IO is actually started and that
4678 * ordered extents get created before we return
4680 atomic_inc(&root
->fs_info
->async_submit_draining
);
4681 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
4682 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
4683 wait_event(root
->fs_info
->async_submit_wait
,
4684 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
4685 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
4687 atomic_dec(&root
->fs_info
->async_submit_draining
);
4691 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
4692 const char *symname
)
4694 struct btrfs_trans_handle
*trans
;
4695 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4696 struct btrfs_path
*path
;
4697 struct btrfs_key key
;
4698 struct inode
*inode
= NULL
;
4706 struct btrfs_file_extent_item
*ei
;
4707 struct extent_buffer
*leaf
;
4708 unsigned long nr
= 0;
4710 name_len
= strlen(symname
) + 1;
4711 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
4712 return -ENAMETOOLONG
;
4714 err
= btrfs_check_free_space(root
, 1, 0);
4718 trans
= btrfs_start_transaction(root
, 1);
4719 btrfs_set_trans_block_group(trans
, dir
);
4721 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
4727 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4729 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
4730 BTRFS_I(dir
)->block_group
, S_IFLNK
|S_IRWXUGO
,
4732 err
= PTR_ERR(inode
);
4736 err
= btrfs_init_acl(inode
, dir
);
4742 btrfs_set_trans_block_group(trans
, inode
);
4743 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
4747 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4748 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4749 inode
->i_fop
= &btrfs_file_operations
;
4750 inode
->i_op
= &btrfs_file_inode_operations
;
4751 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4753 dir
->i_sb
->s_dirt
= 1;
4754 btrfs_update_inode_block_group(trans
, inode
);
4755 btrfs_update_inode_block_group(trans
, dir
);
4759 path
= btrfs_alloc_path();
4761 key
.objectid
= inode
->i_ino
;
4763 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
4764 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
4765 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
4771 leaf
= path
->nodes
[0];
4772 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
4773 struct btrfs_file_extent_item
);
4774 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
4775 btrfs_set_file_extent_type(leaf
, ei
,
4776 BTRFS_FILE_EXTENT_INLINE
);
4777 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
4778 btrfs_set_file_extent_compression(leaf
, ei
, 0);
4779 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
4780 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
4782 ptr
= btrfs_file_extent_inline_start(ei
);
4783 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
4784 btrfs_mark_buffer_dirty(leaf
);
4785 btrfs_free_path(path
);
4787 inode
->i_op
= &btrfs_symlink_inode_operations
;
4788 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
4789 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4790 inode_set_bytes(inode
, name_len
);
4791 btrfs_i_size_write(inode
, name_len
- 1);
4792 err
= btrfs_update_inode(trans
, root
, inode
);
4797 nr
= trans
->blocks_used
;
4798 btrfs_end_transaction_throttle(trans
, root
);
4801 inode_dec_link_count(inode
);
4804 btrfs_btree_balance_dirty(root
, nr
);
4808 static int prealloc_file_range(struct inode
*inode
, u64 start
, u64 end
,
4809 u64 alloc_hint
, int mode
)
4811 struct btrfs_trans_handle
*trans
;
4812 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4813 struct btrfs_key ins
;
4815 u64 cur_offset
= start
;
4816 u64 num_bytes
= end
- start
;
4819 trans
= btrfs_join_transaction(root
, 1);
4821 btrfs_set_trans_block_group(trans
, inode
);
4823 while (num_bytes
> 0) {
4824 alloc_size
= min(num_bytes
, root
->fs_info
->max_extent
);
4825 ret
= btrfs_reserve_extent(trans
, root
, alloc_size
,
4826 root
->sectorsize
, 0, alloc_hint
,
4832 ret
= insert_reserved_file_extent(trans
, inode
,
4833 cur_offset
, ins
.objectid
,
4834 ins
.offset
, ins
.offset
,
4835 ins
.offset
, 0, 0, 0,
4836 BTRFS_FILE_EXTENT_PREALLOC
);
4838 num_bytes
-= ins
.offset
;
4839 cur_offset
+= ins
.offset
;
4840 alloc_hint
= ins
.objectid
+ ins
.offset
;
4843 if (cur_offset
> start
) {
4844 inode
->i_ctime
= CURRENT_TIME
;
4845 btrfs_set_flag(inode
, PREALLOC
);
4846 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
4847 cur_offset
> i_size_read(inode
))
4848 btrfs_i_size_write(inode
, cur_offset
);
4849 ret
= btrfs_update_inode(trans
, root
, inode
);
4853 btrfs_end_transaction(trans
, root
);
4857 static long btrfs_fallocate(struct inode
*inode
, int mode
,
4858 loff_t offset
, loff_t len
)
4865 u64 mask
= BTRFS_I(inode
)->root
->sectorsize
- 1;
4866 struct extent_map
*em
;
4869 alloc_start
= offset
& ~mask
;
4870 alloc_end
= (offset
+ len
+ mask
) & ~mask
;
4872 mutex_lock(&inode
->i_mutex
);
4873 if (alloc_start
> inode
->i_size
) {
4874 ret
= btrfs_cont_expand(inode
, alloc_start
);
4880 struct btrfs_ordered_extent
*ordered
;
4881 lock_extent(&BTRFS_I(inode
)->io_tree
, alloc_start
,
4882 alloc_end
- 1, GFP_NOFS
);
4883 ordered
= btrfs_lookup_first_ordered_extent(inode
,
4886 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
4887 ordered
->file_offset
< alloc_end
) {
4888 btrfs_put_ordered_extent(ordered
);
4889 unlock_extent(&BTRFS_I(inode
)->io_tree
,
4890 alloc_start
, alloc_end
- 1, GFP_NOFS
);
4891 btrfs_wait_ordered_range(inode
, alloc_start
,
4892 alloc_end
- alloc_start
);
4895 btrfs_put_ordered_extent(ordered
);
4900 cur_offset
= alloc_start
;
4902 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
4903 alloc_end
- cur_offset
, 0);
4904 BUG_ON(IS_ERR(em
) || !em
);
4905 last_byte
= min(extent_map_end(em
), alloc_end
);
4906 last_byte
= (last_byte
+ mask
) & ~mask
;
4907 if (em
->block_start
== EXTENT_MAP_HOLE
) {
4908 ret
= prealloc_file_range(inode
, cur_offset
,
4909 last_byte
, alloc_hint
, mode
);
4911 free_extent_map(em
);
4915 if (em
->block_start
<= EXTENT_MAP_LAST_BYTE
)
4916 alloc_hint
= em
->block_start
;
4917 free_extent_map(em
);
4919 cur_offset
= last_byte
;
4920 if (cur_offset
>= alloc_end
) {
4925 unlock_extent(&BTRFS_I(inode
)->io_tree
, alloc_start
, alloc_end
- 1,
4928 mutex_unlock(&inode
->i_mutex
);
4932 static int btrfs_set_page_dirty(struct page
*page
)
4934 return __set_page_dirty_nobuffers(page
);
4937 static int btrfs_permission(struct inode
*inode
, int mask
)
4939 if (btrfs_test_flag(inode
, READONLY
) && (mask
& MAY_WRITE
))
4941 return generic_permission(inode
, mask
, btrfs_check_acl
);
4944 static struct inode_operations btrfs_dir_inode_operations
= {
4945 .getattr
= btrfs_getattr
,
4946 .lookup
= btrfs_lookup
,
4947 .create
= btrfs_create
,
4948 .unlink
= btrfs_unlink
,
4950 .mkdir
= btrfs_mkdir
,
4951 .rmdir
= btrfs_rmdir
,
4952 .rename
= btrfs_rename
,
4953 .symlink
= btrfs_symlink
,
4954 .setattr
= btrfs_setattr
,
4955 .mknod
= btrfs_mknod
,
4956 .setxattr
= btrfs_setxattr
,
4957 .getxattr
= btrfs_getxattr
,
4958 .listxattr
= btrfs_listxattr
,
4959 .removexattr
= btrfs_removexattr
,
4960 .permission
= btrfs_permission
,
4962 static struct inode_operations btrfs_dir_ro_inode_operations
= {
4963 .lookup
= btrfs_lookup
,
4964 .permission
= btrfs_permission
,
4966 static struct file_operations btrfs_dir_file_operations
= {
4967 .llseek
= generic_file_llseek
,
4968 .read
= generic_read_dir
,
4969 .readdir
= btrfs_real_readdir
,
4970 .unlocked_ioctl
= btrfs_ioctl
,
4971 #ifdef CONFIG_COMPAT
4972 .compat_ioctl
= btrfs_ioctl
,
4974 .release
= btrfs_release_file
,
4975 .fsync
= btrfs_sync_file
,
4978 static struct extent_io_ops btrfs_extent_io_ops
= {
4979 .fill_delalloc
= run_delalloc_range
,
4980 .submit_bio_hook
= btrfs_submit_bio_hook
,
4981 .merge_bio_hook
= btrfs_merge_bio_hook
,
4982 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
4983 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
4984 .writepage_start_hook
= btrfs_writepage_start_hook
,
4985 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
4986 .set_bit_hook
= btrfs_set_bit_hook
,
4987 .clear_bit_hook
= btrfs_clear_bit_hook
,
4990 static struct address_space_operations btrfs_aops
= {
4991 .readpage
= btrfs_readpage
,
4992 .writepage
= btrfs_writepage
,
4993 .writepages
= btrfs_writepages
,
4994 .readpages
= btrfs_readpages
,
4995 .sync_page
= block_sync_page
,
4997 .direct_IO
= btrfs_direct_IO
,
4998 .invalidatepage
= btrfs_invalidatepage
,
4999 .releasepage
= btrfs_releasepage
,
5000 .set_page_dirty
= btrfs_set_page_dirty
,
5003 static struct address_space_operations btrfs_symlink_aops
= {
5004 .readpage
= btrfs_readpage
,
5005 .writepage
= btrfs_writepage
,
5006 .invalidatepage
= btrfs_invalidatepage
,
5007 .releasepage
= btrfs_releasepage
,
5010 static struct inode_operations btrfs_file_inode_operations
= {
5011 .truncate
= btrfs_truncate
,
5012 .getattr
= btrfs_getattr
,
5013 .setattr
= btrfs_setattr
,
5014 .setxattr
= btrfs_setxattr
,
5015 .getxattr
= btrfs_getxattr
,
5016 .listxattr
= btrfs_listxattr
,
5017 .removexattr
= btrfs_removexattr
,
5018 .permission
= btrfs_permission
,
5019 .fallocate
= btrfs_fallocate
,
5021 static struct inode_operations btrfs_special_inode_operations
= {
5022 .getattr
= btrfs_getattr
,
5023 .setattr
= btrfs_setattr
,
5024 .permission
= btrfs_permission
,
5025 .setxattr
= btrfs_setxattr
,
5026 .getxattr
= btrfs_getxattr
,
5027 .listxattr
= btrfs_listxattr
,
5028 .removexattr
= btrfs_removexattr
,
5030 static struct inode_operations btrfs_symlink_inode_operations
= {
5031 .readlink
= generic_readlink
,
5032 .follow_link
= page_follow_link_light
,
5033 .put_link
= page_put_link
,
5034 .permission
= btrfs_permission
,