2 * Copyright 1995, Russell King.
3 * Various bits and pieces copyrights include:
4 * Linus Torvalds (test_bit).
5 * Big endian support: Copyright 2001, Nicolas Pitre
8 * bit 0 is the LSB of an "unsigned long" quantity.
10 * Please note that the code in this file should never be included
11 * from user space. Many of these are not implemented in assembler
12 * since they would be too costly. Also, they require privileged
13 * instructions (which are not available from user mode) to ensure
14 * that they are atomic.
17 #ifndef __ASM_ARM_BITOPS_H
18 #define __ASM_ARM_BITOPS_H
22 #ifndef _LINUX_BITOPS_H
23 #error only <linux/bitops.h> can be included directly
26 #include <linux/compiler.h>
27 #include <asm/system.h>
29 #define smp_mb__before_clear_bit() mb()
30 #define smp_mb__after_clear_bit() mb()
33 * These functions are the basis of our bit ops.
35 * First, the atomic bitops. These use native endian.
37 static inline void ____atomic_set_bit(unsigned int bit
, volatile unsigned long *p
)
40 unsigned long mask
= 1UL << (bit
& 31);
44 raw_local_irq_save(flags
);
46 raw_local_irq_restore(flags
);
49 static inline void ____atomic_clear_bit(unsigned int bit
, volatile unsigned long *p
)
52 unsigned long mask
= 1UL << (bit
& 31);
56 raw_local_irq_save(flags
);
58 raw_local_irq_restore(flags
);
61 static inline void ____atomic_change_bit(unsigned int bit
, volatile unsigned long *p
)
64 unsigned long mask
= 1UL << (bit
& 31);
68 raw_local_irq_save(flags
);
70 raw_local_irq_restore(flags
);
74 ____atomic_test_and_set_bit(unsigned int bit
, volatile unsigned long *p
)
78 unsigned long mask
= 1UL << (bit
& 31);
82 raw_local_irq_save(flags
);
85 raw_local_irq_restore(flags
);
87 return (res
& mask
) != 0;
91 ____atomic_test_and_clear_bit(unsigned int bit
, volatile unsigned long *p
)
95 unsigned long mask
= 1UL << (bit
& 31);
99 raw_local_irq_save(flags
);
102 raw_local_irq_restore(flags
);
104 return (res
& mask
) != 0;
108 ____atomic_test_and_change_bit(unsigned int bit
, volatile unsigned long *p
)
112 unsigned long mask
= 1UL << (bit
& 31);
116 raw_local_irq_save(flags
);
119 raw_local_irq_restore(flags
);
121 return (res
& mask
) != 0;
124 #include <asm-generic/bitops/non-atomic.h>
127 * A note about Endian-ness.
128 * -------------------------
130 * When the ARM is put into big endian mode via CR15, the processor
131 * merely swaps the order of bytes within words, thus:
133 * ------------ physical data bus bits -----------
134 * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
135 * little byte 3 byte 2 byte 1 byte 0
136 * big byte 0 byte 1 byte 2 byte 3
138 * This means that reading a 32-bit word at address 0 returns the same
139 * value irrespective of the endian mode bit.
141 * Peripheral devices should be connected with the data bus reversed in
142 * "Big Endian" mode. ARM Application Note 61 is applicable, and is
143 * available from http://www.arm.com/.
145 * The following assumes that the data bus connectivity for big endian
146 * mode has been followed.
148 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
152 * Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
154 extern void _set_bit_le(int nr
, volatile unsigned long * p
);
155 extern void _clear_bit_le(int nr
, volatile unsigned long * p
);
156 extern void _change_bit_le(int nr
, volatile unsigned long * p
);
157 extern int _test_and_set_bit_le(int nr
, volatile unsigned long * p
);
158 extern int _test_and_clear_bit_le(int nr
, volatile unsigned long * p
);
159 extern int _test_and_change_bit_le(int nr
, volatile unsigned long * p
);
160 extern int _find_first_zero_bit_le(const void * p
, unsigned size
);
161 extern int _find_next_zero_bit_le(const void * p
, int size
, int offset
);
162 extern int _find_first_bit_le(const unsigned long *p
, unsigned size
);
163 extern int _find_next_bit_le(const unsigned long *p
, int size
, int offset
);
166 * Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
168 extern void _set_bit_be(int nr
, volatile unsigned long * p
);
169 extern void _clear_bit_be(int nr
, volatile unsigned long * p
);
170 extern void _change_bit_be(int nr
, volatile unsigned long * p
);
171 extern int _test_and_set_bit_be(int nr
, volatile unsigned long * p
);
172 extern int _test_and_clear_bit_be(int nr
, volatile unsigned long * p
);
173 extern int _test_and_change_bit_be(int nr
, volatile unsigned long * p
);
174 extern int _find_first_zero_bit_be(const void * p
, unsigned size
);
175 extern int _find_next_zero_bit_be(const void * p
, int size
, int offset
);
176 extern int _find_first_bit_be(const unsigned long *p
, unsigned size
);
177 extern int _find_next_bit_be(const unsigned long *p
, int size
, int offset
);
181 * The __* form of bitops are non-atomic and may be reordered.
183 #define ATOMIC_BITOP_LE(name,nr,p) \
184 (__builtin_constant_p(nr) ? \
185 ____atomic_##name(nr, p) : \
188 #define ATOMIC_BITOP_BE(name,nr,p) \
189 (__builtin_constant_p(nr) ? \
190 ____atomic_##name(nr, p) : \
193 #define ATOMIC_BITOP_LE(name,nr,p) _##name##_le(nr,p)
194 #define ATOMIC_BITOP_BE(name,nr,p) _##name##_be(nr,p)
197 #define NONATOMIC_BITOP(name,nr,p) \
198 (____nonatomic_##name(nr, p))
202 * These are the little endian, atomic definitions.
204 #define set_bit(nr,p) ATOMIC_BITOP_LE(set_bit,nr,p)
205 #define clear_bit(nr,p) ATOMIC_BITOP_LE(clear_bit,nr,p)
206 #define change_bit(nr,p) ATOMIC_BITOP_LE(change_bit,nr,p)
207 #define test_and_set_bit(nr,p) ATOMIC_BITOP_LE(test_and_set_bit,nr,p)
208 #define test_and_clear_bit(nr,p) ATOMIC_BITOP_LE(test_and_clear_bit,nr,p)
209 #define test_and_change_bit(nr,p) ATOMIC_BITOP_LE(test_and_change_bit,nr,p)
210 #define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
211 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
212 #define find_first_bit(p,sz) _find_first_bit_le(p,sz)
213 #define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
215 #define WORD_BITOFF_TO_LE(x) ((x))
220 * These are the big endian, atomic definitions.
222 #define set_bit(nr,p) ATOMIC_BITOP_BE(set_bit,nr,p)
223 #define clear_bit(nr,p) ATOMIC_BITOP_BE(clear_bit,nr,p)
224 #define change_bit(nr,p) ATOMIC_BITOP_BE(change_bit,nr,p)
225 #define test_and_set_bit(nr,p) ATOMIC_BITOP_BE(test_and_set_bit,nr,p)
226 #define test_and_clear_bit(nr,p) ATOMIC_BITOP_BE(test_and_clear_bit,nr,p)
227 #define test_and_change_bit(nr,p) ATOMIC_BITOP_BE(test_and_change_bit,nr,p)
228 #define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
229 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
230 #define find_first_bit(p,sz) _find_first_bit_be(p,sz)
231 #define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
233 #define WORD_BITOFF_TO_LE(x) ((x) ^ 0x18)
237 #if __LINUX_ARM_ARCH__ < 5
239 #include <asm-generic/bitops/ffz.h>
240 #include <asm-generic/bitops/__fls.h>
241 #include <asm-generic/bitops/__ffs.h>
242 #include <asm-generic/bitops/fls.h>
243 #include <asm-generic/bitops/ffs.h>
247 static inline int constant_fls(int x
)
253 if (!(x
& 0xffff0000u
)) {
257 if (!(x
& 0xff000000u
)) {
261 if (!(x
& 0xf0000000u
)) {
265 if (!(x
& 0xc0000000u
)) {
269 if (!(x
& 0x80000000u
)) {
277 * On ARMv5 and above those functions can be implemented around
278 * the clz instruction for much better code efficiency.
281 static inline int fls(int x
)
285 if (__builtin_constant_p(x
))
286 return constant_fls(x
);
288 asm("clz\t%0, %1" : "=r" (ret
) : "r" (x
) : "cc");
293 #define __fls(x) (fls(x) - 1)
294 #define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
295 #define __ffs(x) (ffs(x) - 1)
296 #define ffz(x) __ffs( ~(x) )
300 #include <asm-generic/bitops/fls64.h>
302 #include <asm-generic/bitops/sched.h>
303 #include <asm-generic/bitops/hweight.h>
304 #include <asm-generic/bitops/lock.h>
307 * Ext2 is defined to use little-endian byte ordering.
308 * These do not need to be atomic.
310 #define ext2_set_bit(nr,p) \
311 __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
312 #define ext2_set_bit_atomic(lock,nr,p) \
313 test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
314 #define ext2_clear_bit(nr,p) \
315 __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
316 #define ext2_clear_bit_atomic(lock,nr,p) \
317 test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
318 #define ext2_test_bit(nr,p) \
319 test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
320 #define ext2_find_first_zero_bit(p,sz) \
321 _find_first_zero_bit_le(p,sz)
322 #define ext2_find_next_zero_bit(p,sz,off) \
323 _find_next_zero_bit_le(p,sz,off)
324 #define ext2_find_next_bit(p, sz, off) \
325 _find_next_bit_le(p, sz, off)
328 * Minix is defined to use little-endian byte ordering.
329 * These do not need to be atomic.
331 #define minix_set_bit(nr,p) \
332 __set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
333 #define minix_test_bit(nr,p) \
334 test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
335 #define minix_test_and_set_bit(nr,p) \
336 __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
337 #define minix_test_and_clear_bit(nr,p) \
338 __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
339 #define minix_find_first_zero_bit(p,sz) \
340 _find_first_zero_bit_le(p,sz)
342 #endif /* __KERNEL__ */
344 #endif /* _ARM_BITOPS_H */