Full support for Ginger Console
[linux-ginger.git] / arch / arm / plat-omap / omap-pm-noop.c
blobd3c72792522cc401058fc04a9a9027e2a5aa19b9
1 /*
2 * omap-pm-noop.c - OMAP power management interface - dummy version
4 * This code implements the OMAP power management interface to
5 * drivers, CPUIdle, CPUFreq, and DSP Bridge. It is strictly for
6 * debug/demonstration use, as it does nothing but printk() whenever a
7 * function is called (when DEBUG is defined, below)
9 * Copyright (C) 2008-2009 Texas Instruments, Inc.
10 * Copyright (C) 2008-2009 Nokia Corporation
11 * Paul Walmsley
13 * Interface developed by (in alphabetical order):
14 * Karthik Dasu, Tony Lindgren, Rajendra Nayak, Sakari Poussa, Veeramanikandan
15 * Raju, Anand Sawant, Igor Stoppa, Paul Walmsley, Richard Woodruff
18 #undef DEBUG
20 #include <linux/init.h>
21 #include <linux/cpufreq.h>
22 #include <linux/device.h>
24 /* Interface documentation is in mach/omap-pm.h */
25 #include <plat/omap-pm.h>
27 #include <plat/powerdomain.h>
29 struct omap_opp *dsp_opps;
30 struct omap_opp *mpu_opps;
31 struct omap_opp *l3_opps;
34 * Device-driver-originated constraints (via board-*.c files)
37 void omap_pm_set_max_mpu_wakeup_lat(struct device *dev, long t)
39 if (!dev || t < -1) {
40 WARN_ON(1);
41 return;
44 if (t == -1)
45 pr_debug("OMAP PM: remove max MPU wakeup latency constraint: "
46 "dev %s\n", dev_name(dev));
47 else
48 pr_debug("OMAP PM: add max MPU wakeup latency constraint: "
49 "dev %s, t = %ld usec\n", dev_name(dev), t);
52 * For current Linux, this needs to map the MPU to a
53 * powerdomain, then go through the list of current max lat
54 * constraints on the MPU and find the smallest. If
55 * the latency constraint has changed, the code should
56 * recompute the state to enter for the next powerdomain
57 * state.
59 * TI CDP code can call constraint_set here.
63 void omap_pm_set_min_bus_tput(struct device *dev, u8 agent_id, unsigned long r)
65 if (!dev || (agent_id != OCP_INITIATOR_AGENT &&
66 agent_id != OCP_TARGET_AGENT)) {
67 WARN_ON(1);
68 return;
71 if (r == 0)
72 pr_debug("OMAP PM: remove min bus tput constraint: "
73 "dev %s for agent_id %d\n", dev_name(dev), agent_id);
74 else
75 pr_debug("OMAP PM: add min bus tput constraint: "
76 "dev %s for agent_id %d: rate %ld KiB\n",
77 dev_name(dev), agent_id, r);
80 * This code should model the interconnect and compute the
81 * required clock frequency, convert that to a VDD2 OPP ID, then
82 * set the VDD2 OPP appropriately.
84 * TI CDP code can call constraint_set here on the VDD2 OPP.
88 void omap_pm_set_max_dev_wakeup_lat(struct device *dev, long t)
90 if (!dev || t < -1) {
91 WARN_ON(1);
92 return;
95 if (t == -1)
96 pr_debug("OMAP PM: remove max device latency constraint: "
97 "dev %s\n", dev_name(dev));
98 else
99 pr_debug("OMAP PM: add max device latency constraint: "
100 "dev %s, t = %ld usec\n", dev_name(dev), t);
103 * For current Linux, this needs to map the device to a
104 * powerdomain, then go through the list of current max lat
105 * constraints on that powerdomain and find the smallest. If
106 * the latency constraint has changed, the code should
107 * recompute the state to enter for the next powerdomain
108 * state. Conceivably, this code should also determine
109 * whether to actually disable the device clocks or not,
110 * depending on how long it takes to re-enable the clocks.
112 * TI CDP code can call constraint_set here.
116 void omap_pm_set_max_sdma_lat(struct device *dev, long t)
118 if (!dev || t < -1) {
119 WARN_ON(1);
120 return;
123 if (t == -1)
124 pr_debug("OMAP PM: remove max DMA latency constraint: "
125 "dev %s\n", dev_name(dev));
126 else
127 pr_debug("OMAP PM: add max DMA latency constraint: "
128 "dev %s, t = %ld usec\n", dev_name(dev), t);
131 * For current Linux PM QOS params, this code should scan the
132 * list of maximum CPU and DMA latencies and select the
133 * smallest, then set cpu_dma_latency pm_qos_param
134 * accordingly.
136 * For future Linux PM QOS params, with separate CPU and DMA
137 * latency params, this code should just set the dma_latency param.
139 * TI CDP code can call constraint_set here.
146 * DSP Bridge-specific constraints
149 const struct omap_opp *omap_pm_dsp_get_opp_table(void)
151 pr_debug("OMAP PM: DSP request for OPP table\n");
154 * Return DSP frequency table here: The final item in the
155 * array should have .rate = .opp_id = 0.
158 return NULL;
160 EXPORT_SYMBOL(omap_pm_dsp_get_opp_table);
162 void omap_pm_dsp_set_min_opp(u8 opp_id)
164 if (opp_id == 0) {
165 WARN_ON(1);
166 return;
169 pr_debug("OMAP PM: DSP requests minimum VDD1 OPP to be %d\n", opp_id);
173 * For l-o dev tree, our VDD1 clk is keyed on OPP ID, so we
174 * can just test to see which is higher, the CPU's desired OPP
175 * ID or the DSP's desired OPP ID, and use whichever is
176 * highest.
178 * In CDP12.14+, the VDD1 OPP custom clock that controls the DSP
179 * rate is keyed on MPU speed, not the OPP ID. So we need to
180 * map the OPP ID to the MPU speed for use with clk_set_rate()
181 * if it is higher than the current OPP clock rate.
185 EXPORT_SYMBOL(omap_pm_dsp_set_min_opp);
187 u8 omap_pm_dsp_get_opp(void)
189 pr_debug("OMAP PM: DSP requests current DSP OPP ID\n");
192 * For l-o dev tree, call clk_get_rate() on VDD1 OPP clock
194 * CDP12.14+:
195 * Call clk_get_rate() on the OPP custom clock, map that to an
196 * OPP ID using the tables defined in board-*.c/chip-*.c files.
199 return 0;
201 EXPORT_SYMBOL(omap_pm_dsp_get_opp);
203 u8 omap_pm_vdd1_get_opp(void)
205 pr_debug("OMAP PM: User requests current VDD1 OPP\n");
208 * For l-o call resource_get_level of vdd1_opp resource.
211 return 0;
213 EXPORT_SYMBOL(omap_pm_vdd1_get_opp);
215 u8 omap_pm_vdd2_get_opp(void)
217 pr_debug("OMAP PM: User requests current VDD2 OPP\n");
220 * For l-o call resource_get_level of vdd2_opp resource.
223 return 0;
225 EXPORT_SYMBOL(omap_pm_vdd2_get_opp);
228 * CPUFreq-originated constraint
230 * In the future, this should be handled by custom OPP clocktype
231 * functions.
234 struct cpufreq_frequency_table **omap_pm_cpu_get_freq_table(void)
236 pr_debug("OMAP PM: CPUFreq request for frequency table\n");
239 * Return CPUFreq frequency table here: loop over
240 * all VDD1 clkrates, pull out the mpu_ck frequencies, build
241 * table
244 return NULL;
247 void omap_pm_cpu_set_freq(unsigned long f)
249 if (f == 0) {
250 WARN_ON(1);
251 return;
254 pr_debug("OMAP PM: CPUFreq requests CPU frequency to be set to %lu\n",
258 * For l-o dev tree, determine whether MPU freq or DSP OPP id
259 * freq is higher. Find the OPP ID corresponding to the
260 * higher frequency. Call clk_round_rate() and clk_set_rate()
261 * on the OPP custom clock.
263 * CDP should just be able to set the VDD1 OPP clock rate here.
266 EXPORT_SYMBOL(omap_pm_cpu_set_freq);
268 unsigned long omap_pm_cpu_get_freq(void)
270 pr_debug("OMAP PM: CPUFreq requests current CPU frequency\n");
273 * Call clk_get_rate() on the mpu_ck.
276 return 0;
278 EXPORT_SYMBOL(omap_pm_cpu_get_freq);
281 * Device context loss tracking
284 int omap_pm_get_dev_context_loss_count(struct device *dev)
286 static u32 counter = 0;
288 if (!dev) {
289 WARN_ON(1);
290 return -EINVAL;
293 pr_debug("OMAP PM: returning context loss count for dev %s\n",
294 dev_name(dev));
297 * Map the device to the powerdomain. Return the powerdomain
298 * off counter.
301 /* For the noop case, we cannot know the off counter, so
302 * return an increasing counter which will ensure that
303 * context is always restored. */
304 return counter++;
308 /* Should be called before clk framework init */
309 int __init omap_pm_if_early_init(struct omap_opp *mpu_opp_table,
310 struct omap_opp *dsp_opp_table,
311 struct omap_opp *l3_opp_table)
313 mpu_opps = mpu_opp_table;
314 dsp_opps = dsp_opp_table;
315 l3_opps = l3_opp_table;
316 return 0;
319 /* Must be called after clock framework is initialized */
320 int __init omap_pm_if_init(void)
322 return 0;
325 void omap_pm_if_exit(void)
327 /* Deallocate CPUFreq frequency table here */