2 * bfin_dma_5xx.c - Blackfin DMA implementation
4 * Copyright 2004-2008 Analog Devices Inc.
6 * Licensed under the GPL-2 or later.
9 #include <linux/errno.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/param.h>
14 #include <linux/proc_fs.h>
15 #include <linux/sched.h>
16 #include <linux/seq_file.h>
17 #include <linux/spinlock.h>
19 #include <asm/blackfin.h>
20 #include <asm/cacheflush.h>
22 #include <asm/uaccess.h>
23 #include <asm/early_printk.h>
26 * To make sure we work around 05000119 - we always check DMA_DONE bit,
27 * never the DMA_RUN bit
30 struct dma_channel dma_ch
[MAX_DMA_CHANNELS
];
31 EXPORT_SYMBOL(dma_ch
);
33 static int __init
blackfin_dma_init(void)
37 printk(KERN_INFO
"Blackfin DMA Controller\n");
39 for (i
= 0; i
< MAX_DMA_CHANNELS
; i
++) {
40 dma_ch
[i
].chan_status
= DMA_CHANNEL_FREE
;
41 dma_ch
[i
].regs
= dma_io_base_addr
[i
];
42 mutex_init(&(dma_ch
[i
].dmalock
));
44 /* Mark MEMDMA Channel 0 as requested since we're using it internally */
45 request_dma(CH_MEM_STREAM0_DEST
, "Blackfin dma_memcpy");
46 request_dma(CH_MEM_STREAM0_SRC
, "Blackfin dma_memcpy");
48 #if defined(CONFIG_DEB_DMA_URGENT)
49 bfin_write_EBIU_DDRQUE(bfin_read_EBIU_DDRQUE()
50 | DEB1_URGENT
| DEB2_URGENT
| DEB3_URGENT
);
55 arch_initcall(blackfin_dma_init
);
58 static int proc_dma_show(struct seq_file
*m
, void *v
)
62 for (i
= 0; i
< MAX_DMA_CHANNELS
; ++i
)
63 if (dma_ch
[i
].chan_status
!= DMA_CHANNEL_FREE
)
64 seq_printf(m
, "%2d: %s\n", i
, dma_ch
[i
].device_id
);
69 static int proc_dma_open(struct inode
*inode
, struct file
*file
)
71 return single_open(file
, proc_dma_show
, NULL
);
74 static const struct file_operations proc_dma_operations
= {
75 .open
= proc_dma_open
,
78 .release
= single_release
,
81 static int __init
proc_dma_init(void)
83 return proc_create("dma", 0, NULL
, &proc_dma_operations
) != NULL
;
85 late_initcall(proc_dma_init
);
89 * request_dma - request a DMA channel
91 * Request the specific DMA channel from the system if it's available.
93 int request_dma(unsigned int channel
, const char *device_id
)
95 pr_debug("request_dma() : BEGIN \n");
97 if (device_id
== NULL
)
98 printk(KERN_WARNING
"request_dma(%u): no device_id given\n", channel
);
100 #if defined(CONFIG_BF561) && ANOMALY_05000182
101 if (channel
>= CH_IMEM_STREAM0_DEST
&& channel
<= CH_IMEM_STREAM1_DEST
) {
102 if (get_cclk() > 500000000) {
104 "Request IMDMA failed due to ANOMALY 05000182\n");
110 mutex_lock(&(dma_ch
[channel
].dmalock
));
112 if ((dma_ch
[channel
].chan_status
== DMA_CHANNEL_REQUESTED
)
113 || (dma_ch
[channel
].chan_status
== DMA_CHANNEL_ENABLED
)) {
114 mutex_unlock(&(dma_ch
[channel
].dmalock
));
115 pr_debug("DMA CHANNEL IN USE \n");
118 dma_ch
[channel
].chan_status
= DMA_CHANNEL_REQUESTED
;
119 pr_debug("DMA CHANNEL IS ALLOCATED \n");
122 mutex_unlock(&(dma_ch
[channel
].dmalock
));
125 if (channel
>= CH_UART2_RX
&& channel
<= CH_UART3_TX
) {
126 unsigned int per_map
;
127 per_map
= dma_ch
[channel
].regs
->peripheral_map
& 0xFFF;
128 if (strncmp(device_id
, "BFIN_UART", 9) == 0)
129 dma_ch
[channel
].regs
->peripheral_map
= per_map
|
130 ((channel
- CH_UART2_RX
+ 0xC)<<12);
132 dma_ch
[channel
].regs
->peripheral_map
= per_map
|
133 ((channel
- CH_UART2_RX
+ 0x6)<<12);
137 dma_ch
[channel
].device_id
= device_id
;
138 dma_ch
[channel
].irq
= 0;
140 /* This is to be enabled by putting a restriction -
141 * you have to request DMA, before doing any operations on
144 pr_debug("request_dma() : END \n");
147 EXPORT_SYMBOL(request_dma
);
149 int set_dma_callback(unsigned int channel
, irq_handler_t callback
, void *data
)
151 BUG_ON(channel
>= MAX_DMA_CHANNELS
||
152 dma_ch
[channel
].chan_status
== DMA_CHANNEL_FREE
);
154 if (callback
!= NULL
) {
156 unsigned int irq
= channel2irq(channel
);
158 ret
= request_irq(irq
, callback
, IRQF_DISABLED
,
159 dma_ch
[channel
].device_id
, data
);
163 dma_ch
[channel
].irq
= irq
;
164 dma_ch
[channel
].data
= data
;
168 EXPORT_SYMBOL(set_dma_callback
);
171 * clear_dma_buffer - clear DMA fifos for specified channel
173 * Set the Buffer Clear bit in the Configuration register of specific DMA
174 * channel. This will stop the descriptor based DMA operation.
176 static void clear_dma_buffer(unsigned int channel
)
178 dma_ch
[channel
].regs
->cfg
|= RESTART
;
180 dma_ch
[channel
].regs
->cfg
&= ~RESTART
;
183 void free_dma(unsigned int channel
)
185 pr_debug("freedma() : BEGIN \n");
186 BUG_ON(channel
>= MAX_DMA_CHANNELS
||
187 dma_ch
[channel
].chan_status
== DMA_CHANNEL_FREE
);
190 disable_dma(channel
);
191 clear_dma_buffer(channel
);
193 if (dma_ch
[channel
].irq
)
194 free_irq(dma_ch
[channel
].irq
, dma_ch
[channel
].data
);
196 /* Clear the DMA Variable in the Channel */
197 mutex_lock(&(dma_ch
[channel
].dmalock
));
198 dma_ch
[channel
].chan_status
= DMA_CHANNEL_FREE
;
199 mutex_unlock(&(dma_ch
[channel
].dmalock
));
201 pr_debug("freedma() : END \n");
203 EXPORT_SYMBOL(free_dma
);
206 # ifndef MAX_DMA_SUSPEND_CHANNELS
207 # define MAX_DMA_SUSPEND_CHANNELS MAX_DMA_CHANNELS
209 int blackfin_dma_suspend(void)
213 for (i
= 0; i
< MAX_DMA_SUSPEND_CHANNELS
; ++i
) {
214 if (dma_ch
[i
].chan_status
== DMA_CHANNEL_ENABLED
) {
215 printk(KERN_ERR
"DMA Channel %d failed to suspend\n", i
);
219 dma_ch
[i
].saved_peripheral_map
= dma_ch
[i
].regs
->peripheral_map
;
225 void blackfin_dma_resume(void)
228 for (i
= 0; i
< MAX_DMA_SUSPEND_CHANNELS
; ++i
)
229 dma_ch
[i
].regs
->peripheral_map
= dma_ch
[i
].saved_peripheral_map
;
234 * blackfin_dma_early_init - minimal DMA init
236 * Setup a few DMA registers so we can safely do DMA transfers early on in
237 * the kernel booting process. Really this just means using dma_memcpy().
239 void __init
blackfin_dma_early_init(void)
241 early_shadow_stamp();
242 bfin_write_MDMA_S0_CONFIG(0);
243 bfin_write_MDMA_S1_CONFIG(0);
246 void __init
early_dma_memcpy(void *pdst
, const void *psrc
, size_t size
)
248 unsigned long dst
= (unsigned long)pdst
;
249 unsigned long src
= (unsigned long)psrc
;
250 struct dma_register
*dst_ch
, *src_ch
;
252 early_shadow_stamp();
254 /* We assume that everything is 4 byte aligned, so include
255 * a basic sanity check
262 /* Find an avalible memDMA channel */
264 if (src_ch
== (struct dma_register
*)MDMA_S0_NEXT_DESC_PTR
) {
265 dst_ch
= (struct dma_register
*)MDMA_D1_NEXT_DESC_PTR
;
266 src_ch
= (struct dma_register
*)MDMA_S1_NEXT_DESC_PTR
;
268 dst_ch
= (struct dma_register
*)MDMA_D0_NEXT_DESC_PTR
;
269 src_ch
= (struct dma_register
*)MDMA_S0_NEXT_DESC_PTR
;
272 if (!bfin_read16(&src_ch
->cfg
))
274 else if (bfin_read16(&dst_ch
->irq_status
) & DMA_DONE
) {
275 bfin_write16(&src_ch
->cfg
, 0);
280 /* Force a sync in case a previous config reset on this channel
281 * occurred. This is needed so subsequent writes to DMA registers
282 * are not spuriously lost/corrupted.
284 __builtin_bfin_ssync();
287 bfin_write32(&dst_ch
->start_addr
, dst
);
288 bfin_write16(&dst_ch
->x_count
, size
>> 2);
289 bfin_write16(&dst_ch
->x_modify
, 1 << 2);
290 bfin_write16(&dst_ch
->irq_status
, DMA_DONE
| DMA_ERR
);
293 bfin_write32(&src_ch
->start_addr
, src
);
294 bfin_write16(&src_ch
->x_count
, size
>> 2);
295 bfin_write16(&src_ch
->x_modify
, 1 << 2);
296 bfin_write16(&src_ch
->irq_status
, DMA_DONE
| DMA_ERR
);
299 bfin_write16(&src_ch
->cfg
, DMAEN
| WDSIZE_32
);
300 bfin_write16(&dst_ch
->cfg
, WNR
| DI_EN
| DMAEN
| WDSIZE_32
);
302 /* Since we are atomic now, don't use the workaround ssync */
303 __builtin_bfin_ssync();
306 void __init
early_dma_memcpy_done(void)
308 early_shadow_stamp();
310 while ((bfin_read_MDMA_S0_CONFIG() && !(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE
)) ||
311 (bfin_read_MDMA_S1_CONFIG() && !(bfin_read_MDMA_D1_IRQ_STATUS() & DMA_DONE
)))
314 bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE
| DMA_ERR
);
315 bfin_write_MDMA_D1_IRQ_STATUS(DMA_DONE
| DMA_ERR
);
317 * Now that DMA is done, we would normally flush cache, but
318 * i/d cache isn't running this early, so we don't bother,
319 * and just clear out the DMA channel for next time
321 bfin_write_MDMA_S0_CONFIG(0);
322 bfin_write_MDMA_S1_CONFIG(0);
323 bfin_write_MDMA_D0_CONFIG(0);
324 bfin_write_MDMA_D1_CONFIG(0);
326 __builtin_bfin_ssync();
330 * __dma_memcpy - program the MDMA registers
332 * Actually program MDMA0 and wait for the transfer to finish. Disable IRQs
333 * while programming registers so that everything is fully configured. Wait
334 * for DMA to finish with IRQs enabled. If interrupted, the initial DMA_DONE
335 * check will make sure we don't clobber any existing transfer.
337 static void __dma_memcpy(u32 daddr
, s16 dmod
, u32 saddr
, s16 smod
, size_t cnt
, u32 conf
)
339 static DEFINE_SPINLOCK(mdma_lock
);
342 spin_lock_irqsave(&mdma_lock
, flags
);
344 /* Force a sync in case a previous config reset on this channel
345 * occurred. This is needed so subsequent writes to DMA registers
346 * are not spuriously lost/corrupted. Do it under irq lock and
347 * without the anomaly version (because we are atomic already).
349 __builtin_bfin_ssync();
351 if (bfin_read_MDMA_S0_CONFIG())
352 while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE
))
356 /* For larger bit sizes, we've already divided down cnt so it
357 * is no longer a multiple of 64k. So we have to break down
358 * the limit here so it is a multiple of the incoming size.
359 * There is no limitation here in terms of total size other
360 * than the hardware though as the bits lost in the shift are
361 * made up by MODIFY (== we can hit the whole address space).
362 * X: (2^(16 - 0)) * 1 == (2^(16 - 1)) * 2 == (2^(16 - 2)) * 4
364 u32 shift
= abs(dmod
) >> 1;
365 size_t ycnt
= cnt
>> (16 - shift
);
366 cnt
= 1 << (16 - shift
);
367 bfin_write_MDMA_D0_Y_COUNT(ycnt
);
368 bfin_write_MDMA_S0_Y_COUNT(ycnt
);
369 bfin_write_MDMA_D0_Y_MODIFY(dmod
);
370 bfin_write_MDMA_S0_Y_MODIFY(smod
);
373 bfin_write_MDMA_D0_START_ADDR(daddr
);
374 bfin_write_MDMA_D0_X_COUNT(cnt
);
375 bfin_write_MDMA_D0_X_MODIFY(dmod
);
376 bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE
| DMA_ERR
);
378 bfin_write_MDMA_S0_START_ADDR(saddr
);
379 bfin_write_MDMA_S0_X_COUNT(cnt
);
380 bfin_write_MDMA_S0_X_MODIFY(smod
);
381 bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE
| DMA_ERR
);
383 bfin_write_MDMA_S0_CONFIG(DMAEN
| conf
);
384 bfin_write_MDMA_D0_CONFIG(WNR
| DI_EN
| DMAEN
| conf
);
386 spin_unlock_irqrestore(&mdma_lock
, flags
);
390 while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE
))
391 if (bfin_read_MDMA_S0_CONFIG())
396 bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE
| DMA_ERR
);
398 bfin_write_MDMA_S0_CONFIG(0);
399 bfin_write_MDMA_D0_CONFIG(0);
403 * _dma_memcpy - translate C memcpy settings into MDMA settings
405 * Handle all the high level steps before we touch the MDMA registers. So
406 * handle direction, tweaking of sizes, and formatting of addresses.
408 static void *_dma_memcpy(void *pdst
, const void *psrc
, size_t size
)
412 unsigned long dst
= (unsigned long)pdst
;
413 unsigned long src
= (unsigned long)psrc
;
418 if (dst
% 4 == 0 && src
% 4 == 0 && size
% 4 == 0) {
421 } else if (dst
% 2 == 0 && src
% 2 == 0 && size
% 2 == 0) {
429 /* If the two memory regions have a chance of overlapping, make
430 * sure the memcpy still works as expected. Do this by having the
431 * copy run backwards instead.
444 __dma_memcpy(dst
, mod
, src
, mod
, size
, conf
);
450 * dma_memcpy - DMA memcpy under mutex lock
452 * Do not check arguments before starting the DMA memcpy. Break the transfer
453 * up into two pieces. The first transfer is in multiples of 64k and the
454 * second transfer is the piece smaller than 64k.
456 void *dma_memcpy(void *pdst
, const void *psrc
, size_t size
)
458 unsigned long dst
= (unsigned long)pdst
;
459 unsigned long src
= (unsigned long)psrc
;
462 if (bfin_addr_dcacheable(src
))
463 blackfin_dcache_flush_range(src
, src
+ size
);
465 if (bfin_addr_dcacheable(dst
))
466 blackfin_dcache_invalidate_range(dst
, dst
+ size
);
468 bulk
= size
& ~0xffff;
471 _dma_memcpy(pdst
, psrc
, bulk
);
472 _dma_memcpy(pdst
+ bulk
, psrc
+ bulk
, rest
);
475 EXPORT_SYMBOL(dma_memcpy
);
478 * safe_dma_memcpy - DMA memcpy w/argument checking
480 * Verify arguments are safe before heading to dma_memcpy().
482 void *safe_dma_memcpy(void *dst
, const void *src
, size_t size
)
484 if (!access_ok(VERIFY_WRITE
, dst
, size
))
486 if (!access_ok(VERIFY_READ
, src
, size
))
488 return dma_memcpy(dst
, src
, size
);
490 EXPORT_SYMBOL(safe_dma_memcpy
);
492 static void _dma_out(unsigned long addr
, unsigned long buf
, unsigned short len
,
493 u16 size
, u16 dma_size
)
495 blackfin_dcache_flush_range(buf
, buf
+ len
* size
);
496 __dma_memcpy(addr
, 0, buf
, size
, len
, dma_size
);
499 static void _dma_in(unsigned long addr
, unsigned long buf
, unsigned short len
,
500 u16 size
, u16 dma_size
)
502 blackfin_dcache_invalidate_range(buf
, buf
+ len
* size
);
503 __dma_memcpy(buf
, size
, addr
, 0, len
, dma_size
);
506 #define MAKE_DMA_IO(io, bwl, isize, dmasize, cnst) \
507 void dma_##io##s##bwl(unsigned long addr, cnst void *buf, unsigned short len) \
509 _dma_##io(addr, (unsigned long)buf, len, isize, WDSIZE_##dmasize); \
511 EXPORT_SYMBOL(dma_##io##s##bwl)
512 MAKE_DMA_IO(out
, b
, 1, 8, const);
513 MAKE_DMA_IO(in
, b
, 1, 8, );
514 MAKE_DMA_IO(out
, w
, 2, 16, const);
515 MAKE_DMA_IO(in
, w
, 2, 16, );
516 MAKE_DMA_IO(out
, l
, 4, 32, const);
517 MAKE_DMA_IO(in
, l
, 4, 32, );