2 * Blackfin architecture-dependent process handling
4 * Copyright 2004-2009 Analog Devices Inc.
6 * Licensed under the GPL-2 or later
9 #include <linux/module.h>
10 #include <linux/smp_lock.h>
11 #include <linux/unistd.h>
12 #include <linux/user.h>
13 #include <linux/uaccess.h>
14 #include <linux/sched.h>
15 #include <linux/tick.h>
17 #include <linux/err.h>
19 #include <asm/blackfin.h>
20 #include <asm/fixed_code.h>
21 #include <asm/mem_map.h>
23 asmlinkage
void ret_from_fork(void);
25 /* Points to the SDRAM backup memory for the stack that is currently in
26 * L1 scratchpad memory.
28 void *current_l1_stack_save
;
30 /* The number of tasks currently using a L1 stack area. The SRAM is
31 * allocated/deallocated whenever this changes from/to zero.
35 /* Start and length of the area in L1 scratchpad memory which we've allocated
39 unsigned long l1_stack_len
;
42 * Powermanagement idle function, if any..
44 void (*pm_idle
)(void) = NULL
;
45 EXPORT_SYMBOL(pm_idle
);
47 void (*pm_power_off
)(void) = NULL
;
48 EXPORT_SYMBOL(pm_power_off
);
51 * The idle loop on BFIN
54 static void default_idle(void)__attribute__((l1_text
));
55 void cpu_idle(void)__attribute__((l1_text
));
59 * This is our default idle handler. We need to disable
60 * interrupts here to ensure we don't miss a wakeup call.
62 static void default_idle(void)
65 ipipe_suspend_domain();
67 local_irq_disable_hw();
69 idle_with_irq_disabled();
71 local_irq_enable_hw();
75 * The idle thread. We try to conserve power, while trying to keep
76 * overall latency low. The architecture specific idle is passed
77 * a value to indicate the level of "idleness" of the system.
81 /* endless idle loop with no priority at all */
83 void (*idle
)(void) = pm_idle
;
85 #ifdef CONFIG_HOTPLUG_CPU
86 if (cpu_is_offline(smp_processor_id()))
91 tick_nohz_stop_sched_tick(1);
92 while (!need_resched())
94 tick_nohz_restart_sched_tick();
95 preempt_enable_no_resched();
101 /* Fill in the fpu structure for a core dump. */
103 int dump_fpu(struct pt_regs
*regs
, elf_fpregset_t
* fpregs
)
109 * This gets run with P1 containing the
110 * function to call, and R1 containing
111 * the "args". Note P0 is clobbered on the way here.
113 void kernel_thread_helper(void);
114 __asm__(".section .text\n"
116 "_kernel_thread_helper:\n\t"
118 "\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous");
121 * Create a kernel thread.
123 pid_t
kernel_thread(int (*fn
) (void *), void *arg
, unsigned long flags
)
127 memset(®s
, 0, sizeof(regs
));
129 regs
.r1
= (unsigned long)arg
;
130 regs
.p1
= (unsigned long)fn
;
131 regs
.pc
= (unsigned long)kernel_thread_helper
;
133 /* Set bit 2 to tell ret_from_fork we should be returning to kernel
136 __asm__
__volatile__("%0 = syscfg;":"=da"(regs
.syscfg
):);
137 return do_fork(flags
| CLONE_VM
| CLONE_UNTRACED
, 0, ®s
, 0, NULL
,
140 EXPORT_SYMBOL(kernel_thread
);
143 * Do necessary setup to start up a newly executed thread.
145 * pass the data segment into user programs if it exists,
146 * it can't hurt anything as far as I can tell
148 void start_thread(struct pt_regs
*regs
, unsigned long new_ip
, unsigned long new_sp
)
153 regs
->p5
= current
->mm
->start_data
;
155 task_thread_info(current
)->l1_task_info
.stack_start
=
156 (void *)current
->mm
->context
.stack_start
;
157 task_thread_info(current
)->l1_task_info
.lowest_sp
= (void *)new_sp
;
158 memcpy(L1_SCRATCH_TASK_INFO
, &task_thread_info(current
)->l1_task_info
,
159 sizeof(*L1_SCRATCH_TASK_INFO
));
163 EXPORT_SYMBOL_GPL(start_thread
);
165 void flush_thread(void)
169 asmlinkage
int bfin_vfork(struct pt_regs
*regs
)
171 return do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, rdusp(), regs
, 0, NULL
,
175 asmlinkage
int bfin_clone(struct pt_regs
*regs
)
177 unsigned long clone_flags
;
180 #ifdef __ARCH_SYNC_CORE_DCACHE
181 if (current
->rt
.nr_cpus_allowed
== num_possible_cpus()) {
182 current
->cpus_allowed
= cpumask_of_cpu(smp_processor_id());
183 current
->rt
.nr_cpus_allowed
= 1;
187 /* syscall2 puts clone_flags in r0 and usp in r1 */
188 clone_flags
= regs
->r0
;
194 return do_fork(clone_flags
, newsp
, regs
, 0, NULL
, NULL
);
198 copy_thread(unsigned long clone_flags
,
199 unsigned long usp
, unsigned long topstk
,
200 struct task_struct
*p
, struct pt_regs
*regs
)
202 struct pt_regs
*childregs
;
204 childregs
= (struct pt_regs
*) (task_stack_page(p
) + THREAD_SIZE
) - 1;
209 p
->thread
.ksp
= (unsigned long)childregs
;
210 p
->thread
.pc
= (unsigned long)ret_from_fork
;
216 * sys_execve() executes a new program.
219 asmlinkage
int sys_execve(char __user
*name
, char __user
* __user
*argv
, char __user
* __user
*envp
)
223 struct pt_regs
*regs
= (struct pt_regs
*)((&name
) + 6);
226 filename
= getname(name
);
227 error
= PTR_ERR(filename
);
228 if (IS_ERR(filename
))
230 error
= do_execve(filename
, argv
, envp
, regs
);
237 unsigned long get_wchan(struct task_struct
*p
)
239 unsigned long fp
, pc
;
240 unsigned long stack_page
;
242 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
245 stack_page
= (unsigned long)p
;
248 if (fp
< stack_page
+ sizeof(struct thread_info
) ||
249 fp
>= 8184 + stack_page
)
251 pc
= ((unsigned long *)fp
)[1];
252 if (!in_sched_functions(pc
))
254 fp
= *(unsigned long *)fp
;
256 while (count
++ < 16);
260 void finish_atomic_sections (struct pt_regs
*regs
)
262 int __user
*up0
= (int __user
*)regs
->p0
;
265 case ATOMIC_XCHG32
+ 2:
266 put_user(regs
->r1
, up0
);
267 regs
->pc
= ATOMIC_XCHG32
+ 4;
270 case ATOMIC_CAS32
+ 2:
271 case ATOMIC_CAS32
+ 4:
272 if (regs
->r0
== regs
->r1
)
273 case ATOMIC_CAS32
+ 6:
274 put_user(regs
->r2
, up0
);
275 regs
->pc
= ATOMIC_CAS32
+ 8;
278 case ATOMIC_ADD32
+ 2:
279 regs
->r0
= regs
->r1
+ regs
->r0
;
281 case ATOMIC_ADD32
+ 4:
282 put_user(regs
->r0
, up0
);
283 regs
->pc
= ATOMIC_ADD32
+ 6;
286 case ATOMIC_SUB32
+ 2:
287 regs
->r0
= regs
->r1
- regs
->r0
;
289 case ATOMIC_SUB32
+ 4:
290 put_user(regs
->r0
, up0
);
291 regs
->pc
= ATOMIC_SUB32
+ 6;
294 case ATOMIC_IOR32
+ 2:
295 regs
->r0
= regs
->r1
| regs
->r0
;
297 case ATOMIC_IOR32
+ 4:
298 put_user(regs
->r0
, up0
);
299 regs
->pc
= ATOMIC_IOR32
+ 6;
302 case ATOMIC_AND32
+ 2:
303 regs
->r0
= regs
->r1
& regs
->r0
;
305 case ATOMIC_AND32
+ 4:
306 put_user(regs
->r0
, up0
);
307 regs
->pc
= ATOMIC_AND32
+ 6;
310 case ATOMIC_XOR32
+ 2:
311 regs
->r0
= regs
->r1
^ regs
->r0
;
313 case ATOMIC_XOR32
+ 4:
314 put_user(regs
->r0
, up0
);
315 regs
->pc
= ATOMIC_XOR32
+ 6;
321 int in_mem(unsigned long addr
, unsigned long size
,
322 unsigned long start
, unsigned long end
)
324 return addr
>= start
&& addr
+ size
<= end
;
327 int in_mem_const_off(unsigned long addr
, unsigned long size
, unsigned long off
,
328 unsigned long const_addr
, unsigned long const_size
)
331 in_mem(addr
, size
, const_addr
+ off
, const_addr
+ const_size
);
334 int in_mem_const(unsigned long addr
, unsigned long size
,
335 unsigned long const_addr
, unsigned long const_size
)
337 return in_mem_const_off(addr
, size
, 0, const_addr
, const_size
);
339 #define IN_ASYNC(bnum, bctlnum) \
341 (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? -EFAULT : \
342 bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? -EFAULT : \
343 BFIN_MEM_ACCESS_CORE; \
346 int bfin_mem_access_type(unsigned long addr
, unsigned long size
)
348 int cpu
= raw_smp_processor_id();
350 /* Check that things do not wrap around */
351 if (addr
> ULONG_MAX
- size
)
354 if (in_mem(addr
, size
, FIXED_CODE_START
, physical_mem_end
))
355 return BFIN_MEM_ACCESS_CORE
;
357 if (in_mem_const(addr
, size
, L1_CODE_START
, L1_CODE_LENGTH
))
358 return cpu
== 0 ? BFIN_MEM_ACCESS_ITEST
: BFIN_MEM_ACCESS_IDMA
;
359 if (in_mem_const(addr
, size
, L1_SCRATCH_START
, L1_SCRATCH_LENGTH
))
360 return cpu
== 0 ? BFIN_MEM_ACCESS_CORE_ONLY
: -EFAULT
;
361 if (in_mem_const(addr
, size
, L1_DATA_A_START
, L1_DATA_A_LENGTH
))
362 return cpu
== 0 ? BFIN_MEM_ACCESS_CORE
: BFIN_MEM_ACCESS_IDMA
;
363 if (in_mem_const(addr
, size
, L1_DATA_B_START
, L1_DATA_B_LENGTH
))
364 return cpu
== 0 ? BFIN_MEM_ACCESS_CORE
: BFIN_MEM_ACCESS_IDMA
;
365 #ifdef COREB_L1_CODE_START
366 if (in_mem_const(addr
, size
, COREB_L1_CODE_START
, COREB_L1_CODE_LENGTH
))
367 return cpu
== 1 ? BFIN_MEM_ACCESS_ITEST
: BFIN_MEM_ACCESS_IDMA
;
368 if (in_mem_const(addr
, size
, COREB_L1_SCRATCH_START
, L1_SCRATCH_LENGTH
))
369 return cpu
== 1 ? BFIN_MEM_ACCESS_CORE_ONLY
: -EFAULT
;
370 if (in_mem_const(addr
, size
, COREB_L1_DATA_A_START
, COREB_L1_DATA_A_LENGTH
))
371 return cpu
== 1 ? BFIN_MEM_ACCESS_CORE
: BFIN_MEM_ACCESS_IDMA
;
372 if (in_mem_const(addr
, size
, COREB_L1_DATA_B_START
, COREB_L1_DATA_B_LENGTH
))
373 return cpu
== 1 ? BFIN_MEM_ACCESS_CORE
: BFIN_MEM_ACCESS_IDMA
;
375 if (in_mem_const(addr
, size
, L2_START
, L2_LENGTH
))
376 return BFIN_MEM_ACCESS_CORE
;
378 if (addr
>= SYSMMR_BASE
)
379 return BFIN_MEM_ACCESS_CORE_ONLY
;
381 /* We can't read EBIU banks that aren't enabled or we end up hanging
382 * on the access to the async space.
384 if (in_mem_const(addr
, size
, ASYNC_BANK0_BASE
, ASYNC_BANK0_SIZE
))
385 return IN_ASYNC(0, 0);
386 if (in_mem_const(addr
, size
, ASYNC_BANK1_BASE
, ASYNC_BANK1_SIZE
))
387 return IN_ASYNC(1, 0);
388 if (in_mem_const(addr
, size
, ASYNC_BANK2_BASE
, ASYNC_BANK2_SIZE
))
389 return IN_ASYNC(2, 1);
390 if (in_mem_const(addr
, size
, ASYNC_BANK3_BASE
, ASYNC_BANK3_SIZE
))
391 return IN_ASYNC(3, 1);
393 if (in_mem_const(addr
, size
, BOOT_ROM_START
, BOOT_ROM_LENGTH
))
394 return BFIN_MEM_ACCESS_CORE
;
395 if (in_mem_const(addr
, size
, L1_ROM_START
, L1_ROM_LENGTH
))
396 return BFIN_MEM_ACCESS_DMA
;
401 #if defined(CONFIG_ACCESS_CHECK)
402 #ifdef CONFIG_ACCESS_OK_L1
403 __attribute__((l1_text
))
405 /* Return 1 if access to memory range is OK, 0 otherwise */
406 int _access_ok(unsigned long addr
, unsigned long size
)
410 /* Check that things do not wrap around */
411 if (addr
> ULONG_MAX
- size
)
413 if (segment_eq(get_fs(), KERNEL_DS
))
415 #ifdef CONFIG_MTD_UCLINUX
421 if (in_mem(addr
, size
, memory_start
, memory_end
))
423 if (in_mem(addr
, size
, memory_mtd_end
, physical_mem_end
))
425 # ifndef CONFIG_ROMFS_ON_MTD
428 /* For XIP, allow user space to use pointers within the ROMFS. */
429 if (in_mem(addr
, size
, memory_mtd_start
, memory_mtd_end
))
432 if (in_mem(addr
, size
, memory_start
, physical_mem_end
))
436 if (in_mem(addr
, size
, (unsigned long)__init_begin
, (unsigned long)__init_end
))
439 if (in_mem_const(addr
, size
, L1_CODE_START
, L1_CODE_LENGTH
))
441 if (in_mem_const_off(addr
, size
, _etext_l1
- _stext_l1
, L1_CODE_START
, L1_CODE_LENGTH
))
443 if (in_mem_const_off(addr
, size
, _ebss_l1
- _sdata_l1
, L1_DATA_A_START
, L1_DATA_A_LENGTH
))
445 if (in_mem_const_off(addr
, size
, _ebss_b_l1
- _sdata_b_l1
, L1_DATA_B_START
, L1_DATA_B_LENGTH
))
447 #ifdef COREB_L1_CODE_START
448 if (in_mem_const(addr
, size
, COREB_L1_CODE_START
, COREB_L1_CODE_LENGTH
))
450 if (in_mem_const(addr
, size
, COREB_L1_SCRATCH_START
, L1_SCRATCH_LENGTH
))
452 if (in_mem_const(addr
, size
, COREB_L1_DATA_A_START
, COREB_L1_DATA_A_LENGTH
))
454 if (in_mem_const(addr
, size
, COREB_L1_DATA_B_START
, COREB_L1_DATA_B_LENGTH
))
457 if (in_mem_const_off(addr
, size
, _ebss_l2
- _stext_l2
, L2_START
, L2_LENGTH
))
460 if (in_mem_const(addr
, size
, BOOT_ROM_START
, BOOT_ROM_LENGTH
))
462 if (in_mem_const(addr
, size
, L1_ROM_START
, L1_ROM_LENGTH
))
467 EXPORT_SYMBOL(_access_ok
);
468 #endif /* CONFIG_ACCESS_CHECK */