Full support for Ginger Console
[linux-ginger.git] / arch / ia64 / kernel / process.c
blob9bcec9945c1256417efa2829f6334922aaa7a5aa
1 /*
2 * Architecture-specific setup.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
8 * 2005-10-07 Keith Owens <kaos@sgi.com>
9 * Add notify_die() hooks.
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/notifier.h>
20 #include <linux/personality.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/kdebug.h>
30 #include <linux/utsname.h>
31 #include <linux/tracehook.h>
33 #include <asm/cpu.h>
34 #include <asm/delay.h>
35 #include <asm/elf.h>
36 #include <asm/ia32.h>
37 #include <asm/irq.h>
38 #include <asm/kexec.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sal.h>
42 #include <asm/tlbflush.h>
43 #include <asm/uaccess.h>
44 #include <asm/unwind.h>
45 #include <asm/user.h>
47 #include "entry.h"
49 #ifdef CONFIG_PERFMON
50 # include <asm/perfmon.h>
51 #endif
53 #include "sigframe.h"
55 void (*ia64_mark_idle)(int);
57 unsigned long boot_option_idle_override = 0;
58 EXPORT_SYMBOL(boot_option_idle_override);
59 unsigned long idle_halt;
60 EXPORT_SYMBOL(idle_halt);
61 unsigned long idle_nomwait;
62 EXPORT_SYMBOL(idle_nomwait);
64 void
65 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
67 unsigned long ip, sp, bsp;
68 char buf[128]; /* don't make it so big that it overflows the stack! */
70 printk("\nCall Trace:\n");
71 do {
72 unw_get_ip(info, &ip);
73 if (ip == 0)
74 break;
76 unw_get_sp(info, &sp);
77 unw_get_bsp(info, &bsp);
78 snprintf(buf, sizeof(buf),
79 " [<%016lx>] %%s\n"
80 " sp=%016lx bsp=%016lx\n",
81 ip, sp, bsp);
82 print_symbol(buf, ip);
83 } while (unw_unwind(info) >= 0);
86 void
87 show_stack (struct task_struct *task, unsigned long *sp)
89 if (!task)
90 unw_init_running(ia64_do_show_stack, NULL);
91 else {
92 struct unw_frame_info info;
94 unw_init_from_blocked_task(&info, task);
95 ia64_do_show_stack(&info, NULL);
99 void
100 dump_stack (void)
102 show_stack(NULL, NULL);
105 EXPORT_SYMBOL(dump_stack);
107 void
108 show_regs (struct pt_regs *regs)
110 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
112 print_modules();
113 printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
114 smp_processor_id(), current->comm);
115 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
116 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
117 init_utsname()->release);
118 print_symbol("ip is at %s\n", ip);
119 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
120 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
121 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
122 regs->ar_rnat, regs->ar_bspstore, regs->pr);
123 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
124 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
125 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
126 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
127 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
128 regs->f6.u.bits[1], regs->f6.u.bits[0],
129 regs->f7.u.bits[1], regs->f7.u.bits[0]);
130 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
131 regs->f8.u.bits[1], regs->f8.u.bits[0],
132 regs->f9.u.bits[1], regs->f9.u.bits[0]);
133 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
134 regs->f10.u.bits[1], regs->f10.u.bits[0],
135 regs->f11.u.bits[1], regs->f11.u.bits[0]);
137 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
138 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
139 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
140 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
141 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
142 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
143 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
144 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
145 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
147 if (user_mode(regs)) {
148 /* print the stacked registers */
149 unsigned long val, *bsp, ndirty;
150 int i, sof, is_nat = 0;
152 sof = regs->cr_ifs & 0x7f; /* size of frame */
153 ndirty = (regs->loadrs >> 19);
154 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
155 for (i = 0; i < sof; ++i) {
156 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
157 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
158 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
160 } else
161 show_stack(NULL, NULL);
164 /* local support for deprecated console_print */
165 void
166 console_print(const char *s)
168 printk(KERN_EMERG "%s", s);
171 void
172 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
174 if (fsys_mode(current, &scr->pt)) {
176 * defer signal-handling etc. until we return to
177 * privilege-level 0.
179 if (!ia64_psr(&scr->pt)->lp)
180 ia64_psr(&scr->pt)->lp = 1;
181 return;
184 #ifdef CONFIG_PERFMON
185 if (current->thread.pfm_needs_checking)
187 * Note: pfm_handle_work() allow us to call it with interrupts
188 * disabled, and may enable interrupts within the function.
190 pfm_handle_work();
191 #endif
193 /* deal with pending signal delivery */
194 if (test_thread_flag(TIF_SIGPENDING)) {
195 local_irq_enable(); /* force interrupt enable */
196 ia64_do_signal(scr, in_syscall);
199 if (test_thread_flag(TIF_NOTIFY_RESUME)) {
200 clear_thread_flag(TIF_NOTIFY_RESUME);
201 tracehook_notify_resume(&scr->pt);
202 if (current->replacement_session_keyring)
203 key_replace_session_keyring();
206 /* copy user rbs to kernel rbs */
207 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
208 local_irq_enable(); /* force interrupt enable */
209 ia64_sync_krbs();
212 local_irq_disable(); /* force interrupt disable */
215 static int pal_halt = 1;
216 static int can_do_pal_halt = 1;
218 static int __init nohalt_setup(char * str)
220 pal_halt = can_do_pal_halt = 0;
221 return 1;
223 __setup("nohalt", nohalt_setup);
225 void
226 update_pal_halt_status(int status)
228 can_do_pal_halt = pal_halt && status;
232 * We use this if we don't have any better idle routine..
234 void
235 default_idle (void)
237 local_irq_enable();
238 while (!need_resched()) {
239 if (can_do_pal_halt) {
240 local_irq_disable();
241 if (!need_resched()) {
242 safe_halt();
244 local_irq_enable();
245 } else
246 cpu_relax();
250 #ifdef CONFIG_HOTPLUG_CPU
251 /* We don't actually take CPU down, just spin without interrupts. */
252 static inline void play_dead(void)
254 unsigned int this_cpu = smp_processor_id();
256 /* Ack it */
257 __get_cpu_var(cpu_state) = CPU_DEAD;
259 max_xtp();
260 local_irq_disable();
261 idle_task_exit();
262 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
264 * The above is a point of no-return, the processor is
265 * expected to be in SAL loop now.
267 BUG();
269 #else
270 static inline void play_dead(void)
272 BUG();
274 #endif /* CONFIG_HOTPLUG_CPU */
276 static void do_nothing(void *unused)
281 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
282 * pm_idle and update to new pm_idle value. Required while changing pm_idle
283 * handler on SMP systems.
285 * Caller must have changed pm_idle to the new value before the call. Old
286 * pm_idle value will not be used by any CPU after the return of this function.
288 void cpu_idle_wait(void)
290 smp_mb();
291 /* kick all the CPUs so that they exit out of pm_idle */
292 smp_call_function(do_nothing, NULL, 1);
294 EXPORT_SYMBOL_GPL(cpu_idle_wait);
296 void __attribute__((noreturn))
297 cpu_idle (void)
299 void (*mark_idle)(int) = ia64_mark_idle;
300 int cpu = smp_processor_id();
302 /* endless idle loop with no priority at all */
303 while (1) {
304 if (can_do_pal_halt) {
305 current_thread_info()->status &= ~TS_POLLING;
307 * TS_POLLING-cleared state must be visible before we
308 * test NEED_RESCHED:
310 smp_mb();
311 } else {
312 current_thread_info()->status |= TS_POLLING;
315 if (!need_resched()) {
316 void (*idle)(void);
317 #ifdef CONFIG_SMP
318 min_xtp();
319 #endif
320 rmb();
321 if (mark_idle)
322 (*mark_idle)(1);
324 idle = pm_idle;
325 if (!idle)
326 idle = default_idle;
327 (*idle)();
328 if (mark_idle)
329 (*mark_idle)(0);
330 #ifdef CONFIG_SMP
331 normal_xtp();
332 #endif
334 preempt_enable_no_resched();
335 schedule();
336 preempt_disable();
337 check_pgt_cache();
338 if (cpu_is_offline(cpu))
339 play_dead();
343 void
344 ia64_save_extra (struct task_struct *task)
346 #ifdef CONFIG_PERFMON
347 unsigned long info;
348 #endif
350 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
351 ia64_save_debug_regs(&task->thread.dbr[0]);
353 #ifdef CONFIG_PERFMON
354 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
355 pfm_save_regs(task);
357 info = __get_cpu_var(pfm_syst_info);
358 if (info & PFM_CPUINFO_SYST_WIDE)
359 pfm_syst_wide_update_task(task, info, 0);
360 #endif
362 #ifdef CONFIG_IA32_SUPPORT
363 if (IS_IA32_PROCESS(task_pt_regs(task)))
364 ia32_save_state(task);
365 #endif
368 void
369 ia64_load_extra (struct task_struct *task)
371 #ifdef CONFIG_PERFMON
372 unsigned long info;
373 #endif
375 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
376 ia64_load_debug_regs(&task->thread.dbr[0]);
378 #ifdef CONFIG_PERFMON
379 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
380 pfm_load_regs(task);
382 info = __get_cpu_var(pfm_syst_info);
383 if (info & PFM_CPUINFO_SYST_WIDE)
384 pfm_syst_wide_update_task(task, info, 1);
385 #endif
387 #ifdef CONFIG_IA32_SUPPORT
388 if (IS_IA32_PROCESS(task_pt_regs(task)))
389 ia32_load_state(task);
390 #endif
394 * Copy the state of an ia-64 thread.
396 * We get here through the following call chain:
398 * from user-level: from kernel:
400 * <clone syscall> <some kernel call frames>
401 * sys_clone :
402 * do_fork do_fork
403 * copy_thread copy_thread
405 * This means that the stack layout is as follows:
407 * +---------------------+ (highest addr)
408 * | struct pt_regs |
409 * +---------------------+
410 * | struct switch_stack |
411 * +---------------------+
412 * | |
413 * | memory stack |
414 * | | <-- sp (lowest addr)
415 * +---------------------+
417 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
418 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
419 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
420 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
421 * the stack is page aligned and the page size is at least 4KB, this is always the case,
422 * so there is nothing to worry about.
425 copy_thread(unsigned long clone_flags,
426 unsigned long user_stack_base, unsigned long user_stack_size,
427 struct task_struct *p, struct pt_regs *regs)
429 extern char ia64_ret_from_clone, ia32_ret_from_clone;
430 struct switch_stack *child_stack, *stack;
431 unsigned long rbs, child_rbs, rbs_size;
432 struct pt_regs *child_ptregs;
433 int retval = 0;
435 #ifdef CONFIG_SMP
437 * For SMP idle threads, fork_by_hand() calls do_fork with
438 * NULL regs.
440 if (!regs)
441 return 0;
442 #endif
444 stack = ((struct switch_stack *) regs) - 1;
446 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
447 child_stack = (struct switch_stack *) child_ptregs - 1;
449 /* copy parent's switch_stack & pt_regs to child: */
450 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
452 rbs = (unsigned long) current + IA64_RBS_OFFSET;
453 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
454 rbs_size = stack->ar_bspstore - rbs;
456 /* copy the parent's register backing store to the child: */
457 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
459 if (likely(user_mode(child_ptregs))) {
460 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
461 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
462 if (user_stack_base) {
463 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
464 child_ptregs->ar_bspstore = user_stack_base;
465 child_ptregs->ar_rnat = 0;
466 child_ptregs->loadrs = 0;
468 } else {
470 * Note: we simply preserve the relative position of
471 * the stack pointer here. There is no need to
472 * allocate a scratch area here, since that will have
473 * been taken care of by the caller of sys_clone()
474 * already.
476 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
477 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
479 child_stack->ar_bspstore = child_rbs + rbs_size;
480 if (IS_IA32_PROCESS(regs))
481 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
482 else
483 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
485 /* copy parts of thread_struct: */
486 p->thread.ksp = (unsigned long) child_stack - 16;
488 /* stop some PSR bits from being inherited.
489 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
490 * therefore we must specify them explicitly here and not include them in
491 * IA64_PSR_BITS_TO_CLEAR.
493 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
494 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
497 * NOTE: The calling convention considers all floating point
498 * registers in the high partition (fph) to be scratch. Since
499 * the only way to get to this point is through a system call,
500 * we know that the values in fph are all dead. Hence, there
501 * is no need to inherit the fph state from the parent to the
502 * child and all we have to do is to make sure that
503 * IA64_THREAD_FPH_VALID is cleared in the child.
505 * XXX We could push this optimization a bit further by
506 * clearing IA64_THREAD_FPH_VALID on ANY system call.
507 * However, it's not clear this is worth doing. Also, it
508 * would be a slight deviation from the normal Linux system
509 * call behavior where scratch registers are preserved across
510 * system calls (unless used by the system call itself).
512 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
513 | IA64_THREAD_PM_VALID)
514 # define THREAD_FLAGS_TO_SET 0
515 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
516 | THREAD_FLAGS_TO_SET);
517 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
518 #ifdef CONFIG_IA32_SUPPORT
520 * If we're cloning an IA32 task then save the IA32 extra
521 * state from the current task to the new task
523 if (IS_IA32_PROCESS(task_pt_regs(current))) {
524 ia32_save_state(p);
525 if (clone_flags & CLONE_SETTLS)
526 retval = ia32_clone_tls(p, child_ptregs);
528 /* Copy partially mapped page list */
529 if (!retval)
530 retval = ia32_copy_ia64_partial_page_list(p,
531 clone_flags);
533 #endif
535 #ifdef CONFIG_PERFMON
536 if (current->thread.pfm_context)
537 pfm_inherit(p, child_ptregs);
538 #endif
539 return retval;
542 static void
543 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
545 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
546 unsigned long uninitialized_var(ip); /* GCC be quiet */
547 elf_greg_t *dst = arg;
548 struct pt_regs *pt;
549 char nat;
550 int i;
552 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
554 if (unw_unwind_to_user(info) < 0)
555 return;
557 unw_get_sp(info, &sp);
558 pt = (struct pt_regs *) (sp + 16);
560 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
562 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
563 return;
565 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
566 &ar_rnat);
569 * coredump format:
570 * r0-r31
571 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
572 * predicate registers (p0-p63)
573 * b0-b7
574 * ip cfm user-mask
575 * ar.rsc ar.bsp ar.bspstore ar.rnat
576 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
579 /* r0 is zero */
580 for (i = 1, mask = (1UL << i); i < 32; ++i) {
581 unw_get_gr(info, i, &dst[i], &nat);
582 if (nat)
583 nat_bits |= mask;
584 mask <<= 1;
586 dst[32] = nat_bits;
587 unw_get_pr(info, &dst[33]);
589 for (i = 0; i < 8; ++i)
590 unw_get_br(info, i, &dst[34 + i]);
592 unw_get_rp(info, &ip);
593 dst[42] = ip + ia64_psr(pt)->ri;
594 dst[43] = cfm;
595 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
597 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
599 * For bsp and bspstore, unw_get_ar() would return the kernel
600 * addresses, but we need the user-level addresses instead:
602 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
603 dst[47] = pt->ar_bspstore;
604 dst[48] = ar_rnat;
605 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
606 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
607 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
608 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
609 unw_get_ar(info, UNW_AR_LC, &dst[53]);
610 unw_get_ar(info, UNW_AR_EC, &dst[54]);
611 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
612 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
615 void
616 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
618 elf_fpreg_t *dst = arg;
619 int i;
621 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
623 if (unw_unwind_to_user(info) < 0)
624 return;
626 /* f0 is 0.0, f1 is 1.0 */
628 for (i = 2; i < 32; ++i)
629 unw_get_fr(info, i, dst + i);
631 ia64_flush_fph(task);
632 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
633 memcpy(dst + 32, task->thread.fph, 96*16);
636 void
637 do_copy_regs (struct unw_frame_info *info, void *arg)
639 do_copy_task_regs(current, info, arg);
642 void
643 do_dump_fpu (struct unw_frame_info *info, void *arg)
645 do_dump_task_fpu(current, info, arg);
648 void
649 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
651 unw_init_running(do_copy_regs, dst);
655 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
657 unw_init_running(do_dump_fpu, dst);
658 return 1; /* f0-f31 are always valid so we always return 1 */
661 long
662 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
663 struct pt_regs *regs)
665 char *fname;
666 int error;
668 fname = getname(filename);
669 error = PTR_ERR(fname);
670 if (IS_ERR(fname))
671 goto out;
672 error = do_execve(fname, argv, envp, regs);
673 putname(fname);
674 out:
675 return error;
678 pid_t
679 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
681 extern void start_kernel_thread (void);
682 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
683 struct {
684 struct switch_stack sw;
685 struct pt_regs pt;
686 } regs;
688 memset(&regs, 0, sizeof(regs));
689 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
690 regs.pt.r1 = helper_fptr[1]; /* set GP */
691 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
692 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
693 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
694 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
695 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
696 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
697 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
698 regs.sw.pr = (1 << PRED_KERNEL_STACK);
699 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
701 EXPORT_SYMBOL(kernel_thread);
703 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
705 kernel_thread_helper (int (*fn)(void *), void *arg)
707 #ifdef CONFIG_IA32_SUPPORT
708 if (IS_IA32_PROCESS(task_pt_regs(current))) {
709 /* A kernel thread is always a 64-bit process. */
710 current->thread.map_base = DEFAULT_MAP_BASE;
711 current->thread.task_size = DEFAULT_TASK_SIZE;
712 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
713 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
715 #endif
716 return (*fn)(arg);
720 * Flush thread state. This is called when a thread does an execve().
722 void
723 flush_thread (void)
725 /* drop floating-point and debug-register state if it exists: */
726 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
727 ia64_drop_fpu(current);
728 #ifdef CONFIG_IA32_SUPPORT
729 if (IS_IA32_PROCESS(task_pt_regs(current))) {
730 ia32_drop_ia64_partial_page_list(current);
731 current->thread.task_size = IA32_PAGE_OFFSET;
732 set_fs(USER_DS);
733 memset(current->thread.tls_array, 0, sizeof(current->thread.tls_array));
735 #endif
739 * Clean up state associated with current thread. This is called when
740 * the thread calls exit().
742 void
743 exit_thread (void)
746 ia64_drop_fpu(current);
747 #ifdef CONFIG_PERFMON
748 /* if needed, stop monitoring and flush state to perfmon context */
749 if (current->thread.pfm_context)
750 pfm_exit_thread(current);
752 /* free debug register resources */
753 if (current->thread.flags & IA64_THREAD_DBG_VALID)
754 pfm_release_debug_registers(current);
755 #endif
756 if (IS_IA32_PROCESS(task_pt_regs(current)))
757 ia32_drop_ia64_partial_page_list(current);
760 unsigned long
761 get_wchan (struct task_struct *p)
763 struct unw_frame_info info;
764 unsigned long ip;
765 int count = 0;
767 if (!p || p == current || p->state == TASK_RUNNING)
768 return 0;
771 * Note: p may not be a blocked task (it could be current or
772 * another process running on some other CPU. Rather than
773 * trying to determine if p is really blocked, we just assume
774 * it's blocked and rely on the unwind routines to fail
775 * gracefully if the process wasn't really blocked after all.
776 * --davidm 99/12/15
778 unw_init_from_blocked_task(&info, p);
779 do {
780 if (p->state == TASK_RUNNING)
781 return 0;
782 if (unw_unwind(&info) < 0)
783 return 0;
784 unw_get_ip(&info, &ip);
785 if (!in_sched_functions(ip))
786 return ip;
787 } while (count++ < 16);
788 return 0;
791 void
792 cpu_halt (void)
794 pal_power_mgmt_info_u_t power_info[8];
795 unsigned long min_power;
796 int i, min_power_state;
798 if (ia64_pal_halt_info(power_info) != 0)
799 return;
801 min_power_state = 0;
802 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
803 for (i = 1; i < 8; ++i)
804 if (power_info[i].pal_power_mgmt_info_s.im
805 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
806 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
807 min_power_state = i;
810 while (1)
811 ia64_pal_halt(min_power_state);
814 void machine_shutdown(void)
816 #ifdef CONFIG_HOTPLUG_CPU
817 int cpu;
819 for_each_online_cpu(cpu) {
820 if (cpu != smp_processor_id())
821 cpu_down(cpu);
823 #endif
824 #ifdef CONFIG_KEXEC
825 kexec_disable_iosapic();
826 #endif
829 void
830 machine_restart (char *restart_cmd)
832 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
833 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
836 void
837 machine_halt (void)
839 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
840 cpu_halt();
843 void
844 machine_power_off (void)
846 if (pm_power_off)
847 pm_power_off();
848 machine_halt();