2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/system.h>
45 #include <asm/processor.h>
48 #include <asm/machdep.h>
50 #include <asm/syscalls.h>
52 #include <asm/firmware.h>
54 #include <linux/kprobes.h>
55 #include <linux/kdebug.h>
57 extern unsigned long _get_SP(void);
60 struct task_struct
*last_task_used_math
= NULL
;
61 struct task_struct
*last_task_used_altivec
= NULL
;
62 struct task_struct
*last_task_used_vsx
= NULL
;
63 struct task_struct
*last_task_used_spe
= NULL
;
67 * Make sure the floating-point register state in the
68 * the thread_struct is up to date for task tsk.
70 void flush_fp_to_thread(struct task_struct
*tsk
)
72 if (tsk
->thread
.regs
) {
74 * We need to disable preemption here because if we didn't,
75 * another process could get scheduled after the regs->msr
76 * test but before we have finished saving the FP registers
77 * to the thread_struct. That process could take over the
78 * FPU, and then when we get scheduled again we would store
79 * bogus values for the remaining FP registers.
82 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
85 * This should only ever be called for current or
86 * for a stopped child process. Since we save away
87 * the FP register state on context switch on SMP,
88 * there is something wrong if a stopped child appears
89 * to still have its FP state in the CPU registers.
91 BUG_ON(tsk
!= current
);
99 void enable_kernel_fp(void)
101 WARN_ON(preemptible());
104 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
))
107 giveup_fpu(NULL
); /* just enables FP for kernel */
109 giveup_fpu(last_task_used_math
);
110 #endif /* CONFIG_SMP */
112 EXPORT_SYMBOL(enable_kernel_fp
);
114 #ifdef CONFIG_ALTIVEC
115 void enable_kernel_altivec(void)
117 WARN_ON(preemptible());
120 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
))
121 giveup_altivec(current
);
123 giveup_altivec(NULL
); /* just enable AltiVec for kernel - force */
125 giveup_altivec(last_task_used_altivec
);
126 #endif /* CONFIG_SMP */
128 EXPORT_SYMBOL(enable_kernel_altivec
);
131 * Make sure the VMX/Altivec register state in the
132 * the thread_struct is up to date for task tsk.
134 void flush_altivec_to_thread(struct task_struct
*tsk
)
136 if (tsk
->thread
.regs
) {
138 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
140 BUG_ON(tsk
!= current
);
147 #endif /* CONFIG_ALTIVEC */
151 /* not currently used, but some crazy RAID module might want to later */
152 void enable_kernel_vsx(void)
154 WARN_ON(preemptible());
157 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VSX
))
160 giveup_vsx(NULL
); /* just enable vsx for kernel - force */
162 giveup_vsx(last_task_used_vsx
);
163 #endif /* CONFIG_SMP */
165 EXPORT_SYMBOL(enable_kernel_vsx
);
168 void giveup_vsx(struct task_struct
*tsk
)
175 void flush_vsx_to_thread(struct task_struct
*tsk
)
177 if (tsk
->thread
.regs
) {
179 if (tsk
->thread
.regs
->msr
& MSR_VSX
) {
181 BUG_ON(tsk
!= current
);
188 #endif /* CONFIG_VSX */
192 void enable_kernel_spe(void)
194 WARN_ON(preemptible());
197 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_SPE
))
200 giveup_spe(NULL
); /* just enable SPE for kernel - force */
202 giveup_spe(last_task_used_spe
);
203 #endif /* __SMP __ */
205 EXPORT_SYMBOL(enable_kernel_spe
);
207 void flush_spe_to_thread(struct task_struct
*tsk
)
209 if (tsk
->thread
.regs
) {
211 if (tsk
->thread
.regs
->msr
& MSR_SPE
) {
213 BUG_ON(tsk
!= current
);
220 #endif /* CONFIG_SPE */
224 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
225 * and the current task has some state, discard it.
227 void discard_lazy_cpu_state(void)
230 if (last_task_used_math
== current
)
231 last_task_used_math
= NULL
;
232 #ifdef CONFIG_ALTIVEC
233 if (last_task_used_altivec
== current
)
234 last_task_used_altivec
= NULL
;
235 #endif /* CONFIG_ALTIVEC */
237 if (last_task_used_vsx
== current
)
238 last_task_used_vsx
= NULL
;
239 #endif /* CONFIG_VSX */
241 if (last_task_used_spe
== current
)
242 last_task_used_spe
= NULL
;
246 #endif /* CONFIG_SMP */
248 void do_dabr(struct pt_regs
*regs
, unsigned long address
,
249 unsigned long error_code
)
253 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
254 11, SIGSEGV
) == NOTIFY_STOP
)
257 if (debugger_dabr_match(regs
))
260 /* Clear the DAC and struct entries. One shot trigger */
261 #if defined(CONFIG_BOOKE)
262 mtspr(SPRN_DBCR0
, mfspr(SPRN_DBCR0
) & ~(DBSR_DAC1R
| DBSR_DAC1W
269 /* Deliver the signal to userspace */
270 info
.si_signo
= SIGTRAP
;
272 info
.si_code
= TRAP_HWBKPT
;
273 info
.si_addr
= (void __user
*)address
;
274 force_sig_info(SIGTRAP
, &info
, current
);
277 static DEFINE_PER_CPU(unsigned long, current_dabr
);
279 int set_dabr(unsigned long dabr
)
281 __get_cpu_var(current_dabr
) = dabr
;
284 return ppc_md
.set_dabr(dabr
);
286 /* XXX should we have a CPU_FTR_HAS_DABR ? */
287 #if defined(CONFIG_BOOKE)
288 mtspr(SPRN_DAC1
, dabr
);
289 #elif defined(CONFIG_PPC_BOOK3S)
290 mtspr(SPRN_DABR
, dabr
);
298 DEFINE_PER_CPU(struct cpu_usage
, cpu_usage_array
);
301 struct task_struct
*__switch_to(struct task_struct
*prev
,
302 struct task_struct
*new)
304 struct thread_struct
*new_thread
, *old_thread
;
306 struct task_struct
*last
;
309 /* avoid complexity of lazy save/restore of fpu
310 * by just saving it every time we switch out if
311 * this task used the fpu during the last quantum.
313 * If it tries to use the fpu again, it'll trap and
314 * reload its fp regs. So we don't have to do a restore
315 * every switch, just a save.
318 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_FP
))
320 #ifdef CONFIG_ALTIVEC
322 * If the previous thread used altivec in the last quantum
323 * (thus changing altivec regs) then save them.
324 * We used to check the VRSAVE register but not all apps
325 * set it, so we don't rely on it now (and in fact we need
326 * to save & restore VSCR even if VRSAVE == 0). -- paulus
328 * On SMP we always save/restore altivec regs just to avoid the
329 * complexity of changing processors.
332 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_VEC
))
333 giveup_altivec(prev
);
334 #endif /* CONFIG_ALTIVEC */
336 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_VSX
))
337 /* VMX and FPU registers are already save here */
339 #endif /* CONFIG_VSX */
342 * If the previous thread used spe in the last quantum
343 * (thus changing spe regs) then save them.
345 * On SMP we always save/restore spe regs just to avoid the
346 * complexity of changing processors.
348 if ((prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_SPE
)))
350 #endif /* CONFIG_SPE */
352 #else /* CONFIG_SMP */
353 #ifdef CONFIG_ALTIVEC
354 /* Avoid the trap. On smp this this never happens since
355 * we don't set last_task_used_altivec -- Cort
357 if (new->thread
.regs
&& last_task_used_altivec
== new)
358 new->thread
.regs
->msr
|= MSR_VEC
;
359 #endif /* CONFIG_ALTIVEC */
361 if (new->thread
.regs
&& last_task_used_vsx
== new)
362 new->thread
.regs
->msr
|= MSR_VSX
;
363 #endif /* CONFIG_VSX */
365 /* Avoid the trap. On smp this this never happens since
366 * we don't set last_task_used_spe
368 if (new->thread
.regs
&& last_task_used_spe
== new)
369 new->thread
.regs
->msr
|= MSR_SPE
;
370 #endif /* CONFIG_SPE */
372 #endif /* CONFIG_SMP */
374 #if defined(CONFIG_BOOKE)
375 /* If new thread DAC (HW breakpoint) is the same then leave it */
376 if (new->thread
.dabr
)
377 set_dabr(new->thread
.dabr
);
379 if (unlikely(__get_cpu_var(current_dabr
) != new->thread
.dabr
))
380 set_dabr(new->thread
.dabr
);
384 new_thread
= &new->thread
;
385 old_thread
= ¤t
->thread
;
389 * Collect processor utilization data per process
391 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
392 struct cpu_usage
*cu
= &__get_cpu_var(cpu_usage_array
);
393 long unsigned start_tb
, current_tb
;
394 start_tb
= old_thread
->start_tb
;
395 cu
->current_tb
= current_tb
= mfspr(SPRN_PURR
);
396 old_thread
->accum_tb
+= (current_tb
- start_tb
);
397 new_thread
->start_tb
= current_tb
;
401 local_irq_save(flags
);
403 account_system_vtime(current
);
404 account_process_vtime(current
);
405 calculate_steal_time();
408 * We can't take a PMU exception inside _switch() since there is a
409 * window where the kernel stack SLB and the kernel stack are out
410 * of sync. Hard disable here.
413 last
= _switch(old_thread
, new_thread
);
415 local_irq_restore(flags
);
420 static int instructions_to_print
= 16;
422 static void show_instructions(struct pt_regs
*regs
)
425 unsigned long pc
= regs
->nip
- (instructions_to_print
* 3 / 4 *
428 printk("Instruction dump:");
430 for (i
= 0; i
< instructions_to_print
; i
++) {
436 #if !defined(CONFIG_BOOKE)
437 /* If executing with the IMMU off, adjust pc rather
438 * than print XXXXXXXX.
440 if (!(regs
->msr
& MSR_IR
))
441 pc
= (unsigned long)phys_to_virt(pc
);
444 /* We use __get_user here *only* to avoid an OOPS on a
445 * bad address because the pc *should* only be a
448 if (!__kernel_text_address(pc
) ||
449 __get_user(instr
, (unsigned int __user
*)pc
)) {
453 printk("<%08x> ", instr
);
455 printk("%08x ", instr
);
464 static struct regbit
{
481 static void printbits(unsigned long val
, struct regbit
*bits
)
483 const char *sep
= "";
486 for (; bits
->bit
; ++bits
)
487 if (val
& bits
->bit
) {
488 printk("%s%s", sep
, bits
->name
);
496 #define REGS_PER_LINE 4
497 #define LAST_VOLATILE 13
500 #define REGS_PER_LINE 8
501 #define LAST_VOLATILE 12
504 void show_regs(struct pt_regs
* regs
)
508 printk("NIP: "REG
" LR: "REG
" CTR: "REG
"\n",
509 regs
->nip
, regs
->link
, regs
->ctr
);
510 printk("REGS: %p TRAP: %04lx %s (%s)\n",
511 regs
, regs
->trap
, print_tainted(), init_utsname()->release
);
512 printk("MSR: "REG
" ", regs
->msr
);
513 printbits(regs
->msr
, msr_bits
);
514 printk(" CR: %08lx XER: %08lx\n", regs
->ccr
, regs
->xer
);
516 if (trap
== 0x300 || trap
== 0x600)
517 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
518 printk("DEAR: "REG
", ESR: "REG
"\n", regs
->dar
, regs
->dsisr
);
520 printk("DAR: "REG
", DSISR: "REG
"\n", regs
->dar
, regs
->dsisr
);
522 printk("TASK = %p[%d] '%s' THREAD: %p",
523 current
, task_pid_nr(current
), current
->comm
, task_thread_info(current
));
526 printk(" CPU: %d", raw_smp_processor_id());
527 #endif /* CONFIG_SMP */
529 for (i
= 0; i
< 32; i
++) {
530 if ((i
% REGS_PER_LINE
) == 0)
531 printk("\nGPR%02d: ", i
);
532 printk(REG
" ", regs
->gpr
[i
]);
533 if (i
== LAST_VOLATILE
&& !FULL_REGS(regs
))
537 #ifdef CONFIG_KALLSYMS
539 * Lookup NIP late so we have the best change of getting the
540 * above info out without failing
542 printk("NIP ["REG
"] %pS\n", regs
->nip
, (void *)regs
->nip
);
543 printk("LR ["REG
"] %pS\n", regs
->link
, (void *)regs
->link
);
545 show_stack(current
, (unsigned long *) regs
->gpr
[1]);
546 if (!user_mode(regs
))
547 show_instructions(regs
);
550 void exit_thread(void)
552 discard_lazy_cpu_state();
555 void flush_thread(void)
558 struct thread_info
*t
= current_thread_info();
560 if (test_ti_thread_flag(t
, TIF_ABI_PENDING
)) {
561 clear_ti_thread_flag(t
, TIF_ABI_PENDING
);
562 if (test_ti_thread_flag(t
, TIF_32BIT
))
563 clear_ti_thread_flag(t
, TIF_32BIT
);
565 set_ti_thread_flag(t
, TIF_32BIT
);
569 discard_lazy_cpu_state();
571 if (current
->thread
.dabr
) {
572 current
->thread
.dabr
= 0;
575 #if defined(CONFIG_BOOKE)
576 current
->thread
.dbcr0
&= ~(DBSR_DAC1R
| DBSR_DAC1W
);
582 release_thread(struct task_struct
*t
)
587 * This gets called before we allocate a new thread and copy
588 * the current task into it.
590 void prepare_to_copy(struct task_struct
*tsk
)
592 flush_fp_to_thread(current
);
593 flush_altivec_to_thread(current
);
594 flush_vsx_to_thread(current
);
595 flush_spe_to_thread(current
);
601 int copy_thread(unsigned long clone_flags
, unsigned long usp
,
602 unsigned long unused
, struct task_struct
*p
,
603 struct pt_regs
*regs
)
605 struct pt_regs
*childregs
, *kregs
;
606 extern void ret_from_fork(void);
607 unsigned long sp
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
609 CHECK_FULL_REGS(regs
);
611 sp
-= sizeof(struct pt_regs
);
612 childregs
= (struct pt_regs
*) sp
;
614 if ((childregs
->msr
& MSR_PR
) == 0) {
615 /* for kernel thread, set `current' and stackptr in new task */
616 childregs
->gpr
[1] = sp
+ sizeof(struct pt_regs
);
618 childregs
->gpr
[2] = (unsigned long) p
;
620 clear_tsk_thread_flag(p
, TIF_32BIT
);
622 p
->thread
.regs
= NULL
; /* no user register state */
624 childregs
->gpr
[1] = usp
;
625 p
->thread
.regs
= childregs
;
626 if (clone_flags
& CLONE_SETTLS
) {
628 if (!test_thread_flag(TIF_32BIT
))
629 childregs
->gpr
[13] = childregs
->gpr
[6];
632 childregs
->gpr
[2] = childregs
->gpr
[6];
635 childregs
->gpr
[3] = 0; /* Result from fork() */
636 sp
-= STACK_FRAME_OVERHEAD
;
639 * The way this works is that at some point in the future
640 * some task will call _switch to switch to the new task.
641 * That will pop off the stack frame created below and start
642 * the new task running at ret_from_fork. The new task will
643 * do some house keeping and then return from the fork or clone
644 * system call, using the stack frame created above.
646 sp
-= sizeof(struct pt_regs
);
647 kregs
= (struct pt_regs
*) sp
;
648 sp
-= STACK_FRAME_OVERHEAD
;
650 p
->thread
.ksp_limit
= (unsigned long)task_stack_page(p
) +
651 _ALIGN_UP(sizeof(struct thread_info
), 16);
653 #ifdef CONFIG_PPC_STD_MMU_64
654 if (cpu_has_feature(CPU_FTR_SLB
)) {
655 unsigned long sp_vsid
;
656 unsigned long llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
658 if (cpu_has_feature(CPU_FTR_1T_SEGMENT
))
659 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_1T
)
660 << SLB_VSID_SHIFT_1T
;
662 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_256M
)
664 sp_vsid
|= SLB_VSID_KERNEL
| llp
;
665 p
->thread
.ksp_vsid
= sp_vsid
;
667 #endif /* CONFIG_PPC_STD_MMU_64 */
670 * The PPC64 ABI makes use of a TOC to contain function
671 * pointers. The function (ret_from_except) is actually a pointer
672 * to the TOC entry. The first entry is a pointer to the actual
676 kregs
->nip
= *((unsigned long *)ret_from_fork
);
678 kregs
->nip
= (unsigned long)ret_from_fork
;
685 * Set up a thread for executing a new program
687 void start_thread(struct pt_regs
*regs
, unsigned long start
, unsigned long sp
)
690 unsigned long load_addr
= regs
->gpr
[2]; /* saved by ELF_PLAT_INIT */
696 * If we exec out of a kernel thread then thread.regs will not be
699 if (!current
->thread
.regs
) {
700 struct pt_regs
*regs
= task_stack_page(current
) + THREAD_SIZE
;
701 current
->thread
.regs
= regs
- 1;
704 memset(regs
->gpr
, 0, sizeof(regs
->gpr
));
712 * We have just cleared all the nonvolatile GPRs, so make
713 * FULL_REGS(regs) return true. This is necessary to allow
714 * ptrace to examine the thread immediately after exec.
721 regs
->msr
= MSR_USER
;
723 if (!test_thread_flag(TIF_32BIT
)) {
724 unsigned long entry
, toc
;
726 /* start is a relocated pointer to the function descriptor for
727 * the elf _start routine. The first entry in the function
728 * descriptor is the entry address of _start and the second
729 * entry is the TOC value we need to use.
731 __get_user(entry
, (unsigned long __user
*)start
);
732 __get_user(toc
, (unsigned long __user
*)start
+1);
734 /* Check whether the e_entry function descriptor entries
735 * need to be relocated before we can use them.
737 if (load_addr
!= 0) {
743 regs
->msr
= MSR_USER64
;
747 regs
->msr
= MSR_USER32
;
751 discard_lazy_cpu_state();
753 current
->thread
.used_vsr
= 0;
755 memset(current
->thread
.fpr
, 0, sizeof(current
->thread
.fpr
));
756 current
->thread
.fpscr
.val
= 0;
757 #ifdef CONFIG_ALTIVEC
758 memset(current
->thread
.vr
, 0, sizeof(current
->thread
.vr
));
759 memset(¤t
->thread
.vscr
, 0, sizeof(current
->thread
.vscr
));
760 current
->thread
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
761 current
->thread
.vrsave
= 0;
762 current
->thread
.used_vr
= 0;
763 #endif /* CONFIG_ALTIVEC */
765 memset(current
->thread
.evr
, 0, sizeof(current
->thread
.evr
));
766 current
->thread
.acc
= 0;
767 current
->thread
.spefscr
= 0;
768 current
->thread
.used_spe
= 0;
769 #endif /* CONFIG_SPE */
772 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
773 | PR_FP_EXC_RES | PR_FP_EXC_INV)
775 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
777 struct pt_regs
*regs
= tsk
->thread
.regs
;
779 /* This is a bit hairy. If we are an SPE enabled processor
780 * (have embedded fp) we store the IEEE exception enable flags in
781 * fpexc_mode. fpexc_mode is also used for setting FP exception
782 * mode (asyn, precise, disabled) for 'Classic' FP. */
783 if (val
& PR_FP_EXC_SW_ENABLE
) {
785 if (cpu_has_feature(CPU_FTR_SPE
)) {
786 tsk
->thread
.fpexc_mode
= val
&
787 (PR_FP_EXC_SW_ENABLE
| PR_FP_ALL_EXCEPT
);
797 /* on a CONFIG_SPE this does not hurt us. The bits that
798 * __pack_fe01 use do not overlap with bits used for
799 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
800 * on CONFIG_SPE implementations are reserved so writing to
801 * them does not change anything */
802 if (val
> PR_FP_EXC_PRECISE
)
804 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
805 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0)
806 regs
->msr
= (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
807 | tsk
->thread
.fpexc_mode
;
811 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
815 if (tsk
->thread
.fpexc_mode
& PR_FP_EXC_SW_ENABLE
)
817 if (cpu_has_feature(CPU_FTR_SPE
))
818 val
= tsk
->thread
.fpexc_mode
;
825 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
826 return put_user(val
, (unsigned int __user
*) adr
);
829 int set_endian(struct task_struct
*tsk
, unsigned int val
)
831 struct pt_regs
*regs
= tsk
->thread
.regs
;
833 if ((val
== PR_ENDIAN_LITTLE
&& !cpu_has_feature(CPU_FTR_REAL_LE
)) ||
834 (val
== PR_ENDIAN_PPC_LITTLE
&& !cpu_has_feature(CPU_FTR_PPC_LE
)))
840 if (val
== PR_ENDIAN_BIG
)
841 regs
->msr
&= ~MSR_LE
;
842 else if (val
== PR_ENDIAN_LITTLE
|| val
== PR_ENDIAN_PPC_LITTLE
)
850 int get_endian(struct task_struct
*tsk
, unsigned long adr
)
852 struct pt_regs
*regs
= tsk
->thread
.regs
;
855 if (!cpu_has_feature(CPU_FTR_PPC_LE
) &&
856 !cpu_has_feature(CPU_FTR_REAL_LE
))
862 if (regs
->msr
& MSR_LE
) {
863 if (cpu_has_feature(CPU_FTR_REAL_LE
))
864 val
= PR_ENDIAN_LITTLE
;
866 val
= PR_ENDIAN_PPC_LITTLE
;
870 return put_user(val
, (unsigned int __user
*)adr
);
873 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
875 tsk
->thread
.align_ctl
= val
;
879 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
881 return put_user(tsk
->thread
.align_ctl
, (unsigned int __user
*)adr
);
884 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
886 int sys_clone(unsigned long clone_flags
, unsigned long usp
,
887 int __user
*parent_tidp
, void __user
*child_threadptr
,
888 int __user
*child_tidp
, int p6
,
889 struct pt_regs
*regs
)
891 CHECK_FULL_REGS(regs
);
893 usp
= regs
->gpr
[1]; /* stack pointer for child */
895 if (test_thread_flag(TIF_32BIT
)) {
896 parent_tidp
= TRUNC_PTR(parent_tidp
);
897 child_tidp
= TRUNC_PTR(child_tidp
);
900 return do_fork(clone_flags
, usp
, regs
, 0, parent_tidp
, child_tidp
);
903 int sys_fork(unsigned long p1
, unsigned long p2
, unsigned long p3
,
904 unsigned long p4
, unsigned long p5
, unsigned long p6
,
905 struct pt_regs
*regs
)
907 CHECK_FULL_REGS(regs
);
908 return do_fork(SIGCHLD
, regs
->gpr
[1], regs
, 0, NULL
, NULL
);
911 int sys_vfork(unsigned long p1
, unsigned long p2
, unsigned long p3
,
912 unsigned long p4
, unsigned long p5
, unsigned long p6
,
913 struct pt_regs
*regs
)
915 CHECK_FULL_REGS(regs
);
916 return do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, regs
->gpr
[1],
917 regs
, 0, NULL
, NULL
);
920 int sys_execve(unsigned long a0
, unsigned long a1
, unsigned long a2
,
921 unsigned long a3
, unsigned long a4
, unsigned long a5
,
922 struct pt_regs
*regs
)
927 filename
= getname((char __user
*) a0
);
928 error
= PTR_ERR(filename
);
929 if (IS_ERR(filename
))
931 flush_fp_to_thread(current
);
932 flush_altivec_to_thread(current
);
933 flush_spe_to_thread(current
);
934 error
= do_execve(filename
, (char __user
* __user
*) a1
,
935 (char __user
* __user
*) a2
, regs
);
941 #ifdef CONFIG_IRQSTACKS
942 static inline int valid_irq_stack(unsigned long sp
, struct task_struct
*p
,
943 unsigned long nbytes
)
945 unsigned long stack_page
;
946 unsigned long cpu
= task_cpu(p
);
949 * Avoid crashing if the stack has overflowed and corrupted
950 * task_cpu(p), which is in the thread_info struct.
952 if (cpu
< NR_CPUS
&& cpu_possible(cpu
)) {
953 stack_page
= (unsigned long) hardirq_ctx
[cpu
];
954 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
955 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
958 stack_page
= (unsigned long) softirq_ctx
[cpu
];
959 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
960 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
967 #define valid_irq_stack(sp, p, nb) 0
968 #endif /* CONFIG_IRQSTACKS */
970 int validate_sp(unsigned long sp
, struct task_struct
*p
,
971 unsigned long nbytes
)
973 unsigned long stack_page
= (unsigned long)task_stack_page(p
);
975 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
976 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
979 return valid_irq_stack(sp
, p
, nbytes
);
982 EXPORT_SYMBOL(validate_sp
);
984 unsigned long get_wchan(struct task_struct
*p
)
986 unsigned long ip
, sp
;
989 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
993 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
997 sp
= *(unsigned long *)sp
;
998 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
1001 ip
= ((unsigned long *)sp
)[STACK_FRAME_LR_SAVE
];
1002 if (!in_sched_functions(ip
))
1005 } while (count
++ < 16);
1009 static int kstack_depth_to_print
= CONFIG_PRINT_STACK_DEPTH
;
1011 void show_stack(struct task_struct
*tsk
, unsigned long *stack
)
1013 unsigned long sp
, ip
, lr
, newsp
;
1016 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1017 int curr_frame
= current
->curr_ret_stack
;
1018 extern void return_to_handler(void);
1019 unsigned long rth
= (unsigned long)return_to_handler
;
1020 unsigned long mrth
= -1;
1022 extern void mod_return_to_handler(void);
1023 rth
= *(unsigned long *)rth
;
1024 mrth
= (unsigned long)mod_return_to_handler
;
1025 mrth
= *(unsigned long *)mrth
;
1029 sp
= (unsigned long) stack
;
1034 asm("mr %0,1" : "=r" (sp
));
1036 sp
= tsk
->thread
.ksp
;
1040 printk("Call Trace:\n");
1042 if (!validate_sp(sp
, tsk
, STACK_FRAME_OVERHEAD
))
1045 stack
= (unsigned long *) sp
;
1047 ip
= stack
[STACK_FRAME_LR_SAVE
];
1048 if (!firstframe
|| ip
!= lr
) {
1049 printk("["REG
"] ["REG
"] %pS", sp
, ip
, (void *)ip
);
1050 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1051 if ((ip
== rth
|| ip
== mrth
) && curr_frame
>= 0) {
1053 (void *)current
->ret_stack
[curr_frame
].ret
);
1058 printk(" (unreliable)");
1064 * See if this is an exception frame.
1065 * We look for the "regshere" marker in the current frame.
1067 if (validate_sp(sp
, tsk
, STACK_INT_FRAME_SIZE
)
1068 && stack
[STACK_FRAME_MARKER
] == STACK_FRAME_REGS_MARKER
) {
1069 struct pt_regs
*regs
= (struct pt_regs
*)
1070 (sp
+ STACK_FRAME_OVERHEAD
);
1072 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1073 regs
->trap
, (void *)regs
->nip
, (void *)lr
);
1078 } while (count
++ < kstack_depth_to_print
);
1081 void dump_stack(void)
1083 show_stack(current
, NULL
);
1085 EXPORT_SYMBOL(dump_stack
);
1088 void ppc64_runlatch_on(void)
1092 if (cpu_has_feature(CPU_FTR_CTRL
) && !test_thread_flag(TIF_RUNLATCH
)) {
1095 ctrl
= mfspr(SPRN_CTRLF
);
1096 ctrl
|= CTRL_RUNLATCH
;
1097 mtspr(SPRN_CTRLT
, ctrl
);
1099 set_thread_flag(TIF_RUNLATCH
);
1103 void ppc64_runlatch_off(void)
1107 if (cpu_has_feature(CPU_FTR_CTRL
) && test_thread_flag(TIF_RUNLATCH
)) {
1110 clear_thread_flag(TIF_RUNLATCH
);
1112 ctrl
= mfspr(SPRN_CTRLF
);
1113 ctrl
&= ~CTRL_RUNLATCH
;
1114 mtspr(SPRN_CTRLT
, ctrl
);
1119 #if THREAD_SHIFT < PAGE_SHIFT
1121 static struct kmem_cache
*thread_info_cache
;
1123 struct thread_info
*alloc_thread_info(struct task_struct
*tsk
)
1125 struct thread_info
*ti
;
1127 ti
= kmem_cache_alloc(thread_info_cache
, GFP_KERNEL
);
1128 if (unlikely(ti
== NULL
))
1130 #ifdef CONFIG_DEBUG_STACK_USAGE
1131 memset(ti
, 0, THREAD_SIZE
);
1136 void free_thread_info(struct thread_info
*ti
)
1138 kmem_cache_free(thread_info_cache
, ti
);
1141 void thread_info_cache_init(void)
1143 thread_info_cache
= kmem_cache_create("thread_info", THREAD_SIZE
,
1144 THREAD_SIZE
, 0, NULL
);
1145 BUG_ON(thread_info_cache
== NULL
);
1148 #endif /* THREAD_SHIFT < PAGE_SHIFT */
1150 unsigned long arch_align_stack(unsigned long sp
)
1152 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
1153 sp
-= get_random_int() & ~PAGE_MASK
;
1157 static inline unsigned long brk_rnd(void)
1159 unsigned long rnd
= 0;
1161 /* 8MB for 32bit, 1GB for 64bit */
1162 if (is_32bit_task())
1163 rnd
= (long)(get_random_int() % (1<<(23-PAGE_SHIFT
)));
1165 rnd
= (long)(get_random_int() % (1<<(30-PAGE_SHIFT
)));
1167 return rnd
<< PAGE_SHIFT
;
1170 unsigned long arch_randomize_brk(struct mm_struct
*mm
)
1172 unsigned long base
= mm
->brk
;
1177 * If we are using 1TB segments and we are allowed to randomise
1178 * the heap, we can put it above 1TB so it is backed by a 1TB
1179 * segment. Otherwise the heap will be in the bottom 1TB
1180 * which always uses 256MB segments and this may result in a
1181 * performance penalty.
1183 if (!is_32bit_task() && (mmu_highuser_ssize
== MMU_SEGSIZE_1T
))
1184 base
= max_t(unsigned long, mm
->brk
, 1UL << SID_SHIFT_1T
);
1187 ret
= PAGE_ALIGN(base
+ brk_rnd());
1195 unsigned long randomize_et_dyn(unsigned long base
)
1197 unsigned long ret
= PAGE_ALIGN(base
+ brk_rnd());