2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * SGI UV architectural definitions
8 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
19 #include <asm/types.h>
20 #include <asm/percpu.h>
21 #include <asm/uv/uv_mmrs.h>
25 * Addressing Terminology
27 * M - The low M bits of a physical address represent the offset
28 * into the blade local memory. RAM memory on a blade is physically
29 * contiguous (although various IO spaces may punch holes in
32 * N - Number of bits in the node portion of a socket physical
35 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
36 * routers always have low bit of 1, C/MBricks have low bit
37 * equal to 0. Most addressing macros that target UV hub chips
38 * right shift the NASID by 1 to exclude the always-zero bit.
39 * NASIDs contain up to 15 bits.
41 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
45 * of the nasid for socket usage.
48 * NumaLink Global Physical Address Format:
49 * +--------------------------------+---------------------+
50 * |00..000| GNODE | NodeOffset |
51 * +--------------------------------+---------------------+
52 * |<-------53 - M bits --->|<--------M bits ----->
54 * M - number of node offset bits (35 .. 40)
57 * Memory/UV-HUB Processor Socket Address Format:
58 * +----------------+---------------+---------------------+
59 * |00..000000000000| PNODE | NodeOffset |
60 * +----------------+---------------+---------------------+
61 * <--- N bits --->|<--------M bits ----->
63 * M - number of node offset bits (35 .. 40)
64 * N - number of PNODE bits (0 .. 10)
66 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
67 * The actual values are configuration dependent and are set at
68 * boot time. M & N values are set by the hardware/BIOS at boot.
72 * NOTE!!!!!! This is the current format of the APICID. However, code
73 * should assume that this will change in the future. Use functions
74 * in this file for all APICID bit manipulations and conversion.
82 * l = socket number on board
85 * s = bits that are in the SOCKET_ID CSR
87 * Note: Processor only supports 12 bits in the APICID register. The ACPI
88 * tables hold all 16 bits. Software needs to be aware of this.
90 * Unless otherwise specified, all references to APICID refer to
91 * the FULL value contained in ACPI tables, not the subset in the
92 * processor APICID register.
97 * Maximum number of bricks in all partitions and in all coherency domains.
98 * This is the total number of bricks accessible in the numalink fabric. It
99 * includes all C & M bricks. Routers are NOT included.
101 * This value is also the value of the maximum number of non-router NASIDs
102 * in the numalink fabric.
104 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
106 #define UV_MAX_NUMALINK_BLADES 16384
109 * Maximum number of C/Mbricks within a software SSI (hardware may support
112 #define UV_MAX_SSI_BLADES 256
115 * The largest possible NASID of a C or M brick (+ 2)
117 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
120 struct timer_list timer
;
121 unsigned long offset
;
123 unsigned long idle_on
;
124 unsigned long idle_off
;
126 unsigned char enabled
;
130 * The following defines attributes of the HUB chip. These attributes are
131 * frequently referenced and are kept in the per-cpu data areas of each cpu.
132 * They are kept together in a struct to minimize cache misses.
134 struct uv_hub_info_s
{
135 unsigned long global_mmr_base
;
136 unsigned long gpa_mask
;
137 unsigned int gnode_extra
;
138 unsigned long gnode_upper
;
139 unsigned long lowmem_remap_top
;
140 unsigned long lowmem_remap_base
;
141 unsigned short pnode
;
142 unsigned short pnode_mask
;
143 unsigned short coherency_domain_number
;
144 unsigned short numa_blade_id
;
145 unsigned char blade_processor_id
;
148 struct uv_scir_s scir
;
151 DECLARE_PER_CPU(struct uv_hub_info_s
, __uv_hub_info
);
152 #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
153 #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
156 * Local & Global MMR space macros.
157 * Note: macros are intended to be used ONLY by inline functions
158 * in this file - not by other kernel code.
159 * n - NASID (full 15-bit global nasid)
160 * g - GNODE (full 15-bit global nasid, right shifted 1)
161 * p - PNODE (local part of nsids, right shifted 1)
163 #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
164 #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
165 #define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
167 #define UV_LOCAL_MMR_BASE 0xf4000000UL
168 #define UV_GLOBAL_MMR32_BASE 0xf8000000UL
169 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
170 #define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
171 #define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
173 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
174 #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
176 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
178 #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
179 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
181 #define UV_APIC_PNODE_SHIFT 6
183 /* Local Bus from cpu's perspective */
184 #define LOCAL_BUS_BASE 0x1c00000
185 #define LOCAL_BUS_SIZE (4 * 1024 * 1024)
188 * System Controller Interface Reg
190 * Note there are NO leds on a UV system. This register is only
191 * used by the system controller to monitor system-wide operation.
192 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
193 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
196 * The window is located at top of ACPI MMR space
198 #define SCIR_WINDOW_COUNT 64
199 #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
203 #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
204 #define SCIR_CPU_ACTIVITY 0x02 /* not idle */
205 #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
207 /* Loop through all installed blades */
208 #define for_each_possible_blade(bid) \
209 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
212 * Macros for converting between kernel virtual addresses, socket local physical
213 * addresses, and UV global physical addresses.
214 * Note: use the standard __pa() & __va() macros for converting
215 * between socket virtual and socket physical addresses.
218 /* socket phys RAM --> UV global physical address */
219 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr
)
221 if (paddr
< uv_hub_info
->lowmem_remap_top
)
222 paddr
|= uv_hub_info
->lowmem_remap_base
;
223 return paddr
| uv_hub_info
->gnode_upper
;
227 /* socket virtual --> UV global physical address */
228 static inline unsigned long uv_gpa(void *v
)
230 return uv_soc_phys_ram_to_gpa(__pa(v
));
233 /* pnode, offset --> socket virtual */
234 static inline void *uv_pnode_offset_to_vaddr(int pnode
, unsigned long offset
)
236 return __va(((unsigned long)pnode
<< uv_hub_info
->m_val
) | offset
);
241 * Extract a PNODE from an APICID (full apicid, not processor subset)
243 static inline int uv_apicid_to_pnode(int apicid
)
245 return (apicid
>> UV_APIC_PNODE_SHIFT
);
249 * Access global MMRs using the low memory MMR32 space. This region supports
250 * faster MMR access but not all MMRs are accessible in this space.
252 static inline unsigned long *uv_global_mmr32_address(int pnode
,
253 unsigned long offset
)
255 return __va(UV_GLOBAL_MMR32_BASE
|
256 UV_GLOBAL_MMR32_PNODE_BITS(pnode
) | offset
);
259 static inline void uv_write_global_mmr32(int pnode
, unsigned long offset
,
262 writeq(val
, uv_global_mmr32_address(pnode
, offset
));
265 static inline unsigned long uv_read_global_mmr32(int pnode
,
266 unsigned long offset
)
268 return readq(uv_global_mmr32_address(pnode
, offset
));
272 * Access Global MMR space using the MMR space located at the top of physical
275 static inline unsigned long *uv_global_mmr64_address(int pnode
,
276 unsigned long offset
)
278 return __va(UV_GLOBAL_MMR64_BASE
|
279 UV_GLOBAL_MMR64_PNODE_BITS(pnode
) | offset
);
282 static inline void uv_write_global_mmr64(int pnode
, unsigned long offset
,
285 writeq(val
, uv_global_mmr64_address(pnode
, offset
));
288 static inline unsigned long uv_read_global_mmr64(int pnode
,
289 unsigned long offset
)
291 return readq(uv_global_mmr64_address(pnode
, offset
));
295 * Access hub local MMRs. Faster than using global space but only local MMRs
298 static inline unsigned long *uv_local_mmr_address(unsigned long offset
)
300 return __va(UV_LOCAL_MMR_BASE
| offset
);
303 static inline unsigned long uv_read_local_mmr(unsigned long offset
)
305 return readq(uv_local_mmr_address(offset
));
308 static inline void uv_write_local_mmr(unsigned long offset
, unsigned long val
)
310 writeq(val
, uv_local_mmr_address(offset
));
313 static inline unsigned char uv_read_local_mmr8(unsigned long offset
)
315 return readb(uv_local_mmr_address(offset
));
318 static inline void uv_write_local_mmr8(unsigned long offset
, unsigned char val
)
320 writeb(val
, uv_local_mmr_address(offset
));
324 * Structures and definitions for converting between cpu, node, pnode, and blade
327 struct uv_blade_info
{
328 unsigned short nr_possible_cpus
;
329 unsigned short nr_online_cpus
;
330 unsigned short pnode
;
333 extern struct uv_blade_info
*uv_blade_info
;
334 extern short *uv_node_to_blade
;
335 extern short *uv_cpu_to_blade
;
336 extern short uv_possible_blades
;
338 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
339 static inline int uv_blade_processor_id(void)
341 return uv_hub_info
->blade_processor_id
;
344 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
345 static inline int uv_numa_blade_id(void)
347 return uv_hub_info
->numa_blade_id
;
350 /* Convert a cpu number to the the UV blade number */
351 static inline int uv_cpu_to_blade_id(int cpu
)
353 return uv_cpu_to_blade
[cpu
];
356 /* Convert linux node number to the UV blade number */
357 static inline int uv_node_to_blade_id(int nid
)
359 return uv_node_to_blade
[nid
];
362 /* Convert a blade id to the PNODE of the blade */
363 static inline int uv_blade_to_pnode(int bid
)
365 return uv_blade_info
[bid
].pnode
;
368 /* Nid of memory node on blade. -1 if no blade-local memory */
369 static inline int uv_blade_to_memory_nid(int bid
)
371 return uv_blade_info
[bid
].memory_nid
;
374 /* Determine the number of possible cpus on a blade */
375 static inline int uv_blade_nr_possible_cpus(int bid
)
377 return uv_blade_info
[bid
].nr_possible_cpus
;
380 /* Determine the number of online cpus on a blade */
381 static inline int uv_blade_nr_online_cpus(int bid
)
383 return uv_blade_info
[bid
].nr_online_cpus
;
386 /* Convert a cpu id to the PNODE of the blade containing the cpu */
387 static inline int uv_cpu_to_pnode(int cpu
)
389 return uv_blade_info
[uv_cpu_to_blade_id(cpu
)].pnode
;
392 /* Convert a linux node number to the PNODE of the blade */
393 static inline int uv_node_to_pnode(int nid
)
395 return uv_blade_info
[uv_node_to_blade_id(nid
)].pnode
;
398 /* Maximum possible number of blades */
399 static inline int uv_num_possible_blades(void)
401 return uv_possible_blades
;
404 /* Update SCIR state */
405 static inline void uv_set_scir_bits(unsigned char value
)
407 if (uv_hub_info
->scir
.state
!= value
) {
408 uv_hub_info
->scir
.state
= value
;
409 uv_write_local_mmr8(uv_hub_info
->scir
.offset
, value
);
413 static inline void uv_set_cpu_scir_bits(int cpu
, unsigned char value
)
415 if (uv_cpu_hub_info(cpu
)->scir
.state
!= value
) {
416 uv_cpu_hub_info(cpu
)->scir
.state
= value
;
417 uv_write_local_mmr8(uv_cpu_hub_info(cpu
)->scir
.offset
, value
);
421 static inline void uv_hub_send_ipi(int pnode
, int apicid
, int vector
)
425 val
= (1UL << UVH_IPI_INT_SEND_SHFT
) |
426 ((apicid
) << UVH_IPI_INT_APIC_ID_SHFT
) |
427 (vector
<< UVH_IPI_INT_VECTOR_SHFT
);
428 uv_write_global_mmr64(pnode
, UVH_IPI_INT
, val
);
431 #endif /* CONFIG_X86_64 */
432 #endif /* _ASM_X86_UV_UV_HUB_H */