Full support for Ginger Console
[linux-ginger.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
blob7d5c3b0ea8dad3a69eaf24d9b99d7eb3a2bacfd2
1 /*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <trace/events/power.h>
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
43 #include <acpi/processor.h>
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
49 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
50 "acpi-cpufreq", msg)
52 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
53 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
54 MODULE_LICENSE("GPL");
56 enum {
57 UNDEFINED_CAPABLE = 0,
58 SYSTEM_INTEL_MSR_CAPABLE,
59 SYSTEM_IO_CAPABLE,
62 #define INTEL_MSR_RANGE (0xffff)
64 struct acpi_cpufreq_data {
65 struct acpi_processor_performance *acpi_data;
66 struct cpufreq_frequency_table *freq_table;
67 unsigned int resume;
68 unsigned int cpu_feature;
71 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
73 static DEFINE_PER_CPU(struct aperfmperf, old_perf);
75 /* acpi_perf_data is a pointer to percpu data. */
76 static struct acpi_processor_performance *acpi_perf_data;
78 static struct cpufreq_driver acpi_cpufreq_driver;
80 static unsigned int acpi_pstate_strict;
82 static int check_est_cpu(unsigned int cpuid)
84 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
86 return cpu_has(cpu, X86_FEATURE_EST);
89 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
91 struct acpi_processor_performance *perf;
92 int i;
94 perf = data->acpi_data;
96 for (i = 0; i < perf->state_count; i++) {
97 if (value == perf->states[i].status)
98 return data->freq_table[i].frequency;
100 return 0;
103 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
105 int i;
106 struct acpi_processor_performance *perf;
108 msr &= INTEL_MSR_RANGE;
109 perf = data->acpi_data;
111 for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
112 if (msr == perf->states[data->freq_table[i].index].status)
113 return data->freq_table[i].frequency;
115 return data->freq_table[0].frequency;
118 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
120 switch (data->cpu_feature) {
121 case SYSTEM_INTEL_MSR_CAPABLE:
122 return extract_msr(val, data);
123 case SYSTEM_IO_CAPABLE:
124 return extract_io(val, data);
125 default:
126 return 0;
130 struct msr_addr {
131 u32 reg;
134 struct io_addr {
135 u16 port;
136 u8 bit_width;
139 struct drv_cmd {
140 unsigned int type;
141 const struct cpumask *mask;
142 union {
143 struct msr_addr msr;
144 struct io_addr io;
145 } addr;
146 u32 val;
149 /* Called via smp_call_function_single(), on the target CPU */
150 static void do_drv_read(void *_cmd)
152 struct drv_cmd *cmd = _cmd;
153 u32 h;
155 switch (cmd->type) {
156 case SYSTEM_INTEL_MSR_CAPABLE:
157 rdmsr(cmd->addr.msr.reg, cmd->val, h);
158 break;
159 case SYSTEM_IO_CAPABLE:
160 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
161 &cmd->val,
162 (u32)cmd->addr.io.bit_width);
163 break;
164 default:
165 break;
169 /* Called via smp_call_function_many(), on the target CPUs */
170 static void do_drv_write(void *_cmd)
172 struct drv_cmd *cmd = _cmd;
173 u32 lo, hi;
175 switch (cmd->type) {
176 case SYSTEM_INTEL_MSR_CAPABLE:
177 rdmsr(cmd->addr.msr.reg, lo, hi);
178 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
179 wrmsr(cmd->addr.msr.reg, lo, hi);
180 break;
181 case SYSTEM_IO_CAPABLE:
182 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
183 cmd->val,
184 (u32)cmd->addr.io.bit_width);
185 break;
186 default:
187 break;
191 static void drv_read(struct drv_cmd *cmd)
193 cmd->val = 0;
195 smp_call_function_single(cpumask_any(cmd->mask), do_drv_read, cmd, 1);
198 static void drv_write(struct drv_cmd *cmd)
200 int this_cpu;
202 this_cpu = get_cpu();
203 if (cpumask_test_cpu(this_cpu, cmd->mask))
204 do_drv_write(cmd);
205 smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
206 put_cpu();
209 static u32 get_cur_val(const struct cpumask *mask)
211 struct acpi_processor_performance *perf;
212 struct drv_cmd cmd;
214 if (unlikely(cpumask_empty(mask)))
215 return 0;
217 switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
218 case SYSTEM_INTEL_MSR_CAPABLE:
219 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
220 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
221 break;
222 case SYSTEM_IO_CAPABLE:
223 cmd.type = SYSTEM_IO_CAPABLE;
224 perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
225 cmd.addr.io.port = perf->control_register.address;
226 cmd.addr.io.bit_width = perf->control_register.bit_width;
227 break;
228 default:
229 return 0;
232 cmd.mask = mask;
233 drv_read(&cmd);
235 dprintk("get_cur_val = %u\n", cmd.val);
237 return cmd.val;
240 /* Called via smp_call_function_single(), on the target CPU */
241 static void read_measured_perf_ctrs(void *_cur)
243 struct aperfmperf *am = _cur;
245 get_aperfmperf(am);
249 * Return the measured active (C0) frequency on this CPU since last call
250 * to this function.
251 * Input: cpu number
252 * Return: Average CPU frequency in terms of max frequency (zero on error)
254 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
255 * over a period of time, while CPU is in C0 state.
256 * IA32_MPERF counts at the rate of max advertised frequency
257 * IA32_APERF counts at the rate of actual CPU frequency
258 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
259 * no meaning should be associated with absolute values of these MSRs.
261 static unsigned int get_measured_perf(struct cpufreq_policy *policy,
262 unsigned int cpu)
264 struct aperfmperf perf;
265 unsigned long ratio;
266 unsigned int retval;
268 if (smp_call_function_single(cpu, read_measured_perf_ctrs, &perf, 1))
269 return 0;
271 ratio = calc_aperfmperf_ratio(&per_cpu(old_perf, cpu), &perf);
272 per_cpu(old_perf, cpu) = perf;
274 retval = (policy->cpuinfo.max_freq * ratio) >> APERFMPERF_SHIFT;
276 return retval;
279 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
281 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
282 unsigned int freq;
283 unsigned int cached_freq;
285 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
287 if (unlikely(data == NULL ||
288 data->acpi_data == NULL || data->freq_table == NULL)) {
289 return 0;
292 cached_freq = data->freq_table[data->acpi_data->state].frequency;
293 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
294 if (freq != cached_freq) {
296 * The dreaded BIOS frequency change behind our back.
297 * Force set the frequency on next target call.
299 data->resume = 1;
302 dprintk("cur freq = %u\n", freq);
304 return freq;
307 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
308 struct acpi_cpufreq_data *data)
310 unsigned int cur_freq;
311 unsigned int i;
313 for (i = 0; i < 100; i++) {
314 cur_freq = extract_freq(get_cur_val(mask), data);
315 if (cur_freq == freq)
316 return 1;
317 udelay(10);
319 return 0;
322 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
323 unsigned int target_freq, unsigned int relation)
325 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
326 struct acpi_processor_performance *perf;
327 struct cpufreq_freqs freqs;
328 struct drv_cmd cmd;
329 unsigned int next_state = 0; /* Index into freq_table */
330 unsigned int next_perf_state = 0; /* Index into perf table */
331 unsigned int i;
332 int result = 0;
334 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
336 if (unlikely(data == NULL ||
337 data->acpi_data == NULL || data->freq_table == NULL)) {
338 return -ENODEV;
341 perf = data->acpi_data;
342 result = cpufreq_frequency_table_target(policy,
343 data->freq_table,
344 target_freq,
345 relation, &next_state);
346 if (unlikely(result)) {
347 result = -ENODEV;
348 goto out;
351 next_perf_state = data->freq_table[next_state].index;
352 if (perf->state == next_perf_state) {
353 if (unlikely(data->resume)) {
354 dprintk("Called after resume, resetting to P%d\n",
355 next_perf_state);
356 data->resume = 0;
357 } else {
358 dprintk("Already at target state (P%d)\n",
359 next_perf_state);
360 goto out;
364 trace_power_frequency(POWER_PSTATE, data->freq_table[next_state].frequency);
366 switch (data->cpu_feature) {
367 case SYSTEM_INTEL_MSR_CAPABLE:
368 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
369 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
370 cmd.val = (u32) perf->states[next_perf_state].control;
371 break;
372 case SYSTEM_IO_CAPABLE:
373 cmd.type = SYSTEM_IO_CAPABLE;
374 cmd.addr.io.port = perf->control_register.address;
375 cmd.addr.io.bit_width = perf->control_register.bit_width;
376 cmd.val = (u32) perf->states[next_perf_state].control;
377 break;
378 default:
379 result = -ENODEV;
380 goto out;
383 /* cpufreq holds the hotplug lock, so we are safe from here on */
384 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
385 cmd.mask = policy->cpus;
386 else
387 cmd.mask = cpumask_of(policy->cpu);
389 freqs.old = perf->states[perf->state].core_frequency * 1000;
390 freqs.new = data->freq_table[next_state].frequency;
391 for_each_cpu(i, cmd.mask) {
392 freqs.cpu = i;
393 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
396 drv_write(&cmd);
398 if (acpi_pstate_strict) {
399 if (!check_freqs(cmd.mask, freqs.new, data)) {
400 dprintk("acpi_cpufreq_target failed (%d)\n",
401 policy->cpu);
402 result = -EAGAIN;
403 goto out;
407 for_each_cpu(i, cmd.mask) {
408 freqs.cpu = i;
409 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
411 perf->state = next_perf_state;
413 out:
414 return result;
417 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
419 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
421 dprintk("acpi_cpufreq_verify\n");
423 return cpufreq_frequency_table_verify(policy, data->freq_table);
426 static unsigned long
427 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
429 struct acpi_processor_performance *perf = data->acpi_data;
431 if (cpu_khz) {
432 /* search the closest match to cpu_khz */
433 unsigned int i;
434 unsigned long freq;
435 unsigned long freqn = perf->states[0].core_frequency * 1000;
437 for (i = 0; i < (perf->state_count-1); i++) {
438 freq = freqn;
439 freqn = perf->states[i+1].core_frequency * 1000;
440 if ((2 * cpu_khz) > (freqn + freq)) {
441 perf->state = i;
442 return freq;
445 perf->state = perf->state_count-1;
446 return freqn;
447 } else {
448 /* assume CPU is at P0... */
449 perf->state = 0;
450 return perf->states[0].core_frequency * 1000;
454 static void free_acpi_perf_data(void)
456 unsigned int i;
458 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
459 for_each_possible_cpu(i)
460 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
461 ->shared_cpu_map);
462 free_percpu(acpi_perf_data);
466 * acpi_cpufreq_early_init - initialize ACPI P-States library
468 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
469 * in order to determine correct frequency and voltage pairings. We can
470 * do _PDC and _PSD and find out the processor dependency for the
471 * actual init that will happen later...
473 static int __init acpi_cpufreq_early_init(void)
475 unsigned int i;
476 dprintk("acpi_cpufreq_early_init\n");
478 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
479 if (!acpi_perf_data) {
480 dprintk("Memory allocation error for acpi_perf_data.\n");
481 return -ENOMEM;
483 for_each_possible_cpu(i) {
484 if (!zalloc_cpumask_var_node(
485 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
486 GFP_KERNEL, cpu_to_node(i))) {
488 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
489 free_acpi_perf_data();
490 return -ENOMEM;
494 /* Do initialization in ACPI core */
495 acpi_processor_preregister_performance(acpi_perf_data);
496 return 0;
499 #ifdef CONFIG_SMP
501 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
502 * or do it in BIOS firmware and won't inform about it to OS. If not
503 * detected, this has a side effect of making CPU run at a different speed
504 * than OS intended it to run at. Detect it and handle it cleanly.
506 static int bios_with_sw_any_bug;
508 static int sw_any_bug_found(const struct dmi_system_id *d)
510 bios_with_sw_any_bug = 1;
511 return 0;
514 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
516 .callback = sw_any_bug_found,
517 .ident = "Supermicro Server X6DLP",
518 .matches = {
519 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
520 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
521 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
527 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
529 /* http://www.intel.com/Assets/PDF/specupdate/314554.pdf
530 * AL30: A Machine Check Exception (MCE) Occurring during an
531 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
532 * Both Processor Cores to Lock Up when HT is enabled*/
533 if (c->x86_vendor == X86_VENDOR_INTEL) {
534 if ((c->x86 == 15) &&
535 (c->x86_model == 6) &&
536 (c->x86_mask == 8) && smt_capable())
537 return -ENODEV;
539 return 0;
541 #endif
543 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
545 unsigned int i;
546 unsigned int valid_states = 0;
547 unsigned int cpu = policy->cpu;
548 struct acpi_cpufreq_data *data;
549 unsigned int result = 0;
550 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
551 struct acpi_processor_performance *perf;
553 dprintk("acpi_cpufreq_cpu_init\n");
555 #ifdef CONFIG_SMP
556 result = acpi_cpufreq_blacklist(c);
557 if (result)
558 return result;
559 #endif
561 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
562 if (!data)
563 return -ENOMEM;
565 data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
566 per_cpu(drv_data, cpu) = data;
568 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
569 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
571 result = acpi_processor_register_performance(data->acpi_data, cpu);
572 if (result)
573 goto err_free;
575 perf = data->acpi_data;
576 policy->shared_type = perf->shared_type;
579 * Will let policy->cpus know about dependency only when software
580 * coordination is required.
582 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
583 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
584 cpumask_copy(policy->cpus, perf->shared_cpu_map);
586 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
588 #ifdef CONFIG_SMP
589 dmi_check_system(sw_any_bug_dmi_table);
590 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
591 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
592 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
594 #endif
596 /* capability check */
597 if (perf->state_count <= 1) {
598 dprintk("No P-States\n");
599 result = -ENODEV;
600 goto err_unreg;
603 if (perf->control_register.space_id != perf->status_register.space_id) {
604 result = -ENODEV;
605 goto err_unreg;
608 switch (perf->control_register.space_id) {
609 case ACPI_ADR_SPACE_SYSTEM_IO:
610 dprintk("SYSTEM IO addr space\n");
611 data->cpu_feature = SYSTEM_IO_CAPABLE;
612 break;
613 case ACPI_ADR_SPACE_FIXED_HARDWARE:
614 dprintk("HARDWARE addr space\n");
615 if (!check_est_cpu(cpu)) {
616 result = -ENODEV;
617 goto err_unreg;
619 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
620 break;
621 default:
622 dprintk("Unknown addr space %d\n",
623 (u32) (perf->control_register.space_id));
624 result = -ENODEV;
625 goto err_unreg;
628 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
629 (perf->state_count+1), GFP_KERNEL);
630 if (!data->freq_table) {
631 result = -ENOMEM;
632 goto err_unreg;
635 /* detect transition latency */
636 policy->cpuinfo.transition_latency = 0;
637 for (i = 0; i < perf->state_count; i++) {
638 if ((perf->states[i].transition_latency * 1000) >
639 policy->cpuinfo.transition_latency)
640 policy->cpuinfo.transition_latency =
641 perf->states[i].transition_latency * 1000;
644 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
645 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
646 policy->cpuinfo.transition_latency > 20 * 1000) {
647 policy->cpuinfo.transition_latency = 20 * 1000;
648 printk_once(KERN_INFO
649 "P-state transition latency capped at 20 uS\n");
652 /* table init */
653 for (i = 0; i < perf->state_count; i++) {
654 if (i > 0 && perf->states[i].core_frequency >=
655 data->freq_table[valid_states-1].frequency / 1000)
656 continue;
658 data->freq_table[valid_states].index = i;
659 data->freq_table[valid_states].frequency =
660 perf->states[i].core_frequency * 1000;
661 valid_states++;
663 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
664 perf->state = 0;
666 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
667 if (result)
668 goto err_freqfree;
670 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
671 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
673 switch (perf->control_register.space_id) {
674 case ACPI_ADR_SPACE_SYSTEM_IO:
675 /* Current speed is unknown and not detectable by IO port */
676 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
677 break;
678 case ACPI_ADR_SPACE_FIXED_HARDWARE:
679 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
680 policy->cur = get_cur_freq_on_cpu(cpu);
681 break;
682 default:
683 break;
686 /* notify BIOS that we exist */
687 acpi_processor_notify_smm(THIS_MODULE);
689 /* Check for APERF/MPERF support in hardware */
690 if (cpu_has(c, X86_FEATURE_APERFMPERF))
691 acpi_cpufreq_driver.getavg = get_measured_perf;
693 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
694 for (i = 0; i < perf->state_count; i++)
695 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
696 (i == perf->state ? '*' : ' '), i,
697 (u32) perf->states[i].core_frequency,
698 (u32) perf->states[i].power,
699 (u32) perf->states[i].transition_latency);
701 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
704 * the first call to ->target() should result in us actually
705 * writing something to the appropriate registers.
707 data->resume = 1;
709 return result;
711 err_freqfree:
712 kfree(data->freq_table);
713 err_unreg:
714 acpi_processor_unregister_performance(perf, cpu);
715 err_free:
716 kfree(data);
717 per_cpu(drv_data, cpu) = NULL;
719 return result;
722 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
724 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
726 dprintk("acpi_cpufreq_cpu_exit\n");
728 if (data) {
729 cpufreq_frequency_table_put_attr(policy->cpu);
730 per_cpu(drv_data, policy->cpu) = NULL;
731 acpi_processor_unregister_performance(data->acpi_data,
732 policy->cpu);
733 kfree(data);
736 return 0;
739 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
741 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
743 dprintk("acpi_cpufreq_resume\n");
745 data->resume = 1;
747 return 0;
750 static struct freq_attr *acpi_cpufreq_attr[] = {
751 &cpufreq_freq_attr_scaling_available_freqs,
752 NULL,
755 static struct cpufreq_driver acpi_cpufreq_driver = {
756 .verify = acpi_cpufreq_verify,
757 .target = acpi_cpufreq_target,
758 .init = acpi_cpufreq_cpu_init,
759 .exit = acpi_cpufreq_cpu_exit,
760 .resume = acpi_cpufreq_resume,
761 .name = "acpi-cpufreq",
762 .owner = THIS_MODULE,
763 .attr = acpi_cpufreq_attr,
766 static int __init acpi_cpufreq_init(void)
768 int ret;
770 if (acpi_disabled)
771 return 0;
773 dprintk("acpi_cpufreq_init\n");
775 ret = acpi_cpufreq_early_init();
776 if (ret)
777 return ret;
779 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
780 if (ret)
781 free_acpi_perf_data();
783 return ret;
786 static void __exit acpi_cpufreq_exit(void)
788 dprintk("acpi_cpufreq_exit\n");
790 cpufreq_unregister_driver(&acpi_cpufreq_driver);
792 free_percpu(acpi_perf_data);
795 module_param(acpi_pstate_strict, uint, 0644);
796 MODULE_PARM_DESC(acpi_pstate_strict,
797 "value 0 or non-zero. non-zero -> strict ACPI checks are "
798 "performed during frequency changes.");
800 late_initcall(acpi_cpufreq_init);
801 module_exit(acpi_cpufreq_exit);
803 MODULE_ALIAS("acpi");