3 * (c) 2003-2006 Advanced Micro Devices, Inc.
4 * Your use of this code is subject to the terms and conditions of the
5 * GNU general public license version 2. See "COPYING" or
6 * http://www.gnu.org/licenses/gpl.html
8 * Support : mark.langsdorf@amd.com
10 * Based on the powernow-k7.c module written by Dave Jones.
11 * (C) 2003 Dave Jones on behalf of SuSE Labs
12 * (C) 2004 Dominik Brodowski <linux@brodo.de>
13 * (C) 2004 Pavel Machek <pavel@suse.cz>
14 * Licensed under the terms of the GNU GPL License version 2.
15 * Based upon datasheets & sample CPUs kindly provided by AMD.
17 * Valuable input gratefully received from Dave Jones, Pavel Machek,
18 * Dominik Brodowski, Jacob Shin, and others.
19 * Originally developed by Paul Devriendt.
20 * Processor information obtained from Chapter 9 (Power and Thermal Management)
21 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
22 * Opteron Processors" available for download from www.amd.com
24 * Tables for specific CPUs can be inferred from
25 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
28 #include <linux/kernel.h>
29 #include <linux/smp.h>
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/cpufreq.h>
33 #include <linux/slab.h>
34 #include <linux/string.h>
35 #include <linux/cpumask.h>
36 #include <linux/sched.h> /* for current / set_cpus_allowed() */
38 #include <linux/delay.h>
42 #include <linux/acpi.h>
43 #include <linux/mutex.h>
44 #include <acpi/processor.h>
46 #define PFX "powernow-k8: "
47 #define VERSION "version 2.20.00"
48 #include "powernow-k8.h"
50 /* serialize freq changes */
51 static DEFINE_MUTEX(fidvid_mutex
);
53 static DEFINE_PER_CPU(struct powernow_k8_data
*, powernow_data
);
55 static int cpu_family
= CPU_OPTERON
;
58 static inline const struct cpumask
*cpu_core_mask(int cpu
)
64 /* Return a frequency in MHz, given an input fid */
65 static u32
find_freq_from_fid(u32 fid
)
67 return 800 + (fid
* 100);
70 /* Return a frequency in KHz, given an input fid */
71 static u32
find_khz_freq_from_fid(u32 fid
)
73 return 1000 * find_freq_from_fid(fid
);
76 static u32
find_khz_freq_from_pstate(struct cpufreq_frequency_table
*data
,
79 return data
[pstate
].frequency
;
82 /* Return the vco fid for an input fid
84 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
85 * only from corresponding high fids. This returns "high" fid corresponding to
88 static u32
convert_fid_to_vco_fid(u32 fid
)
90 if (fid
< HI_FID_TABLE_BOTTOM
)
97 * Return 1 if the pending bit is set. Unless we just instructed the processor
98 * to transition to a new state, seeing this bit set is really bad news.
100 static int pending_bit_stuck(void)
104 if (cpu_family
== CPU_HW_PSTATE
)
107 rdmsr(MSR_FIDVID_STATUS
, lo
, hi
);
108 return lo
& MSR_S_LO_CHANGE_PENDING
? 1 : 0;
112 * Update the global current fid / vid values from the status msr.
113 * Returns 1 on error.
115 static int query_current_values_with_pending_wait(struct powernow_k8_data
*data
)
120 if (cpu_family
== CPU_HW_PSTATE
) {
121 rdmsr(MSR_PSTATE_STATUS
, lo
, hi
);
122 i
= lo
& HW_PSTATE_MASK
;
123 data
->currpstate
= i
;
126 * a workaround for family 11h erratum 311 might cause
127 * an "out-of-range Pstate if the core is in Pstate-0
129 if ((boot_cpu_data
.x86
== 0x11) && (i
>= data
->numps
))
130 data
->currpstate
= HW_PSTATE_0
;
136 dprintk("detected change pending stuck\n");
139 rdmsr(MSR_FIDVID_STATUS
, lo
, hi
);
140 } while (lo
& MSR_S_LO_CHANGE_PENDING
);
142 data
->currvid
= hi
& MSR_S_HI_CURRENT_VID
;
143 data
->currfid
= lo
& MSR_S_LO_CURRENT_FID
;
148 /* the isochronous relief time */
149 static void count_off_irt(struct powernow_k8_data
*data
)
151 udelay((1 << data
->irt
) * 10);
155 /* the voltage stabilization time */
156 static void count_off_vst(struct powernow_k8_data
*data
)
158 udelay(data
->vstable
* VST_UNITS_20US
);
162 /* need to init the control msr to a safe value (for each cpu) */
163 static void fidvid_msr_init(void)
168 rdmsr(MSR_FIDVID_STATUS
, lo
, hi
);
169 vid
= hi
& MSR_S_HI_CURRENT_VID
;
170 fid
= lo
& MSR_S_LO_CURRENT_FID
;
171 lo
= fid
| (vid
<< MSR_C_LO_VID_SHIFT
);
172 hi
= MSR_C_HI_STP_GNT_BENIGN
;
173 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo
, hi
);
174 wrmsr(MSR_FIDVID_CTL
, lo
, hi
);
177 /* write the new fid value along with the other control fields to the msr */
178 static int write_new_fid(struct powernow_k8_data
*data
, u32 fid
)
181 u32 savevid
= data
->currvid
;
184 if ((fid
& INVALID_FID_MASK
) || (data
->currvid
& INVALID_VID_MASK
)) {
185 printk(KERN_ERR PFX
"internal error - overflow on fid write\n");
190 lo
|= (data
->currvid
<< MSR_C_LO_VID_SHIFT
);
191 lo
|= MSR_C_LO_INIT_FID_VID
;
193 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
194 fid
, lo
, data
->plllock
* PLL_LOCK_CONVERSION
);
197 wrmsr(MSR_FIDVID_CTL
, lo
, data
->plllock
* PLL_LOCK_CONVERSION
);
200 "Hardware error - pending bit very stuck - "
201 "no further pstate changes possible\n");
204 } while (query_current_values_with_pending_wait(data
));
208 if (savevid
!= data
->currvid
) {
210 "vid change on fid trans, old 0x%x, new 0x%x\n",
211 savevid
, data
->currvid
);
215 if (fid
!= data
->currfid
) {
217 "fid trans failed, fid 0x%x, curr 0x%x\n", fid
,
225 /* Write a new vid to the hardware */
226 static int write_new_vid(struct powernow_k8_data
*data
, u32 vid
)
229 u32 savefid
= data
->currfid
;
232 if ((data
->currfid
& INVALID_FID_MASK
) || (vid
& INVALID_VID_MASK
)) {
233 printk(KERN_ERR PFX
"internal error - overflow on vid write\n");
238 lo
|= (vid
<< MSR_C_LO_VID_SHIFT
);
239 lo
|= MSR_C_LO_INIT_FID_VID
;
241 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
242 vid
, lo
, STOP_GRANT_5NS
);
245 wrmsr(MSR_FIDVID_CTL
, lo
, STOP_GRANT_5NS
);
247 printk(KERN_ERR PFX
"internal error - pending bit "
248 "very stuck - no further pstate "
249 "changes possible\n");
252 } while (query_current_values_with_pending_wait(data
));
254 if (savefid
!= data
->currfid
) {
255 printk(KERN_ERR PFX
"fid changed on vid trans, old "
257 savefid
, data
->currfid
);
261 if (vid
!= data
->currvid
) {
262 printk(KERN_ERR PFX
"vid trans failed, vid 0x%x, "
272 * Reduce the vid by the max of step or reqvid.
273 * Decreasing vid codes represent increasing voltages:
274 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
276 static int decrease_vid_code_by_step(struct powernow_k8_data
*data
,
277 u32 reqvid
, u32 step
)
279 if ((data
->currvid
- reqvid
) > step
)
280 reqvid
= data
->currvid
- step
;
282 if (write_new_vid(data
, reqvid
))
290 /* Change hardware pstate by single MSR write */
291 static int transition_pstate(struct powernow_k8_data
*data
, u32 pstate
)
293 wrmsr(MSR_PSTATE_CTRL
, pstate
, 0);
294 data
->currpstate
= pstate
;
298 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
299 static int transition_fid_vid(struct powernow_k8_data
*data
,
300 u32 reqfid
, u32 reqvid
)
302 if (core_voltage_pre_transition(data
, reqvid
, reqfid
))
305 if (core_frequency_transition(data
, reqfid
))
308 if (core_voltage_post_transition(data
, reqvid
))
311 if (query_current_values_with_pending_wait(data
))
314 if ((reqfid
!= data
->currfid
) || (reqvid
!= data
->currvid
)) {
315 printk(KERN_ERR PFX
"failed (cpu%d): req 0x%x 0x%x, "
318 reqfid
, reqvid
, data
->currfid
, data
->currvid
);
322 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
323 smp_processor_id(), data
->currfid
, data
->currvid
);
328 /* Phase 1 - core voltage transition ... setup voltage */
329 static int core_voltage_pre_transition(struct powernow_k8_data
*data
,
330 u32 reqvid
, u32 reqfid
)
332 u32 rvosteps
= data
->rvo
;
333 u32 savefid
= data
->currfid
;
334 u32 maxvid
, lo
, rvomult
= 1;
336 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
337 "reqvid 0x%x, rvo 0x%x\n",
339 data
->currfid
, data
->currvid
, reqvid
, data
->rvo
);
341 if ((savefid
< LO_FID_TABLE_TOP
) && (reqfid
< LO_FID_TABLE_TOP
))
344 rdmsr(MSR_FIDVID_STATUS
, lo
, maxvid
);
345 maxvid
= 0x1f & (maxvid
>> 16);
346 dprintk("ph1 maxvid=0x%x\n", maxvid
);
347 if (reqvid
< maxvid
) /* lower numbers are higher voltages */
350 while (data
->currvid
> reqvid
) {
351 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
352 data
->currvid
, reqvid
);
353 if (decrease_vid_code_by_step(data
, reqvid
, data
->vidmvs
))
357 while ((rvosteps
> 0) &&
358 ((rvomult
* data
->rvo
+ data
->currvid
) > reqvid
)) {
359 if (data
->currvid
== maxvid
) {
362 dprintk("ph1: changing vid for rvo, req 0x%x\n",
364 if (decrease_vid_code_by_step(data
, data
->currvid
-1, 1))
370 if (query_current_values_with_pending_wait(data
))
373 if (savefid
!= data
->currfid
) {
374 printk(KERN_ERR PFX
"ph1 err, currfid changed 0x%x\n",
379 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
380 data
->currfid
, data
->currvid
);
385 /* Phase 2 - core frequency transition */
386 static int core_frequency_transition(struct powernow_k8_data
*data
, u32 reqfid
)
388 u32 vcoreqfid
, vcocurrfid
, vcofiddiff
;
389 u32 fid_interval
, savevid
= data
->currvid
;
391 if (data
->currfid
== reqfid
) {
392 printk(KERN_ERR PFX
"ph2 null fid transition 0x%x\n",
397 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
400 data
->currfid
, data
->currvid
, reqfid
);
402 vcoreqfid
= convert_fid_to_vco_fid(reqfid
);
403 vcocurrfid
= convert_fid_to_vco_fid(data
->currfid
);
404 vcofiddiff
= vcocurrfid
> vcoreqfid
? vcocurrfid
- vcoreqfid
405 : vcoreqfid
- vcocurrfid
;
407 if ((reqfid
<= LO_FID_TABLE_TOP
) && (data
->currfid
<= LO_FID_TABLE_TOP
))
410 while (vcofiddiff
> 2) {
411 (data
->currfid
& 1) ? (fid_interval
= 1) : (fid_interval
= 2);
413 if (reqfid
> data
->currfid
) {
414 if (data
->currfid
> LO_FID_TABLE_TOP
) {
415 if (write_new_fid(data
,
416 data
->currfid
+ fid_interval
))
421 2 + convert_fid_to_vco_fid(data
->currfid
)))
425 if (write_new_fid(data
, data
->currfid
- fid_interval
))
429 vcocurrfid
= convert_fid_to_vco_fid(data
->currfid
);
430 vcofiddiff
= vcocurrfid
> vcoreqfid
? vcocurrfid
- vcoreqfid
431 : vcoreqfid
- vcocurrfid
;
434 if (write_new_fid(data
, reqfid
))
437 if (query_current_values_with_pending_wait(data
))
440 if (data
->currfid
!= reqfid
) {
442 "ph2: mismatch, failed fid transition, "
443 "curr 0x%x, req 0x%x\n",
444 data
->currfid
, reqfid
);
448 if (savevid
!= data
->currvid
) {
449 printk(KERN_ERR PFX
"ph2: vid changed, save 0x%x, curr 0x%x\n",
450 savevid
, data
->currvid
);
454 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
455 data
->currfid
, data
->currvid
);
460 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
461 static int core_voltage_post_transition(struct powernow_k8_data
*data
,
464 u32 savefid
= data
->currfid
;
465 u32 savereqvid
= reqvid
;
467 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
469 data
->currfid
, data
->currvid
);
471 if (reqvid
!= data
->currvid
) {
472 if (write_new_vid(data
, reqvid
))
475 if (savefid
!= data
->currfid
) {
477 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
478 savefid
, data
->currfid
);
482 if (data
->currvid
!= reqvid
) {
484 "ph3: failed vid transition\n, "
485 "req 0x%x, curr 0x%x",
486 reqvid
, data
->currvid
);
491 if (query_current_values_with_pending_wait(data
))
494 if (savereqvid
!= data
->currvid
) {
495 dprintk("ph3 failed, currvid 0x%x\n", data
->currvid
);
499 if (savefid
!= data
->currfid
) {
500 dprintk("ph3 failed, currfid changed 0x%x\n",
505 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
506 data
->currfid
, data
->currvid
);
511 static void check_supported_cpu(void *_rc
)
513 u32 eax
, ebx
, ecx
, edx
;
518 if (current_cpu_data
.x86_vendor
!= X86_VENDOR_AMD
)
521 eax
= cpuid_eax(CPUID_PROCESSOR_SIGNATURE
);
522 if (((eax
& CPUID_XFAM
) != CPUID_XFAM_K8
) &&
523 ((eax
& CPUID_XFAM
) < CPUID_XFAM_10H
))
526 if ((eax
& CPUID_XFAM
) == CPUID_XFAM_K8
) {
527 if (((eax
& CPUID_USE_XFAM_XMOD
) != CPUID_USE_XFAM_XMOD
) ||
528 ((eax
& CPUID_XMOD
) > CPUID_XMOD_REV_MASK
)) {
530 "Processor cpuid %x not supported\n", eax
);
534 eax
= cpuid_eax(CPUID_GET_MAX_CAPABILITIES
);
535 if (eax
< CPUID_FREQ_VOLT_CAPABILITIES
) {
537 "No frequency change capabilities detected\n");
541 cpuid(CPUID_FREQ_VOLT_CAPABILITIES
, &eax
, &ebx
, &ecx
, &edx
);
542 if ((edx
& P_STATE_TRANSITION_CAPABLE
)
543 != P_STATE_TRANSITION_CAPABLE
) {
545 "Power state transitions not supported\n");
548 } else { /* must be a HW Pstate capable processor */
549 cpuid(CPUID_FREQ_VOLT_CAPABILITIES
, &eax
, &ebx
, &ecx
, &edx
);
550 if ((edx
& USE_HW_PSTATE
) == USE_HW_PSTATE
)
551 cpu_family
= CPU_HW_PSTATE
;
559 static int check_pst_table(struct powernow_k8_data
*data
, struct pst_s
*pst
,
565 for (j
= 0; j
< data
->numps
; j
++) {
566 if (pst
[j
].vid
> LEAST_VID
) {
567 printk(KERN_ERR FW_BUG PFX
"vid %d invalid : 0x%x\n",
571 if (pst
[j
].vid
< data
->rvo
) {
573 printk(KERN_ERR FW_BUG PFX
"0 vid exceeded with pstate"
577 if (pst
[j
].vid
< maxvid
+ data
->rvo
) {
578 /* vid + rvo >= maxvid */
579 printk(KERN_ERR FW_BUG PFX
"maxvid exceeded with pstate"
583 if (pst
[j
].fid
> MAX_FID
) {
584 printk(KERN_ERR FW_BUG PFX
"maxfid exceeded with pstate"
588 if (j
&& (pst
[j
].fid
< HI_FID_TABLE_BOTTOM
)) {
589 /* Only first fid is allowed to be in "low" range */
590 printk(KERN_ERR FW_BUG PFX
"two low fids - %d : "
591 "0x%x\n", j
, pst
[j
].fid
);
594 if (pst
[j
].fid
< lastfid
)
595 lastfid
= pst
[j
].fid
;
598 printk(KERN_ERR FW_BUG PFX
"lastfid invalid\n");
601 if (lastfid
> LO_FID_TABLE_TOP
)
602 printk(KERN_INFO FW_BUG PFX
603 "first fid not from lo freq table\n");
608 static void invalidate_entry(struct cpufreq_frequency_table
*powernow_table
,
611 powernow_table
[entry
].frequency
= CPUFREQ_ENTRY_INVALID
;
614 static void print_basics(struct powernow_k8_data
*data
)
617 for (j
= 0; j
< data
->numps
; j
++) {
618 if (data
->powernow_table
[j
].frequency
!=
619 CPUFREQ_ENTRY_INVALID
) {
620 if (cpu_family
== CPU_HW_PSTATE
) {
622 " %d : pstate %d (%d MHz)\n", j
,
623 data
->powernow_table
[j
].index
,
624 data
->powernow_table
[j
].frequency
/1000);
627 " %d : fid 0x%x (%d MHz), vid 0x%x\n",
629 data
->powernow_table
[j
].index
& 0xff,
630 data
->powernow_table
[j
].frequency
/1000,
631 data
->powernow_table
[j
].index
>> 8);
636 printk(KERN_INFO PFX
"Only %d pstates on battery\n",
640 static u32
freq_from_fid_did(u32 fid
, u32 did
)
644 if (boot_cpu_data
.x86
== 0x10)
645 mhz
= (100 * (fid
+ 0x10)) >> did
;
646 else if (boot_cpu_data
.x86
== 0x11)
647 mhz
= (100 * (fid
+ 8)) >> did
;
654 static int fill_powernow_table(struct powernow_k8_data
*data
,
655 struct pst_s
*pst
, u8 maxvid
)
657 struct cpufreq_frequency_table
*powernow_table
;
661 /* use ACPI support to get full speed on mains power */
662 printk(KERN_WARNING PFX
663 "Only %d pstates usable (use ACPI driver for full "
664 "range\n", data
->batps
);
665 data
->numps
= data
->batps
;
668 for (j
= 1; j
< data
->numps
; j
++) {
669 if (pst
[j
-1].fid
>= pst
[j
].fid
) {
670 printk(KERN_ERR PFX
"PST out of sequence\n");
675 if (data
->numps
< 2) {
676 printk(KERN_ERR PFX
"no p states to transition\n");
680 if (check_pst_table(data
, pst
, maxvid
))
683 powernow_table
= kmalloc((sizeof(struct cpufreq_frequency_table
)
684 * (data
->numps
+ 1)), GFP_KERNEL
);
685 if (!powernow_table
) {
686 printk(KERN_ERR PFX
"powernow_table memory alloc failure\n");
690 for (j
= 0; j
< data
->numps
; j
++) {
692 powernow_table
[j
].index
= pst
[j
].fid
; /* lower 8 bits */
693 powernow_table
[j
].index
|= (pst
[j
].vid
<< 8); /* upper 8 bits */
694 freq
= find_khz_freq_from_fid(pst
[j
].fid
);
695 powernow_table
[j
].frequency
= freq
;
697 powernow_table
[data
->numps
].frequency
= CPUFREQ_TABLE_END
;
698 powernow_table
[data
->numps
].index
= 0;
700 if (query_current_values_with_pending_wait(data
)) {
701 kfree(powernow_table
);
705 dprintk("cfid 0x%x, cvid 0x%x\n", data
->currfid
, data
->currvid
);
706 data
->powernow_table
= powernow_table
;
707 if (cpumask_first(cpu_core_mask(data
->cpu
)) == data
->cpu
)
710 for (j
= 0; j
< data
->numps
; j
++)
711 if ((pst
[j
].fid
== data
->currfid
) &&
712 (pst
[j
].vid
== data
->currvid
))
715 dprintk("currfid/vid do not match PST, ignoring\n");
719 /* Find and validate the PSB/PST table in BIOS. */
720 static int find_psb_table(struct powernow_k8_data
*data
)
729 for (i
= 0xc0000; i
< 0xffff0; i
+= 0x10) {
730 /* Scan BIOS looking for the signature. */
731 /* It can not be at ffff0 - it is too big. */
733 psb
= phys_to_virt(i
);
734 if (memcmp(psb
, PSB_ID_STRING
, PSB_ID_STRING_LEN
) != 0)
737 dprintk("found PSB header at 0x%p\n", psb
);
739 dprintk("table vers: 0x%x\n", psb
->tableversion
);
740 if (psb
->tableversion
!= PSB_VERSION_1_4
) {
741 printk(KERN_ERR FW_BUG PFX
"PSB table is not v1.4\n");
745 dprintk("flags: 0x%x\n", psb
->flags1
);
747 printk(KERN_ERR FW_BUG PFX
"unknown flags\n");
751 data
->vstable
= psb
->vstable
;
752 dprintk("voltage stabilization time: %d(*20us)\n",
755 dprintk("flags2: 0x%x\n", psb
->flags2
);
756 data
->rvo
= psb
->flags2
& 3;
757 data
->irt
= ((psb
->flags2
) >> 2) & 3;
758 mvs
= ((psb
->flags2
) >> 4) & 3;
759 data
->vidmvs
= 1 << mvs
;
760 data
->batps
= ((psb
->flags2
) >> 6) & 3;
762 dprintk("ramp voltage offset: %d\n", data
->rvo
);
763 dprintk("isochronous relief time: %d\n", data
->irt
);
764 dprintk("maximum voltage step: %d - 0x%x\n", mvs
, data
->vidmvs
);
766 dprintk("numpst: 0x%x\n", psb
->num_tables
);
767 cpst
= psb
->num_tables
;
768 if ((psb
->cpuid
== 0x00000fc0) ||
769 (psb
->cpuid
== 0x00000fe0)) {
770 thiscpuid
= cpuid_eax(CPUID_PROCESSOR_SIGNATURE
);
771 if ((thiscpuid
== 0x00000fc0) ||
772 (thiscpuid
== 0x00000fe0))
776 printk(KERN_ERR FW_BUG PFX
"numpst must be 1\n");
780 data
->plllock
= psb
->plllocktime
;
781 dprintk("plllocktime: 0x%x (units 1us)\n", psb
->plllocktime
);
782 dprintk("maxfid: 0x%x\n", psb
->maxfid
);
783 dprintk("maxvid: 0x%x\n", psb
->maxvid
);
784 maxvid
= psb
->maxvid
;
786 data
->numps
= psb
->numps
;
787 dprintk("numpstates: 0x%x\n", data
->numps
);
788 return fill_powernow_table(data
,
789 (struct pst_s
*)(psb
+1), maxvid
);
792 * If you see this message, complain to BIOS manufacturer. If
793 * he tells you "we do not support Linux" or some similar
794 * nonsense, remember that Windows 2000 uses the same legacy
795 * mechanism that the old Linux PSB driver uses. Tell them it
796 * is broken with Windows 2000.
798 * The reference to the AMD documentation is chapter 9 in the
799 * BIOS and Kernel Developer's Guide, which is available on
802 printk(KERN_ERR FW_BUG PFX
"No PSB or ACPI _PSS objects\n");
806 static void powernow_k8_acpi_pst_values(struct powernow_k8_data
*data
,
809 acpi_integer control
;
811 if (!data
->acpi_data
.state_count
|| (cpu_family
== CPU_HW_PSTATE
))
814 control
= data
->acpi_data
.states
[index
].control
;
815 data
->irt
= (control
>> IRT_SHIFT
) & IRT_MASK
;
816 data
->rvo
= (control
>> RVO_SHIFT
) & RVO_MASK
;
817 data
->exttype
= (control
>> EXT_TYPE_SHIFT
) & EXT_TYPE_MASK
;
818 data
->plllock
= (control
>> PLL_L_SHIFT
) & PLL_L_MASK
;
819 data
->vidmvs
= 1 << ((control
>> MVS_SHIFT
) & MVS_MASK
);
820 data
->vstable
= (control
>> VST_SHIFT
) & VST_MASK
;
823 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data
*data
)
825 struct cpufreq_frequency_table
*powernow_table
;
826 int ret_val
= -ENODEV
;
827 acpi_integer control
, status
;
829 if (acpi_processor_register_performance(&data
->acpi_data
, data
->cpu
)) {
830 dprintk("register performance failed: bad ACPI data\n");
834 /* verify the data contained in the ACPI structures */
835 if (data
->acpi_data
.state_count
<= 1) {
836 dprintk("No ACPI P-States\n");
840 control
= data
->acpi_data
.control_register
.space_id
;
841 status
= data
->acpi_data
.status_register
.space_id
;
843 if ((control
!= ACPI_ADR_SPACE_FIXED_HARDWARE
) ||
844 (status
!= ACPI_ADR_SPACE_FIXED_HARDWARE
)) {
845 dprintk("Invalid control/status registers (%x - %x)\n",
850 /* fill in data->powernow_table */
851 powernow_table
= kmalloc((sizeof(struct cpufreq_frequency_table
)
852 * (data
->acpi_data
.state_count
+ 1)), GFP_KERNEL
);
853 if (!powernow_table
) {
854 dprintk("powernow_table memory alloc failure\n");
859 data
->numps
= data
->acpi_data
.state_count
;
860 powernow_k8_acpi_pst_values(data
, 0);
862 if (cpu_family
== CPU_HW_PSTATE
)
863 ret_val
= fill_powernow_table_pstate(data
, powernow_table
);
865 ret_val
= fill_powernow_table_fidvid(data
, powernow_table
);
869 powernow_table
[data
->acpi_data
.state_count
].frequency
=
871 powernow_table
[data
->acpi_data
.state_count
].index
= 0;
872 data
->powernow_table
= powernow_table
;
874 if (cpumask_first(cpu_core_mask(data
->cpu
)) == data
->cpu
)
877 /* notify BIOS that we exist */
878 acpi_processor_notify_smm(THIS_MODULE
);
880 if (!zalloc_cpumask_var(&data
->acpi_data
.shared_cpu_map
, GFP_KERNEL
)) {
882 "unable to alloc powernow_k8_data cpumask\n");
890 kfree(powernow_table
);
893 acpi_processor_unregister_performance(&data
->acpi_data
, data
->cpu
);
895 /* data->acpi_data.state_count informs us at ->exit()
896 * whether ACPI was used */
897 data
->acpi_data
.state_count
= 0;
902 static int fill_powernow_table_pstate(struct powernow_k8_data
*data
,
903 struct cpufreq_frequency_table
*powernow_table
)
907 rdmsr(MSR_PSTATE_CUR_LIMIT
, hi
, lo
);
908 data
->max_hw_pstate
= (hi
& HW_PSTATE_MAX_MASK
) >> HW_PSTATE_MAX_SHIFT
;
910 for (i
= 0; i
< data
->acpi_data
.state_count
; i
++) {
913 index
= data
->acpi_data
.states
[i
].control
& HW_PSTATE_MASK
;
914 if (index
> data
->max_hw_pstate
) {
915 printk(KERN_ERR PFX
"invalid pstate %d - "
916 "bad value %d.\n", i
, index
);
917 printk(KERN_ERR PFX
"Please report to BIOS "
919 invalidate_entry(powernow_table
, i
);
922 rdmsr(MSR_PSTATE_DEF_BASE
+ index
, lo
, hi
);
923 if (!(hi
& HW_PSTATE_VALID_MASK
)) {
924 dprintk("invalid pstate %d, ignoring\n", index
);
925 invalidate_entry(powernow_table
, i
);
929 powernow_table
[i
].index
= index
;
931 /* Frequency may be rounded for these */
932 if (boot_cpu_data
.x86
== 0x10 || boot_cpu_data
.x86
== 0x11) {
933 powernow_table
[i
].frequency
=
934 freq_from_fid_did(lo
& 0x3f, (lo
>> 6) & 7);
936 powernow_table
[i
].frequency
=
937 data
->acpi_data
.states
[i
].core_frequency
* 1000;
942 static int fill_powernow_table_fidvid(struct powernow_k8_data
*data
,
943 struct cpufreq_frequency_table
*powernow_table
)
947 for (i
= 0; i
< data
->acpi_data
.state_count
; i
++) {
951 acpi_integer status
, control
;
954 status
= data
->acpi_data
.states
[i
].status
;
955 fid
= status
& EXT_FID_MASK
;
956 vid
= (status
>> VID_SHIFT
) & EXT_VID_MASK
;
958 control
= data
->acpi_data
.states
[i
].control
;
959 fid
= control
& FID_MASK
;
960 vid
= (control
>> VID_SHIFT
) & VID_MASK
;
963 dprintk(" %d : fid 0x%x, vid 0x%x\n", i
, fid
, vid
);
965 index
= fid
| (vid
<<8);
966 powernow_table
[i
].index
= index
;
968 freq
= find_khz_freq_from_fid(fid
);
969 powernow_table
[i
].frequency
= freq
;
971 /* verify frequency is OK */
972 if ((freq
> (MAX_FREQ
* 1000)) || (freq
< (MIN_FREQ
* 1000))) {
973 dprintk("invalid freq %u kHz, ignoring\n", freq
);
974 invalidate_entry(powernow_table
, i
);
978 /* verify voltage is OK -
979 * BIOSs are using "off" to indicate invalid */
980 if (vid
== VID_OFF
) {
981 dprintk("invalid vid %u, ignoring\n", vid
);
982 invalidate_entry(powernow_table
, i
);
986 if (freq
!= (data
->acpi_data
.states
[i
].core_frequency
* 1000)) {
987 printk(KERN_INFO PFX
"invalid freq entries "
988 "%u kHz vs. %u kHz\n", freq
,
990 (data
->acpi_data
.states
[i
].core_frequency
992 invalidate_entry(powernow_table
, i
);
999 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data
*data
)
1001 if (data
->acpi_data
.state_count
)
1002 acpi_processor_unregister_performance(&data
->acpi_data
,
1004 free_cpumask_var(data
->acpi_data
.shared_cpu_map
);
1007 static int get_transition_latency(struct powernow_k8_data
*data
)
1009 int max_latency
= 0;
1011 for (i
= 0; i
< data
->acpi_data
.state_count
; i
++) {
1012 int cur_latency
= data
->acpi_data
.states
[i
].transition_latency
1013 + data
->acpi_data
.states
[i
].bus_master_latency
;
1014 if (cur_latency
> max_latency
)
1015 max_latency
= cur_latency
;
1017 if (max_latency
== 0) {
1019 * Fam 11h always returns 0 as transition latency.
1020 * This is intended and means "very fast". While cpufreq core
1021 * and governors currently can handle that gracefully, better
1022 * set it to 1 to avoid problems in the future.
1023 * For all others it's a BIOS bug.
1025 if (!boot_cpu_data
.x86
== 0x11)
1026 printk(KERN_ERR FW_WARN PFX
"Invalid zero transition "
1030 /* value in usecs, needs to be in nanoseconds */
1031 return 1000 * max_latency
;
1034 /* Take a frequency, and issue the fid/vid transition command */
1035 static int transition_frequency_fidvid(struct powernow_k8_data
*data
,
1041 struct cpufreq_freqs freqs
;
1043 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index
);
1045 /* fid/vid correctness check for k8 */
1046 /* fid are the lower 8 bits of the index we stored into
1047 * the cpufreq frequency table in find_psb_table, vid
1048 * are the upper 8 bits.
1050 fid
= data
->powernow_table
[index
].index
& 0xFF;
1051 vid
= (data
->powernow_table
[index
].index
& 0xFF00) >> 8;
1053 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid
, vid
);
1055 if (query_current_values_with_pending_wait(data
))
1058 if ((data
->currvid
== vid
) && (data
->currfid
== fid
)) {
1059 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
1064 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1065 smp_processor_id(), fid
, vid
);
1066 freqs
.old
= find_khz_freq_from_fid(data
->currfid
);
1067 freqs
.new = find_khz_freq_from_fid(fid
);
1069 for_each_cpu(i
, data
->available_cores
) {
1071 cpufreq_notify_transition(&freqs
, CPUFREQ_PRECHANGE
);
1074 res
= transition_fid_vid(data
, fid
, vid
);
1075 freqs
.new = find_khz_freq_from_fid(data
->currfid
);
1077 for_each_cpu(i
, data
->available_cores
) {
1079 cpufreq_notify_transition(&freqs
, CPUFREQ_POSTCHANGE
);
1084 /* Take a frequency, and issue the hardware pstate transition command */
1085 static int transition_frequency_pstate(struct powernow_k8_data
*data
,
1090 struct cpufreq_freqs freqs
;
1092 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index
);
1094 /* get MSR index for hardware pstate transition */
1095 pstate
= index
& HW_PSTATE_MASK
;
1096 if (pstate
> data
->max_hw_pstate
)
1098 freqs
.old
= find_khz_freq_from_pstate(data
->powernow_table
,
1100 freqs
.new = find_khz_freq_from_pstate(data
->powernow_table
, pstate
);
1102 for_each_cpu(i
, data
->available_cores
) {
1104 cpufreq_notify_transition(&freqs
, CPUFREQ_PRECHANGE
);
1107 res
= transition_pstate(data
, pstate
);
1108 freqs
.new = find_khz_freq_from_pstate(data
->powernow_table
, pstate
);
1110 for_each_cpu(i
, data
->available_cores
) {
1112 cpufreq_notify_transition(&freqs
, CPUFREQ_POSTCHANGE
);
1117 /* Driver entry point to switch to the target frequency */
1118 static int powernowk8_target(struct cpufreq_policy
*pol
,
1119 unsigned targfreq
, unsigned relation
)
1122 struct powernow_k8_data
*data
= per_cpu(powernow_data
, pol
->cpu
);
1125 unsigned int newstate
;
1131 checkfid
= data
->currfid
;
1132 checkvid
= data
->currvid
;
1134 /* only run on specific CPU from here on */
1135 oldmask
= current
->cpus_allowed
;
1136 set_cpus_allowed_ptr(current
, &cpumask_of_cpu(pol
->cpu
));
1138 if (smp_processor_id() != pol
->cpu
) {
1139 printk(KERN_ERR PFX
"limiting to cpu %u failed\n", pol
->cpu
);
1143 if (pending_bit_stuck()) {
1144 printk(KERN_ERR PFX
"failing targ, change pending bit set\n");
1148 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1149 pol
->cpu
, targfreq
, pol
->min
, pol
->max
, relation
);
1151 if (query_current_values_with_pending_wait(data
))
1154 if (cpu_family
!= CPU_HW_PSTATE
) {
1155 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1156 data
->currfid
, data
->currvid
);
1158 if ((checkvid
!= data
->currvid
) ||
1159 (checkfid
!= data
->currfid
)) {
1160 printk(KERN_INFO PFX
1161 "error - out of sync, fix 0x%x 0x%x, "
1163 checkfid
, data
->currfid
,
1164 checkvid
, data
->currvid
);
1168 if (cpufreq_frequency_table_target(pol
, data
->powernow_table
,
1169 targfreq
, relation
, &newstate
))
1172 mutex_lock(&fidvid_mutex
);
1174 powernow_k8_acpi_pst_values(data
, newstate
);
1176 if (cpu_family
== CPU_HW_PSTATE
)
1177 ret
= transition_frequency_pstate(data
, newstate
);
1179 ret
= transition_frequency_fidvid(data
, newstate
);
1181 printk(KERN_ERR PFX
"transition frequency failed\n");
1183 mutex_unlock(&fidvid_mutex
);
1186 mutex_unlock(&fidvid_mutex
);
1188 if (cpu_family
== CPU_HW_PSTATE
)
1189 pol
->cur
= find_khz_freq_from_pstate(data
->powernow_table
,
1192 pol
->cur
= find_khz_freq_from_fid(data
->currfid
);
1196 set_cpus_allowed_ptr(current
, &oldmask
);
1200 /* Driver entry point to verify the policy and range of frequencies */
1201 static int powernowk8_verify(struct cpufreq_policy
*pol
)
1203 struct powernow_k8_data
*data
= per_cpu(powernow_data
, pol
->cpu
);
1208 return cpufreq_frequency_table_verify(pol
, data
->powernow_table
);
1211 struct init_on_cpu
{
1212 struct powernow_k8_data
*data
;
1216 static void __cpuinit
powernowk8_cpu_init_on_cpu(void *_init_on_cpu
)
1218 struct init_on_cpu
*init_on_cpu
= _init_on_cpu
;
1220 if (pending_bit_stuck()) {
1221 printk(KERN_ERR PFX
"failing init, change pending bit set\n");
1222 init_on_cpu
->rc
= -ENODEV
;
1226 if (query_current_values_with_pending_wait(init_on_cpu
->data
)) {
1227 init_on_cpu
->rc
= -ENODEV
;
1231 if (cpu_family
== CPU_OPTERON
)
1234 init_on_cpu
->rc
= 0;
1237 /* per CPU init entry point to the driver */
1238 static int __cpuinit
powernowk8_cpu_init(struct cpufreq_policy
*pol
)
1240 static const char ACPI_PSS_BIOS_BUG_MSG
[] =
1241 KERN_ERR FW_BUG PFX
"No compatible ACPI _PSS objects found.\n"
1242 FW_BUG PFX
"Try again with latest BIOS.\n";
1243 struct powernow_k8_data
*data
;
1244 struct init_on_cpu init_on_cpu
;
1247 if (!cpu_online(pol
->cpu
))
1250 smp_call_function_single(pol
->cpu
, check_supported_cpu
, &rc
, 1);
1254 data
= kzalloc(sizeof(struct powernow_k8_data
), GFP_KERNEL
);
1256 printk(KERN_ERR PFX
"unable to alloc powernow_k8_data");
1260 data
->cpu
= pol
->cpu
;
1261 data
->currpstate
= HW_PSTATE_INVALID
;
1263 if (powernow_k8_cpu_init_acpi(data
)) {
1265 * Use the PSB BIOS structure. This is only availabe on
1266 * an UP version, and is deprecated by AMD.
1268 if (num_online_cpus() != 1) {
1269 printk_once(ACPI_PSS_BIOS_BUG_MSG
);
1272 if (pol
->cpu
!= 0) {
1273 printk(KERN_ERR FW_BUG PFX
"No ACPI _PSS objects for "
1274 "CPU other than CPU0. Complain to your BIOS "
1278 rc
= find_psb_table(data
);
1282 /* Take a crude guess here.
1283 * That guess was in microseconds, so multiply with 1000 */
1284 pol
->cpuinfo
.transition_latency
= (
1285 ((data
->rvo
+ 8) * data
->vstable
* VST_UNITS_20US
) +
1286 ((1 << data
->irt
) * 30)) * 1000;
1287 } else /* ACPI _PSS objects available */
1288 pol
->cpuinfo
.transition_latency
= get_transition_latency(data
);
1290 /* only run on specific CPU from here on */
1291 init_on_cpu
.data
= data
;
1292 smp_call_function_single(data
->cpu
, powernowk8_cpu_init_on_cpu
,
1294 rc
= init_on_cpu
.rc
;
1296 goto err_out_exit_acpi
;
1298 if (cpu_family
== CPU_HW_PSTATE
)
1299 cpumask_copy(pol
->cpus
, cpumask_of(pol
->cpu
));
1301 cpumask_copy(pol
->cpus
, cpu_core_mask(pol
->cpu
));
1302 data
->available_cores
= pol
->cpus
;
1304 if (cpu_family
== CPU_HW_PSTATE
)
1305 pol
->cur
= find_khz_freq_from_pstate(data
->powernow_table
,
1308 pol
->cur
= find_khz_freq_from_fid(data
->currfid
);
1309 dprintk("policy current frequency %d kHz\n", pol
->cur
);
1311 /* min/max the cpu is capable of */
1312 if (cpufreq_frequency_table_cpuinfo(pol
, data
->powernow_table
)) {
1313 printk(KERN_ERR FW_BUG PFX
"invalid powernow_table\n");
1314 powernow_k8_cpu_exit_acpi(data
);
1315 kfree(data
->powernow_table
);
1320 cpufreq_frequency_table_get_attr(data
->powernow_table
, pol
->cpu
);
1322 if (cpu_family
== CPU_HW_PSTATE
)
1323 dprintk("cpu_init done, current pstate 0x%x\n",
1326 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1327 data
->currfid
, data
->currvid
);
1329 per_cpu(powernow_data
, pol
->cpu
) = data
;
1334 powernow_k8_cpu_exit_acpi(data
);
1341 static int __devexit
powernowk8_cpu_exit(struct cpufreq_policy
*pol
)
1343 struct powernow_k8_data
*data
= per_cpu(powernow_data
, pol
->cpu
);
1348 powernow_k8_cpu_exit_acpi(data
);
1350 cpufreq_frequency_table_put_attr(pol
->cpu
);
1352 kfree(data
->powernow_table
);
1358 static void query_values_on_cpu(void *_err
)
1361 struct powernow_k8_data
*data
= __get_cpu_var(powernow_data
);
1363 *err
= query_current_values_with_pending_wait(data
);
1366 static unsigned int powernowk8_get(unsigned int cpu
)
1368 struct powernow_k8_data
*data
= per_cpu(powernow_data
, cpu
);
1369 unsigned int khz
= 0;
1375 smp_call_function_single(cpu
, query_values_on_cpu
, &err
, true);
1379 if (cpu_family
== CPU_HW_PSTATE
)
1380 khz
= find_khz_freq_from_pstate(data
->powernow_table
,
1383 khz
= find_khz_freq_from_fid(data
->currfid
);
1390 static struct freq_attr
*powernow_k8_attr
[] = {
1391 &cpufreq_freq_attr_scaling_available_freqs
,
1395 static struct cpufreq_driver cpufreq_amd64_driver
= {
1396 .verify
= powernowk8_verify
,
1397 .target
= powernowk8_target
,
1398 .init
= powernowk8_cpu_init
,
1399 .exit
= __devexit_p(powernowk8_cpu_exit
),
1400 .get
= powernowk8_get
,
1401 .name
= "powernow-k8",
1402 .owner
= THIS_MODULE
,
1403 .attr
= powernow_k8_attr
,
1406 /* driver entry point for init */
1407 static int __cpuinit
powernowk8_init(void)
1409 unsigned int i
, supported_cpus
= 0;
1411 for_each_online_cpu(i
) {
1413 smp_call_function_single(i
, check_supported_cpu
, &rc
, 1);
1418 if (supported_cpus
== num_online_cpus()) {
1419 printk(KERN_INFO PFX
"Found %d %s "
1420 "processors (%d cpu cores) (" VERSION
")\n",
1422 boot_cpu_data
.x86_model_id
, supported_cpus
);
1423 return cpufreq_register_driver(&cpufreq_amd64_driver
);
1429 /* driver entry point for term */
1430 static void __exit
powernowk8_exit(void)
1434 cpufreq_unregister_driver(&cpufreq_amd64_driver
);
1437 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1438 "Mark Langsdorf <mark.langsdorf@amd.com>");
1439 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1440 MODULE_LICENSE("GPL");
1442 late_initcall(powernowk8_init
);
1443 module_exit(powernowk8_exit
);