Full support for Ginger Console
[linux-ginger.git] / drivers / media / common / tuners / xc5000.c
blobf4ffcdc9b848919c5953372375eedacabb0210b6
1 /*
2 * Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
4 * Copyright (c) 2007 Xceive Corporation
5 * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6 * Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/videodev2.h>
27 #include <linux/delay.h>
28 #include <linux/dvb/frontend.h>
29 #include <linux/i2c.h>
31 #include "dvb_frontend.h"
33 #include "xc5000.h"
34 #include "tuner-i2c.h"
36 static int debug;
37 module_param(debug, int, 0644);
38 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
40 static int no_poweroff;
41 module_param(no_poweroff, int, 0644);
42 MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
43 "\t\t1 keep device energized and with tuner ready all the times.\n"
44 "\t\tFaster, but consumes more power and keeps the device hotter");
46 static DEFINE_MUTEX(xc5000_list_mutex);
47 static LIST_HEAD(hybrid_tuner_instance_list);
49 #define dprintk(level, fmt, arg...) if (debug >= level) \
50 printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
52 #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.6.114.fw"
53 #define XC5000_DEFAULT_FIRMWARE_SIZE 12401
55 struct xc5000_priv {
56 struct tuner_i2c_props i2c_props;
57 struct list_head hybrid_tuner_instance_list;
59 u32 if_khz;
60 u32 freq_hz;
61 u32 bandwidth;
62 u8 video_standard;
63 u8 rf_mode;
66 /* Misc Defines */
67 #define MAX_TV_STANDARD 23
68 #define XC_MAX_I2C_WRITE_LENGTH 64
70 /* Signal Types */
71 #define XC_RF_MODE_AIR 0
72 #define XC_RF_MODE_CABLE 1
74 /* Result codes */
75 #define XC_RESULT_SUCCESS 0
76 #define XC_RESULT_RESET_FAILURE 1
77 #define XC_RESULT_I2C_WRITE_FAILURE 2
78 #define XC_RESULT_I2C_READ_FAILURE 3
79 #define XC_RESULT_OUT_OF_RANGE 5
81 /* Product id */
82 #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
83 #define XC_PRODUCT_ID_FW_LOADED 0x1388
85 /* Registers */
86 #define XREG_INIT 0x00
87 #define XREG_VIDEO_MODE 0x01
88 #define XREG_AUDIO_MODE 0x02
89 #define XREG_RF_FREQ 0x03
90 #define XREG_D_CODE 0x04
91 #define XREG_IF_OUT 0x05
92 #define XREG_SEEK_MODE 0x07
93 #define XREG_POWER_DOWN 0x0A /* Obsolete */
94 #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
95 #define XREG_SMOOTHEDCVBS 0x0E
96 #define XREG_XTALFREQ 0x0F
97 #define XREG_FINERFREQ 0x10
98 #define XREG_DDIMODE 0x11
100 #define XREG_ADC_ENV 0x00
101 #define XREG_QUALITY 0x01
102 #define XREG_FRAME_LINES 0x02
103 #define XREG_HSYNC_FREQ 0x03
104 #define XREG_LOCK 0x04
105 #define XREG_FREQ_ERROR 0x05
106 #define XREG_SNR 0x06
107 #define XREG_VERSION 0x07
108 #define XREG_PRODUCT_ID 0x08
109 #define XREG_BUSY 0x09
110 #define XREG_BUILD 0x0D
113 Basic firmware description. This will remain with
114 the driver for documentation purposes.
116 This represents an I2C firmware file encoded as a
117 string of unsigned char. Format is as follows:
119 char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
120 char[1 ]=len0_LSB -> length of first write transaction
121 char[2 ]=data0 -> first byte to be sent
122 char[3 ]=data1
123 char[4 ]=data2
124 char[ ]=...
125 char[M ]=dataN -> last byte to be sent
126 char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
127 char[M+2]=len1_LSB -> length of second write transaction
128 char[M+3]=data0
129 char[M+4]=data1
131 etc.
133 The [len] value should be interpreted as follows:
135 len= len_MSB _ len_LSB
136 len=1111_1111_1111_1111 : End of I2C_SEQUENCE
137 len=0000_0000_0000_0000 : Reset command: Do hardware reset
138 len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
139 len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
141 For the RESET and WAIT commands, the two following bytes will contain
142 immediately the length of the following transaction.
145 struct XC_TV_STANDARD {
146 char *Name;
147 u16 AudioMode;
148 u16 VideoMode;
151 /* Tuner standards */
152 #define MN_NTSC_PAL_BTSC 0
153 #define MN_NTSC_PAL_A2 1
154 #define MN_NTSC_PAL_EIAJ 2
155 #define MN_NTSC_PAL_Mono 3
156 #define BG_PAL_A2 4
157 #define BG_PAL_NICAM 5
158 #define BG_PAL_MONO 6
159 #define I_PAL_NICAM 7
160 #define I_PAL_NICAM_MONO 8
161 #define DK_PAL_A2 9
162 #define DK_PAL_NICAM 10
163 #define DK_PAL_MONO 11
164 #define DK_SECAM_A2DK1 12
165 #define DK_SECAM_A2LDK3 13
166 #define DK_SECAM_A2MONO 14
167 #define L_SECAM_NICAM 15
168 #define LC_SECAM_NICAM 16
169 #define DTV6 17
170 #define DTV8 18
171 #define DTV7_8 19
172 #define DTV7 20
173 #define FM_Radio_INPUT2 21
174 #define FM_Radio_INPUT1 22
176 static struct XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
177 {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
178 {"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
179 {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
180 {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
181 {"B/G-PAL-A2", 0x0A00, 0x8049},
182 {"B/G-PAL-NICAM", 0x0C04, 0x8049},
183 {"B/G-PAL-MONO", 0x0878, 0x8059},
184 {"I-PAL-NICAM", 0x1080, 0x8009},
185 {"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
186 {"D/K-PAL-A2", 0x1600, 0x8009},
187 {"D/K-PAL-NICAM", 0x0E80, 0x8009},
188 {"D/K-PAL-MONO", 0x1478, 0x8009},
189 {"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
190 {"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
191 {"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
192 {"L-SECAM-NICAM", 0x8E82, 0x0009},
193 {"L'-SECAM-NICAM", 0x8E82, 0x4009},
194 {"DTV6", 0x00C0, 0x8002},
195 {"DTV8", 0x00C0, 0x800B},
196 {"DTV7/8", 0x00C0, 0x801B},
197 {"DTV7", 0x00C0, 0x8007},
198 {"FM Radio-INPUT2", 0x9802, 0x9002},
199 {"FM Radio-INPUT1", 0x0208, 0x9002}
202 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
203 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
204 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val);
205 static int xc5000_TunerReset(struct dvb_frontend *fe);
207 static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
209 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
210 .flags = 0, .buf = buf, .len = len };
212 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
213 printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len);
214 return XC_RESULT_I2C_WRITE_FAILURE;
216 return XC_RESULT_SUCCESS;
219 /* This routine is never used because the only time we read data from the
220 i2c bus is when we read registers, and we want that to be an atomic i2c
221 transaction in case we are on a multi-master bus */
222 static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
224 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
225 .flags = I2C_M_RD, .buf = buf, .len = len };
227 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
228 printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len);
229 return -EREMOTEIO;
231 return 0;
234 static void xc_wait(int wait_ms)
236 msleep(wait_ms);
239 static int xc5000_TunerReset(struct dvb_frontend *fe)
241 struct xc5000_priv *priv = fe->tuner_priv;
242 int ret;
244 dprintk(1, "%s()\n", __func__);
246 if (fe->callback) {
247 ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
248 fe->dvb->priv :
249 priv->i2c_props.adap->algo_data,
250 DVB_FRONTEND_COMPONENT_TUNER,
251 XC5000_TUNER_RESET, 0);
252 if (ret) {
253 printk(KERN_ERR "xc5000: reset failed\n");
254 return XC_RESULT_RESET_FAILURE;
256 } else {
257 printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
258 return XC_RESULT_RESET_FAILURE;
260 return XC_RESULT_SUCCESS;
263 static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
265 u8 buf[4];
266 int WatchDogTimer = 100;
267 int result;
269 buf[0] = (regAddr >> 8) & 0xFF;
270 buf[1] = regAddr & 0xFF;
271 buf[2] = (i2cData >> 8) & 0xFF;
272 buf[3] = i2cData & 0xFF;
273 result = xc_send_i2c_data(priv, buf, 4);
274 if (result == XC_RESULT_SUCCESS) {
275 /* wait for busy flag to clear */
276 while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
277 buf[0] = 0;
278 buf[1] = XREG_BUSY;
280 result = xc_send_i2c_data(priv, buf, 2);
281 if (result == XC_RESULT_SUCCESS) {
282 result = xc_read_i2c_data(priv, buf, 2);
283 if (result == XC_RESULT_SUCCESS) {
284 if ((buf[0] == 0) && (buf[1] == 0)) {
285 /* busy flag cleared */
286 break;
287 } else {
288 xc_wait(5); /* wait 5 ms */
289 WatchDogTimer--;
295 if (WatchDogTimer < 0)
296 result = XC_RESULT_I2C_WRITE_FAILURE;
298 return result;
301 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
303 struct xc5000_priv *priv = fe->tuner_priv;
305 int i, nbytes_to_send, result;
306 unsigned int len, pos, index;
307 u8 buf[XC_MAX_I2C_WRITE_LENGTH];
309 index = 0;
310 while ((i2c_sequence[index] != 0xFF) ||
311 (i2c_sequence[index + 1] != 0xFF)) {
312 len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
313 if (len == 0x0000) {
314 /* RESET command */
315 result = xc5000_TunerReset(fe);
316 index += 2;
317 if (result != XC_RESULT_SUCCESS)
318 return result;
319 } else if (len & 0x8000) {
320 /* WAIT command */
321 xc_wait(len & 0x7FFF);
322 index += 2;
323 } else {
324 /* Send i2c data whilst ensuring individual transactions
325 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
327 index += 2;
328 buf[0] = i2c_sequence[index];
329 buf[1] = i2c_sequence[index + 1];
330 pos = 2;
331 while (pos < len) {
332 if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
333 nbytes_to_send =
334 XC_MAX_I2C_WRITE_LENGTH;
335 else
336 nbytes_to_send = (len - pos + 2);
337 for (i = 2; i < nbytes_to_send; i++) {
338 buf[i] = i2c_sequence[index + pos +
339 i - 2];
341 result = xc_send_i2c_data(priv, buf,
342 nbytes_to_send);
344 if (result != XC_RESULT_SUCCESS)
345 return result;
347 pos += nbytes_to_send - 2;
349 index += len;
352 return XC_RESULT_SUCCESS;
355 static int xc_initialize(struct xc5000_priv *priv)
357 dprintk(1, "%s()\n", __func__);
358 return xc_write_reg(priv, XREG_INIT, 0);
361 static int xc_SetTVStandard(struct xc5000_priv *priv,
362 u16 VideoMode, u16 AudioMode)
364 int ret;
365 dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
366 dprintk(1, "%s() Standard = %s\n",
367 __func__,
368 XC5000_Standard[priv->video_standard].Name);
370 ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
371 if (ret == XC_RESULT_SUCCESS)
372 ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
374 return ret;
377 static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
379 dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
380 rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
382 if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
383 rf_mode = XC_RF_MODE_CABLE;
384 printk(KERN_ERR
385 "%s(), Invalid mode, defaulting to CABLE",
386 __func__);
388 return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
391 static const struct dvb_tuner_ops xc5000_tuner_ops;
393 static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
395 u16 freq_code;
397 dprintk(1, "%s(%u)\n", __func__, freq_hz);
399 if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
400 (freq_hz < xc5000_tuner_ops.info.frequency_min))
401 return XC_RESULT_OUT_OF_RANGE;
403 freq_code = (u16)(freq_hz / 15625);
405 /* Starting in firmware version 1.1.44, Xceive recommends using the
406 FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
407 only be used for fast scanning for channel lock) */
408 return xc_write_reg(priv, XREG_FINERFREQ, freq_code);
412 static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
414 u32 freq_code = (freq_khz * 1024)/1000;
415 dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
416 __func__, freq_khz, freq_code);
418 return xc_write_reg(priv, XREG_IF_OUT, freq_code);
422 static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
424 return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope);
427 static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
429 int result;
430 u16 regData;
431 u32 tmp;
433 result = xc5000_readreg(priv, XREG_FREQ_ERROR, &regData);
434 if (result != XC_RESULT_SUCCESS)
435 return result;
437 tmp = (u32)regData;
438 (*freq_error_hz) = (tmp * 15625) / 1000;
439 return result;
442 static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
444 return xc5000_readreg(priv, XREG_LOCK, lock_status);
447 static int xc_get_version(struct xc5000_priv *priv,
448 u8 *hw_majorversion, u8 *hw_minorversion,
449 u8 *fw_majorversion, u8 *fw_minorversion)
451 u16 data;
452 int result;
454 result = xc5000_readreg(priv, XREG_VERSION, &data);
455 if (result != XC_RESULT_SUCCESS)
456 return result;
458 (*hw_majorversion) = (data >> 12) & 0x0F;
459 (*hw_minorversion) = (data >> 8) & 0x0F;
460 (*fw_majorversion) = (data >> 4) & 0x0F;
461 (*fw_minorversion) = data & 0x0F;
463 return 0;
466 static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev)
468 return xc5000_readreg(priv, XREG_BUILD, buildrev);
471 static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
473 u16 regData;
474 int result;
476 result = xc5000_readreg(priv, XREG_HSYNC_FREQ, &regData);
477 if (result != XC_RESULT_SUCCESS)
478 return result;
480 (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
481 return result;
484 static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
486 return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines);
489 static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
491 return xc5000_readreg(priv, XREG_QUALITY, quality);
494 static u16 WaitForLock(struct xc5000_priv *priv)
496 u16 lockState = 0;
497 int watchDogCount = 40;
499 while ((lockState == 0) && (watchDogCount > 0)) {
500 xc_get_lock_status(priv, &lockState);
501 if (lockState != 1) {
502 xc_wait(5);
503 watchDogCount--;
506 return lockState;
509 #define XC_TUNE_ANALOG 0
510 #define XC_TUNE_DIGITAL 1
511 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode)
513 int found = 0;
515 dprintk(1, "%s(%u)\n", __func__, freq_hz);
517 if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
518 return 0;
520 if (mode == XC_TUNE_ANALOG) {
521 if (WaitForLock(priv) == 1)
522 found = 1;
525 return found;
528 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
530 u8 buf[2] = { reg >> 8, reg & 0xff };
531 u8 bval[2] = { 0, 0 };
532 struct i2c_msg msg[2] = {
533 { .addr = priv->i2c_props.addr,
534 .flags = 0, .buf = &buf[0], .len = 2 },
535 { .addr = priv->i2c_props.addr,
536 .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
539 if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
540 printk(KERN_WARNING "xc5000: I2C read failed\n");
541 return -EREMOTEIO;
544 *val = (bval[0] << 8) | bval[1];
545 return XC_RESULT_SUCCESS;
548 static int xc5000_fwupload(struct dvb_frontend *fe)
550 struct xc5000_priv *priv = fe->tuner_priv;
551 const struct firmware *fw;
552 int ret;
554 /* request the firmware, this will block and timeout */
555 printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
556 XC5000_DEFAULT_FIRMWARE);
558 ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE,
559 priv->i2c_props.adap->dev.parent);
560 if (ret) {
561 printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
562 ret = XC_RESULT_RESET_FAILURE;
563 goto out;
564 } else {
565 printk(KERN_DEBUG "xc5000: firmware read %Zu bytes.\n",
566 fw->size);
567 ret = XC_RESULT_SUCCESS;
570 if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
571 printk(KERN_ERR "xc5000: firmware incorrect size\n");
572 ret = XC_RESULT_RESET_FAILURE;
573 } else {
574 printk(KERN_INFO "xc5000: firmware uploading...\n");
575 ret = xc_load_i2c_sequence(fe, fw->data);
576 printk(KERN_INFO "xc5000: firmware upload complete...\n");
579 out:
580 release_firmware(fw);
581 return ret;
584 static void xc_debug_dump(struct xc5000_priv *priv)
586 u16 adc_envelope;
587 u32 freq_error_hz = 0;
588 u16 lock_status;
589 u32 hsync_freq_hz = 0;
590 u16 frame_lines;
591 u16 quality;
592 u8 hw_majorversion = 0, hw_minorversion = 0;
593 u8 fw_majorversion = 0, fw_minorversion = 0;
594 u16 fw_buildversion = 0;
596 /* Wait for stats to stabilize.
597 * Frame Lines needs two frame times after initial lock
598 * before it is valid.
600 xc_wait(100);
602 xc_get_ADC_Envelope(priv, &adc_envelope);
603 dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
605 xc_get_frequency_error(priv, &freq_error_hz);
606 dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
608 xc_get_lock_status(priv, &lock_status);
609 dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
610 lock_status);
612 xc_get_version(priv, &hw_majorversion, &hw_minorversion,
613 &fw_majorversion, &fw_minorversion);
614 xc_get_buildversion(priv, &fw_buildversion);
615 dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x.%04x\n",
616 hw_majorversion, hw_minorversion,
617 fw_majorversion, fw_minorversion, fw_buildversion);
619 xc_get_hsync_freq(priv, &hsync_freq_hz);
620 dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
622 xc_get_frame_lines(priv, &frame_lines);
623 dprintk(1, "*** Frame lines = %d\n", frame_lines);
625 xc_get_quality(priv, &quality);
626 dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
629 static int xc5000_set_params(struct dvb_frontend *fe,
630 struct dvb_frontend_parameters *params)
632 struct xc5000_priv *priv = fe->tuner_priv;
633 int ret;
635 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
636 xc_load_fw_and_init_tuner(fe);
638 dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
640 if (fe->ops.info.type == FE_ATSC) {
641 dprintk(1, "%s() ATSC\n", __func__);
642 switch (params->u.vsb.modulation) {
643 case VSB_8:
644 case VSB_16:
645 dprintk(1, "%s() VSB modulation\n", __func__);
646 priv->rf_mode = XC_RF_MODE_AIR;
647 priv->freq_hz = params->frequency - 1750000;
648 priv->bandwidth = BANDWIDTH_6_MHZ;
649 priv->video_standard = DTV6;
650 break;
651 case QAM_64:
652 case QAM_256:
653 case QAM_AUTO:
654 dprintk(1, "%s() QAM modulation\n", __func__);
655 priv->rf_mode = XC_RF_MODE_CABLE;
656 priv->freq_hz = params->frequency - 1750000;
657 priv->bandwidth = BANDWIDTH_6_MHZ;
658 priv->video_standard = DTV6;
659 break;
660 default:
661 return -EINVAL;
663 } else if (fe->ops.info.type == FE_OFDM) {
664 dprintk(1, "%s() OFDM\n", __func__);
665 switch (params->u.ofdm.bandwidth) {
666 case BANDWIDTH_6_MHZ:
667 priv->bandwidth = BANDWIDTH_6_MHZ;
668 priv->video_standard = DTV6;
669 priv->freq_hz = params->frequency - 1750000;
670 break;
671 case BANDWIDTH_7_MHZ:
672 printk(KERN_ERR "xc5000 bandwidth 7MHz not supported\n");
673 return -EINVAL;
674 case BANDWIDTH_8_MHZ:
675 priv->bandwidth = BANDWIDTH_8_MHZ;
676 priv->video_standard = DTV8;
677 priv->freq_hz = params->frequency - 2750000;
678 break;
679 default:
680 printk(KERN_ERR "xc5000 bandwidth not set!\n");
681 return -EINVAL;
683 priv->rf_mode = XC_RF_MODE_AIR;
684 } else {
685 printk(KERN_ERR "xc5000 modulation type not supported!\n");
686 return -EINVAL;
689 dprintk(1, "%s() frequency=%d (compensated)\n",
690 __func__, priv->freq_hz);
692 ret = xc_SetSignalSource(priv, priv->rf_mode);
693 if (ret != XC_RESULT_SUCCESS) {
694 printk(KERN_ERR
695 "xc5000: xc_SetSignalSource(%d) failed\n",
696 priv->rf_mode);
697 return -EREMOTEIO;
700 ret = xc_SetTVStandard(priv,
701 XC5000_Standard[priv->video_standard].VideoMode,
702 XC5000_Standard[priv->video_standard].AudioMode);
703 if (ret != XC_RESULT_SUCCESS) {
704 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
705 return -EREMOTEIO;
708 ret = xc_set_IF_frequency(priv, priv->if_khz);
709 if (ret != XC_RESULT_SUCCESS) {
710 printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
711 priv->if_khz);
712 return -EIO;
715 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
717 if (debug)
718 xc_debug_dump(priv);
720 return 0;
723 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
725 struct xc5000_priv *priv = fe->tuner_priv;
726 int ret;
727 u16 id;
729 ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
730 if (ret == XC_RESULT_SUCCESS) {
731 if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
732 ret = XC_RESULT_RESET_FAILURE;
733 else
734 ret = XC_RESULT_SUCCESS;
737 dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
738 ret == XC_RESULT_SUCCESS ? "True" : "False", id);
739 return ret;
742 static int xc5000_set_analog_params(struct dvb_frontend *fe,
743 struct analog_parameters *params)
745 struct xc5000_priv *priv = fe->tuner_priv;
746 int ret;
748 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
749 xc_load_fw_and_init_tuner(fe);
751 dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
752 __func__, params->frequency);
754 /* Fix me: it could be air. */
755 priv->rf_mode = params->mode;
756 if (params->mode > XC_RF_MODE_CABLE)
757 priv->rf_mode = XC_RF_MODE_CABLE;
759 /* params->frequency is in units of 62.5khz */
760 priv->freq_hz = params->frequency * 62500;
762 /* FIX ME: Some video standards may have several possible audio
763 standards. We simply default to one of them here.
765 if (params->std & V4L2_STD_MN) {
766 /* default to BTSC audio standard */
767 priv->video_standard = MN_NTSC_PAL_BTSC;
768 goto tune_channel;
771 if (params->std & V4L2_STD_PAL_BG) {
772 /* default to NICAM audio standard */
773 priv->video_standard = BG_PAL_NICAM;
774 goto tune_channel;
777 if (params->std & V4L2_STD_PAL_I) {
778 /* default to NICAM audio standard */
779 priv->video_standard = I_PAL_NICAM;
780 goto tune_channel;
783 if (params->std & V4L2_STD_PAL_DK) {
784 /* default to NICAM audio standard */
785 priv->video_standard = DK_PAL_NICAM;
786 goto tune_channel;
789 if (params->std & V4L2_STD_SECAM_DK) {
790 /* default to A2 DK1 audio standard */
791 priv->video_standard = DK_SECAM_A2DK1;
792 goto tune_channel;
795 if (params->std & V4L2_STD_SECAM_L) {
796 priv->video_standard = L_SECAM_NICAM;
797 goto tune_channel;
800 if (params->std & V4L2_STD_SECAM_LC) {
801 priv->video_standard = LC_SECAM_NICAM;
802 goto tune_channel;
805 tune_channel:
806 ret = xc_SetSignalSource(priv, priv->rf_mode);
807 if (ret != XC_RESULT_SUCCESS) {
808 printk(KERN_ERR
809 "xc5000: xc_SetSignalSource(%d) failed\n",
810 priv->rf_mode);
811 return -EREMOTEIO;
814 ret = xc_SetTVStandard(priv,
815 XC5000_Standard[priv->video_standard].VideoMode,
816 XC5000_Standard[priv->video_standard].AudioMode);
817 if (ret != XC_RESULT_SUCCESS) {
818 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
819 return -EREMOTEIO;
822 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
824 if (debug)
825 xc_debug_dump(priv);
827 return 0;
830 static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
832 struct xc5000_priv *priv = fe->tuner_priv;
833 dprintk(1, "%s()\n", __func__);
834 *freq = priv->freq_hz;
835 return 0;
838 static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
840 struct xc5000_priv *priv = fe->tuner_priv;
841 dprintk(1, "%s()\n", __func__);
843 *bw = priv->bandwidth;
844 return 0;
847 static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
849 struct xc5000_priv *priv = fe->tuner_priv;
850 u16 lock_status = 0;
852 xc_get_lock_status(priv, &lock_status);
854 dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
856 *status = lock_status;
858 return 0;
861 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
863 struct xc5000_priv *priv = fe->tuner_priv;
864 int ret = 0;
866 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
867 ret = xc5000_fwupload(fe);
868 if (ret != XC_RESULT_SUCCESS)
869 return ret;
872 /* Start the tuner self-calibration process */
873 ret |= xc_initialize(priv);
875 /* Wait for calibration to complete.
876 * We could continue but XC5000 will clock stretch subsequent
877 * I2C transactions until calibration is complete. This way we
878 * don't have to rely on clock stretching working.
880 xc_wait(100);
882 /* Default to "CABLE" mode */
883 ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
885 return ret;
888 static int xc5000_sleep(struct dvb_frontend *fe)
890 int ret;
892 dprintk(1, "%s()\n", __func__);
894 /* Avoid firmware reload on slow devices */
895 if (no_poweroff)
896 return 0;
898 /* According to Xceive technical support, the "powerdown" register
899 was removed in newer versions of the firmware. The "supported"
900 way to sleep the tuner is to pull the reset pin low for 10ms */
901 ret = xc5000_TunerReset(fe);
902 if (ret != XC_RESULT_SUCCESS) {
903 printk(KERN_ERR
904 "xc5000: %s() unable to shutdown tuner\n",
905 __func__);
906 return -EREMOTEIO;
907 } else
908 return XC_RESULT_SUCCESS;
911 static int xc5000_init(struct dvb_frontend *fe)
913 struct xc5000_priv *priv = fe->tuner_priv;
914 dprintk(1, "%s()\n", __func__);
916 if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
917 printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
918 return -EREMOTEIO;
921 if (debug)
922 xc_debug_dump(priv);
924 return 0;
927 static int xc5000_release(struct dvb_frontend *fe)
929 struct xc5000_priv *priv = fe->tuner_priv;
931 dprintk(1, "%s()\n", __func__);
933 mutex_lock(&xc5000_list_mutex);
935 if (priv)
936 hybrid_tuner_release_state(priv);
938 mutex_unlock(&xc5000_list_mutex);
940 fe->tuner_priv = NULL;
942 return 0;
945 static const struct dvb_tuner_ops xc5000_tuner_ops = {
946 .info = {
947 .name = "Xceive XC5000",
948 .frequency_min = 1000000,
949 .frequency_max = 1023000000,
950 .frequency_step = 50000,
953 .release = xc5000_release,
954 .init = xc5000_init,
955 .sleep = xc5000_sleep,
957 .set_params = xc5000_set_params,
958 .set_analog_params = xc5000_set_analog_params,
959 .get_frequency = xc5000_get_frequency,
960 .get_bandwidth = xc5000_get_bandwidth,
961 .get_status = xc5000_get_status
964 struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
965 struct i2c_adapter *i2c,
966 struct xc5000_config *cfg)
968 struct xc5000_priv *priv = NULL;
969 int instance;
970 u16 id = 0;
972 dprintk(1, "%s(%d-%04x)\n", __func__,
973 i2c ? i2c_adapter_id(i2c) : -1,
974 cfg ? cfg->i2c_address : -1);
976 mutex_lock(&xc5000_list_mutex);
978 instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
979 hybrid_tuner_instance_list,
980 i2c, cfg->i2c_address, "xc5000");
981 switch (instance) {
982 case 0:
983 goto fail;
984 break;
985 case 1:
986 /* new tuner instance */
987 priv->bandwidth = BANDWIDTH_6_MHZ;
988 fe->tuner_priv = priv;
989 break;
990 default:
991 /* existing tuner instance */
992 fe->tuner_priv = priv;
993 break;
996 if (priv->if_khz == 0) {
997 /* If the IF hasn't been set yet, use the value provided by
998 the caller (occurs in hybrid devices where the analog
999 call to xc5000_attach occurs before the digital side) */
1000 priv->if_khz = cfg->if_khz;
1003 /* Check if firmware has been loaded. It is possible that another
1004 instance of the driver has loaded the firmware.
1006 if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
1007 goto fail;
1009 switch (id) {
1010 case XC_PRODUCT_ID_FW_LOADED:
1011 printk(KERN_INFO
1012 "xc5000: Successfully identified at address 0x%02x\n",
1013 cfg->i2c_address);
1014 printk(KERN_INFO
1015 "xc5000: Firmware has been loaded previously\n");
1016 break;
1017 case XC_PRODUCT_ID_FW_NOT_LOADED:
1018 printk(KERN_INFO
1019 "xc5000: Successfully identified at address 0x%02x\n",
1020 cfg->i2c_address);
1021 printk(KERN_INFO
1022 "xc5000: Firmware has not been loaded previously\n");
1023 break;
1024 default:
1025 printk(KERN_ERR
1026 "xc5000: Device not found at addr 0x%02x (0x%x)\n",
1027 cfg->i2c_address, id);
1028 goto fail;
1031 mutex_unlock(&xc5000_list_mutex);
1033 memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
1034 sizeof(struct dvb_tuner_ops));
1036 return fe;
1037 fail:
1038 mutex_unlock(&xc5000_list_mutex);
1040 xc5000_release(fe);
1041 return NULL;
1043 EXPORT_SYMBOL(xc5000_attach);
1045 MODULE_AUTHOR("Steven Toth");
1046 MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1047 MODULE_LICENSE("GPL");