Full support for Ginger Console
[linux-ginger.git] / drivers / net / tsi108_eth.c
blob7030bd5e9848e1582160b4414365086bc22972ca
1 /*******************************************************************************
3 Copyright(c) 2006 Tundra Semiconductor Corporation.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 2 of the License, or (at your option)
8 any later version.
10 This program is distributed in the hope that it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc., 59
17 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *******************************************************************************/
21 /* This driver is based on the driver code originally developed
22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
25 * Currently changes from original version are:
26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27 * - modifications to handle two ports independently and support for
28 * additional PHY devices (alexandre.bounine@tundra.com)
29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/init.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/ethtool.h>
40 #include <linux/skbuff.h>
41 #include <linux/slab.h>
42 #include <linux/spinlock.h>
43 #include <linux/delay.h>
44 #include <linux/crc32.h>
45 #include <linux/mii.h>
46 #include <linux/device.h>
47 #include <linux/pci.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/timer.h>
50 #include <linux/platform_device.h>
52 #include <asm/system.h>
53 #include <asm/io.h>
54 #include <asm/tsi108.h>
56 #include "tsi108_eth.h"
58 #define MII_READ_DELAY 10000 /* max link wait time in msec */
60 #define TSI108_RXRING_LEN 256
62 /* NOTE: The driver currently does not support receiving packets
63 * larger than the buffer size, so don't decrease this (unless you
64 * want to add such support).
66 #define TSI108_RXBUF_SIZE 1536
68 #define TSI108_TXRING_LEN 256
70 #define TSI108_TX_INT_FREQ 64
72 /* Check the phy status every half a second. */
73 #define CHECK_PHY_INTERVAL (HZ/2)
75 static int tsi108_init_one(struct platform_device *pdev);
76 static int tsi108_ether_remove(struct platform_device *pdev);
78 struct tsi108_prv_data {
79 void __iomem *regs; /* Base of normal regs */
80 void __iomem *phyregs; /* Base of register bank used for PHY access */
82 struct net_device *dev;
83 struct napi_struct napi;
85 unsigned int phy; /* Index of PHY for this interface */
86 unsigned int irq_num;
87 unsigned int id;
88 unsigned int phy_type;
90 struct timer_list timer;/* Timer that triggers the check phy function */
91 unsigned int rxtail; /* Next entry in rxring to read */
92 unsigned int rxhead; /* Next entry in rxring to give a new buffer */
93 unsigned int rxfree; /* Number of free, allocated RX buffers */
95 unsigned int rxpending; /* Non-zero if there are still descriptors
96 * to be processed from a previous descriptor
97 * interrupt condition that has been cleared */
99 unsigned int txtail; /* Next TX descriptor to check status on */
100 unsigned int txhead; /* Next TX descriptor to use */
102 /* Number of free TX descriptors. This could be calculated from
103 * rxhead and rxtail if one descriptor were left unused to disambiguate
104 * full and empty conditions, but it's simpler to just keep track
105 * explicitly. */
107 unsigned int txfree;
109 unsigned int phy_ok; /* The PHY is currently powered on. */
111 /* PHY status (duplex is 1 for half, 2 for full,
112 * so that the default 0 indicates that neither has
113 * yet been configured). */
115 unsigned int link_up;
116 unsigned int speed;
117 unsigned int duplex;
119 tx_desc *txring;
120 rx_desc *rxring;
121 struct sk_buff *txskbs[TSI108_TXRING_LEN];
122 struct sk_buff *rxskbs[TSI108_RXRING_LEN];
124 dma_addr_t txdma, rxdma;
126 /* txlock nests in misclock and phy_lock */
128 spinlock_t txlock, misclock;
130 /* stats is used to hold the upper bits of each hardware counter,
131 * and tmpstats is used to hold the full values for returning
132 * to the caller of get_stats(). They must be separate in case
133 * an overflow interrupt occurs before the stats are consumed.
136 struct net_device_stats stats;
137 struct net_device_stats tmpstats;
139 /* These stats are kept separate in hardware, thus require individual
140 * fields for handling carry. They are combined in get_stats.
143 unsigned long rx_fcs; /* Add to rx_frame_errors */
144 unsigned long rx_short_fcs; /* Add to rx_frame_errors */
145 unsigned long rx_long_fcs; /* Add to rx_frame_errors */
146 unsigned long rx_underruns; /* Add to rx_length_errors */
147 unsigned long rx_overruns; /* Add to rx_length_errors */
149 unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */
150 unsigned long tx_pause_drop; /* Add to tx_aborted_errors */
152 unsigned long mc_hash[16];
153 u32 msg_enable; /* debug message level */
154 struct mii_if_info mii_if;
155 unsigned int init_media;
158 /* Structure for a device driver */
160 static struct platform_driver tsi_eth_driver = {
161 .probe = tsi108_init_one,
162 .remove = tsi108_ether_remove,
163 .driver = {
164 .name = "tsi-ethernet",
165 .owner = THIS_MODULE,
169 static void tsi108_timed_checker(unsigned long dev_ptr);
171 static void dump_eth_one(struct net_device *dev)
173 struct tsi108_prv_data *data = netdev_priv(dev);
175 printk("Dumping %s...\n", dev->name);
176 printk("intstat %x intmask %x phy_ok %d"
177 " link %d speed %d duplex %d\n",
178 TSI_READ(TSI108_EC_INTSTAT),
179 TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
180 data->link_up, data->speed, data->duplex);
182 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
183 data->txhead, data->txtail, data->txfree,
184 TSI_READ(TSI108_EC_TXSTAT),
185 TSI_READ(TSI108_EC_TXESTAT),
186 TSI_READ(TSI108_EC_TXERR));
188 printk("RX: head %d, tail %d, free %d, stat %x,"
189 " estat %x, err %x, pending %d\n\n",
190 data->rxhead, data->rxtail, data->rxfree,
191 TSI_READ(TSI108_EC_RXSTAT),
192 TSI_READ(TSI108_EC_RXESTAT),
193 TSI_READ(TSI108_EC_RXERR), data->rxpending);
196 /* Synchronization is needed between the thread and up/down events.
197 * Note that the PHY is accessed through the same registers for both
198 * interfaces, so this can't be made interface-specific.
201 static DEFINE_SPINLOCK(phy_lock);
203 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
205 unsigned i;
207 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
208 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
209 (reg << TSI108_MAC_MII_ADDR_REG));
210 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
211 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
212 for (i = 0; i < 100; i++) {
213 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
214 (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
215 break;
216 udelay(10);
219 if (i == 100)
220 return 0xffff;
221 else
222 return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN));
225 static void tsi108_write_mii(struct tsi108_prv_data *data,
226 int reg, u16 val)
228 unsigned i = 100;
229 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
230 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
231 (reg << TSI108_MAC_MII_ADDR_REG));
232 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
233 while (i--) {
234 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
235 TSI108_MAC_MII_IND_BUSY))
236 break;
237 udelay(10);
241 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
243 struct tsi108_prv_data *data = netdev_priv(dev);
244 return tsi108_read_mii(data, reg);
247 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
249 struct tsi108_prv_data *data = netdev_priv(dev);
250 tsi108_write_mii(data, reg, val);
253 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
254 int reg, u16 val)
256 unsigned i = 1000;
257 TSI_WRITE(TSI108_MAC_MII_ADDR,
258 (0x1e << TSI108_MAC_MII_ADDR_PHY)
259 | (reg << TSI108_MAC_MII_ADDR_REG));
260 TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
261 while(i--) {
262 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
263 return;
264 udelay(10);
266 printk(KERN_ERR "%s function time out \n", __func__);
269 static int mii_speed(struct mii_if_info *mii)
271 int advert, lpa, val, media;
272 int lpa2 = 0;
273 int speed;
275 if (!mii_link_ok(mii))
276 return 0;
278 val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
279 if ((val & BMSR_ANEGCOMPLETE) == 0)
280 return 0;
282 advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
283 lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
284 media = mii_nway_result(advert & lpa);
286 if (mii->supports_gmii)
287 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
289 speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
290 (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
291 return speed;
294 static void tsi108_check_phy(struct net_device *dev)
296 struct tsi108_prv_data *data = netdev_priv(dev);
297 u32 mac_cfg2_reg, portctrl_reg;
298 u32 duplex;
299 u32 speed;
300 unsigned long flags;
302 spin_lock_irqsave(&phy_lock, flags);
304 if (!data->phy_ok)
305 goto out;
307 duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
308 data->init_media = 0;
310 if (netif_carrier_ok(dev)) {
312 speed = mii_speed(&data->mii_if);
314 if ((speed != data->speed) || duplex) {
316 mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
317 portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
319 mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
321 if (speed == 1000) {
322 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
323 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
324 } else {
325 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
326 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
329 data->speed = speed;
331 if (data->mii_if.full_duplex) {
332 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
333 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
334 data->duplex = 2;
335 } else {
336 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
337 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
338 data->duplex = 1;
341 TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
342 TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
345 if (data->link_up == 0) {
346 /* The manual says it can take 3-4 usecs for the speed change
347 * to take effect.
349 udelay(5);
351 spin_lock(&data->txlock);
352 if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
353 netif_wake_queue(dev);
355 data->link_up = 1;
356 spin_unlock(&data->txlock);
358 } else {
359 if (data->link_up == 1) {
360 netif_stop_queue(dev);
361 data->link_up = 0;
362 printk(KERN_NOTICE "%s : link is down\n", dev->name);
365 goto out;
369 out:
370 spin_unlock_irqrestore(&phy_lock, flags);
373 static inline void
374 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
375 unsigned long *upper)
377 if (carry & carry_bit)
378 *upper += carry_shift;
381 static void tsi108_stat_carry(struct net_device *dev)
383 struct tsi108_prv_data *data = netdev_priv(dev);
384 u32 carry1, carry2;
386 spin_lock_irq(&data->misclock);
388 carry1 = TSI_READ(TSI108_STAT_CARRY1);
389 carry2 = TSI_READ(TSI108_STAT_CARRY2);
391 TSI_WRITE(TSI108_STAT_CARRY1, carry1);
392 TSI_WRITE(TSI108_STAT_CARRY2, carry2);
394 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
395 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
397 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
398 TSI108_STAT_RXPKTS_CARRY,
399 &data->stats.rx_packets);
401 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
402 TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
404 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
405 TSI108_STAT_RXMCAST_CARRY,
406 &data->stats.multicast);
408 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
409 TSI108_STAT_RXALIGN_CARRY,
410 &data->stats.rx_frame_errors);
412 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
413 TSI108_STAT_RXLENGTH_CARRY,
414 &data->stats.rx_length_errors);
416 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
417 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
419 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
420 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
422 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
423 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
425 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
426 TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
428 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
429 TSI108_STAT_RXDROP_CARRY,
430 &data->stats.rx_missed_errors);
432 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
433 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
435 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
436 TSI108_STAT_TXPKTS_CARRY,
437 &data->stats.tx_packets);
439 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
440 TSI108_STAT_TXEXDEF_CARRY,
441 &data->stats.tx_aborted_errors);
443 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
444 TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
446 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
447 TSI108_STAT_TXTCOL_CARRY,
448 &data->stats.collisions);
450 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
451 TSI108_STAT_TXPAUSEDROP_CARRY,
452 &data->tx_pause_drop);
454 spin_unlock_irq(&data->misclock);
457 /* Read a stat counter atomically with respect to carries.
458 * data->misclock must be held.
460 static inline unsigned long
461 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
462 int carry_shift, unsigned long *upper)
464 int carryreg;
465 unsigned long val;
467 if (reg < 0xb0)
468 carryreg = TSI108_STAT_CARRY1;
469 else
470 carryreg = TSI108_STAT_CARRY2;
472 again:
473 val = TSI_READ(reg) | *upper;
475 /* Check to see if it overflowed, but the interrupt hasn't
476 * been serviced yet. If so, handle the carry here, and
477 * try again.
480 if (unlikely(TSI_READ(carryreg) & carry_bit)) {
481 *upper += carry_shift;
482 TSI_WRITE(carryreg, carry_bit);
483 goto again;
486 return val;
489 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
491 unsigned long excol;
493 struct tsi108_prv_data *data = netdev_priv(dev);
494 spin_lock_irq(&data->misclock);
496 data->tmpstats.rx_packets =
497 tsi108_read_stat(data, TSI108_STAT_RXPKTS,
498 TSI108_STAT_CARRY1_RXPKTS,
499 TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
501 data->tmpstats.tx_packets =
502 tsi108_read_stat(data, TSI108_STAT_TXPKTS,
503 TSI108_STAT_CARRY2_TXPKTS,
504 TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
506 data->tmpstats.rx_bytes =
507 tsi108_read_stat(data, TSI108_STAT_RXBYTES,
508 TSI108_STAT_CARRY1_RXBYTES,
509 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
511 data->tmpstats.tx_bytes =
512 tsi108_read_stat(data, TSI108_STAT_TXBYTES,
513 TSI108_STAT_CARRY2_TXBYTES,
514 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
516 data->tmpstats.multicast =
517 tsi108_read_stat(data, TSI108_STAT_RXMCAST,
518 TSI108_STAT_CARRY1_RXMCAST,
519 TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
521 excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
522 TSI108_STAT_CARRY2_TXEXCOL,
523 TSI108_STAT_TXEXCOL_CARRY,
524 &data->tx_coll_abort);
526 data->tmpstats.collisions =
527 tsi108_read_stat(data, TSI108_STAT_TXTCOL,
528 TSI108_STAT_CARRY2_TXTCOL,
529 TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
531 data->tmpstats.collisions += excol;
533 data->tmpstats.rx_length_errors =
534 tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
535 TSI108_STAT_CARRY1_RXLENGTH,
536 TSI108_STAT_RXLENGTH_CARRY,
537 &data->stats.rx_length_errors);
539 data->tmpstats.rx_length_errors +=
540 tsi108_read_stat(data, TSI108_STAT_RXRUNT,
541 TSI108_STAT_CARRY1_RXRUNT,
542 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
544 data->tmpstats.rx_length_errors +=
545 tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
546 TSI108_STAT_CARRY1_RXJUMBO,
547 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
549 data->tmpstats.rx_frame_errors =
550 tsi108_read_stat(data, TSI108_STAT_RXALIGN,
551 TSI108_STAT_CARRY1_RXALIGN,
552 TSI108_STAT_RXALIGN_CARRY,
553 &data->stats.rx_frame_errors);
555 data->tmpstats.rx_frame_errors +=
556 tsi108_read_stat(data, TSI108_STAT_RXFCS,
557 TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
558 &data->rx_fcs);
560 data->tmpstats.rx_frame_errors +=
561 tsi108_read_stat(data, TSI108_STAT_RXFRAG,
562 TSI108_STAT_CARRY1_RXFRAG,
563 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
565 data->tmpstats.rx_missed_errors =
566 tsi108_read_stat(data, TSI108_STAT_RXDROP,
567 TSI108_STAT_CARRY1_RXDROP,
568 TSI108_STAT_RXDROP_CARRY,
569 &data->stats.rx_missed_errors);
571 /* These three are maintained by software. */
572 data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
573 data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
575 data->tmpstats.tx_aborted_errors =
576 tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
577 TSI108_STAT_CARRY2_TXEXDEF,
578 TSI108_STAT_TXEXDEF_CARRY,
579 &data->stats.tx_aborted_errors);
581 data->tmpstats.tx_aborted_errors +=
582 tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
583 TSI108_STAT_CARRY2_TXPAUSE,
584 TSI108_STAT_TXPAUSEDROP_CARRY,
585 &data->tx_pause_drop);
587 data->tmpstats.tx_aborted_errors += excol;
589 data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
590 data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
591 data->tmpstats.rx_crc_errors +
592 data->tmpstats.rx_frame_errors +
593 data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
595 spin_unlock_irq(&data->misclock);
596 return &data->tmpstats;
599 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
601 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
602 TSI108_EC_RXQ_PTRHIGH_VALID);
604 TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
605 | TSI108_EC_RXCTRL_QUEUE0);
608 static void tsi108_restart_tx(struct tsi108_prv_data * data)
610 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
611 TSI108_EC_TXQ_PTRHIGH_VALID);
613 TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
614 TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
617 /* txlock must be held by caller, with IRQs disabled, and
618 * with permission to re-enable them when the lock is dropped.
620 static void tsi108_complete_tx(struct net_device *dev)
622 struct tsi108_prv_data *data = netdev_priv(dev);
623 int tx;
624 struct sk_buff *skb;
625 int release = 0;
627 while (!data->txfree || data->txhead != data->txtail) {
628 tx = data->txtail;
630 if (data->txring[tx].misc & TSI108_TX_OWN)
631 break;
633 skb = data->txskbs[tx];
635 if (!(data->txring[tx].misc & TSI108_TX_OK))
636 printk("%s: bad tx packet, misc %x\n",
637 dev->name, data->txring[tx].misc);
639 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
640 data->txfree++;
642 if (data->txring[tx].misc & TSI108_TX_EOF) {
643 dev_kfree_skb_any(skb);
644 release++;
648 if (release) {
649 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
650 netif_wake_queue(dev);
654 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
656 struct tsi108_prv_data *data = netdev_priv(dev);
657 int frags = skb_shinfo(skb)->nr_frags + 1;
658 int i;
660 if (!data->phy_ok && net_ratelimit())
661 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
663 if (!data->link_up) {
664 printk(KERN_ERR "%s: Transmit while link is down!\n",
665 dev->name);
666 netif_stop_queue(dev);
667 return NETDEV_TX_BUSY;
670 if (data->txfree < MAX_SKB_FRAGS + 1) {
671 netif_stop_queue(dev);
673 if (net_ratelimit())
674 printk(KERN_ERR "%s: Transmit with full tx ring!\n",
675 dev->name);
676 return NETDEV_TX_BUSY;
679 if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
680 netif_stop_queue(dev);
683 spin_lock_irq(&data->txlock);
685 for (i = 0; i < frags; i++) {
686 int misc = 0;
687 int tx = data->txhead;
689 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
690 * the interrupt bit. TX descriptor-complete interrupts are
691 * enabled when the queue fills up, and masked when there is
692 * still free space. This way, when saturating the outbound
693 * link, the tx interrupts are kept to a reasonable level.
694 * When the queue is not full, reclamation of skbs still occurs
695 * as new packets are transmitted, or on a queue-empty
696 * interrupt.
699 if ((tx % TSI108_TX_INT_FREQ == 0) &&
700 ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
701 misc = TSI108_TX_INT;
703 data->txskbs[tx] = skb;
705 if (i == 0) {
706 data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
707 skb->len - skb->data_len, DMA_TO_DEVICE);
708 data->txring[tx].len = skb->len - skb->data_len;
709 misc |= TSI108_TX_SOF;
710 } else {
711 skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
713 data->txring[tx].buf0 =
714 dma_map_page(NULL, frag->page, frag->page_offset,
715 frag->size, DMA_TO_DEVICE);
716 data->txring[tx].len = frag->size;
719 if (i == frags - 1)
720 misc |= TSI108_TX_EOF;
722 if (netif_msg_pktdata(data)) {
723 int i;
724 printk("%s: Tx Frame contents (%d)\n", dev->name,
725 skb->len);
726 for (i = 0; i < skb->len; i++)
727 printk(" %2.2x", skb->data[i]);
728 printk(".\n");
730 data->txring[tx].misc = misc | TSI108_TX_OWN;
732 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
733 data->txfree--;
736 tsi108_complete_tx(dev);
738 /* This must be done after the check for completed tx descriptors,
739 * so that the tail pointer is correct.
742 if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
743 tsi108_restart_tx(data);
745 spin_unlock_irq(&data->txlock);
746 return NETDEV_TX_OK;
749 static int tsi108_complete_rx(struct net_device *dev, int budget)
751 struct tsi108_prv_data *data = netdev_priv(dev);
752 int done = 0;
754 while (data->rxfree && done != budget) {
755 int rx = data->rxtail;
756 struct sk_buff *skb;
758 if (data->rxring[rx].misc & TSI108_RX_OWN)
759 break;
761 skb = data->rxskbs[rx];
762 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
763 data->rxfree--;
764 done++;
766 if (data->rxring[rx].misc & TSI108_RX_BAD) {
767 spin_lock_irq(&data->misclock);
769 if (data->rxring[rx].misc & TSI108_RX_CRC)
770 data->stats.rx_crc_errors++;
771 if (data->rxring[rx].misc & TSI108_RX_OVER)
772 data->stats.rx_fifo_errors++;
774 spin_unlock_irq(&data->misclock);
776 dev_kfree_skb_any(skb);
777 continue;
779 if (netif_msg_pktdata(data)) {
780 int i;
781 printk("%s: Rx Frame contents (%d)\n",
782 dev->name, data->rxring[rx].len);
783 for (i = 0; i < data->rxring[rx].len; i++)
784 printk(" %2.2x", skb->data[i]);
785 printk(".\n");
788 skb_put(skb, data->rxring[rx].len);
789 skb->protocol = eth_type_trans(skb, dev);
790 netif_receive_skb(skb);
793 return done;
796 static int tsi108_refill_rx(struct net_device *dev, int budget)
798 struct tsi108_prv_data *data = netdev_priv(dev);
799 int done = 0;
801 while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
802 int rx = data->rxhead;
803 struct sk_buff *skb;
805 data->rxskbs[rx] = skb = netdev_alloc_skb(dev,
806 TSI108_RXBUF_SIZE + 2);
807 if (!skb)
808 break;
810 skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */
812 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
813 TSI108_RX_SKB_SIZE,
814 DMA_FROM_DEVICE);
816 /* Sometimes the hardware sets blen to zero after packet
817 * reception, even though the manual says that it's only ever
818 * modified by the driver.
821 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
822 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
824 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
825 data->rxfree++;
826 done++;
829 if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
830 TSI108_EC_RXSTAT_QUEUE0))
831 tsi108_restart_rx(data, dev);
833 return done;
836 static int tsi108_poll(struct napi_struct *napi, int budget)
838 struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
839 struct net_device *dev = data->dev;
840 u32 estat = TSI_READ(TSI108_EC_RXESTAT);
841 u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
842 int num_received = 0, num_filled = 0;
844 intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
845 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
847 TSI_WRITE(TSI108_EC_RXESTAT, estat);
848 TSI_WRITE(TSI108_EC_INTSTAT, intstat);
850 if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
851 num_received = tsi108_complete_rx(dev, budget);
853 /* This should normally fill no more slots than the number of
854 * packets received in tsi108_complete_rx(). The exception
855 * is when we previously ran out of memory for RX SKBs. In that
856 * case, it's helpful to obey the budget, not only so that the
857 * CPU isn't hogged, but so that memory (which may still be low)
858 * is not hogged by one device.
860 * A work unit is considered to be two SKBs to allow us to catch
861 * up when the ring has shrunk due to out-of-memory but we're
862 * still removing the full budget's worth of packets each time.
865 if (data->rxfree < TSI108_RXRING_LEN)
866 num_filled = tsi108_refill_rx(dev, budget * 2);
868 if (intstat & TSI108_INT_RXERROR) {
869 u32 err = TSI_READ(TSI108_EC_RXERR);
870 TSI_WRITE(TSI108_EC_RXERR, err);
872 if (err) {
873 if (net_ratelimit())
874 printk(KERN_DEBUG "%s: RX error %x\n",
875 dev->name, err);
877 if (!(TSI_READ(TSI108_EC_RXSTAT) &
878 TSI108_EC_RXSTAT_QUEUE0))
879 tsi108_restart_rx(data, dev);
883 if (intstat & TSI108_INT_RXOVERRUN) {
884 spin_lock_irq(&data->misclock);
885 data->stats.rx_fifo_errors++;
886 spin_unlock_irq(&data->misclock);
889 if (num_received < budget) {
890 data->rxpending = 0;
891 napi_complete(napi);
893 TSI_WRITE(TSI108_EC_INTMASK,
894 TSI_READ(TSI108_EC_INTMASK)
895 & ~(TSI108_INT_RXQUEUE0
896 | TSI108_INT_RXTHRESH |
897 TSI108_INT_RXOVERRUN |
898 TSI108_INT_RXERROR |
899 TSI108_INT_RXWAIT));
900 } else {
901 data->rxpending = 1;
904 return num_received;
907 static void tsi108_rx_int(struct net_device *dev)
909 struct tsi108_prv_data *data = netdev_priv(dev);
911 /* A race could cause dev to already be scheduled, so it's not an
912 * error if that happens (and interrupts shouldn't be re-masked,
913 * because that can cause harmful races, if poll has already
914 * unmasked them but not cleared LINK_STATE_SCHED).
916 * This can happen if this code races with tsi108_poll(), which masks
917 * the interrupts after tsi108_irq_one() read the mask, but before
918 * napi_schedule is called. It could also happen due to calls
919 * from tsi108_check_rxring().
922 if (napi_schedule_prep(&data->napi)) {
923 /* Mask, rather than ack, the receive interrupts. The ack
924 * will happen in tsi108_poll().
927 TSI_WRITE(TSI108_EC_INTMASK,
928 TSI_READ(TSI108_EC_INTMASK) |
929 TSI108_INT_RXQUEUE0
930 | TSI108_INT_RXTHRESH |
931 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
932 TSI108_INT_RXWAIT);
933 __napi_schedule(&data->napi);
934 } else {
935 if (!netif_running(dev)) {
936 /* This can happen if an interrupt occurs while the
937 * interface is being brought down, as the START
938 * bit is cleared before the stop function is called.
940 * In this case, the interrupts must be masked, or
941 * they will continue indefinitely.
943 * There's a race here if the interface is brought down
944 * and then up in rapid succession, as the device could
945 * be made running after the above check and before
946 * the masking below. This will only happen if the IRQ
947 * thread has a lower priority than the task brining
948 * up the interface. Fixing this race would likely
949 * require changes in generic code.
952 TSI_WRITE(TSI108_EC_INTMASK,
953 TSI_READ
954 (TSI108_EC_INTMASK) |
955 TSI108_INT_RXQUEUE0 |
956 TSI108_INT_RXTHRESH |
957 TSI108_INT_RXOVERRUN |
958 TSI108_INT_RXERROR |
959 TSI108_INT_RXWAIT);
964 /* If the RX ring has run out of memory, try periodically
965 * to allocate some more, as otherwise poll would never
966 * get called (apart from the initial end-of-queue condition).
968 * This is called once per second (by default) from the thread.
971 static void tsi108_check_rxring(struct net_device *dev)
973 struct tsi108_prv_data *data = netdev_priv(dev);
975 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
976 * directly, so as to keep the receive path single-threaded
977 * (and thus not needing a lock).
980 if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
981 tsi108_rx_int(dev);
984 static void tsi108_tx_int(struct net_device *dev)
986 struct tsi108_prv_data *data = netdev_priv(dev);
987 u32 estat = TSI_READ(TSI108_EC_TXESTAT);
989 TSI_WRITE(TSI108_EC_TXESTAT, estat);
990 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
991 TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
992 if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
993 u32 err = TSI_READ(TSI108_EC_TXERR);
994 TSI_WRITE(TSI108_EC_TXERR, err);
996 if (err && net_ratelimit())
997 printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
1000 if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1001 spin_lock(&data->txlock);
1002 tsi108_complete_tx(dev);
1003 spin_unlock(&data->txlock);
1008 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1010 struct net_device *dev = dev_id;
1011 struct tsi108_prv_data *data = netdev_priv(dev);
1012 u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1014 if (!(stat & TSI108_INT_ANY))
1015 return IRQ_NONE; /* Not our interrupt */
1017 stat &= ~TSI_READ(TSI108_EC_INTMASK);
1019 if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1020 TSI108_INT_TXERROR))
1021 tsi108_tx_int(dev);
1022 if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1023 TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1024 TSI108_INT_RXERROR))
1025 tsi108_rx_int(dev);
1027 if (stat & TSI108_INT_SFN) {
1028 if (net_ratelimit())
1029 printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1030 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1033 if (stat & TSI108_INT_STATCARRY) {
1034 tsi108_stat_carry(dev);
1035 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1038 return IRQ_HANDLED;
1041 static void tsi108_stop_ethernet(struct net_device *dev)
1043 struct tsi108_prv_data *data = netdev_priv(dev);
1044 int i = 1000;
1045 /* Disable all TX and RX queues ... */
1046 TSI_WRITE(TSI108_EC_TXCTRL, 0);
1047 TSI_WRITE(TSI108_EC_RXCTRL, 0);
1049 /* ...and wait for them to become idle */
1050 while(i--) {
1051 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1052 break;
1053 udelay(10);
1055 i = 1000;
1056 while(i--){
1057 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1058 return;
1059 udelay(10);
1061 printk(KERN_ERR "%s function time out \n", __func__);
1064 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1066 TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1067 udelay(100);
1068 TSI_WRITE(TSI108_MAC_CFG1, 0);
1070 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1071 udelay(100);
1072 TSI_WRITE(TSI108_EC_PORTCTRL,
1073 TSI_READ(TSI108_EC_PORTCTRL) &
1074 ~TSI108_EC_PORTCTRL_STATRST);
1076 TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1077 udelay(100);
1078 TSI_WRITE(TSI108_EC_TXCFG,
1079 TSI_READ(TSI108_EC_TXCFG) &
1080 ~TSI108_EC_TXCFG_RST);
1082 TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1083 udelay(100);
1084 TSI_WRITE(TSI108_EC_RXCFG,
1085 TSI_READ(TSI108_EC_RXCFG) &
1086 ~TSI108_EC_RXCFG_RST);
1088 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1089 TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1090 TSI108_MAC_MII_MGMT_RST);
1091 udelay(100);
1092 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1093 (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1094 ~(TSI108_MAC_MII_MGMT_RST |
1095 TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1098 static int tsi108_get_mac(struct net_device *dev)
1100 struct tsi108_prv_data *data = netdev_priv(dev);
1101 u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1102 u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1104 /* Note that the octets are reversed from what the manual says,
1105 * producing an even weirder ordering...
1107 if (word2 == 0 && word1 == 0) {
1108 dev->dev_addr[0] = 0x00;
1109 dev->dev_addr[1] = 0x06;
1110 dev->dev_addr[2] = 0xd2;
1111 dev->dev_addr[3] = 0x00;
1112 dev->dev_addr[4] = 0x00;
1113 if (0x8 == data->phy)
1114 dev->dev_addr[5] = 0x01;
1115 else
1116 dev->dev_addr[5] = 0x02;
1118 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1120 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1121 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1123 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1124 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1125 } else {
1126 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1127 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1128 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1129 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1130 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1131 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1134 if (!is_valid_ether_addr(dev->dev_addr)) {
1135 printk(KERN_ERR
1136 "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1137 dev->name, word1, word2);
1138 return -EINVAL;
1141 return 0;
1144 static int tsi108_set_mac(struct net_device *dev, void *addr)
1146 struct tsi108_prv_data *data = netdev_priv(dev);
1147 u32 word1, word2;
1148 int i;
1150 if (!is_valid_ether_addr(addr))
1151 return -EINVAL;
1153 for (i = 0; i < 6; i++)
1154 /* +2 is for the offset of the HW addr type */
1155 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1157 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1159 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1160 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1162 spin_lock_irq(&data->misclock);
1163 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1164 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1165 spin_lock(&data->txlock);
1167 if (data->txfree && data->link_up)
1168 netif_wake_queue(dev);
1170 spin_unlock(&data->txlock);
1171 spin_unlock_irq(&data->misclock);
1172 return 0;
1175 /* Protected by dev->xmit_lock. */
1176 static void tsi108_set_rx_mode(struct net_device *dev)
1178 struct tsi108_prv_data *data = netdev_priv(dev);
1179 u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1181 if (dev->flags & IFF_PROMISC) {
1182 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1183 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1184 goto out;
1187 rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1189 if (dev->flags & IFF_ALLMULTI || dev->mc_count) {
1190 int i;
1191 struct dev_mc_list *mc = dev->mc_list;
1192 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1194 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1196 while (mc) {
1197 u32 hash, crc;
1199 if (mc->dmi_addrlen == 6) {
1200 crc = ether_crc(6, mc->dmi_addr);
1201 hash = crc >> 23;
1203 __set_bit(hash, &data->mc_hash[0]);
1204 } else {
1205 printk(KERN_ERR
1206 "%s: got multicast address of length %d instead of 6.\n",
1207 dev->name,
1208 mc->dmi_addrlen);
1211 mc = mc->next;
1214 TSI_WRITE(TSI108_EC_HASHADDR,
1215 TSI108_EC_HASHADDR_AUTOINC |
1216 TSI108_EC_HASHADDR_MCAST);
1218 for (i = 0; i < 16; i++) {
1219 /* The manual says that the hardware may drop
1220 * back-to-back writes to the data register.
1222 udelay(1);
1223 TSI_WRITE(TSI108_EC_HASHDATA,
1224 data->mc_hash[i]);
1228 out:
1229 TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1232 static void tsi108_init_phy(struct net_device *dev)
1234 struct tsi108_prv_data *data = netdev_priv(dev);
1235 u32 i = 0;
1236 u16 phyval = 0;
1237 unsigned long flags;
1239 spin_lock_irqsave(&phy_lock, flags);
1241 tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1242 while (--i) {
1243 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1244 break;
1245 udelay(10);
1247 if (i == 0)
1248 printk(KERN_ERR "%s function time out \n", __func__);
1250 if (data->phy_type == TSI108_PHY_BCM54XX) {
1251 tsi108_write_mii(data, 0x09, 0x0300);
1252 tsi108_write_mii(data, 0x10, 0x1020);
1253 tsi108_write_mii(data, 0x1c, 0x8c00);
1256 tsi108_write_mii(data,
1257 MII_BMCR,
1258 BMCR_ANENABLE | BMCR_ANRESTART);
1259 while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1260 cpu_relax();
1262 /* Set G/MII mode and receive clock select in TBI control #2. The
1263 * second port won't work if this isn't done, even though we don't
1264 * use TBI mode.
1267 tsi108_write_tbi(data, 0x11, 0x30);
1269 /* FIXME: It seems to take more than 2 back-to-back reads to the
1270 * PHY_STAT register before the link up status bit is set.
1273 data->link_up = 0;
1275 while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1276 BMSR_LSTATUS)) {
1277 if (i++ > (MII_READ_DELAY / 10)) {
1278 break;
1280 spin_unlock_irqrestore(&phy_lock, flags);
1281 msleep(10);
1282 spin_lock_irqsave(&phy_lock, flags);
1285 data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1286 printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1287 data->phy_ok = 1;
1288 data->init_media = 1;
1289 spin_unlock_irqrestore(&phy_lock, flags);
1292 static void tsi108_kill_phy(struct net_device *dev)
1294 struct tsi108_prv_data *data = netdev_priv(dev);
1295 unsigned long flags;
1297 spin_lock_irqsave(&phy_lock, flags);
1298 tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1299 data->phy_ok = 0;
1300 spin_unlock_irqrestore(&phy_lock, flags);
1303 static int tsi108_open(struct net_device *dev)
1305 int i;
1306 struct tsi108_prv_data *data = netdev_priv(dev);
1307 unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1308 unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1310 i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1311 if (i != 0) {
1312 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1313 data->id, data->irq_num);
1314 return i;
1315 } else {
1316 dev->irq = data->irq_num;
1317 printk(KERN_NOTICE
1318 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1319 data->id, dev->irq, dev->name);
1322 data->rxring = dma_alloc_coherent(NULL, rxring_size,
1323 &data->rxdma, GFP_KERNEL);
1325 if (!data->rxring) {
1326 printk(KERN_DEBUG
1327 "TSI108_ETH: failed to allocate memory for rxring!\n");
1328 return -ENOMEM;
1329 } else {
1330 memset(data->rxring, 0, rxring_size);
1333 data->txring = dma_alloc_coherent(NULL, txring_size,
1334 &data->txdma, GFP_KERNEL);
1336 if (!data->txring) {
1337 printk(KERN_DEBUG
1338 "TSI108_ETH: failed to allocate memory for txring!\n");
1339 pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1340 return -ENOMEM;
1341 } else {
1342 memset(data->txring, 0, txring_size);
1345 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1346 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1347 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1348 data->rxring[i].vlan = 0;
1351 data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1353 data->rxtail = 0;
1354 data->rxhead = 0;
1356 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1357 struct sk_buff *skb;
1359 skb = netdev_alloc_skb(dev, TSI108_RXBUF_SIZE + NET_IP_ALIGN);
1360 if (!skb) {
1361 /* Bah. No memory for now, but maybe we'll get
1362 * some more later.
1363 * For now, we'll live with the smaller ring.
1365 printk(KERN_WARNING
1366 "%s: Could only allocate %d receive skb(s).\n",
1367 dev->name, i);
1368 data->rxhead = i;
1369 break;
1372 data->rxskbs[i] = skb;
1373 /* Align the payload on a 4-byte boundary */
1374 skb_reserve(skb, 2);
1375 data->rxskbs[i] = skb;
1376 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1377 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1380 data->rxfree = i;
1381 TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1383 for (i = 0; i < TSI108_TXRING_LEN; i++) {
1384 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1385 data->txring[i].misc = 0;
1388 data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1389 data->txtail = 0;
1390 data->txhead = 0;
1391 data->txfree = TSI108_TXRING_LEN;
1392 TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1393 tsi108_init_phy(dev);
1395 napi_enable(&data->napi);
1397 setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1398 mod_timer(&data->timer, jiffies + 1);
1400 tsi108_restart_rx(data, dev);
1402 TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1404 TSI_WRITE(TSI108_EC_INTMASK,
1405 ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1406 TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1407 TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1408 TSI108_INT_SFN | TSI108_INT_STATCARRY));
1410 TSI_WRITE(TSI108_MAC_CFG1,
1411 TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1412 netif_start_queue(dev);
1413 return 0;
1416 static int tsi108_close(struct net_device *dev)
1418 struct tsi108_prv_data *data = netdev_priv(dev);
1420 netif_stop_queue(dev);
1421 napi_disable(&data->napi);
1423 del_timer_sync(&data->timer);
1425 tsi108_stop_ethernet(dev);
1426 tsi108_kill_phy(dev);
1427 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1428 TSI_WRITE(TSI108_MAC_CFG1, 0);
1430 /* Check for any pending TX packets, and drop them. */
1432 while (!data->txfree || data->txhead != data->txtail) {
1433 int tx = data->txtail;
1434 struct sk_buff *skb;
1435 skb = data->txskbs[tx];
1436 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1437 data->txfree++;
1438 dev_kfree_skb(skb);
1441 free_irq(data->irq_num, dev);
1443 /* Discard the RX ring. */
1445 while (data->rxfree) {
1446 int rx = data->rxtail;
1447 struct sk_buff *skb;
1449 skb = data->rxskbs[rx];
1450 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1451 data->rxfree--;
1452 dev_kfree_skb(skb);
1455 dma_free_coherent(0,
1456 TSI108_RXRING_LEN * sizeof(rx_desc),
1457 data->rxring, data->rxdma);
1458 dma_free_coherent(0,
1459 TSI108_TXRING_LEN * sizeof(tx_desc),
1460 data->txring, data->txdma);
1462 return 0;
1465 static void tsi108_init_mac(struct net_device *dev)
1467 struct tsi108_prv_data *data = netdev_priv(dev);
1469 TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1470 TSI108_MAC_CFG2_PADCRC);
1472 TSI_WRITE(TSI108_EC_TXTHRESH,
1473 (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1474 (192 << TSI108_EC_TXTHRESH_STOPFILL));
1476 TSI_WRITE(TSI108_STAT_CARRYMASK1,
1477 ~(TSI108_STAT_CARRY1_RXBYTES |
1478 TSI108_STAT_CARRY1_RXPKTS |
1479 TSI108_STAT_CARRY1_RXFCS |
1480 TSI108_STAT_CARRY1_RXMCAST |
1481 TSI108_STAT_CARRY1_RXALIGN |
1482 TSI108_STAT_CARRY1_RXLENGTH |
1483 TSI108_STAT_CARRY1_RXRUNT |
1484 TSI108_STAT_CARRY1_RXJUMBO |
1485 TSI108_STAT_CARRY1_RXFRAG |
1486 TSI108_STAT_CARRY1_RXJABBER |
1487 TSI108_STAT_CARRY1_RXDROP));
1489 TSI_WRITE(TSI108_STAT_CARRYMASK2,
1490 ~(TSI108_STAT_CARRY2_TXBYTES |
1491 TSI108_STAT_CARRY2_TXPKTS |
1492 TSI108_STAT_CARRY2_TXEXDEF |
1493 TSI108_STAT_CARRY2_TXEXCOL |
1494 TSI108_STAT_CARRY2_TXTCOL |
1495 TSI108_STAT_CARRY2_TXPAUSE));
1497 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1498 TSI_WRITE(TSI108_MAC_CFG1, 0);
1500 TSI_WRITE(TSI108_EC_RXCFG,
1501 TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1503 TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1504 TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1505 TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1506 TSI108_EC_TXQ_CFG_SFNPORT));
1508 TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1509 TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1510 TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1511 TSI108_EC_RXQ_CFG_SFNPORT));
1513 TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1514 TSI108_EC_TXQ_BUFCFG_BURST256 |
1515 TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1516 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1518 TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1519 TSI108_EC_RXQ_BUFCFG_BURST256 |
1520 TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1521 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1523 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1526 static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1528 struct tsi108_prv_data *data = netdev_priv(dev);
1529 unsigned long flags;
1530 int rc;
1532 spin_lock_irqsave(&data->txlock, flags);
1533 rc = mii_ethtool_gset(&data->mii_if, cmd);
1534 spin_unlock_irqrestore(&data->txlock, flags);
1536 return rc;
1539 static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1541 struct tsi108_prv_data *data = netdev_priv(dev);
1542 unsigned long flags;
1543 int rc;
1545 spin_lock_irqsave(&data->txlock, flags);
1546 rc = mii_ethtool_sset(&data->mii_if, cmd);
1547 spin_unlock_irqrestore(&data->txlock, flags);
1549 return rc;
1552 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1554 struct tsi108_prv_data *data = netdev_priv(dev);
1555 if (!netif_running(dev))
1556 return -EINVAL;
1557 return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1560 static const struct ethtool_ops tsi108_ethtool_ops = {
1561 .get_link = ethtool_op_get_link,
1562 .get_settings = tsi108_get_settings,
1563 .set_settings = tsi108_set_settings,
1566 static const struct net_device_ops tsi108_netdev_ops = {
1567 .ndo_open = tsi108_open,
1568 .ndo_stop = tsi108_close,
1569 .ndo_start_xmit = tsi108_send_packet,
1570 .ndo_set_multicast_list = tsi108_set_rx_mode,
1571 .ndo_get_stats = tsi108_get_stats,
1572 .ndo_do_ioctl = tsi108_do_ioctl,
1573 .ndo_set_mac_address = tsi108_set_mac,
1574 .ndo_validate_addr = eth_validate_addr,
1575 .ndo_change_mtu = eth_change_mtu,
1578 static int
1579 tsi108_init_one(struct platform_device *pdev)
1581 struct net_device *dev = NULL;
1582 struct tsi108_prv_data *data = NULL;
1583 hw_info *einfo;
1584 int err = 0;
1586 einfo = pdev->dev.platform_data;
1588 if (NULL == einfo) {
1589 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1590 pdev->id);
1591 return -ENODEV;
1594 /* Create an ethernet device instance */
1596 dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1597 if (!dev) {
1598 printk("tsi108_eth: Could not allocate a device structure\n");
1599 return -ENOMEM;
1602 printk("tsi108_eth%d: probe...\n", pdev->id);
1603 data = netdev_priv(dev);
1604 data->dev = dev;
1606 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1607 pdev->id, einfo->regs, einfo->phyregs,
1608 einfo->phy, einfo->irq_num);
1610 data->regs = ioremap(einfo->regs, 0x400);
1611 if (NULL == data->regs) {
1612 err = -ENOMEM;
1613 goto regs_fail;
1616 data->phyregs = ioremap(einfo->phyregs, 0x400);
1617 if (NULL == data->phyregs) {
1618 err = -ENOMEM;
1619 goto regs_fail;
1621 /* MII setup */
1622 data->mii_if.dev = dev;
1623 data->mii_if.mdio_read = tsi108_mdio_read;
1624 data->mii_if.mdio_write = tsi108_mdio_write;
1625 data->mii_if.phy_id = einfo->phy;
1626 data->mii_if.phy_id_mask = 0x1f;
1627 data->mii_if.reg_num_mask = 0x1f;
1629 data->phy = einfo->phy;
1630 data->phy_type = einfo->phy_type;
1631 data->irq_num = einfo->irq_num;
1632 data->id = pdev->id;
1633 netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1634 dev->netdev_ops = &tsi108_netdev_ops;
1635 dev->ethtool_ops = &tsi108_ethtool_ops;
1637 /* Apparently, the Linux networking code won't use scatter-gather
1638 * if the hardware doesn't do checksums. However, it's faster
1639 * to checksum in place and use SG, as (among other reasons)
1640 * the cache won't be dirtied (which then has to be flushed
1641 * before DMA). The checksumming is done by the driver (via
1642 * a new function skb_csum_dev() in net/core/skbuff.c).
1645 dev->features = NETIF_F_HIGHDMA;
1647 spin_lock_init(&data->txlock);
1648 spin_lock_init(&data->misclock);
1650 tsi108_reset_ether(data);
1651 tsi108_kill_phy(dev);
1653 if ((err = tsi108_get_mac(dev)) != 0) {
1654 printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n",
1655 dev->name);
1656 goto register_fail;
1659 tsi108_init_mac(dev);
1660 err = register_netdev(dev);
1661 if (err) {
1662 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1663 dev->name);
1664 goto register_fail;
1667 platform_set_drvdata(pdev, dev);
1668 printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1669 dev->name, dev->dev_addr);
1670 #ifdef DEBUG
1671 data->msg_enable = DEBUG;
1672 dump_eth_one(dev);
1673 #endif
1675 return 0;
1677 register_fail:
1678 iounmap(data->regs);
1679 iounmap(data->phyregs);
1681 regs_fail:
1682 free_netdev(dev);
1683 return err;
1686 /* There's no way to either get interrupts from the PHY when
1687 * something changes, or to have the Tsi108 automatically communicate
1688 * with the PHY to reconfigure itself.
1690 * Thus, we have to do it using a timer.
1693 static void tsi108_timed_checker(unsigned long dev_ptr)
1695 struct net_device *dev = (struct net_device *)dev_ptr;
1696 struct tsi108_prv_data *data = netdev_priv(dev);
1698 tsi108_check_phy(dev);
1699 tsi108_check_rxring(dev);
1700 mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1703 static int tsi108_ether_init(void)
1705 int ret;
1706 ret = platform_driver_register (&tsi_eth_driver);
1707 if (ret < 0){
1708 printk("tsi108_ether_init: error initializing ethernet "
1709 "device\n");
1710 return ret;
1712 return 0;
1715 static int tsi108_ether_remove(struct platform_device *pdev)
1717 struct net_device *dev = platform_get_drvdata(pdev);
1718 struct tsi108_prv_data *priv = netdev_priv(dev);
1720 unregister_netdev(dev);
1721 tsi108_stop_ethernet(dev);
1722 platform_set_drvdata(pdev, NULL);
1723 iounmap(priv->regs);
1724 iounmap(priv->phyregs);
1725 free_netdev(dev);
1727 return 0;
1729 static void tsi108_ether_exit(void)
1731 platform_driver_unregister(&tsi_eth_driver);
1734 module_init(tsi108_ether_init);
1735 module_exit(tsi108_ether_exit);
1737 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1738 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1739 MODULE_LICENSE("GPL");
1740 MODULE_ALIAS("platform:tsi-ethernet");