Full support for Ginger Console
[linux-ginger.git] / drivers / net / yellowfin.c
blob40ad0dee0406a465bf3bcc15b5c120322e0f81c1
1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2 /*
3 Written 1997-2001 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 It also supports the Symbios Logic version of the same chip core.
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
20 Support and updates available at
21 http://www.scyld.com/network/yellowfin.html
22 [link no longer provides useful info -jgarzik]
26 #define DRV_NAME "yellowfin"
27 #define DRV_VERSION "2.1"
28 #define DRV_RELDATE "Sep 11, 2006"
30 #define PFX DRV_NAME ": "
32 /* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37 static int max_interrupt_work = 20;
38 static int mtu;
39 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
40 /* System-wide count of bogus-rx frames. */
41 static int bogus_rx;
42 static int dma_ctrl = 0x004A0263; /* Constrained by errata */
43 static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
44 #elif defined(YF_NEW) /* A future perfect board :->. */
45 static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
46 static int fifo_cfg = 0x0028;
47 #else
48 static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
49 static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
50 #endif
52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53 Setting to > 1514 effectively disables this feature. */
54 static int rx_copybreak;
56 /* Used to pass the media type, etc.
57 No media types are currently defined. These exist for driver
58 interoperability.
60 #define MAX_UNITS 8 /* More are supported, limit only on options */
61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
64 /* Do ugly workaround for GX server chipset errata. */
65 static int gx_fix;
67 /* Operational parameters that are set at compile time. */
69 /* Keep the ring sizes a power of two for efficiency.
70 Making the Tx ring too long decreases the effectiveness of channel
71 bonding and packet priority.
72 There are no ill effects from too-large receive rings. */
73 #define TX_RING_SIZE 16
74 #define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
75 #define RX_RING_SIZE 64
76 #define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
77 #define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
80 /* Operational parameters that usually are not changed. */
81 /* Time in jiffies before concluding the transmitter is hung. */
82 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
85 #define yellowfin_debug debug
87 #include <linux/module.h>
88 #include <linux/kernel.h>
89 #include <linux/string.h>
90 #include <linux/timer.h>
91 #include <linux/errno.h>
92 #include <linux/ioport.h>
93 #include <linux/slab.h>
94 #include <linux/interrupt.h>
95 #include <linux/pci.h>
96 #include <linux/init.h>
97 #include <linux/mii.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/ethtool.h>
102 #include <linux/crc32.h>
103 #include <linux/bitops.h>
104 #include <asm/uaccess.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/unaligned.h>
107 #include <asm/io.h>
109 /* These identify the driver base version and may not be removed. */
110 static const char version[] __devinitconst =
111 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
112 " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
114 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
115 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
116 MODULE_LICENSE("GPL");
118 module_param(max_interrupt_work, int, 0);
119 module_param(mtu, int, 0);
120 module_param(debug, int, 0);
121 module_param(rx_copybreak, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
124 module_param(gx_fix, int, 0);
125 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
126 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
127 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
128 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
129 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
130 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
131 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
134 Theory of Operation
136 I. Board Compatibility
138 This device driver is designed for the Packet Engines "Yellowfin" Gigabit
139 Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
140 Symbios 53C885E dual function chip.
142 II. Board-specific settings
144 PCI bus devices are configured by the system at boot time, so no jumpers
145 need to be set on the board. The system BIOS preferably should assign the
146 PCI INTA signal to an otherwise unused system IRQ line.
147 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
148 interrupt lines.
150 III. Driver operation
152 IIIa. Ring buffers
154 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
155 This is a descriptor list scheme similar to that used by the EEPro100 and
156 Tulip. This driver uses two statically allocated fixed-size descriptor lists
157 formed into rings by a branch from the final descriptor to the beginning of
158 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
160 The driver allocates full frame size skbuffs for the Rx ring buffers at
161 open() time and passes the skb->data field to the Yellowfin as receive data
162 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
163 a fresh skbuff is allocated and the frame is copied to the new skbuff.
164 When the incoming frame is larger, the skbuff is passed directly up the
165 protocol stack and replaced by a newly allocated skbuff.
167 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
168 using a full-sized skbuff for small frames vs. the copying costs of larger
169 frames. For small frames the copying cost is negligible (esp. considering
170 that we are pre-loading the cache with immediately useful header
171 information). For large frames the copying cost is non-trivial, and the
172 larger copy might flush the cache of useful data.
174 IIIC. Synchronization
176 The driver runs as two independent, single-threaded flows of control. One
177 is the send-packet routine, which enforces single-threaded use by the
178 dev->tbusy flag. The other thread is the interrupt handler, which is single
179 threaded by the hardware and other software.
181 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
182 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
183 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
184 the 'yp->tx_full' flag.
186 The interrupt handler has exclusive control over the Rx ring and records stats
187 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
188 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
189 clears both the tx_full and tbusy flags.
191 IV. Notes
193 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
194 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
195 and an AlphaStation to verifty the Alpha port!
197 IVb. References
199 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
200 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
201 Data Manual v3.0
202 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
203 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
205 IVc. Errata
207 See Packet Engines confidential appendix (prototype chips only).
212 enum capability_flags {
213 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
214 HasMACAddrBug=32, /* Only on early revs. */
215 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
218 /* The PCI I/O space extent. */
219 enum {
220 YELLOWFIN_SIZE = 0x100,
223 struct pci_id_info {
224 const char *name;
225 struct match_info {
226 int pci, pci_mask, subsystem, subsystem_mask;
227 int revision, revision_mask; /* Only 8 bits. */
228 } id;
229 int drv_flags; /* Driver use, intended as capability flags. */
232 static const struct pci_id_info pci_id_tbl[] = {
233 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
234 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
235 {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
236 HasMII | DontUseEeprom },
240 static const struct pci_device_id yellowfin_pci_tbl[] = {
241 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
242 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
245 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
248 /* Offsets to the Yellowfin registers. Various sizes and alignments. */
249 enum yellowfin_offsets {
250 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
251 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
252 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
253 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
254 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
255 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
256 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
257 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
258 MII_Status=0xAE,
259 RxDepth=0xB8, FlowCtrl=0xBC,
260 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
261 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
262 EEFeature=0xF5,
265 /* The Yellowfin Rx and Tx buffer descriptors.
266 Elements are written as 32 bit for endian portability. */
267 struct yellowfin_desc {
268 __le32 dbdma_cmd;
269 __le32 addr;
270 __le32 branch_addr;
271 __le32 result_status;
274 struct tx_status_words {
275 #ifdef __BIG_ENDIAN
276 u16 tx_errs;
277 u16 tx_cnt;
278 u16 paused;
279 u16 total_tx_cnt;
280 #else /* Little endian chips. */
281 u16 tx_cnt;
282 u16 tx_errs;
283 u16 total_tx_cnt;
284 u16 paused;
285 #endif /* __BIG_ENDIAN */
288 /* Bits in yellowfin_desc.cmd */
289 enum desc_cmd_bits {
290 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
291 CMD_NOP=0x60000000, CMD_STOP=0x70000000,
292 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
293 BRANCH_IFTRUE=0x040000,
296 /* Bits in yellowfin_desc.status */
297 enum desc_status_bits { RX_EOP=0x0040, };
299 /* Bits in the interrupt status/mask registers. */
300 enum intr_status_bits {
301 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
302 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
303 IntrEarlyRx=0x100, IntrWakeup=0x200, };
305 #define PRIV_ALIGN 31 /* Required alignment mask */
306 #define MII_CNT 4
307 struct yellowfin_private {
308 /* Descriptor rings first for alignment.
309 Tx requires a second descriptor for status. */
310 struct yellowfin_desc *rx_ring;
311 struct yellowfin_desc *tx_ring;
312 struct sk_buff* rx_skbuff[RX_RING_SIZE];
313 struct sk_buff* tx_skbuff[TX_RING_SIZE];
314 dma_addr_t rx_ring_dma;
315 dma_addr_t tx_ring_dma;
317 struct tx_status_words *tx_status;
318 dma_addr_t tx_status_dma;
320 struct timer_list timer; /* Media selection timer. */
321 /* Frequently used and paired value: keep adjacent for cache effect. */
322 int chip_id, drv_flags;
323 struct pci_dev *pci_dev;
324 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
325 unsigned int rx_buf_sz; /* Based on MTU+slack. */
326 struct tx_status_words *tx_tail_desc;
327 unsigned int cur_tx, dirty_tx;
328 int tx_threshold;
329 unsigned int tx_full:1; /* The Tx queue is full. */
330 unsigned int full_duplex:1; /* Full-duplex operation requested. */
331 unsigned int duplex_lock:1;
332 unsigned int medialock:1; /* Do not sense media. */
333 unsigned int default_port:4; /* Last dev->if_port value. */
334 /* MII transceiver section. */
335 int mii_cnt; /* MII device addresses. */
336 u16 advertising; /* NWay media advertisement */
337 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
338 spinlock_t lock;
339 void __iomem *base;
342 static int read_eeprom(void __iomem *ioaddr, int location);
343 static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
344 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
345 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
346 static int yellowfin_open(struct net_device *dev);
347 static void yellowfin_timer(unsigned long data);
348 static void yellowfin_tx_timeout(struct net_device *dev);
349 static int yellowfin_init_ring(struct net_device *dev);
350 static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
351 struct net_device *dev);
352 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
353 static int yellowfin_rx(struct net_device *dev);
354 static void yellowfin_error(struct net_device *dev, int intr_status);
355 static int yellowfin_close(struct net_device *dev);
356 static void set_rx_mode(struct net_device *dev);
357 static const struct ethtool_ops ethtool_ops;
359 static const struct net_device_ops netdev_ops = {
360 .ndo_open = yellowfin_open,
361 .ndo_stop = yellowfin_close,
362 .ndo_start_xmit = yellowfin_start_xmit,
363 .ndo_set_multicast_list = set_rx_mode,
364 .ndo_change_mtu = eth_change_mtu,
365 .ndo_validate_addr = eth_validate_addr,
366 .ndo_set_mac_address = eth_mac_addr,
367 .ndo_do_ioctl = netdev_ioctl,
368 .ndo_tx_timeout = yellowfin_tx_timeout,
371 static int __devinit yellowfin_init_one(struct pci_dev *pdev,
372 const struct pci_device_id *ent)
374 struct net_device *dev;
375 struct yellowfin_private *np;
376 int irq;
377 int chip_idx = ent->driver_data;
378 static int find_cnt;
379 void __iomem *ioaddr;
380 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
381 int drv_flags = pci_id_tbl[chip_idx].drv_flags;
382 void *ring_space;
383 dma_addr_t ring_dma;
384 #ifdef USE_IO_OPS
385 int bar = 0;
386 #else
387 int bar = 1;
388 #endif
390 /* when built into the kernel, we only print version if device is found */
391 #ifndef MODULE
392 static int printed_version;
393 if (!printed_version++)
394 printk(version);
395 #endif
397 i = pci_enable_device(pdev);
398 if (i) return i;
400 dev = alloc_etherdev(sizeof(*np));
401 if (!dev) {
402 printk (KERN_ERR PFX "cannot allocate ethernet device\n");
403 return -ENOMEM;
405 SET_NETDEV_DEV(dev, &pdev->dev);
407 np = netdev_priv(dev);
409 if (pci_request_regions(pdev, DRV_NAME))
410 goto err_out_free_netdev;
412 pci_set_master (pdev);
414 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
415 if (!ioaddr)
416 goto err_out_free_res;
418 irq = pdev->irq;
420 if (drv_flags & DontUseEeprom)
421 for (i = 0; i < 6; i++)
422 dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
423 else {
424 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
425 for (i = 0; i < 6; i++)
426 dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
429 /* Reset the chip. */
430 iowrite32(0x80000000, ioaddr + DMACtrl);
432 dev->base_addr = (unsigned long)ioaddr;
433 dev->irq = irq;
435 pci_set_drvdata(pdev, dev);
436 spin_lock_init(&np->lock);
438 np->pci_dev = pdev;
439 np->chip_id = chip_idx;
440 np->drv_flags = drv_flags;
441 np->base = ioaddr;
443 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
444 if (!ring_space)
445 goto err_out_cleardev;
446 np->tx_ring = (struct yellowfin_desc *)ring_space;
447 np->tx_ring_dma = ring_dma;
449 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
450 if (!ring_space)
451 goto err_out_unmap_tx;
452 np->rx_ring = (struct yellowfin_desc *)ring_space;
453 np->rx_ring_dma = ring_dma;
455 ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
456 if (!ring_space)
457 goto err_out_unmap_rx;
458 np->tx_status = (struct tx_status_words *)ring_space;
459 np->tx_status_dma = ring_dma;
461 if (dev->mem_start)
462 option = dev->mem_start;
464 /* The lower four bits are the media type. */
465 if (option > 0) {
466 if (option & 0x200)
467 np->full_duplex = 1;
468 np->default_port = option & 15;
469 if (np->default_port)
470 np->medialock = 1;
472 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
473 np->full_duplex = 1;
475 if (np->full_duplex)
476 np->duplex_lock = 1;
478 /* The Yellowfin-specific entries in the device structure. */
479 dev->netdev_ops = &netdev_ops;
480 SET_ETHTOOL_OPS(dev, &ethtool_ops);
481 dev->watchdog_timeo = TX_TIMEOUT;
483 if (mtu)
484 dev->mtu = mtu;
486 i = register_netdev(dev);
487 if (i)
488 goto err_out_unmap_status;
490 printk(KERN_INFO "%s: %s type %8x at %p, %pM, IRQ %d.\n",
491 dev->name, pci_id_tbl[chip_idx].name,
492 ioread32(ioaddr + ChipRev), ioaddr,
493 dev->dev_addr, irq);
495 if (np->drv_flags & HasMII) {
496 int phy, phy_idx = 0;
497 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
498 int mii_status = mdio_read(ioaddr, phy, 1);
499 if (mii_status != 0xffff && mii_status != 0x0000) {
500 np->phys[phy_idx++] = phy;
501 np->advertising = mdio_read(ioaddr, phy, 4);
502 printk(KERN_INFO "%s: MII PHY found at address %d, status "
503 "0x%4.4x advertising %4.4x.\n",
504 dev->name, phy, mii_status, np->advertising);
507 np->mii_cnt = phy_idx;
510 find_cnt++;
512 return 0;
514 err_out_unmap_status:
515 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
516 np->tx_status_dma);
517 err_out_unmap_rx:
518 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
519 err_out_unmap_tx:
520 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
521 err_out_cleardev:
522 pci_set_drvdata(pdev, NULL);
523 pci_iounmap(pdev, ioaddr);
524 err_out_free_res:
525 pci_release_regions(pdev);
526 err_out_free_netdev:
527 free_netdev (dev);
528 return -ENODEV;
531 static int __devinit read_eeprom(void __iomem *ioaddr, int location)
533 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
535 iowrite8(location, ioaddr + EEAddr);
536 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
537 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
539 return ioread8(ioaddr + EERead);
542 /* MII Managemen Data I/O accesses.
543 These routines assume the MDIO controller is idle, and do not exit until
544 the command is finished. */
546 static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
548 int i;
550 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
551 iowrite16(1, ioaddr + MII_Cmd);
552 for (i = 10000; i >= 0; i--)
553 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
554 break;
555 return ioread16(ioaddr + MII_Rd_Data);
558 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
560 int i;
562 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
563 iowrite16(value, ioaddr + MII_Wr_Data);
565 /* Wait for the command to finish. */
566 for (i = 10000; i >= 0; i--)
567 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
568 break;
569 return;
573 static int yellowfin_open(struct net_device *dev)
575 struct yellowfin_private *yp = netdev_priv(dev);
576 void __iomem *ioaddr = yp->base;
577 int i, ret;
579 /* Reset the chip. */
580 iowrite32(0x80000000, ioaddr + DMACtrl);
582 ret = request_irq(dev->irq, &yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
583 if (ret)
584 return ret;
586 if (yellowfin_debug > 1)
587 printk(KERN_DEBUG "%s: yellowfin_open() irq %d.\n",
588 dev->name, dev->irq);
590 ret = yellowfin_init_ring(dev);
591 if (ret) {
592 free_irq(dev->irq, dev);
593 return ret;
596 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
597 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
599 for (i = 0; i < 6; i++)
600 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
602 /* Set up various condition 'select' registers.
603 There are no options here. */
604 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
605 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
606 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
607 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
608 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
609 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
611 /* Initialize other registers: with so many this eventually this will
612 converted to an offset/value list. */
613 iowrite32(dma_ctrl, ioaddr + DMACtrl);
614 iowrite16(fifo_cfg, ioaddr + FIFOcfg);
615 /* Enable automatic generation of flow control frames, period 0xffff. */
616 iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
618 yp->tx_threshold = 32;
619 iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
621 if (dev->if_port == 0)
622 dev->if_port = yp->default_port;
624 netif_start_queue(dev);
626 /* Setting the Rx mode will start the Rx process. */
627 if (yp->drv_flags & IsGigabit) {
628 /* We are always in full-duplex mode with gigabit! */
629 yp->full_duplex = 1;
630 iowrite16(0x01CF, ioaddr + Cnfg);
631 } else {
632 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
633 iowrite16(0x1018, ioaddr + FrameGap1);
634 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
636 set_rx_mode(dev);
638 /* Enable interrupts by setting the interrupt mask. */
639 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
640 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
641 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
642 iowrite32(0x80008000, ioaddr + TxCtrl);
644 if (yellowfin_debug > 2) {
645 printk(KERN_DEBUG "%s: Done yellowfin_open().\n",
646 dev->name);
649 /* Set the timer to check for link beat. */
650 init_timer(&yp->timer);
651 yp->timer.expires = jiffies + 3*HZ;
652 yp->timer.data = (unsigned long)dev;
653 yp->timer.function = &yellowfin_timer; /* timer handler */
654 add_timer(&yp->timer);
656 return 0;
659 static void yellowfin_timer(unsigned long data)
661 struct net_device *dev = (struct net_device *)data;
662 struct yellowfin_private *yp = netdev_priv(dev);
663 void __iomem *ioaddr = yp->base;
664 int next_tick = 60*HZ;
666 if (yellowfin_debug > 3) {
667 printk(KERN_DEBUG "%s: Yellowfin timer tick, status %8.8x.\n",
668 dev->name, ioread16(ioaddr + IntrStatus));
671 if (yp->mii_cnt) {
672 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
673 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
674 int negotiated = lpa & yp->advertising;
675 if (yellowfin_debug > 1)
676 printk(KERN_DEBUG "%s: MII #%d status register is %4.4x, "
677 "link partner capability %4.4x.\n",
678 dev->name, yp->phys[0], bmsr, lpa);
680 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
682 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
684 if (bmsr & BMSR_LSTATUS)
685 next_tick = 60*HZ;
686 else
687 next_tick = 3*HZ;
690 yp->timer.expires = jiffies + next_tick;
691 add_timer(&yp->timer);
694 static void yellowfin_tx_timeout(struct net_device *dev)
696 struct yellowfin_private *yp = netdev_priv(dev);
697 void __iomem *ioaddr = yp->base;
699 printk(KERN_WARNING "%s: Yellowfin transmit timed out at %d/%d Tx "
700 "status %4.4x, Rx status %4.4x, resetting...\n",
701 dev->name, yp->cur_tx, yp->dirty_tx,
702 ioread32(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
704 /* Note: these should be KERN_DEBUG. */
705 if (yellowfin_debug) {
706 int i;
707 printk(KERN_WARNING " Rx ring %p: ", yp->rx_ring);
708 for (i = 0; i < RX_RING_SIZE; i++)
709 printk(KERN_CONT " %8.8x",
710 yp->rx_ring[i].result_status);
711 printk(KERN_CONT "\n");
712 printk(KERN_WARNING" Tx ring %p: ", yp->tx_ring);
713 for (i = 0; i < TX_RING_SIZE; i++)
714 printk(KERN_CONT " %4.4x /%8.8x",
715 yp->tx_status[i].tx_errs,
716 yp->tx_ring[i].result_status);
717 printk(KERN_CONT "\n");
720 /* If the hardware is found to hang regularly, we will update the code
721 to reinitialize the chip here. */
722 dev->if_port = 0;
724 /* Wake the potentially-idle transmit channel. */
725 iowrite32(0x10001000, yp->base + TxCtrl);
726 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
727 netif_wake_queue (dev); /* Typical path */
729 dev->trans_start = jiffies; /* prevent tx timeout */
730 dev->stats.tx_errors++;
733 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
734 static int yellowfin_init_ring(struct net_device *dev)
736 struct yellowfin_private *yp = netdev_priv(dev);
737 int i, j;
739 yp->tx_full = 0;
740 yp->cur_rx = yp->cur_tx = 0;
741 yp->dirty_tx = 0;
743 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
745 for (i = 0; i < RX_RING_SIZE; i++) {
746 yp->rx_ring[i].dbdma_cmd =
747 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
748 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
749 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
752 for (i = 0; i < RX_RING_SIZE; i++) {
753 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
754 yp->rx_skbuff[i] = skb;
755 if (skb == NULL)
756 break;
757 skb->dev = dev; /* Mark as being used by this device. */
758 skb_reserve(skb, 2); /* 16 byte align the IP header. */
759 yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
760 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
762 if (i != RX_RING_SIZE) {
763 for (j = 0; j < i; j++)
764 dev_kfree_skb(yp->rx_skbuff[j]);
765 return -ENOMEM;
767 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
768 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
770 #define NO_TXSTATS
771 #ifdef NO_TXSTATS
772 /* In this mode the Tx ring needs only a single descriptor. */
773 for (i = 0; i < TX_RING_SIZE; i++) {
774 yp->tx_skbuff[i] = NULL;
775 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
776 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
777 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
779 /* Wrap ring */
780 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
781 #else
783 /* Tx ring needs a pair of descriptors, the second for the status. */
784 for (i = 0; i < TX_RING_SIZE; i++) {
785 j = 2*i;
786 yp->tx_skbuff[i] = 0;
787 /* Branch on Tx error. */
788 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
789 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
790 (j+1)*sizeof(struct yellowfin_desc));
791 j++;
792 if (yp->flags & FullTxStatus) {
793 yp->tx_ring[j].dbdma_cmd =
794 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
795 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
796 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
797 i*sizeof(struct tx_status_words));
798 } else {
799 /* Symbios chips write only tx_errs word. */
800 yp->tx_ring[j].dbdma_cmd =
801 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
802 yp->tx_ring[j].request_cnt = 2;
803 /* Om pade ummmmm... */
804 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
805 i*sizeof(struct tx_status_words) +
806 &(yp->tx_status[0].tx_errs) -
807 &(yp->tx_status[0]));
809 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
810 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
812 /* Wrap ring */
813 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
815 #endif
816 yp->tx_tail_desc = &yp->tx_status[0];
817 return 0;
820 static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
821 struct net_device *dev)
823 struct yellowfin_private *yp = netdev_priv(dev);
824 unsigned entry;
825 int len = skb->len;
827 netif_stop_queue (dev);
829 /* Note: Ordering is important here, set the field with the
830 "ownership" bit last, and only then increment cur_tx. */
832 /* Calculate the next Tx descriptor entry. */
833 entry = yp->cur_tx % TX_RING_SIZE;
835 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
836 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
837 /* Fix GX chipset errata. */
838 if (cacheline_end > 24 || cacheline_end == 0) {
839 len = skb->len + 32 - cacheline_end + 1;
840 if (skb_padto(skb, len)) {
841 yp->tx_skbuff[entry] = NULL;
842 netif_wake_queue(dev);
843 return NETDEV_TX_OK;
847 yp->tx_skbuff[entry] = skb;
849 #ifdef NO_TXSTATS
850 yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
851 skb->data, len, PCI_DMA_TODEVICE));
852 yp->tx_ring[entry].result_status = 0;
853 if (entry >= TX_RING_SIZE-1) {
854 /* New stop command. */
855 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
856 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
857 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
858 } else {
859 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
860 yp->tx_ring[entry].dbdma_cmd =
861 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
863 yp->cur_tx++;
864 #else
865 yp->tx_ring[entry<<1].request_cnt = len;
866 yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
867 skb->data, len, PCI_DMA_TODEVICE));
868 /* The input_last (status-write) command is constant, but we must
869 rewrite the subsequent 'stop' command. */
871 yp->cur_tx++;
873 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
874 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
876 /* Final step -- overwrite the old 'stop' command. */
878 yp->tx_ring[entry<<1].dbdma_cmd =
879 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
880 CMD_TX_PKT | BRANCH_IFTRUE) | len);
881 #endif
883 /* Non-x86 Todo: explicitly flush cache lines here. */
885 /* Wake the potentially-idle transmit channel. */
886 iowrite32(0x10001000, yp->base + TxCtrl);
888 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
889 netif_start_queue (dev); /* Typical path */
890 else
891 yp->tx_full = 1;
893 if (yellowfin_debug > 4) {
894 printk(KERN_DEBUG "%s: Yellowfin transmit frame #%d queued in slot %d.\n",
895 dev->name, yp->cur_tx, entry);
897 return NETDEV_TX_OK;
900 /* The interrupt handler does all of the Rx thread work and cleans up
901 after the Tx thread. */
902 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
904 struct net_device *dev = dev_instance;
905 struct yellowfin_private *yp;
906 void __iomem *ioaddr;
907 int boguscnt = max_interrupt_work;
908 unsigned int handled = 0;
910 yp = netdev_priv(dev);
911 ioaddr = yp->base;
913 spin_lock (&yp->lock);
915 do {
916 u16 intr_status = ioread16(ioaddr + IntrClear);
918 if (yellowfin_debug > 4)
919 printk(KERN_DEBUG "%s: Yellowfin interrupt, status %4.4x.\n",
920 dev->name, intr_status);
922 if (intr_status == 0)
923 break;
924 handled = 1;
926 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
927 yellowfin_rx(dev);
928 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
931 #ifdef NO_TXSTATS
932 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
933 int entry = yp->dirty_tx % TX_RING_SIZE;
934 struct sk_buff *skb;
936 if (yp->tx_ring[entry].result_status == 0)
937 break;
938 skb = yp->tx_skbuff[entry];
939 dev->stats.tx_packets++;
940 dev->stats.tx_bytes += skb->len;
941 /* Free the original skb. */
942 pci_unmap_single(yp->pci_dev, le32_to_cpu(yp->tx_ring[entry].addr),
943 skb->len, PCI_DMA_TODEVICE);
944 dev_kfree_skb_irq(skb);
945 yp->tx_skbuff[entry] = NULL;
947 if (yp->tx_full
948 && yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
949 /* The ring is no longer full, clear tbusy. */
950 yp->tx_full = 0;
951 netif_wake_queue(dev);
953 #else
954 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
955 unsigned dirty_tx = yp->dirty_tx;
957 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
958 dirty_tx++) {
959 /* Todo: optimize this. */
960 int entry = dirty_tx % TX_RING_SIZE;
961 u16 tx_errs = yp->tx_status[entry].tx_errs;
962 struct sk_buff *skb;
964 #ifndef final_version
965 if (yellowfin_debug > 5)
966 printk(KERN_DEBUG "%s: Tx queue %d check, Tx status "
967 "%4.4x %4.4x %4.4x %4.4x.\n",
968 dev->name, entry,
969 yp->tx_status[entry].tx_cnt,
970 yp->tx_status[entry].tx_errs,
971 yp->tx_status[entry].total_tx_cnt,
972 yp->tx_status[entry].paused);
973 #endif
974 if (tx_errs == 0)
975 break; /* It still hasn't been Txed */
976 skb = yp->tx_skbuff[entry];
977 if (tx_errs & 0xF810) {
978 /* There was an major error, log it. */
979 #ifndef final_version
980 if (yellowfin_debug > 1)
981 printk(KERN_DEBUG "%s: Transmit error, Tx status %4.4x.\n",
982 dev->name, tx_errs);
983 #endif
984 dev->stats.tx_errors++;
985 if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
986 if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
987 if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
988 if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
989 } else {
990 #ifndef final_version
991 if (yellowfin_debug > 4)
992 printk(KERN_DEBUG "%s: Normal transmit, Tx status %4.4x.\n",
993 dev->name, tx_errs);
994 #endif
995 dev->stats.tx_bytes += skb->len;
996 dev->stats.collisions += tx_errs & 15;
997 dev->stats.tx_packets++;
999 /* Free the original skb. */
1000 pci_unmap_single(yp->pci_dev,
1001 yp->tx_ring[entry<<1].addr, skb->len,
1002 PCI_DMA_TODEVICE);
1003 dev_kfree_skb_irq(skb);
1004 yp->tx_skbuff[entry] = 0;
1005 /* Mark status as empty. */
1006 yp->tx_status[entry].tx_errs = 0;
1009 #ifndef final_version
1010 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
1011 printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1012 dev->name, dirty_tx, yp->cur_tx, yp->tx_full);
1013 dirty_tx += TX_RING_SIZE;
1015 #endif
1017 if (yp->tx_full
1018 && yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1019 /* The ring is no longer full, clear tbusy. */
1020 yp->tx_full = 0;
1021 netif_wake_queue(dev);
1024 yp->dirty_tx = dirty_tx;
1025 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1027 #endif
1029 /* Log errors and other uncommon events. */
1030 if (intr_status & 0x2ee) /* Abnormal error summary. */
1031 yellowfin_error(dev, intr_status);
1033 if (--boguscnt < 0) {
1034 printk(KERN_WARNING "%s: Too much work at interrupt, "
1035 "status=0x%4.4x.\n",
1036 dev->name, intr_status);
1037 break;
1039 } while (1);
1041 if (yellowfin_debug > 3)
1042 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1043 dev->name, ioread16(ioaddr + IntrStatus));
1045 spin_unlock (&yp->lock);
1046 return IRQ_RETVAL(handled);
1049 /* This routine is logically part of the interrupt handler, but separated
1050 for clarity and better register allocation. */
1051 static int yellowfin_rx(struct net_device *dev)
1053 struct yellowfin_private *yp = netdev_priv(dev);
1054 int entry = yp->cur_rx % RX_RING_SIZE;
1055 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1057 if (yellowfin_debug > 4) {
1058 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %8.8x.\n",
1059 entry, yp->rx_ring[entry].result_status);
1060 printk(KERN_DEBUG " #%d desc. %8.8x %8.8x %8.8x.\n",
1061 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1062 yp->rx_ring[entry].result_status);
1065 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1066 while (1) {
1067 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1068 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1069 s16 frame_status;
1070 u16 desc_status;
1071 int data_size;
1072 u8 *buf_addr;
1074 if(!desc->result_status)
1075 break;
1076 pci_dma_sync_single_for_cpu(yp->pci_dev, le32_to_cpu(desc->addr),
1077 yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1078 desc_status = le32_to_cpu(desc->result_status) >> 16;
1079 buf_addr = rx_skb->data;
1080 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1081 le32_to_cpu(desc->result_status)) & 0xffff;
1082 frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1083 if (yellowfin_debug > 4)
1084 printk(KERN_DEBUG " yellowfin_rx() status was %4.4x.\n",
1085 frame_status);
1086 if (--boguscnt < 0)
1087 break;
1088 if ( ! (desc_status & RX_EOP)) {
1089 if (data_size != 0)
1090 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned multiple buffers,"
1091 " status %4.4x, data_size %d!\n", dev->name, desc_status, data_size);
1092 dev->stats.rx_length_errors++;
1093 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1094 /* There was a error. */
1095 if (yellowfin_debug > 3)
1096 printk(KERN_DEBUG " yellowfin_rx() Rx error was %4.4x.\n",
1097 frame_status);
1098 dev->stats.rx_errors++;
1099 if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1100 if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1101 if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1102 if (frame_status < 0) dev->stats.rx_dropped++;
1103 } else if ( !(yp->drv_flags & IsGigabit) &&
1104 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1105 u8 status1 = buf_addr[data_size-2];
1106 u8 status2 = buf_addr[data_size-1];
1107 dev->stats.rx_errors++;
1108 if (status1 & 0xC0) dev->stats.rx_length_errors++;
1109 if (status2 & 0x03) dev->stats.rx_frame_errors++;
1110 if (status2 & 0x04) dev->stats.rx_crc_errors++;
1111 if (status2 & 0x80) dev->stats.rx_dropped++;
1112 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1113 } else if ((yp->flags & HasMACAddrBug) &&
1114 memcmp(le32_to_cpu(yp->rx_ring_dma +
1115 entry*sizeof(struct yellowfin_desc)),
1116 dev->dev_addr, 6) != 0 &&
1117 memcmp(le32_to_cpu(yp->rx_ring_dma +
1118 entry*sizeof(struct yellowfin_desc)),
1119 "\377\377\377\377\377\377", 6) != 0) {
1120 if (bogus_rx++ == 0)
1121 printk(KERN_WARNING "%s: Bad frame to %pM\n",
1122 dev->name, buf_addr);
1123 #endif
1124 } else {
1125 struct sk_buff *skb;
1126 int pkt_len = data_size -
1127 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1128 /* To verify: Yellowfin Length should omit the CRC! */
1130 #ifndef final_version
1131 if (yellowfin_debug > 4)
1132 printk(KERN_DEBUG " yellowfin_rx() normal Rx pkt length %d"
1133 " of %d, bogus_cnt %d.\n",
1134 pkt_len, data_size, boguscnt);
1135 #endif
1136 /* Check if the packet is long enough to just pass up the skbuff
1137 without copying to a properly sized skbuff. */
1138 if (pkt_len > rx_copybreak) {
1139 skb_put(skb = rx_skb, pkt_len);
1140 pci_unmap_single(yp->pci_dev,
1141 le32_to_cpu(yp->rx_ring[entry].addr),
1142 yp->rx_buf_sz,
1143 PCI_DMA_FROMDEVICE);
1144 yp->rx_skbuff[entry] = NULL;
1145 } else {
1146 skb = dev_alloc_skb(pkt_len + 2);
1147 if (skb == NULL)
1148 break;
1149 skb_reserve(skb, 2); /* 16 byte align the IP header */
1150 skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1151 skb_put(skb, pkt_len);
1152 pci_dma_sync_single_for_device(yp->pci_dev,
1153 le32_to_cpu(desc->addr),
1154 yp->rx_buf_sz,
1155 PCI_DMA_FROMDEVICE);
1157 skb->protocol = eth_type_trans(skb, dev);
1158 netif_rx(skb);
1159 dev->stats.rx_packets++;
1160 dev->stats.rx_bytes += pkt_len;
1162 entry = (++yp->cur_rx) % RX_RING_SIZE;
1165 /* Refill the Rx ring buffers. */
1166 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1167 entry = yp->dirty_rx % RX_RING_SIZE;
1168 if (yp->rx_skbuff[entry] == NULL) {
1169 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
1170 if (skb == NULL)
1171 break; /* Better luck next round. */
1172 yp->rx_skbuff[entry] = skb;
1173 skb->dev = dev; /* Mark as being used by this device. */
1174 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1175 yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1176 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1178 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1179 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1180 if (entry != 0)
1181 yp->rx_ring[entry - 1].dbdma_cmd =
1182 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1183 else
1184 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1185 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1186 | yp->rx_buf_sz);
1189 return 0;
1192 static void yellowfin_error(struct net_device *dev, int intr_status)
1194 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1195 dev->name, intr_status);
1196 /* Hmmmmm, it's not clear what to do here. */
1197 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1198 dev->stats.tx_errors++;
1199 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1200 dev->stats.rx_errors++;
1203 static int yellowfin_close(struct net_device *dev)
1205 struct yellowfin_private *yp = netdev_priv(dev);
1206 void __iomem *ioaddr = yp->base;
1207 int i;
1209 netif_stop_queue (dev);
1211 if (yellowfin_debug > 1) {
1212 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x "
1213 "Rx %4.4x Int %2.2x.\n",
1214 dev->name, ioread16(ioaddr + TxStatus),
1215 ioread16(ioaddr + RxStatus),
1216 ioread16(ioaddr + IntrStatus));
1217 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1218 dev->name, yp->cur_tx, yp->dirty_tx, yp->cur_rx, yp->dirty_rx);
1221 /* Disable interrupts by clearing the interrupt mask. */
1222 iowrite16(0x0000, ioaddr + IntrEnb);
1224 /* Stop the chip's Tx and Rx processes. */
1225 iowrite32(0x80000000, ioaddr + RxCtrl);
1226 iowrite32(0x80000000, ioaddr + TxCtrl);
1228 del_timer(&yp->timer);
1230 #if defined(__i386__)
1231 if (yellowfin_debug > 2) {
1232 printk(KERN_DEBUG" Tx ring at %8.8llx:\n",
1233 (unsigned long long)yp->tx_ring_dma);
1234 for (i = 0; i < TX_RING_SIZE*2; i++)
1235 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x %8.8x %8.8x.\n",
1236 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1237 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1238 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1239 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1240 for (i = 0; i < TX_RING_SIZE; i++)
1241 printk(KERN_DEBUG " #%d status %4.4x %4.4x %4.4x %4.4x.\n",
1242 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1243 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1245 printk(KERN_DEBUG " Rx ring %8.8llx:\n",
1246 (unsigned long long)yp->rx_ring_dma);
1247 for (i = 0; i < RX_RING_SIZE; i++) {
1248 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x %8.8x\n",
1249 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1250 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1251 yp->rx_ring[i].result_status);
1252 if (yellowfin_debug > 6) {
1253 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1254 int j;
1255 for (j = 0; j < 0x50; j++)
1256 printk(" %4.4x",
1257 get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1258 printk("\n");
1263 #endif /* __i386__ debugging only */
1265 free_irq(dev->irq, dev);
1267 /* Free all the skbuffs in the Rx queue. */
1268 for (i = 0; i < RX_RING_SIZE; i++) {
1269 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1270 yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1271 if (yp->rx_skbuff[i]) {
1272 dev_kfree_skb(yp->rx_skbuff[i]);
1274 yp->rx_skbuff[i] = NULL;
1276 for (i = 0; i < TX_RING_SIZE; i++) {
1277 if (yp->tx_skbuff[i])
1278 dev_kfree_skb(yp->tx_skbuff[i]);
1279 yp->tx_skbuff[i] = NULL;
1282 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1283 if (yellowfin_debug > 0) {
1284 printk(KERN_DEBUG "%s: Received %d frames that we should not have.\n",
1285 dev->name, bogus_rx);
1287 #endif
1289 return 0;
1292 /* Set or clear the multicast filter for this adaptor. */
1294 static void set_rx_mode(struct net_device *dev)
1296 struct yellowfin_private *yp = netdev_priv(dev);
1297 void __iomem *ioaddr = yp->base;
1298 u16 cfg_value = ioread16(ioaddr + Cnfg);
1300 /* Stop the Rx process to change any value. */
1301 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1302 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1303 iowrite16(0x000F, ioaddr + AddrMode);
1304 } else if ((dev->mc_count > 64) || (dev->flags & IFF_ALLMULTI)) {
1305 /* Too many to filter well, or accept all multicasts. */
1306 iowrite16(0x000B, ioaddr + AddrMode);
1307 } else if (dev->mc_count > 0) { /* Must use the multicast hash table. */
1308 struct dev_mc_list *mclist;
1309 u16 hash_table[4];
1310 int i;
1311 memset(hash_table, 0, sizeof(hash_table));
1312 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1313 i++, mclist = mclist->next) {
1314 unsigned int bit;
1316 /* Due to a bug in the early chip versions, multiple filter
1317 slots must be set for each address. */
1318 if (yp->drv_flags & HasMulticastBug) {
1319 bit = (ether_crc_le(3, mclist->dmi_addr) >> 3) & 0x3f;
1320 hash_table[bit >> 4] |= (1 << bit);
1321 bit = (ether_crc_le(4, mclist->dmi_addr) >> 3) & 0x3f;
1322 hash_table[bit >> 4] |= (1 << bit);
1323 bit = (ether_crc_le(5, mclist->dmi_addr) >> 3) & 0x3f;
1324 hash_table[bit >> 4] |= (1 << bit);
1326 bit = (ether_crc_le(6, mclist->dmi_addr) >> 3) & 0x3f;
1327 hash_table[bit >> 4] |= (1 << bit);
1329 /* Copy the hash table to the chip. */
1330 for (i = 0; i < 4; i++)
1331 iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1332 iowrite16(0x0003, ioaddr + AddrMode);
1333 } else { /* Normal, unicast/broadcast-only mode. */
1334 iowrite16(0x0001, ioaddr + AddrMode);
1336 /* Restart the Rx process. */
1337 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1340 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1342 struct yellowfin_private *np = netdev_priv(dev);
1343 strcpy(info->driver, DRV_NAME);
1344 strcpy(info->version, DRV_VERSION);
1345 strcpy(info->bus_info, pci_name(np->pci_dev));
1348 static const struct ethtool_ops ethtool_ops = {
1349 .get_drvinfo = yellowfin_get_drvinfo
1352 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1354 struct yellowfin_private *np = netdev_priv(dev);
1355 void __iomem *ioaddr = np->base;
1356 struct mii_ioctl_data *data = if_mii(rq);
1358 switch(cmd) {
1359 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1360 data->phy_id = np->phys[0] & 0x1f;
1361 /* Fall Through */
1363 case SIOCGMIIREG: /* Read MII PHY register. */
1364 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1365 return 0;
1367 case SIOCSMIIREG: /* Write MII PHY register. */
1368 if (data->phy_id == np->phys[0]) {
1369 u16 value = data->val_in;
1370 switch (data->reg_num) {
1371 case 0:
1372 /* Check for autonegotiation on or reset. */
1373 np->medialock = (value & 0x9000) ? 0 : 1;
1374 if (np->medialock)
1375 np->full_duplex = (value & 0x0100) ? 1 : 0;
1376 break;
1377 case 4: np->advertising = value; break;
1379 /* Perhaps check_duplex(dev), depending on chip semantics. */
1381 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1382 return 0;
1383 default:
1384 return -EOPNOTSUPP;
1389 static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1391 struct net_device *dev = pci_get_drvdata(pdev);
1392 struct yellowfin_private *np;
1394 BUG_ON(!dev);
1395 np = netdev_priv(dev);
1397 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1398 np->tx_status_dma);
1399 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1400 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1401 unregister_netdev (dev);
1403 pci_iounmap(pdev, np->base);
1405 pci_release_regions (pdev);
1407 free_netdev (dev);
1408 pci_set_drvdata(pdev, NULL);
1412 static struct pci_driver yellowfin_driver = {
1413 .name = DRV_NAME,
1414 .id_table = yellowfin_pci_tbl,
1415 .probe = yellowfin_init_one,
1416 .remove = __devexit_p(yellowfin_remove_one),
1420 static int __init yellowfin_init (void)
1422 /* when a module, this is printed whether or not devices are found in probe */
1423 #ifdef MODULE
1424 printk(version);
1425 #endif
1426 return pci_register_driver(&yellowfin_driver);
1430 static void __exit yellowfin_cleanup (void)
1432 pci_unregister_driver (&yellowfin_driver);
1436 module_init(yellowfin_init);
1437 module_exit(yellowfin_cleanup);