Full support for Ginger Console
[linux-ginger.git] / drivers / usb / musb / cppi_dma.c
blobc3577bbbae6c76722b5d9e7699f6045c8baf6cbc
1 /*
2 * Copyright (C) 2005-2006 by Texas Instruments
4 * This file implements a DMA interface using TI's CPPI DMA.
5 * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
6 * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
7 */
9 #include <linux/platform_device.h>
10 #include <linux/usb.h>
12 #include "musb_core.h"
13 #include "musb_debug.h"
14 #include "cppi_dma.h"
17 /* CPPI DMA status 7-mar-2006:
19 * - See musb_{host,gadget}.c for more info
21 * - Correct RX DMA generally forces the engine into irq-per-packet mode,
22 * which can easily saturate the CPU under non-mass-storage loads.
24 * NOTES 24-aug-2006 (2.6.18-rc4):
26 * - peripheral RXDMA wedged in a test with packets of length 512/512/1.
27 * evidently after the 1 byte packet was received and acked, the queue
28 * of BDs got garbaged so it wouldn't empty the fifo. (rxcsr 0x2003,
29 * and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
30 * 004001ff 00000001 .. 8feff860) Host was just getting NAKed on tx
31 * of its next (512 byte) packet. IRQ issues?
33 * REVISIT: the "transfer DMA" glue between CPPI and USB fifos will
34 * evidently also directly update the RX and TX CSRs ... so audit all
35 * host and peripheral side DMA code to avoid CSR access after DMA has
36 * been started.
39 /* REVISIT now we can avoid preallocating these descriptors; or
40 * more simply, switch to a global freelist not per-channel ones.
41 * Note: at full speed, 64 descriptors == 4K bulk data.
43 #define NUM_TXCHAN_BD 64
44 #define NUM_RXCHAN_BD 64
46 static inline void cpu_drain_writebuffer(void)
48 wmb();
49 #ifdef CONFIG_CPU_ARM926T
50 /* REVISIT this "should not be needed",
51 * but lack of it sure seemed to hurt ...
53 asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n");
54 #endif
57 static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c)
59 struct cppi_descriptor *bd = c->freelist;
61 if (bd)
62 c->freelist = bd->next;
63 return bd;
66 static inline void
67 cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd)
69 if (!bd)
70 return;
71 bd->next = c->freelist;
72 c->freelist = bd;
76 * Start DMA controller
78 * Initialize the DMA controller as necessary.
81 /* zero out entire rx state RAM entry for the channel */
82 static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx)
84 musb_writel(&rx->rx_skipbytes, 0, 0);
85 musb_writel(&rx->rx_head, 0, 0);
86 musb_writel(&rx->rx_sop, 0, 0);
87 musb_writel(&rx->rx_current, 0, 0);
88 musb_writel(&rx->rx_buf_current, 0, 0);
89 musb_writel(&rx->rx_len_len, 0, 0);
90 musb_writel(&rx->rx_cnt_cnt, 0, 0);
93 /* zero out entire tx state RAM entry for the channel */
94 static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr)
96 musb_writel(&tx->tx_head, 0, 0);
97 musb_writel(&tx->tx_buf, 0, 0);
98 musb_writel(&tx->tx_current, 0, 0);
99 musb_writel(&tx->tx_buf_current, 0, 0);
100 musb_writel(&tx->tx_info, 0, 0);
101 musb_writel(&tx->tx_rem_len, 0, 0);
102 /* musb_writel(&tx->tx_dummy, 0, 0); */
103 musb_writel(&tx->tx_complete, 0, ptr);
106 static void __init cppi_pool_init(struct cppi *cppi, struct cppi_channel *c)
108 int j;
110 /* initialize channel fields */
111 c->head = NULL;
112 c->tail = NULL;
113 c->last_processed = NULL;
114 c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
115 c->controller = cppi;
116 c->is_rndis = 0;
117 c->freelist = NULL;
119 /* build the BD Free list for the channel */
120 for (j = 0; j < NUM_TXCHAN_BD + 1; j++) {
121 struct cppi_descriptor *bd;
122 dma_addr_t dma;
124 bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma);
125 bd->dma = dma;
126 cppi_bd_free(c, bd);
130 static int cppi_channel_abort(struct dma_channel *);
132 static void cppi_pool_free(struct cppi_channel *c)
134 struct cppi *cppi = c->controller;
135 struct cppi_descriptor *bd;
137 (void) cppi_channel_abort(&c->channel);
138 c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
139 c->controller = NULL;
141 /* free all its bds */
142 bd = c->last_processed;
143 do {
144 if (bd)
145 dma_pool_free(cppi->pool, bd, bd->dma);
146 bd = cppi_bd_alloc(c);
147 } while (bd);
148 c->last_processed = NULL;
151 static int __init cppi_controller_start(struct dma_controller *c)
153 struct cppi *controller;
154 void __iomem *tibase;
155 int i;
157 controller = container_of(c, struct cppi, controller);
159 /* do whatever is necessary to start controller */
160 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
161 controller->tx[i].transmit = true;
162 controller->tx[i].index = i;
164 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
165 controller->rx[i].transmit = false;
166 controller->rx[i].index = i;
169 /* setup BD list on a per channel basis */
170 for (i = 0; i < ARRAY_SIZE(controller->tx); i++)
171 cppi_pool_init(controller, controller->tx + i);
172 for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
173 cppi_pool_init(controller, controller->rx + i);
175 tibase = controller->tibase;
176 INIT_LIST_HEAD(&controller->tx_complete);
178 /* initialise tx/rx channel head pointers to zero */
179 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
180 struct cppi_channel *tx_ch = controller->tx + i;
181 struct cppi_tx_stateram __iomem *tx;
183 INIT_LIST_HEAD(&tx_ch->tx_complete);
185 tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i);
186 tx_ch->state_ram = tx;
187 cppi_reset_tx(tx, 0);
189 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
190 struct cppi_channel *rx_ch = controller->rx + i;
191 struct cppi_rx_stateram __iomem *rx;
193 INIT_LIST_HEAD(&rx_ch->tx_complete);
195 rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i);
196 rx_ch->state_ram = rx;
197 cppi_reset_rx(rx);
200 /* enable individual cppi channels */
201 musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
202 DAVINCI_DMA_ALL_CHANNELS_ENABLE);
203 musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG,
204 DAVINCI_DMA_ALL_CHANNELS_ENABLE);
206 /* enable tx/rx CPPI control */
207 musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
208 musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
210 /* disable RNDIS mode, also host rx RNDIS autorequest */
211 musb_writel(tibase, DAVINCI_RNDIS_REG, 0);
212 musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0);
214 return 0;
218 * Stop DMA controller
220 * De-Init the DMA controller as necessary.
223 static int cppi_controller_stop(struct dma_controller *c)
225 struct cppi *controller;
226 void __iomem *tibase;
227 int i;
229 controller = container_of(c, struct cppi, controller);
231 tibase = controller->tibase;
232 /* DISABLE INDIVIDUAL CHANNEL Interrupts */
233 musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
234 DAVINCI_DMA_ALL_CHANNELS_ENABLE);
235 musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG,
236 DAVINCI_DMA_ALL_CHANNELS_ENABLE);
238 DBG(1, "Tearing down RX and TX Channels\n");
239 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
240 /* FIXME restructure of txdma to use bds like rxdma */
241 controller->tx[i].last_processed = NULL;
242 cppi_pool_free(controller->tx + i);
244 for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
245 cppi_pool_free(controller->rx + i);
247 /* in Tx Case proper teardown is supported. We resort to disabling
248 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is
249 * complete TX CPPI cannot be disabled.
251 /*disable tx/rx cppi */
252 musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
253 musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
255 return 0;
258 /* While dma channel is allocated, we only want the core irqs active
259 * for fault reports, otherwise we'd get irqs that we don't care about.
260 * Except for TX irqs, where dma done != fifo empty and reusable ...
262 * NOTE: docs don't say either way, but irq masking **enables** irqs.
264 * REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
266 static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum)
268 musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8));
271 static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum)
273 musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8));
278 * Allocate a CPPI Channel for DMA. With CPPI, channels are bound to
279 * each transfer direction of a non-control endpoint, so allocating
280 * (and deallocating) is mostly a way to notice bad housekeeping on
281 * the software side. We assume the irqs are always active.
283 static struct dma_channel *
284 cppi_channel_allocate(struct dma_controller *c,
285 struct musb_hw_ep *ep, u8 transmit)
287 struct cppi *controller;
288 u8 index;
289 struct cppi_channel *cppi_ch;
290 void __iomem *tibase;
292 controller = container_of(c, struct cppi, controller);
293 tibase = controller->tibase;
295 /* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
296 index = ep->epnum - 1;
298 /* return the corresponding CPPI Channel Handle, and
299 * probably disable the non-CPPI irq until we need it.
301 if (transmit) {
302 if (index >= ARRAY_SIZE(controller->tx)) {
303 DBG(1, "no %cX%d CPPI channel\n", 'T', index);
304 return NULL;
306 cppi_ch = controller->tx + index;
307 } else {
308 if (index >= ARRAY_SIZE(controller->rx)) {
309 DBG(1, "no %cX%d CPPI channel\n", 'R', index);
310 return NULL;
312 cppi_ch = controller->rx + index;
313 core_rxirq_disable(tibase, ep->epnum);
316 /* REVISIT make this an error later once the same driver code works
317 * with the other DMA engine too
319 if (cppi_ch->hw_ep)
320 DBG(1, "re-allocating DMA%d %cX channel %p\n",
321 index, transmit ? 'T' : 'R', cppi_ch);
322 cppi_ch->hw_ep = ep;
323 cppi_ch->channel.status = MUSB_DMA_STATUS_FREE;
325 DBG(4, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R');
326 return &cppi_ch->channel;
329 /* Release a CPPI Channel. */
330 static void cppi_channel_release(struct dma_channel *channel)
332 struct cppi_channel *c;
333 void __iomem *tibase;
335 /* REVISIT: for paranoia, check state and abort if needed... */
337 c = container_of(channel, struct cppi_channel, channel);
338 tibase = c->controller->tibase;
339 if (!c->hw_ep)
340 DBG(1, "releasing idle DMA channel %p\n", c);
341 else if (!c->transmit)
342 core_rxirq_enable(tibase, c->index + 1);
344 /* for now, leave its cppi IRQ enabled (we won't trigger it) */
345 c->hw_ep = NULL;
346 channel->status = MUSB_DMA_STATUS_UNKNOWN;
349 /* Context: controller irqlocked */
350 static void
351 cppi_dump_rx(int level, struct cppi_channel *c, const char *tag)
353 void __iomem *base = c->controller->mregs;
354 struct cppi_rx_stateram __iomem *rx = c->state_ram;
356 musb_ep_select(base, c->index + 1);
358 DBG(level, "RX DMA%d%s: %d left, csr %04x, "
359 "%08x H%08x S%08x C%08x, "
360 "B%08x L%08x %08x .. %08x"
361 "\n",
362 c->index, tag,
363 musb_readl(c->controller->tibase,
364 DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index),
365 musb_readw(c->hw_ep->regs, MUSB_RXCSR),
367 musb_readl(&rx->rx_skipbytes, 0),
368 musb_readl(&rx->rx_head, 0),
369 musb_readl(&rx->rx_sop, 0),
370 musb_readl(&rx->rx_current, 0),
372 musb_readl(&rx->rx_buf_current, 0),
373 musb_readl(&rx->rx_len_len, 0),
374 musb_readl(&rx->rx_cnt_cnt, 0),
375 musb_readl(&rx->rx_complete, 0)
379 /* Context: controller irqlocked */
380 static void
381 cppi_dump_tx(int level, struct cppi_channel *c, const char *tag)
383 void __iomem *base = c->controller->mregs;
384 struct cppi_tx_stateram __iomem *tx = c->state_ram;
386 musb_ep_select(base, c->index + 1);
388 DBG(level, "TX DMA%d%s: csr %04x, "
389 "H%08x S%08x C%08x %08x, "
390 "F%08x L%08x .. %08x"
391 "\n",
392 c->index, tag,
393 musb_readw(c->hw_ep->regs, MUSB_TXCSR),
395 musb_readl(&tx->tx_head, 0),
396 musb_readl(&tx->tx_buf, 0),
397 musb_readl(&tx->tx_current, 0),
398 musb_readl(&tx->tx_buf_current, 0),
400 musb_readl(&tx->tx_info, 0),
401 musb_readl(&tx->tx_rem_len, 0),
402 /* dummy/unused word 6 */
403 musb_readl(&tx->tx_complete, 0)
407 /* Context: controller irqlocked */
408 static inline void
409 cppi_rndis_update(struct cppi_channel *c, int is_rx,
410 void __iomem *tibase, int is_rndis)
412 /* we may need to change the rndis flag for this cppi channel */
413 if (c->is_rndis != is_rndis) {
414 u32 value = musb_readl(tibase, DAVINCI_RNDIS_REG);
415 u32 temp = 1 << (c->index);
417 if (is_rx)
418 temp <<= 16;
419 if (is_rndis)
420 value |= temp;
421 else
422 value &= ~temp;
423 musb_writel(tibase, DAVINCI_RNDIS_REG, value);
424 c->is_rndis = is_rndis;
428 #ifdef CONFIG_USB_MUSB_DEBUG
429 static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd)
431 pr_debug("RXBD/%s %08x: "
432 "nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
433 tag, bd->dma,
434 bd->hw_next, bd->hw_bufp, bd->hw_off_len,
435 bd->hw_options);
437 #endif
439 static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx)
441 #ifdef CONFIG_USB_MUSB_DEBUG
442 struct cppi_descriptor *bd;
444 if (!_dbg_level(level))
445 return;
446 cppi_dump_rx(level, rx, tag);
447 if (rx->last_processed)
448 cppi_dump_rxbd("last", rx->last_processed);
449 for (bd = rx->head; bd; bd = bd->next)
450 cppi_dump_rxbd("active", bd);
451 #endif
455 /* NOTE: DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
456 * so we won't ever use it (see "CPPI RX Woes" below).
458 static inline int cppi_autoreq_update(struct cppi_channel *rx,
459 void __iomem *tibase, int onepacket, unsigned n_bds)
461 u32 val;
463 #ifdef RNDIS_RX_IS_USABLE
464 u32 tmp;
465 /* assert(is_host_active(musb)) */
467 /* start from "AutoReq never" */
468 tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
469 val = tmp & ~((0x3) << (rx->index * 2));
471 /* HCD arranged reqpkt for packet #1. we arrange int
472 * for all but the last one, maybe in two segments.
474 if (!onepacket) {
475 #if 0
476 /* use two segments, autoreq "all" then the last "never" */
477 val |= ((0x3) << (rx->index * 2));
478 n_bds--;
479 #else
480 /* one segment, autoreq "all-but-last" */
481 val |= ((0x1) << (rx->index * 2));
482 #endif
485 if (val != tmp) {
486 int n = 100;
488 /* make sure that autoreq is updated before continuing */
489 musb_writel(tibase, DAVINCI_AUTOREQ_REG, val);
490 do {
491 tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
492 if (tmp == val)
493 break;
494 cpu_relax();
495 } while (n-- > 0);
497 #endif
499 /* REQPKT is turned off after each segment */
500 if (n_bds && rx->channel.actual_len) {
501 void __iomem *regs = rx->hw_ep->regs;
503 val = musb_readw(regs, MUSB_RXCSR);
504 if (!(val & MUSB_RXCSR_H_REQPKT)) {
505 val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS;
506 musb_writew(regs, MUSB_RXCSR, val);
507 /* flush writebufer */
508 val = musb_readw(regs, MUSB_RXCSR);
511 return n_bds;
515 /* Buffer enqueuing Logic:
517 * - RX builds new queues each time, to help handle routine "early
518 * termination" cases (faults, including errors and short reads)
519 * more correctly.
521 * - for now, TX reuses the same queue of BDs every time
523 * REVISIT long term, we want a normal dynamic model.
524 * ... the goal will be to append to the
525 * existing queue, processing completed "dma buffers" (segments) on the fly.
527 * Otherwise we force an IRQ latency between requests, which slows us a lot
528 * (especially in "transparent" dma). Unfortunately that model seems to be
529 * inherent in the DMA model from the Mentor code, except in the rare case
530 * of transfers big enough (~128+ KB) that we could append "middle" segments
531 * in the TX paths. (RX can't do this, see below.)
533 * That's true even in the CPPI- friendly iso case, where most urbs have
534 * several small segments provided in a group and where the "packet at a time"
535 * "transparent" DMA model is always correct, even on the RX side.
539 * CPPI TX:
540 * ========
541 * TX is a lot more reasonable than RX; it doesn't need to run in
542 * irq-per-packet mode very often. RNDIS mode seems to behave too
543 * (except how it handles the exactly-N-packets case). Building a
544 * txdma queue with multiple requests (urb or usb_request) looks
545 * like it would work ... but fault handling would need much testing.
547 * The main issue with TX mode RNDIS relates to transfer lengths that
548 * are an exact multiple of the packet length. It appears that there's
549 * a hiccup in that case (maybe the DMA completes before the ZLP gets
550 * written?) boiling down to not being able to rely on CPPI writing any
551 * terminating zero length packet before the next transfer is written.
552 * So that's punted to PIO; better yet, gadget drivers can avoid it.
554 * Plus, there's allegedly an undocumented constraint that rndis transfer
555 * length be a multiple of 64 bytes ... but the chip doesn't act that
556 * way, and we really don't _want_ that behavior anyway.
558 * On TX, "transparent" mode works ... although experiments have shown
559 * problems trying to use the SOP/EOP bits in different USB packets.
561 * REVISIT try to handle terminating zero length packets using CPPI
562 * instead of doing it by PIO after an IRQ. (Meanwhile, make Ethernet
563 * links avoid that issue by forcing them to avoid zlps.)
565 static void
566 cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
568 unsigned maxpacket = tx->maxpacket;
569 dma_addr_t addr = tx->buf_dma + tx->offset;
570 size_t length = tx->buf_len - tx->offset;
571 struct cppi_descriptor *bd;
572 unsigned n_bds;
573 unsigned i;
574 struct cppi_tx_stateram __iomem *tx_ram = tx->state_ram;
575 int rndis;
577 /* TX can use the CPPI "rndis" mode, where we can probably fit this
578 * transfer in one BD and one IRQ. The only time we would NOT want
579 * to use it is when hardware constraints prevent it, or if we'd
580 * trigger the "send a ZLP?" confusion.
582 rndis = (maxpacket & 0x3f) == 0
583 && length > maxpacket
584 && length < 0xffff
585 && (length % maxpacket) != 0;
587 if (rndis) {
588 maxpacket = length;
589 n_bds = 1;
590 } else {
591 n_bds = length / maxpacket;
592 if (!length || (length % maxpacket))
593 n_bds++;
594 n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD);
595 length = min(n_bds * maxpacket, length);
598 DBG(4, "TX DMA%d, pktSz %d %s bds %d dma 0x%x len %u\n",
599 tx->index,
600 maxpacket,
601 rndis ? "rndis" : "transparent",
602 n_bds,
603 addr, length);
605 cppi_rndis_update(tx, 0, musb->ctrl_base, rndis);
607 /* assuming here that channel_program is called during
608 * transfer initiation ... current code maintains state
609 * for one outstanding request only (no queues, not even
610 * the implicit ones of an iso urb).
613 bd = tx->freelist;
614 tx->head = bd;
615 tx->last_processed = NULL;
617 /* FIXME use BD pool like RX side does, and just queue
618 * the minimum number for this request.
621 /* Prepare queue of BDs first, then hand it to hardware.
622 * All BDs except maybe the last should be of full packet
623 * size; for RNDIS there _is_ only that last packet.
625 for (i = 0; i < n_bds; ) {
626 if (++i < n_bds && bd->next)
627 bd->hw_next = bd->next->dma;
628 else
629 bd->hw_next = 0;
631 bd->hw_bufp = tx->buf_dma + tx->offset;
633 /* FIXME set EOP only on the last packet,
634 * SOP only on the first ... avoid IRQs
636 if ((tx->offset + maxpacket) <= tx->buf_len) {
637 tx->offset += maxpacket;
638 bd->hw_off_len = maxpacket;
639 bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
640 | CPPI_OWN_SET | maxpacket;
641 } else {
642 /* only this one may be a partial USB Packet */
643 u32 partial_len;
645 partial_len = tx->buf_len - tx->offset;
646 tx->offset = tx->buf_len;
647 bd->hw_off_len = partial_len;
649 bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
650 | CPPI_OWN_SET | partial_len;
651 if (partial_len == 0)
652 bd->hw_options |= CPPI_ZERO_SET;
655 DBG(5, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n",
656 bd, bd->hw_next, bd->hw_bufp,
657 bd->hw_off_len, bd->hw_options);
659 /* update the last BD enqueued to the list */
660 tx->tail = bd;
661 bd = bd->next;
664 /* BDs live in DMA-coherent memory, but writes might be pending */
665 cpu_drain_writebuffer();
667 /* Write to the HeadPtr in state RAM to trigger */
668 musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma);
670 cppi_dump_tx(5, tx, "/S");
674 * CPPI RX Woes:
675 * =============
676 * Consider a 1KB bulk RX buffer in two scenarios: (a) it's fed two 300 byte
677 * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
678 * (Full speed transfers have similar scenarios.)
680 * The correct behavior for Linux is that (a) fills the buffer with 300 bytes,
681 * and the next packet goes into a buffer that's queued later; while (b) fills
682 * the buffer with 1024 bytes. How to do that with CPPI?
684 * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
685 * (b) loses **BADLY** because nothing (!) happens when that second packet
686 * fills the buffer, much less when a third one arrives. (Which makes this
687 * not a "true" RNDIS mode. In the RNDIS protocol short-packet termination
688 * is optional, and it's fine if peripherals -- not hosts! -- pad messages
689 * out to end-of-buffer. Standard PCI host controller DMA descriptors
690 * implement that mode by default ... which is no accident.)
692 * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
693 * converse problems: (b) is handled right, but (a) loses badly. CPPI RX
694 * ignores SOP/EOP markings and processes both of those BDs; so both packets
695 * are loaded into the buffer (with a 212 byte gap between them), and the next
696 * buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
697 * are intended as outputs for RX queues, not inputs...)
699 * - A variant of "transparent" mode -- one BD at a time -- is the only way to
700 * reliably make both cases work, with software handling both cases correctly
701 * and at the significant penalty of needing an IRQ per packet. (The lack of
702 * I/O overlap can be slightly ameliorated by enabling double buffering.)
704 * So how to get rid of IRQ-per-packet? The transparent multi-BD case could
705 * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK
706 * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors
707 * with guaranteed driver level fault recovery and scrubbing out what's left
708 * of that garbaged datastream.
710 * But there seems to be no way to identify the cases where CPPI RNDIS mode
711 * is appropriate -- which do NOT include RNDIS host drivers, but do include
712 * the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
713 * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
714 * that applies best on the peripheral side (and which could fail rudely).
716 * Leaving only "transparent" mode; we avoid multi-bd modes in almost all
717 * cases other than mass storage class. Otherwise we're correct but slow,
718 * since CPPI penalizes our need for a "true RNDIS" default mode.
722 /* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
724 * IFF
725 * (a) peripheral mode ... since rndis peripherals could pad their
726 * writes to hosts, causing i/o failure; or we'd have to cope with
727 * a largely unknowable variety of host side protocol variants
728 * (b) and short reads are NOT errors ... since full reads would
729 * cause those same i/o failures
730 * (c) and read length is
731 * - less than 64KB (max per cppi descriptor)
732 * - not a multiple of 4096 (g_zero default, full reads typical)
733 * - N (>1) packets long, ditto (full reads not EXPECTED)
734 * THEN
735 * try rx rndis mode
737 * Cost of heuristic failing: RXDMA wedges at the end of transfers that
738 * fill out the whole buffer. Buggy host side usb network drivers could
739 * trigger that, but "in the field" such bugs seem to be all but unknown.
741 * So this module parameter lets the heuristic be disabled. When using
742 * gadgetfs, the heuristic will probably need to be disabled.
744 static int cppi_rx_rndis = 1;
746 module_param(cppi_rx_rndis, bool, 0);
747 MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic");
751 * cppi_next_rx_segment - dma read for the next chunk of a buffer
752 * @musb: the controller
753 * @rx: dma channel
754 * @onepacket: true unless caller treats short reads as errors, and
755 * performs fault recovery above usbcore.
756 * Context: controller irqlocked
758 * See above notes about why we can't use multi-BD RX queues except in
759 * rare cases (mass storage class), and can never use the hardware "rndis"
760 * mode (since it's not a "true" RNDIS mode) with complete safety..
762 * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in
763 * code to recover from corrupted datastreams after each short transfer.
765 static void
766 cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
768 unsigned maxpacket = rx->maxpacket;
769 dma_addr_t addr = rx->buf_dma + rx->offset;
770 size_t length = rx->buf_len - rx->offset;
771 struct cppi_descriptor *bd, *tail;
772 unsigned n_bds;
773 unsigned i;
774 void __iomem *tibase = musb->ctrl_base;
775 int is_rndis = 0;
776 struct cppi_rx_stateram __iomem *rx_ram = rx->state_ram;
778 if (onepacket) {
779 /* almost every USB driver, host or peripheral side */
780 n_bds = 1;
782 /* maybe apply the heuristic above */
783 if (cppi_rx_rndis
784 && is_peripheral_active(musb)
785 && length > maxpacket
786 && (length & ~0xffff) == 0
787 && (length & 0x0fff) != 0
788 && (length & (maxpacket - 1)) == 0) {
789 maxpacket = length;
790 is_rndis = 1;
792 } else {
793 /* virtually nothing except mass storage class */
794 if (length > 0xffff) {
795 n_bds = 0xffff / maxpacket;
796 length = n_bds * maxpacket;
797 } else {
798 n_bds = length / maxpacket;
799 if (length % maxpacket)
800 n_bds++;
802 if (n_bds == 1)
803 onepacket = 1;
804 else
805 n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD);
808 /* In host mode, autorequest logic can generate some IN tokens; it's
809 * tricky since we can't leave REQPKT set in RXCSR after the transfer
810 * finishes. So: multipacket transfers involve two or more segments.
811 * And always at least two IRQs ... RNDIS mode is not an option.
813 if (is_host_active(musb))
814 n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds);
816 cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis);
818 length = min(n_bds * maxpacket, length);
820 DBG(4, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
821 "dma 0x%x len %u %u/%u\n",
822 rx->index, maxpacket,
823 onepacket
824 ? (is_rndis ? "rndis" : "onepacket")
825 : "multipacket",
826 n_bds,
827 musb_readl(tibase,
828 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
829 & 0xffff,
830 addr, length, rx->channel.actual_len, rx->buf_len);
832 /* only queue one segment at a time, since the hardware prevents
833 * correct queue shutdown after unexpected short packets
835 bd = cppi_bd_alloc(rx);
836 rx->head = bd;
838 /* Build BDs for all packets in this segment */
839 for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) {
840 u32 bd_len;
842 if (i) {
843 bd = cppi_bd_alloc(rx);
844 if (!bd)
845 break;
846 tail->next = bd;
847 tail->hw_next = bd->dma;
849 bd->hw_next = 0;
851 /* all but the last packet will be maxpacket size */
852 if (maxpacket < length)
853 bd_len = maxpacket;
854 else
855 bd_len = length;
857 bd->hw_bufp = addr;
858 addr += bd_len;
859 rx->offset += bd_len;
861 bd->hw_off_len = (0 /*offset*/ << 16) + bd_len;
862 bd->buflen = bd_len;
864 bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0);
865 length -= bd_len;
868 /* we always expect at least one reusable BD! */
869 if (!tail) {
870 WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds);
871 return;
872 } else if (i < n_bds)
873 WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds);
875 tail->next = NULL;
876 tail->hw_next = 0;
878 bd = rx->head;
879 rx->tail = tail;
881 /* short reads and other faults should terminate this entire
882 * dma segment. we want one "dma packet" per dma segment, not
883 * one per USB packet, terminating the whole queue at once...
884 * NOTE that current hardware seems to ignore SOP and EOP.
886 bd->hw_options |= CPPI_SOP_SET;
887 tail->hw_options |= CPPI_EOP_SET;
889 #ifdef CONFIG_USB_MUSB_DEBUG
890 if (_dbg_level(5)) {
891 struct cppi_descriptor *d;
893 for (d = rx->head; d; d = d->next)
894 cppi_dump_rxbd("S", d);
896 #endif
898 /* in case the preceding transfer left some state... */
899 tail = rx->last_processed;
900 if (tail) {
901 tail->next = bd;
902 tail->hw_next = bd->dma;
905 core_rxirq_enable(tibase, rx->index + 1);
907 /* BDs live in DMA-coherent memory, but writes might be pending */
908 cpu_drain_writebuffer();
910 /* REVISIT specs say to write this AFTER the BUFCNT register
911 * below ... but that loses badly.
913 musb_writel(&rx_ram->rx_head, 0, bd->dma);
915 /* bufferCount must be at least 3, and zeroes on completion
916 * unless it underflows below zero, or stops at two, or keeps
917 * growing ... grr.
919 i = musb_readl(tibase,
920 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
921 & 0xffff;
923 if (!i)
924 musb_writel(tibase,
925 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
926 n_bds + 2);
927 else if (n_bds > (i - 3))
928 musb_writel(tibase,
929 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
930 n_bds - (i - 3));
932 i = musb_readl(tibase,
933 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
934 & 0xffff;
935 if (i < (2 + n_bds)) {
936 DBG(2, "bufcnt%d underrun - %d (for %d)\n",
937 rx->index, i, n_bds);
938 musb_writel(tibase,
939 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
940 n_bds + 2);
943 cppi_dump_rx(4, rx, "/S");
947 * cppi_channel_program - program channel for data transfer
948 * @ch: the channel
949 * @maxpacket: max packet size
950 * @mode: For RX, 1 unless the usb protocol driver promised to treat
951 * all short reads as errors and kick in high level fault recovery.
952 * For TX, ignored because of RNDIS mode races/glitches.
953 * @dma_addr: dma address of buffer
954 * @len: length of buffer
955 * Context: controller irqlocked
957 static int cppi_channel_program(struct dma_channel *ch,
958 u16 maxpacket, u8 mode,
959 dma_addr_t dma_addr, u32 len)
961 struct cppi_channel *cppi_ch;
962 struct cppi *controller;
963 struct musb *musb;
965 cppi_ch = container_of(ch, struct cppi_channel, channel);
966 controller = cppi_ch->controller;
967 musb = controller->musb;
969 switch (ch->status) {
970 case MUSB_DMA_STATUS_BUS_ABORT:
971 case MUSB_DMA_STATUS_CORE_ABORT:
972 /* fault irq handler should have handled cleanup */
973 WARNING("%cX DMA%d not cleaned up after abort!\n",
974 cppi_ch->transmit ? 'T' : 'R',
975 cppi_ch->index);
976 /* WARN_ON(1); */
977 break;
978 case MUSB_DMA_STATUS_BUSY:
979 WARNING("program active channel? %cX DMA%d\n",
980 cppi_ch->transmit ? 'T' : 'R',
981 cppi_ch->index);
982 /* WARN_ON(1); */
983 break;
984 case MUSB_DMA_STATUS_UNKNOWN:
985 DBG(1, "%cX DMA%d not allocated!\n",
986 cppi_ch->transmit ? 'T' : 'R',
987 cppi_ch->index);
988 /* FALLTHROUGH */
989 case MUSB_DMA_STATUS_FREE:
990 break;
993 ch->status = MUSB_DMA_STATUS_BUSY;
995 /* set transfer parameters, then queue up its first segment */
996 cppi_ch->buf_dma = dma_addr;
997 cppi_ch->offset = 0;
998 cppi_ch->maxpacket = maxpacket;
999 cppi_ch->buf_len = len;
1000 cppi_ch->channel.actual_len = 0;
1002 /* TX channel? or RX? */
1003 if (cppi_ch->transmit)
1004 cppi_next_tx_segment(musb, cppi_ch);
1005 else
1006 cppi_next_rx_segment(musb, cppi_ch, mode);
1008 return true;
1011 static bool cppi_rx_scan(struct cppi *cppi, unsigned ch)
1013 struct cppi_channel *rx = &cppi->rx[ch];
1014 struct cppi_rx_stateram __iomem *state = rx->state_ram;
1015 struct cppi_descriptor *bd;
1016 struct cppi_descriptor *last = rx->last_processed;
1017 bool completed = false;
1018 bool acked = false;
1019 int i;
1020 dma_addr_t safe2ack;
1021 void __iomem *regs = rx->hw_ep->regs;
1023 cppi_dump_rx(6, rx, "/K");
1025 bd = last ? last->next : rx->head;
1026 if (!bd)
1027 return false;
1029 /* run through all completed BDs */
1030 for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0);
1031 (safe2ack || completed) && bd && i < NUM_RXCHAN_BD;
1032 i++, bd = bd->next) {
1033 u16 len;
1035 /* catch latest BD writes from CPPI */
1036 rmb();
1037 if (!completed && (bd->hw_options & CPPI_OWN_SET))
1038 break;
1040 DBG(5, "C/RXBD %08x: nxt %08x buf %08x "
1041 "off.len %08x opt.len %08x (%d)\n",
1042 bd->dma, bd->hw_next, bd->hw_bufp,
1043 bd->hw_off_len, bd->hw_options,
1044 rx->channel.actual_len);
1046 /* actual packet received length */
1047 if ((bd->hw_options & CPPI_SOP_SET) && !completed)
1048 len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK;
1049 else
1050 len = 0;
1052 if (bd->hw_options & CPPI_EOQ_MASK)
1053 completed = true;
1055 if (!completed && len < bd->buflen) {
1056 /* NOTE: when we get a short packet, RXCSR_H_REQPKT
1057 * must have been cleared, and no more DMA packets may
1058 * active be in the queue... TI docs didn't say, but
1059 * CPPI ignores those BDs even though OWN is still set.
1061 completed = true;
1062 DBG(3, "rx short %d/%d (%d)\n",
1063 len, bd->buflen,
1064 rx->channel.actual_len);
1067 /* If we got here, we expect to ack at least one BD; meanwhile
1068 * CPPI may completing other BDs while we scan this list...
1070 * RACE: we can notice OWN cleared before CPPI raises the
1071 * matching irq by writing that BD as the completion pointer.
1072 * In such cases, stop scanning and wait for the irq, avoiding
1073 * lost acks and states where BD ownership is unclear.
1075 if (bd->dma == safe2ack) {
1076 musb_writel(&state->rx_complete, 0, safe2ack);
1077 safe2ack = musb_readl(&state->rx_complete, 0);
1078 acked = true;
1079 if (bd->dma == safe2ack)
1080 safe2ack = 0;
1083 rx->channel.actual_len += len;
1085 cppi_bd_free(rx, last);
1086 last = bd;
1088 /* stop scanning on end-of-segment */
1089 if (bd->hw_next == 0)
1090 completed = true;
1092 rx->last_processed = last;
1094 /* dma abort, lost ack, or ... */
1095 if (!acked && last) {
1096 int csr;
1098 if (safe2ack == 0 || safe2ack == rx->last_processed->dma)
1099 musb_writel(&state->rx_complete, 0, safe2ack);
1100 if (safe2ack == 0) {
1101 cppi_bd_free(rx, last);
1102 rx->last_processed = NULL;
1104 /* if we land here on the host side, H_REQPKT will
1105 * be clear and we need to restart the queue...
1107 WARN_ON(rx->head);
1109 musb_ep_select(cppi->mregs, rx->index + 1);
1110 csr = musb_readw(regs, MUSB_RXCSR);
1111 if (csr & MUSB_RXCSR_DMAENAB) {
1112 DBG(4, "list%d %p/%p, last %08x%s, csr %04x\n",
1113 rx->index,
1114 rx->head, rx->tail,
1115 rx->last_processed
1116 ? rx->last_processed->dma
1117 : 0,
1118 completed ? ", completed" : "",
1119 csr);
1120 cppi_dump_rxq(4, "/what?", rx);
1123 if (!completed) {
1124 int csr;
1126 rx->head = bd;
1128 /* REVISIT seems like "autoreq all but EOP" doesn't...
1129 * setting it here "should" be racey, but seems to work
1131 csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1132 if (is_host_active(cppi->musb)
1133 && bd
1134 && !(csr & MUSB_RXCSR_H_REQPKT)) {
1135 csr |= MUSB_RXCSR_H_REQPKT;
1136 musb_writew(regs, MUSB_RXCSR,
1137 MUSB_RXCSR_H_WZC_BITS | csr);
1138 csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1140 } else {
1141 rx->head = NULL;
1142 rx->tail = NULL;
1145 cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned");
1146 return completed;
1149 irqreturn_t cppi_interrupt(int irq, void *dev_id)
1151 struct musb *musb = dev_id;
1152 struct cppi *cppi;
1153 void __iomem *tibase;
1154 struct musb_hw_ep *hw_ep = NULL;
1155 u32 rx, tx;
1156 int i, index;
1158 cppi = container_of(musb->dma_controller, struct cppi, controller);
1160 tibase = musb->ctrl_base;
1162 tx = musb_readl(tibase, DAVINCI_TXCPPI_MASKED_REG);
1163 rx = musb_readl(tibase, DAVINCI_RXCPPI_MASKED_REG);
1165 if (!tx && !rx)
1166 return IRQ_NONE;
1168 DBG(4, "CPPI IRQ Tx%x Rx%x\n", tx, rx);
1170 /* process TX channels */
1171 for (index = 0; tx; tx = tx >> 1, index++) {
1172 struct cppi_channel *tx_ch;
1173 struct cppi_tx_stateram __iomem *tx_ram;
1174 bool completed = false;
1175 struct cppi_descriptor *bd;
1177 if (!(tx & 1))
1178 continue;
1180 tx_ch = cppi->tx + index;
1181 tx_ram = tx_ch->state_ram;
1183 /* FIXME need a cppi_tx_scan() routine, which
1184 * can also be called from abort code
1187 cppi_dump_tx(5, tx_ch, "/E");
1189 bd = tx_ch->head;
1191 if (NULL == bd) {
1192 DBG(1, "null BD\n");
1193 continue;
1196 /* run through all completed BDs */
1197 for (i = 0; !completed && bd && i < NUM_TXCHAN_BD;
1198 i++, bd = bd->next) {
1199 u16 len;
1201 /* catch latest BD writes from CPPI */
1202 rmb();
1203 if (bd->hw_options & CPPI_OWN_SET)
1204 break;
1206 DBG(5, "C/TXBD %p n %x b %x off %x opt %x\n",
1207 bd, bd->hw_next, bd->hw_bufp,
1208 bd->hw_off_len, bd->hw_options);
1210 len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK;
1211 tx_ch->channel.actual_len += len;
1213 tx_ch->last_processed = bd;
1215 /* write completion register to acknowledge
1216 * processing of completed BDs, and possibly
1217 * release the IRQ; EOQ might not be set ...
1219 * REVISIT use the same ack strategy as rx
1221 * REVISIT have observed bit 18 set; huh??
1223 /* if ((bd->hw_options & CPPI_EOQ_MASK)) */
1224 musb_writel(&tx_ram->tx_complete, 0, bd->dma);
1226 /* stop scanning on end-of-segment */
1227 if (bd->hw_next == 0)
1228 completed = true;
1231 /* on end of segment, maybe go to next one */
1232 if (completed) {
1233 /* cppi_dump_tx(4, tx_ch, "/complete"); */
1235 /* transfer more, or report completion */
1236 if (tx_ch->offset >= tx_ch->buf_len) {
1237 tx_ch->head = NULL;
1238 tx_ch->tail = NULL;
1239 tx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1241 hw_ep = tx_ch->hw_ep;
1243 musb_dma_completion(musb, index + 1, 1);
1245 } else {
1246 /* Bigger transfer than we could fit in
1247 * that first batch of descriptors...
1249 cppi_next_tx_segment(musb, tx_ch);
1251 } else
1252 tx_ch->head = bd;
1255 /* Start processing the RX block */
1256 for (index = 0; rx; rx = rx >> 1, index++) {
1258 if (rx & 1) {
1259 struct cppi_channel *rx_ch;
1261 rx_ch = cppi->rx + index;
1263 /* let incomplete dma segments finish */
1264 if (!cppi_rx_scan(cppi, index))
1265 continue;
1267 /* start another dma segment if needed */
1268 if (rx_ch->channel.actual_len != rx_ch->buf_len
1269 && rx_ch->channel.actual_len
1270 == rx_ch->offset) {
1271 cppi_next_rx_segment(musb, rx_ch, 1);
1272 continue;
1275 /* all segments completed! */
1276 rx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1278 hw_ep = rx_ch->hw_ep;
1280 core_rxirq_disable(tibase, index + 1);
1281 musb_dma_completion(musb, index + 1, 0);
1285 /* write to CPPI EOI register to re-enable interrupts */
1286 musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0);
1288 return IRQ_HANDLED;
1291 /* Instantiate a software object representing a DMA controller. */
1292 struct dma_controller *__init
1293 dma_controller_create(struct musb *musb, void __iomem *mregs)
1295 struct cppi *controller;
1296 struct device *dev = musb->controller;
1297 struct platform_device *pdev = to_platform_device(dev);
1298 int irq = platform_get_irq(pdev, 1);
1300 controller = kzalloc(sizeof *controller, GFP_KERNEL);
1301 if (!controller)
1302 return NULL;
1304 controller->mregs = mregs;
1305 controller->tibase = mregs - DAVINCI_BASE_OFFSET;
1307 controller->musb = musb;
1308 controller->controller.start = cppi_controller_start;
1309 controller->controller.stop = cppi_controller_stop;
1310 controller->controller.channel_alloc = cppi_channel_allocate;
1311 controller->controller.channel_release = cppi_channel_release;
1312 controller->controller.channel_program = cppi_channel_program;
1313 controller->controller.channel_abort = cppi_channel_abort;
1315 /* NOTE: allocating from on-chip SRAM would give the least
1316 * contention for memory access, if that ever matters here.
1319 /* setup BufferPool */
1320 controller->pool = dma_pool_create("cppi",
1321 controller->musb->controller,
1322 sizeof(struct cppi_descriptor),
1323 CPPI_DESCRIPTOR_ALIGN, 0);
1324 if (!controller->pool) {
1325 kfree(controller);
1326 return NULL;
1329 if (irq > 0) {
1330 if (request_irq(irq, cppi_interrupt, 0, "cppi-dma", musb)) {
1331 dev_err(dev, "request_irq %d failed!\n", irq);
1332 dma_controller_destroy(&controller->controller);
1333 return NULL;
1335 controller->irq = irq;
1338 return &controller->controller;
1342 * Destroy a previously-instantiated DMA controller.
1344 void dma_controller_destroy(struct dma_controller *c)
1346 struct cppi *cppi;
1348 cppi = container_of(c, struct cppi, controller);
1350 if (cppi->irq)
1351 free_irq(cppi->irq, cppi->musb);
1353 /* assert: caller stopped the controller first */
1354 dma_pool_destroy(cppi->pool);
1356 kfree(cppi);
1360 * Context: controller irqlocked, endpoint selected
1362 static int cppi_channel_abort(struct dma_channel *channel)
1364 struct cppi_channel *cppi_ch;
1365 struct cppi *controller;
1366 void __iomem *mbase;
1367 void __iomem *tibase;
1368 void __iomem *regs;
1369 u32 value;
1370 struct cppi_descriptor *queue;
1372 cppi_ch = container_of(channel, struct cppi_channel, channel);
1374 controller = cppi_ch->controller;
1376 switch (channel->status) {
1377 case MUSB_DMA_STATUS_BUS_ABORT:
1378 case MUSB_DMA_STATUS_CORE_ABORT:
1379 /* from RX or TX fault irq handler */
1380 case MUSB_DMA_STATUS_BUSY:
1381 /* the hardware needs shutting down */
1382 regs = cppi_ch->hw_ep->regs;
1383 break;
1384 case MUSB_DMA_STATUS_UNKNOWN:
1385 case MUSB_DMA_STATUS_FREE:
1386 return 0;
1387 default:
1388 return -EINVAL;
1391 if (!cppi_ch->transmit && cppi_ch->head)
1392 cppi_dump_rxq(3, "/abort", cppi_ch);
1394 mbase = controller->mregs;
1395 tibase = controller->tibase;
1397 queue = cppi_ch->head;
1398 cppi_ch->head = NULL;
1399 cppi_ch->tail = NULL;
1401 /* REVISIT should rely on caller having done this,
1402 * and caller should rely on us not changing it.
1403 * peripheral code is safe ... check host too.
1405 musb_ep_select(mbase, cppi_ch->index + 1);
1407 if (cppi_ch->transmit) {
1408 struct cppi_tx_stateram __iomem *tx_ram;
1409 int enabled;
1411 /* mask interrupts raised to signal teardown complete. */
1412 enabled = musb_readl(tibase, DAVINCI_TXCPPI_INTENAB_REG)
1413 & (1 << cppi_ch->index);
1414 if (enabled)
1415 musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
1416 (1 << cppi_ch->index));
1418 /* REVISIT put timeouts on these controller handshakes */
1420 cppi_dump_tx(6, cppi_ch, " (teardown)");
1422 /* teardown DMA engine then usb core */
1423 do {
1424 value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG);
1425 } while (!(value & CPPI_TEAR_READY));
1426 musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index);
1428 tx_ram = cppi_ch->state_ram;
1429 do {
1430 value = musb_readl(&tx_ram->tx_complete, 0);
1431 } while (0xFFFFFFFC != value);
1432 musb_writel(&tx_ram->tx_complete, 0, 0xFFFFFFFC);
1434 /* FIXME clean up the transfer state ... here?
1435 * the completion routine should get called with
1436 * an appropriate status code.
1439 value = musb_readw(regs, MUSB_TXCSR);
1440 value &= ~MUSB_TXCSR_DMAENAB;
1441 value |= MUSB_TXCSR_FLUSHFIFO;
1442 musb_writew(regs, MUSB_TXCSR, value);
1443 musb_writew(regs, MUSB_TXCSR, value);
1445 /* re-enable interrupt */
1446 if (enabled)
1447 musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
1448 (1 << cppi_ch->index));
1450 /* While we scrub the TX state RAM, ensure that we clean
1451 * up any interrupt that's currently asserted:
1452 * 1. Write to completion Ptr value 0x1(bit 0 set)
1453 * (write back mode)
1454 * 2. Write to completion Ptr value 0x0(bit 0 cleared)
1455 * (compare mode)
1456 * Value written is compared(for bits 31:2) and when
1457 * equal, interrupt is deasserted.
1459 cppi_reset_tx(tx_ram, 1);
1460 musb_writel(&tx_ram->tx_complete, 0, 0);
1462 cppi_dump_tx(5, cppi_ch, " (done teardown)");
1464 /* REVISIT tx side _should_ clean up the same way
1465 * as the RX side ... this does no cleanup at all!
1468 } else /* RX */ {
1469 u16 csr;
1471 /* NOTE: docs don't guarantee any of this works ... we
1472 * expect that if the usb core stops telling the cppi core
1473 * to pull more data from it, then it'll be safe to flush
1474 * current RX DMA state iff any pending fifo transfer is done.
1477 core_rxirq_disable(tibase, cppi_ch->index + 1);
1479 /* for host, ensure ReqPkt is never set again */
1480 if (is_host_active(cppi_ch->controller->musb)) {
1481 value = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
1482 value &= ~((0x3) << (cppi_ch->index * 2));
1483 musb_writel(tibase, DAVINCI_AUTOREQ_REG, value);
1486 csr = musb_readw(regs, MUSB_RXCSR);
1488 /* for host, clear (just) ReqPkt at end of current packet(s) */
1489 if (is_host_active(cppi_ch->controller->musb)) {
1490 csr |= MUSB_RXCSR_H_WZC_BITS;
1491 csr &= ~MUSB_RXCSR_H_REQPKT;
1492 } else
1493 csr |= MUSB_RXCSR_P_WZC_BITS;
1495 /* clear dma enable */
1496 csr &= ~(MUSB_RXCSR_DMAENAB);
1497 musb_writew(regs, MUSB_RXCSR, csr);
1498 csr = musb_readw(regs, MUSB_RXCSR);
1500 /* Quiesce: wait for current dma to finish (if not cleanup).
1501 * We can't use bit zero of stateram->rx_sop, since that
1502 * refers to an entire "DMA packet" not just emptying the
1503 * current fifo. Most segments need multiple usb packets.
1505 if (channel->status == MUSB_DMA_STATUS_BUSY)
1506 udelay(50);
1508 /* scan the current list, reporting any data that was
1509 * transferred and acking any IRQ
1511 cppi_rx_scan(controller, cppi_ch->index);
1513 /* clobber the existing state once it's idle
1515 * NOTE: arguably, we should also wait for all the other
1516 * RX channels to quiesce (how??) and then temporarily
1517 * disable RXCPPI_CTRL_REG ... but it seems that we can
1518 * rely on the controller restarting from state ram, with
1519 * only RXCPPI_BUFCNT state being bogus. BUFCNT will
1520 * correct itself after the next DMA transfer though.
1522 * REVISIT does using rndis mode change that?
1524 cppi_reset_rx(cppi_ch->state_ram);
1526 /* next DMA request _should_ load cppi head ptr */
1528 /* ... we don't "free" that list, only mutate it in place. */
1529 cppi_dump_rx(5, cppi_ch, " (done abort)");
1531 /* clean up previously pending bds */
1532 cppi_bd_free(cppi_ch, cppi_ch->last_processed);
1533 cppi_ch->last_processed = NULL;
1535 while (queue) {
1536 struct cppi_descriptor *tmp = queue->next;
1538 cppi_bd_free(cppi_ch, queue);
1539 queue = tmp;
1543 channel->status = MUSB_DMA_STATUS_FREE;
1544 cppi_ch->buf_dma = 0;
1545 cppi_ch->offset = 0;
1546 cppi_ch->buf_len = 0;
1547 cppi_ch->maxpacket = 0;
1548 return 0;
1551 /* TBD Queries:
1553 * Power Management ... probably turn off cppi during suspend, restart;
1554 * check state ram? Clocking is presumably shared with usb core.