1 /* Driver for USB Mass Storage compliant devices
3 * Current development and maintenance by:
4 * (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
6 * Developed with the assistance of:
7 * (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
8 * (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
9 * (c) 2002 Alan Stern <stern@rowland.org>
12 * (c) 1999 Michael Gee (michael@linuxspecific.com)
14 * This driver is based on the 'USB Mass Storage Class' document. This
15 * describes in detail the protocol used to communicate with such
16 * devices. Clearly, the designers had SCSI and ATAPI commands in
17 * mind when they created this document. The commands are all very
18 * similar to commands in the SCSI-II and ATAPI specifications.
20 * It is important to note that in a number of cases this class
21 * exhibits class-specific exemptions from the USB specification.
22 * Notably the usage of NAK, STALL and ACK differs from the norm, in
23 * that they are used to communicate wait, failed and OK on commands.
25 * Also, for certain devices, the interrupt endpoint is used to convey
26 * status of a command.
28 * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more
29 * information about this driver.
31 * This program is free software; you can redistribute it and/or modify it
32 * under the terms of the GNU General Public License as published by the
33 * Free Software Foundation; either version 2, or (at your option) any
36 * This program is distributed in the hope that it will be useful, but
37 * WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
39 * General Public License for more details.
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, write to the Free Software Foundation, Inc.,
43 * 675 Mass Ave, Cambridge, MA 02139, USA.
46 #include <linux/sched.h>
47 #include <linux/errno.h>
48 #include <linux/slab.h>
50 #include <scsi/scsi.h>
51 #include <scsi/scsi_eh.h>
52 #include <scsi/scsi_device.h>
55 #include "transport.h"
60 #include <linux/blkdev.h>
61 #include "../../scsi/sd.h"
64 /***********************************************************************
65 * Data transfer routines
66 ***********************************************************************/
69 * This is subtle, so pay attention:
70 * ---------------------------------
71 * We're very concerned about races with a command abort. Hanging this code
72 * is a sure fire way to hang the kernel. (Note that this discussion applies
73 * only to transactions resulting from a scsi queued-command, since only
74 * these transactions are subject to a scsi abort. Other transactions, such
75 * as those occurring during device-specific initialization, must be handled
76 * by a separate code path.)
78 * The abort function (usb_storage_command_abort() in scsiglue.c) first
79 * sets the machine state and the ABORTING bit in us->dflags to prevent
80 * new URBs from being submitted. It then calls usb_stor_stop_transport()
81 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags
82 * to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE
83 * bit is tested to see if the current_sg scatter-gather request needs to be
84 * stopped. The timeout callback routine does much the same thing.
86 * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to
87 * prevent new URBs from being submitted, and usb_stor_stop_transport() is
88 * called to stop any ongoing requests.
90 * The submit function first verifies that the submitting is allowed
91 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit
92 * completes without errors, and only then sets the URB_ACTIVE bit. This
93 * prevents the stop_transport() function from trying to cancel the URB
94 * while the submit call is underway. Next, the submit function must test
95 * the flags to see if an abort or disconnect occurred during the submission
96 * or before the URB_ACTIVE bit was set. If so, it's essential to cancel
97 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
98 * is still set). Either way, the function must then wait for the URB to
99 * finish. Note that the URB can still be in progress even after a call to
100 * usb_unlink_urb() returns.
102 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
103 * either the stop_transport() function or the submitting function
104 * is guaranteed to call usb_unlink_urb() for an active URB,
105 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
106 * called more than once or from being called during usb_submit_urb().
109 /* This is the completion handler which will wake us up when an URB
112 static void usb_stor_blocking_completion(struct urb
*urb
)
114 struct completion
*urb_done_ptr
= urb
->context
;
116 complete(urb_done_ptr
);
119 /* This is the common part of the URB message submission code
121 * All URBs from the usb-storage driver involved in handling a queued scsi
122 * command _must_ pass through this function (or something like it) for the
123 * abort mechanisms to work properly.
125 static int usb_stor_msg_common(struct us_data
*us
, int timeout
)
127 struct completion urb_done
;
131 /* don't submit URBs during abort processing */
132 if (test_bit(US_FLIDX_ABORTING
, &us
->dflags
))
135 /* set up data structures for the wakeup system */
136 init_completion(&urb_done
);
138 /* fill the common fields in the URB */
139 us
->current_urb
->context
= &urb_done
;
140 us
->current_urb
->actual_length
= 0;
141 us
->current_urb
->error_count
= 0;
142 us
->current_urb
->status
= 0;
144 /* we assume that if transfer_buffer isn't us->iobuf then it
145 * hasn't been mapped for DMA. Yes, this is clunky, but it's
146 * easier than always having the caller tell us whether the
147 * transfer buffer has already been mapped. */
148 us
->current_urb
->transfer_flags
= URB_NO_SETUP_DMA_MAP
;
149 if (us
->current_urb
->transfer_buffer
== us
->iobuf
)
150 us
->current_urb
->transfer_flags
|= URB_NO_TRANSFER_DMA_MAP
;
151 us
->current_urb
->transfer_dma
= us
->iobuf_dma
;
152 us
->current_urb
->setup_dma
= us
->cr_dma
;
155 status
= usb_submit_urb(us
->current_urb
, GFP_NOIO
);
157 /* something went wrong */
161 /* since the URB has been submitted successfully, it's now okay
163 set_bit(US_FLIDX_URB_ACTIVE
, &us
->dflags
);
165 /* did an abort occur during the submission? */
166 if (test_bit(US_FLIDX_ABORTING
, &us
->dflags
)) {
168 /* cancel the URB, if it hasn't been cancelled already */
169 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE
, &us
->dflags
)) {
170 US_DEBUGP("-- cancelling URB\n");
171 usb_unlink_urb(us
->current_urb
);
175 /* wait for the completion of the URB */
176 timeleft
= wait_for_completion_interruptible_timeout(
177 &urb_done
, timeout
? : MAX_SCHEDULE_TIMEOUT
);
179 clear_bit(US_FLIDX_URB_ACTIVE
, &us
->dflags
);
182 US_DEBUGP("%s -- cancelling URB\n",
183 timeleft
== 0 ? "Timeout" : "Signal");
184 usb_kill_urb(us
->current_urb
);
187 /* return the URB status */
188 return us
->current_urb
->status
;
192 * Transfer one control message, with timeouts, and allowing early
193 * termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx.
195 int usb_stor_control_msg(struct us_data
*us
, unsigned int pipe
,
196 u8 request
, u8 requesttype
, u16 value
, u16 index
,
197 void *data
, u16 size
, int timeout
)
201 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
202 __func__
, request
, requesttype
,
205 /* fill in the devrequest structure */
206 us
->cr
->bRequestType
= requesttype
;
207 us
->cr
->bRequest
= request
;
208 us
->cr
->wValue
= cpu_to_le16(value
);
209 us
->cr
->wIndex
= cpu_to_le16(index
);
210 us
->cr
->wLength
= cpu_to_le16(size
);
212 /* fill and submit the URB */
213 usb_fill_control_urb(us
->current_urb
, us
->pusb_dev
, pipe
,
214 (unsigned char*) us
->cr
, data
, size
,
215 usb_stor_blocking_completion
, NULL
);
216 status
= usb_stor_msg_common(us
, timeout
);
218 /* return the actual length of the data transferred if no error */
220 status
= us
->current_urb
->actual_length
;
223 EXPORT_SYMBOL_GPL(usb_stor_control_msg
);
225 /* This is a version of usb_clear_halt() that allows early termination and
226 * doesn't read the status from the device -- this is because some devices
227 * crash their internal firmware when the status is requested after a halt.
229 * A definitive list of these 'bad' devices is too difficult to maintain or
230 * make complete enough to be useful. This problem was first observed on the
231 * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither
232 * MacOS nor Windows checks the status after clearing a halt.
234 * Since many vendors in this space limit their testing to interoperability
235 * with these two OSes, specification violations like this one are common.
237 int usb_stor_clear_halt(struct us_data
*us
, unsigned int pipe
)
240 int endp
= usb_pipeendpoint(pipe
);
242 if (usb_pipein (pipe
))
245 result
= usb_stor_control_msg(us
, us
->send_ctrl_pipe
,
246 USB_REQ_CLEAR_FEATURE
, USB_RECIP_ENDPOINT
,
247 USB_ENDPOINT_HALT
, endp
,
251 usb_reset_endpoint(us
->pusb_dev
, endp
);
253 US_DEBUGP("%s: result = %d\n", __func__
, result
);
256 EXPORT_SYMBOL_GPL(usb_stor_clear_halt
);
260 * Interpret the results of a URB transfer
262 * This function prints appropriate debugging messages, clears halts on
263 * non-control endpoints, and translates the status to the corresponding
264 * USB_STOR_XFER_xxx return code.
266 static int interpret_urb_result(struct us_data
*us
, unsigned int pipe
,
267 unsigned int length
, int result
, unsigned int partial
)
269 US_DEBUGP("Status code %d; transferred %u/%u\n",
270 result
, partial
, length
);
273 /* no error code; did we send all the data? */
275 if (partial
!= length
) {
276 US_DEBUGP("-- short transfer\n");
277 return USB_STOR_XFER_SHORT
;
280 US_DEBUGP("-- transfer complete\n");
281 return USB_STOR_XFER_GOOD
;
285 /* for control endpoints, (used by CB[I]) a stall indicates
286 * a failed command */
287 if (usb_pipecontrol(pipe
)) {
288 US_DEBUGP("-- stall on control pipe\n");
289 return USB_STOR_XFER_STALLED
;
292 /* for other sorts of endpoint, clear the stall */
293 US_DEBUGP("clearing endpoint halt for pipe 0x%x\n", pipe
);
294 if (usb_stor_clear_halt(us
, pipe
) < 0)
295 return USB_STOR_XFER_ERROR
;
296 return USB_STOR_XFER_STALLED
;
298 /* babble - the device tried to send more than we wanted to read */
300 US_DEBUGP("-- babble\n");
301 return USB_STOR_XFER_LONG
;
303 /* the transfer was cancelled by abort, disconnect, or timeout */
305 US_DEBUGP("-- transfer cancelled\n");
306 return USB_STOR_XFER_ERROR
;
308 /* short scatter-gather read transfer */
310 US_DEBUGP("-- short read transfer\n");
311 return USB_STOR_XFER_SHORT
;
313 /* abort or disconnect in progress */
315 US_DEBUGP("-- abort or disconnect in progress\n");
316 return USB_STOR_XFER_ERROR
;
318 /* the catch-all error case */
320 US_DEBUGP("-- unknown error\n");
321 return USB_STOR_XFER_ERROR
;
326 * Transfer one control message, without timeouts, but allowing early
327 * termination. Return codes are USB_STOR_XFER_xxx.
329 int usb_stor_ctrl_transfer(struct us_data
*us
, unsigned int pipe
,
330 u8 request
, u8 requesttype
, u16 value
, u16 index
,
331 void *data
, u16 size
)
335 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
336 __func__
, request
, requesttype
,
339 /* fill in the devrequest structure */
340 us
->cr
->bRequestType
= requesttype
;
341 us
->cr
->bRequest
= request
;
342 us
->cr
->wValue
= cpu_to_le16(value
);
343 us
->cr
->wIndex
= cpu_to_le16(index
);
344 us
->cr
->wLength
= cpu_to_le16(size
);
346 /* fill and submit the URB */
347 usb_fill_control_urb(us
->current_urb
, us
->pusb_dev
, pipe
,
348 (unsigned char*) us
->cr
, data
, size
,
349 usb_stor_blocking_completion
, NULL
);
350 result
= usb_stor_msg_common(us
, 0);
352 return interpret_urb_result(us
, pipe
, size
, result
,
353 us
->current_urb
->actual_length
);
355 EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer
);
358 * Receive one interrupt buffer, without timeouts, but allowing early
359 * termination. Return codes are USB_STOR_XFER_xxx.
361 * This routine always uses us->recv_intr_pipe as the pipe and
362 * us->ep_bInterval as the interrupt interval.
364 static int usb_stor_intr_transfer(struct us_data
*us
, void *buf
,
368 unsigned int pipe
= us
->recv_intr_pipe
;
371 US_DEBUGP("%s: xfer %u bytes\n", __func__
, length
);
373 /* calculate the max packet size */
374 maxp
= usb_maxpacket(us
->pusb_dev
, pipe
, usb_pipeout(pipe
));
378 /* fill and submit the URB */
379 usb_fill_int_urb(us
->current_urb
, us
->pusb_dev
, pipe
, buf
,
380 maxp
, usb_stor_blocking_completion
, NULL
,
382 result
= usb_stor_msg_common(us
, 0);
384 return interpret_urb_result(us
, pipe
, length
, result
,
385 us
->current_urb
->actual_length
);
389 * Transfer one buffer via bulk pipe, without timeouts, but allowing early
390 * termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe
391 * stalls during the transfer, the halt is automatically cleared.
393 int usb_stor_bulk_transfer_buf(struct us_data
*us
, unsigned int pipe
,
394 void *buf
, unsigned int length
, unsigned int *act_len
)
398 US_DEBUGP("%s: xfer %u bytes\n", __func__
, length
);
400 /* fill and submit the URB */
401 usb_fill_bulk_urb(us
->current_urb
, us
->pusb_dev
, pipe
, buf
, length
,
402 usb_stor_blocking_completion
, NULL
);
403 result
= usb_stor_msg_common(us
, 0);
405 /* store the actual length of the data transferred */
407 *act_len
= us
->current_urb
->actual_length
;
408 return interpret_urb_result(us
, pipe
, length
, result
,
409 us
->current_urb
->actual_length
);
411 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf
);
414 * Transfer a scatter-gather list via bulk transfer
416 * This function does basically the same thing as usb_stor_bulk_transfer_buf()
417 * above, but it uses the usbcore scatter-gather library.
419 static int usb_stor_bulk_transfer_sglist(struct us_data
*us
, unsigned int pipe
,
420 struct scatterlist
*sg
, int num_sg
, unsigned int length
,
421 unsigned int *act_len
)
425 /* don't submit s-g requests during abort processing */
426 if (test_bit(US_FLIDX_ABORTING
, &us
->dflags
))
427 return USB_STOR_XFER_ERROR
;
429 /* initialize the scatter-gather request block */
430 US_DEBUGP("%s: xfer %u bytes, %d entries\n", __func__
,
432 result
= usb_sg_init(&us
->current_sg
, us
->pusb_dev
, pipe
, 0,
433 sg
, num_sg
, length
, GFP_NOIO
);
435 US_DEBUGP("usb_sg_init returned %d\n", result
);
436 return USB_STOR_XFER_ERROR
;
439 /* since the block has been initialized successfully, it's now
440 * okay to cancel it */
441 set_bit(US_FLIDX_SG_ACTIVE
, &us
->dflags
);
443 /* did an abort occur during the submission? */
444 if (test_bit(US_FLIDX_ABORTING
, &us
->dflags
)) {
446 /* cancel the request, if it hasn't been cancelled already */
447 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE
, &us
->dflags
)) {
448 US_DEBUGP("-- cancelling sg request\n");
449 usb_sg_cancel(&us
->current_sg
);
453 /* wait for the completion of the transfer */
454 usb_sg_wait(&us
->current_sg
);
455 clear_bit(US_FLIDX_SG_ACTIVE
, &us
->dflags
);
457 result
= us
->current_sg
.status
;
459 *act_len
= us
->current_sg
.bytes
;
460 return interpret_urb_result(us
, pipe
, length
, result
,
461 us
->current_sg
.bytes
);
465 * Common used function. Transfer a complete command
466 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid
468 int usb_stor_bulk_srb(struct us_data
* us
, unsigned int pipe
,
469 struct scsi_cmnd
* srb
)
471 unsigned int partial
;
472 int result
= usb_stor_bulk_transfer_sglist(us
, pipe
, scsi_sglist(srb
),
473 scsi_sg_count(srb
), scsi_bufflen(srb
),
476 scsi_set_resid(srb
, scsi_bufflen(srb
) - partial
);
479 EXPORT_SYMBOL_GPL(usb_stor_bulk_srb
);
482 * Transfer an entire SCSI command's worth of data payload over the bulk
485 * Note that this uses usb_stor_bulk_transfer_buf() and
486 * usb_stor_bulk_transfer_sglist() to achieve its goals --
487 * this function simply determines whether we're going to use
488 * scatter-gather or not, and acts appropriately.
490 int usb_stor_bulk_transfer_sg(struct us_data
* us
, unsigned int pipe
,
491 void *buf
, unsigned int length_left
, int use_sg
, int *residual
)
494 unsigned int partial
;
496 /* are we scatter-gathering? */
498 /* use the usb core scatter-gather primitives */
499 result
= usb_stor_bulk_transfer_sglist(us
, pipe
,
500 (struct scatterlist
*) buf
, use_sg
,
501 length_left
, &partial
);
502 length_left
-= partial
;
504 /* no scatter-gather, just make the request */
505 result
= usb_stor_bulk_transfer_buf(us
, pipe
, buf
,
506 length_left
, &partial
);
507 length_left
-= partial
;
510 /* store the residual and return the error code */
512 *residual
= length_left
;
515 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg
);
517 /***********************************************************************
519 ***********************************************************************/
521 /* There are so many devices that report the capacity incorrectly,
522 * this routine was written to counteract some of the resulting
525 static void last_sector_hacks(struct us_data
*us
, struct scsi_cmnd
*srb
)
527 struct gendisk
*disk
;
528 struct scsi_disk
*sdkp
;
531 /* To Report "Medium Error: Record Not Found */
532 static unsigned char record_not_found
[18] = {
533 [0] = 0x70, /* current error */
534 [2] = MEDIUM_ERROR
, /* = 0x03 */
535 [7] = 0x0a, /* additional length */
536 [12] = 0x14 /* Record Not Found */
539 /* If last-sector problems can't occur, whether because the
540 * capacity was already decremented or because the device is
541 * known to report the correct capacity, then we don't need
544 if (!us
->use_last_sector_hacks
)
547 /* Was this command a READ(10) or a WRITE(10)? */
548 if (srb
->cmnd
[0] != READ_10
&& srb
->cmnd
[0] != WRITE_10
)
551 /* Did this command access the last sector? */
552 sector
= (srb
->cmnd
[2] << 24) | (srb
->cmnd
[3] << 16) |
553 (srb
->cmnd
[4] << 8) | (srb
->cmnd
[5]);
554 disk
= srb
->request
->rq_disk
;
557 sdkp
= scsi_disk(disk
);
560 if (sector
+ 1 != sdkp
->capacity
)
563 if (srb
->result
== SAM_STAT_GOOD
&& scsi_get_resid(srb
) == 0) {
565 /* The command succeeded. We know this device doesn't
566 * have the last-sector bug, so stop checking it.
568 us
->use_last_sector_hacks
= 0;
571 /* The command failed. Allow up to 3 retries in case this
572 * is some normal sort of failure. After that, assume the
573 * capacity is wrong and we're trying to access the sector
574 * beyond the end. Replace the result code and sense data
575 * with values that will cause the SCSI core to fail the
576 * command immediately, instead of going into an infinite
577 * (or even just a very long) retry loop.
579 if (++us
->last_sector_retries
< 3)
581 srb
->result
= SAM_STAT_CHECK_CONDITION
;
582 memcpy(srb
->sense_buffer
, record_not_found
,
583 sizeof(record_not_found
));
587 /* Don't reset the retry counter for TEST UNIT READY commands,
588 * because they get issued after device resets which might be
589 * caused by a failed last-sector access.
591 if (srb
->cmnd
[0] != TEST_UNIT_READY
)
592 us
->last_sector_retries
= 0;
595 /* Invoke the transport and basic error-handling/recovery methods
597 * This is used by the protocol layers to actually send the message to
598 * the device and receive the response.
600 void usb_stor_invoke_transport(struct scsi_cmnd
*srb
, struct us_data
*us
)
605 /* send the command to the transport layer */
606 scsi_set_resid(srb
, 0);
607 result
= us
->transport(srb
, us
);
609 /* if the command gets aborted by the higher layers, we need to
610 * short-circuit all other processing
612 if (test_bit(US_FLIDX_TIMED_OUT
, &us
->dflags
)) {
613 US_DEBUGP("-- command was aborted\n");
614 srb
->result
= DID_ABORT
<< 16;
618 /* if there is a transport error, reset and don't auto-sense */
619 if (result
== USB_STOR_TRANSPORT_ERROR
) {
620 US_DEBUGP("-- transport indicates error, resetting\n");
621 srb
->result
= DID_ERROR
<< 16;
625 /* if the transport provided its own sense data, don't auto-sense */
626 if (result
== USB_STOR_TRANSPORT_NO_SENSE
) {
627 srb
->result
= SAM_STAT_CHECK_CONDITION
;
628 last_sector_hacks(us
, srb
);
632 srb
->result
= SAM_STAT_GOOD
;
634 /* Determine if we need to auto-sense
636 * I normally don't use a flag like this, but it's almost impossible
637 * to understand what's going on here if I don't.
642 * If we're running the CB transport, which is incapable
643 * of determining status on its own, we will auto-sense
644 * unless the operation involved a data-in transfer. Devices
645 * can signal most data-in errors by stalling the bulk-in pipe.
647 if ((us
->protocol
== US_PR_CB
|| us
->protocol
== US_PR_DPCM_USB
) &&
648 srb
->sc_data_direction
!= DMA_FROM_DEVICE
) {
649 US_DEBUGP("-- CB transport device requiring auto-sense\n");
654 * If we have a failure, we're going to do a REQUEST_SENSE
655 * automatically. Note that we differentiate between a command
656 * "failure" and an "error" in the transport mechanism.
658 if (result
== USB_STOR_TRANSPORT_FAILED
) {
659 US_DEBUGP("-- transport indicates command failure\n");
664 * Determine if this device is SAT by seeing if the
665 * command executed successfully. Otherwise we'll have
666 * to wait for at least one CHECK_CONDITION to determine
669 if ((srb
->cmnd
[0] == ATA_16
|| srb
->cmnd
[0] == ATA_12
) &&
670 result
== USB_STOR_TRANSPORT_GOOD
&&
671 !(us
->fflags
& US_FL_SANE_SENSE
) &&
672 !(srb
->cmnd
[2] & 0x20)) {
673 US_DEBUGP("-- SAT supported, increasing auto-sense\n");
674 us
->fflags
|= US_FL_SANE_SENSE
;
678 * A short transfer on a command where we don't expect it
679 * is unusual, but it doesn't mean we need to auto-sense.
681 if ((scsi_get_resid(srb
) > 0) &&
682 !((srb
->cmnd
[0] == REQUEST_SENSE
) ||
683 (srb
->cmnd
[0] == INQUIRY
) ||
684 (srb
->cmnd
[0] == MODE_SENSE
) ||
685 (srb
->cmnd
[0] == LOG_SENSE
) ||
686 (srb
->cmnd
[0] == MODE_SENSE_10
))) {
687 US_DEBUGP("-- unexpectedly short transfer\n");
690 /* Now, if we need to do the auto-sense, let's do it */
691 if (need_auto_sense
) {
693 struct scsi_eh_save ses
;
694 int sense_size
= US_SENSE_SIZE
;
696 /* device supports and needs bigger sense buffer */
697 if (us
->fflags
& US_FL_SANE_SENSE
)
700 US_DEBUGP("Issuing auto-REQUEST_SENSE\n");
702 scsi_eh_prep_cmnd(srb
, &ses
, NULL
, 0, sense_size
);
704 /* FIXME: we must do the protocol translation here */
705 if (us
->subclass
== US_SC_RBC
|| us
->subclass
== US_SC_SCSI
||
706 us
->subclass
== US_SC_CYP_ATACB
)
711 /* issue the auto-sense command */
712 scsi_set_resid(srb
, 0);
713 temp_result
= us
->transport(us
->srb
, us
);
715 /* let's clean up right away */
716 scsi_eh_restore_cmnd(srb
, &ses
);
718 if (test_bit(US_FLIDX_TIMED_OUT
, &us
->dflags
)) {
719 US_DEBUGP("-- auto-sense aborted\n");
720 srb
->result
= DID_ABORT
<< 16;
724 /* Some devices claim to support larger sense but fail when
725 * trying to request it. When a transport failure happens
726 * using US_FS_SANE_SENSE, we always retry with a standard
727 * (small) sense request. This fixes some USB GSM modems
729 if (temp_result
== USB_STOR_TRANSPORT_FAILED
&&
730 (us
->fflags
& US_FL_SANE_SENSE
) &&
731 sense_size
!= US_SENSE_SIZE
) {
732 US_DEBUGP("-- auto-sense failure, retry small sense\n");
733 sense_size
= US_SENSE_SIZE
;
738 if (temp_result
!= USB_STOR_TRANSPORT_GOOD
) {
739 US_DEBUGP("-- auto-sense failure\n");
741 /* we skip the reset if this happens to be a
742 * multi-target device, since failure of an
743 * auto-sense is perfectly valid
745 srb
->result
= DID_ERROR
<< 16;
746 if (!(us
->fflags
& US_FL_SCM_MULT_TARG
))
751 /* If the sense data returned is larger than 18-bytes then we
752 * assume this device supports requesting more in the future.
753 * The response code must be 70h through 73h inclusive.
755 if (srb
->sense_buffer
[7] > (US_SENSE_SIZE
- 8) &&
756 !(us
->fflags
& US_FL_SANE_SENSE
) &&
757 (srb
->sense_buffer
[0] & 0x7C) == 0x70) {
758 US_DEBUGP("-- SANE_SENSE support enabled\n");
759 us
->fflags
|= US_FL_SANE_SENSE
;
761 /* Indicate to the user that we truncated their sense
762 * because we didn't know it supported larger sense.
764 US_DEBUGP("-- Sense data truncated to %i from %i\n",
766 srb
->sense_buffer
[7] + 8);
767 srb
->sense_buffer
[7] = (US_SENSE_SIZE
- 8);
770 US_DEBUGP("-- Result from auto-sense is %d\n", temp_result
);
771 US_DEBUGP("-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n",
772 srb
->sense_buffer
[0],
773 srb
->sense_buffer
[2] & 0xf,
774 srb
->sense_buffer
[12],
775 srb
->sense_buffer
[13]);
776 #ifdef CONFIG_USB_STORAGE_DEBUG
778 srb
->sense_buffer
[2] & 0xf,
779 srb
->sense_buffer
[12],
780 srb
->sense_buffer
[13]);
783 /* set the result so the higher layers expect this data */
784 srb
->result
= SAM_STAT_CHECK_CONDITION
;
786 /* We often get empty sense data. This could indicate that
787 * everything worked or that there was an unspecified
788 * problem. We have to decide which.
790 if ( /* Filemark 0, ignore EOM, ILI 0, no sense */
791 (srb
->sense_buffer
[2] & 0xaf) == 0 &&
793 srb
->sense_buffer
[12] == 0 &&
794 srb
->sense_buffer
[13] == 0) {
796 /* If things are really okay, then let's show that.
797 * Zero out the sense buffer so the higher layers
798 * won't realize we did an unsolicited auto-sense.
800 if (result
== USB_STOR_TRANSPORT_GOOD
) {
801 srb
->result
= SAM_STAT_GOOD
;
802 srb
->sense_buffer
[0] = 0x0;
804 /* If there was a problem, report an unspecified
805 * hardware error to prevent the higher layers from
806 * entering an infinite retry loop.
809 srb
->result
= DID_ERROR
<< 16;
810 srb
->sense_buffer
[2] = HARDWARE_ERROR
;
815 /* Did we transfer less than the minimum amount required? */
816 if ((srb
->result
== SAM_STAT_GOOD
|| srb
->sense_buffer
[2] == 0) &&
817 scsi_bufflen(srb
) - scsi_get_resid(srb
) < srb
->underflow
)
818 srb
->result
= DID_ERROR
<< 16;
820 last_sector_hacks(us
, srb
);
823 /* Error and abort processing: try to resynchronize with the device
824 * by issuing a port reset. If that fails, try a class-specific
828 /* Set the RESETTING bit, and clear the ABORTING bit so that
829 * the reset may proceed. */
830 scsi_lock(us_to_host(us
));
831 set_bit(US_FLIDX_RESETTING
, &us
->dflags
);
832 clear_bit(US_FLIDX_ABORTING
, &us
->dflags
);
833 scsi_unlock(us_to_host(us
));
835 /* We must release the device lock because the pre_reset routine
836 * will want to acquire it. */
837 mutex_unlock(&us
->dev_mutex
);
838 result
= usb_stor_port_reset(us
);
839 mutex_lock(&us
->dev_mutex
);
842 scsi_lock(us_to_host(us
));
843 usb_stor_report_device_reset(us
);
844 scsi_unlock(us_to_host(us
));
845 us
->transport_reset(us
);
847 clear_bit(US_FLIDX_RESETTING
, &us
->dflags
);
848 last_sector_hacks(us
, srb
);
851 /* Stop the current URB transfer */
852 void usb_stor_stop_transport(struct us_data
*us
)
854 US_DEBUGP("%s called\n", __func__
);
856 /* If the state machine is blocked waiting for an URB,
857 * let's wake it up. The test_and_clear_bit() call
858 * guarantees that if a URB has just been submitted,
859 * it won't be cancelled more than once. */
860 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE
, &us
->dflags
)) {
861 US_DEBUGP("-- cancelling URB\n");
862 usb_unlink_urb(us
->current_urb
);
865 /* If we are waiting for a scatter-gather operation, cancel it. */
866 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE
, &us
->dflags
)) {
867 US_DEBUGP("-- cancelling sg request\n");
868 usb_sg_cancel(&us
->current_sg
);
873 * Control/Bulk and Control/Bulk/Interrupt transport
876 int usb_stor_CB_transport(struct scsi_cmnd
*srb
, struct us_data
*us
)
878 unsigned int transfer_length
= scsi_bufflen(srb
);
879 unsigned int pipe
= 0;
883 /* let's send the command via the control pipe */
884 result
= usb_stor_ctrl_transfer(us
, us
->send_ctrl_pipe
,
886 USB_TYPE_CLASS
| USB_RECIP_INTERFACE
, 0,
887 us
->ifnum
, srb
->cmnd
, srb
->cmd_len
);
889 /* check the return code for the command */
890 US_DEBUGP("Call to usb_stor_ctrl_transfer() returned %d\n", result
);
892 /* if we stalled the command, it means command failed */
893 if (result
== USB_STOR_XFER_STALLED
) {
894 return USB_STOR_TRANSPORT_FAILED
;
897 /* Uh oh... serious problem here */
898 if (result
!= USB_STOR_XFER_GOOD
) {
899 return USB_STOR_TRANSPORT_ERROR
;
903 /* transfer the data payload for this command, if one exists*/
904 if (transfer_length
) {
905 pipe
= srb
->sc_data_direction
== DMA_FROM_DEVICE
?
906 us
->recv_bulk_pipe
: us
->send_bulk_pipe
;
907 result
= usb_stor_bulk_srb(us
, pipe
, srb
);
908 US_DEBUGP("CBI data stage result is 0x%x\n", result
);
910 /* if we stalled the data transfer it means command failed */
911 if (result
== USB_STOR_XFER_STALLED
)
912 return USB_STOR_TRANSPORT_FAILED
;
913 if (result
> USB_STOR_XFER_STALLED
)
914 return USB_STOR_TRANSPORT_ERROR
;
919 /* NOTE: CB does not have a status stage. Silly, I know. So
920 * we have to catch this at a higher level.
922 if (us
->protocol
!= US_PR_CBI
)
923 return USB_STOR_TRANSPORT_GOOD
;
925 result
= usb_stor_intr_transfer(us
, us
->iobuf
, 2);
926 US_DEBUGP("Got interrupt data (0x%x, 0x%x)\n",
927 us
->iobuf
[0], us
->iobuf
[1]);
928 if (result
!= USB_STOR_XFER_GOOD
)
929 return USB_STOR_TRANSPORT_ERROR
;
931 /* UFI gives us ASC and ASCQ, like a request sense
933 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI
934 * devices, so we ignore the information for those commands. Note
935 * that this means we could be ignoring a real error on these
936 * commands, but that can't be helped.
938 if (us
->subclass
== US_SC_UFI
) {
939 if (srb
->cmnd
[0] == REQUEST_SENSE
||
940 srb
->cmnd
[0] == INQUIRY
)
941 return USB_STOR_TRANSPORT_GOOD
;
944 return USB_STOR_TRANSPORT_GOOD
;
947 /* If not UFI, we interpret the data as a result code
948 * The first byte should always be a 0x0.
950 * Some bogus devices don't follow that rule. They stuff the ASC
951 * into the first byte -- so if it's non-zero, call it a failure.
954 US_DEBUGP("CBI IRQ data showed reserved bType 0x%x\n",
960 /* The second byte & 0x0F should be 0x0 for good, otherwise error */
961 switch (us
->iobuf
[1] & 0x0F) {
963 return USB_STOR_TRANSPORT_GOOD
;
967 return USB_STOR_TRANSPORT_ERROR
;
969 /* the CBI spec requires that the bulk pipe must be cleared
970 * following any data-in/out command failure (section 2.4.3.1.3)
974 usb_stor_clear_halt(us
, pipe
);
975 return USB_STOR_TRANSPORT_FAILED
;
977 EXPORT_SYMBOL_GPL(usb_stor_CB_transport
);
980 * Bulk only transport
983 /* Determine what the maximum LUN supported is */
984 int usb_stor_Bulk_max_lun(struct us_data
*us
)
988 /* issue the command */
990 result
= usb_stor_control_msg(us
, us
->recv_ctrl_pipe
,
992 USB_DIR_IN
| USB_TYPE_CLASS
|
994 0, us
->ifnum
, us
->iobuf
, 1, 10*HZ
);
996 US_DEBUGP("GetMaxLUN command result is %d, data is %d\n",
997 result
, us
->iobuf
[0]);
999 /* if we have a successful request, return the result */
1001 return us
->iobuf
[0];
1004 * Some devices don't like GetMaxLUN. They may STALL the control
1005 * pipe, they may return a zero-length result, they may do nothing at
1006 * all and timeout, or they may fail in even more bizarrely creative
1007 * ways. In these cases the best approach is to use the default
1008 * value: only one LUN.
1013 int usb_stor_Bulk_transport(struct scsi_cmnd
*srb
, struct us_data
*us
)
1015 struct bulk_cb_wrap
*bcb
= (struct bulk_cb_wrap
*) us
->iobuf
;
1016 struct bulk_cs_wrap
*bcs
= (struct bulk_cs_wrap
*) us
->iobuf
;
1017 unsigned int transfer_length
= scsi_bufflen(srb
);
1018 unsigned int residue
;
1021 unsigned int cswlen
;
1022 unsigned int cbwlen
= US_BULK_CB_WRAP_LEN
;
1024 /* Take care of BULK32 devices; set extra byte to 0 */
1025 if (unlikely(us
->fflags
& US_FL_BULK32
)) {
1030 /* set up the command wrapper */
1031 bcb
->Signature
= cpu_to_le32(US_BULK_CB_SIGN
);
1032 bcb
->DataTransferLength
= cpu_to_le32(transfer_length
);
1033 bcb
->Flags
= srb
->sc_data_direction
== DMA_FROM_DEVICE
? 1 << 7 : 0;
1034 bcb
->Tag
= ++us
->tag
;
1035 bcb
->Lun
= srb
->device
->lun
;
1036 if (us
->fflags
& US_FL_SCM_MULT_TARG
)
1037 bcb
->Lun
|= srb
->device
->id
<< 4;
1038 bcb
->Length
= srb
->cmd_len
;
1040 /* copy the command payload */
1041 memset(bcb
->CDB
, 0, sizeof(bcb
->CDB
));
1042 memcpy(bcb
->CDB
, srb
->cmnd
, bcb
->Length
);
1044 /* send it to out endpoint */
1045 US_DEBUGP("Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n",
1046 le32_to_cpu(bcb
->Signature
), bcb
->Tag
,
1047 le32_to_cpu(bcb
->DataTransferLength
), bcb
->Flags
,
1048 (bcb
->Lun
>> 4), (bcb
->Lun
& 0x0F),
1050 result
= usb_stor_bulk_transfer_buf(us
, us
->send_bulk_pipe
,
1052 US_DEBUGP("Bulk command transfer result=%d\n", result
);
1053 if (result
!= USB_STOR_XFER_GOOD
)
1054 return USB_STOR_TRANSPORT_ERROR
;
1057 /* send/receive data payload, if there is any */
1059 /* Some USB-IDE converter chips need a 100us delay between the
1060 * command phase and the data phase. Some devices need a little
1061 * more than that, probably because of clock rate inaccuracies. */
1062 if (unlikely(us
->fflags
& US_FL_GO_SLOW
))
1065 if (transfer_length
) {
1066 unsigned int pipe
= srb
->sc_data_direction
== DMA_FROM_DEVICE
?
1067 us
->recv_bulk_pipe
: us
->send_bulk_pipe
;
1068 result
= usb_stor_bulk_srb(us
, pipe
, srb
);
1069 US_DEBUGP("Bulk data transfer result 0x%x\n", result
);
1070 if (result
== USB_STOR_XFER_ERROR
)
1071 return USB_STOR_TRANSPORT_ERROR
;
1073 /* If the device tried to send back more data than the
1074 * amount requested, the spec requires us to transfer
1075 * the CSW anyway. Since there's no point retrying the
1076 * the command, we'll return fake sense data indicating
1077 * Illegal Request, Invalid Field in CDB.
1079 if (result
== USB_STOR_XFER_LONG
)
1083 /* See flow chart on pg 15 of the Bulk Only Transport spec for
1084 * an explanation of how this code works.
1087 /* get CSW for device status */
1088 US_DEBUGP("Attempting to get CSW...\n");
1089 result
= usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
1090 bcs
, US_BULK_CS_WRAP_LEN
, &cswlen
);
1092 /* Some broken devices add unnecessary zero-length packets to the
1093 * end of their data transfers. Such packets show up as 0-length
1094 * CSWs. If we encounter such a thing, try to read the CSW again.
1096 if (result
== USB_STOR_XFER_SHORT
&& cswlen
== 0) {
1097 US_DEBUGP("Received 0-length CSW; retrying...\n");
1098 result
= usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
1099 bcs
, US_BULK_CS_WRAP_LEN
, &cswlen
);
1102 /* did the attempt to read the CSW fail? */
1103 if (result
== USB_STOR_XFER_STALLED
) {
1105 /* get the status again */
1106 US_DEBUGP("Attempting to get CSW (2nd try)...\n");
1107 result
= usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
1108 bcs
, US_BULK_CS_WRAP_LEN
, NULL
);
1111 /* if we still have a failure at this point, we're in trouble */
1112 US_DEBUGP("Bulk status result = %d\n", result
);
1113 if (result
!= USB_STOR_XFER_GOOD
)
1114 return USB_STOR_TRANSPORT_ERROR
;
1116 /* check bulk status */
1117 residue
= le32_to_cpu(bcs
->Residue
);
1118 US_DEBUGP("Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n",
1119 le32_to_cpu(bcs
->Signature
), bcs
->Tag
,
1120 residue
, bcs
->Status
);
1121 if (!(bcs
->Tag
== us
->tag
|| (us
->fflags
& US_FL_BULK_IGNORE_TAG
)) ||
1122 bcs
->Status
> US_BULK_STAT_PHASE
) {
1123 US_DEBUGP("Bulk logical error\n");
1124 return USB_STOR_TRANSPORT_ERROR
;
1127 /* Some broken devices report odd signatures, so we do not check them
1128 * for validity against the spec. We store the first one we see,
1129 * and check subsequent transfers for validity against this signature.
1131 if (!us
->bcs_signature
) {
1132 us
->bcs_signature
= bcs
->Signature
;
1133 if (us
->bcs_signature
!= cpu_to_le32(US_BULK_CS_SIGN
))
1134 US_DEBUGP("Learnt BCS signature 0x%08X\n",
1135 le32_to_cpu(us
->bcs_signature
));
1136 } else if (bcs
->Signature
!= us
->bcs_signature
) {
1137 US_DEBUGP("Signature mismatch: got %08X, expecting %08X\n",
1138 le32_to_cpu(bcs
->Signature
),
1139 le32_to_cpu(us
->bcs_signature
));
1140 return USB_STOR_TRANSPORT_ERROR
;
1143 /* try to compute the actual residue, based on how much data
1144 * was really transferred and what the device tells us */
1145 if (residue
&& !(us
->fflags
& US_FL_IGNORE_RESIDUE
)) {
1147 /* Heuristically detect devices that generate bogus residues
1148 * by seeing what happens with INQUIRY and READ CAPACITY
1151 if (bcs
->Status
== US_BULK_STAT_OK
&&
1152 scsi_get_resid(srb
) == 0 &&
1153 ((srb
->cmnd
[0] == INQUIRY
&&
1154 transfer_length
== 36) ||
1155 (srb
->cmnd
[0] == READ_CAPACITY
&&
1156 transfer_length
== 8))) {
1157 us
->fflags
|= US_FL_IGNORE_RESIDUE
;
1160 residue
= min(residue
, transfer_length
);
1161 scsi_set_resid(srb
, max(scsi_get_resid(srb
),
1166 /* based on the status code, we report good or bad */
1167 switch (bcs
->Status
) {
1168 case US_BULK_STAT_OK
:
1169 /* device babbled -- return fake sense data */
1171 memcpy(srb
->sense_buffer
,
1172 usb_stor_sense_invalidCDB
,
1173 sizeof(usb_stor_sense_invalidCDB
));
1174 return USB_STOR_TRANSPORT_NO_SENSE
;
1177 /* command good -- note that data could be short */
1178 return USB_STOR_TRANSPORT_GOOD
;
1180 case US_BULK_STAT_FAIL
:
1181 /* command failed */
1182 return USB_STOR_TRANSPORT_FAILED
;
1184 case US_BULK_STAT_PHASE
:
1185 /* phase error -- note that a transport reset will be
1186 * invoked by the invoke_transport() function
1188 return USB_STOR_TRANSPORT_ERROR
;
1191 /* we should never get here, but if we do, we're in trouble */
1192 return USB_STOR_TRANSPORT_ERROR
;
1194 EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport
);
1196 /***********************************************************************
1198 ***********************************************************************/
1200 /* This is the common part of the device reset code.
1202 * It's handy that every transport mechanism uses the control endpoint for
1205 * Basically, we send a reset with a 5-second timeout, so we don't get
1206 * jammed attempting to do the reset.
1208 static int usb_stor_reset_common(struct us_data
*us
,
1209 u8 request
, u8 requesttype
,
1210 u16 value
, u16 index
, void *data
, u16 size
)
1215 if (test_bit(US_FLIDX_DISCONNECTING
, &us
->dflags
)) {
1216 US_DEBUGP("No reset during disconnect\n");
1220 result
= usb_stor_control_msg(us
, us
->send_ctrl_pipe
,
1221 request
, requesttype
, value
, index
, data
, size
,
1224 US_DEBUGP("Soft reset failed: %d\n", result
);
1228 /* Give the device some time to recover from the reset,
1229 * but don't delay disconnect processing. */
1230 wait_event_interruptible_timeout(us
->delay_wait
,
1231 test_bit(US_FLIDX_DISCONNECTING
, &us
->dflags
),
1233 if (test_bit(US_FLIDX_DISCONNECTING
, &us
->dflags
)) {
1234 US_DEBUGP("Reset interrupted by disconnect\n");
1238 US_DEBUGP("Soft reset: clearing bulk-in endpoint halt\n");
1239 result
= usb_stor_clear_halt(us
, us
->recv_bulk_pipe
);
1241 US_DEBUGP("Soft reset: clearing bulk-out endpoint halt\n");
1242 result2
= usb_stor_clear_halt(us
, us
->send_bulk_pipe
);
1244 /* return a result code based on the result of the clear-halts */
1248 US_DEBUGP("Soft reset failed\n");
1250 US_DEBUGP("Soft reset done\n");
1254 /* This issues a CB[I] Reset to the device in question
1256 #define CB_RESET_CMD_SIZE 12
1258 int usb_stor_CB_reset(struct us_data
*us
)
1260 US_DEBUGP("%s called\n", __func__
);
1262 memset(us
->iobuf
, 0xFF, CB_RESET_CMD_SIZE
);
1263 us
->iobuf
[0] = SEND_DIAGNOSTIC
;
1265 return usb_stor_reset_common(us
, US_CBI_ADSC
,
1266 USB_TYPE_CLASS
| USB_RECIP_INTERFACE
,
1267 0, us
->ifnum
, us
->iobuf
, CB_RESET_CMD_SIZE
);
1269 EXPORT_SYMBOL_GPL(usb_stor_CB_reset
);
1271 /* This issues a Bulk-only Reset to the device in question, including
1272 * clearing the subsequent endpoint halts that may occur.
1274 int usb_stor_Bulk_reset(struct us_data
*us
)
1276 US_DEBUGP("%s called\n", __func__
);
1278 return usb_stor_reset_common(us
, US_BULK_RESET_REQUEST
,
1279 USB_TYPE_CLASS
| USB_RECIP_INTERFACE
,
1280 0, us
->ifnum
, NULL
, 0);
1282 EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset
);
1284 /* Issue a USB port reset to the device. The caller must not hold
1287 int usb_stor_port_reset(struct us_data
*us
)
1291 result
= usb_lock_device_for_reset(us
->pusb_dev
, us
->pusb_intf
);
1293 US_DEBUGP("unable to lock device for reset: %d\n", result
);
1295 /* Were we disconnected while waiting for the lock? */
1296 if (test_bit(US_FLIDX_DISCONNECTING
, &us
->dflags
)) {
1298 US_DEBUGP("No reset during disconnect\n");
1300 result
= usb_reset_device(us
->pusb_dev
);
1301 US_DEBUGP("usb_reset_device returns %d\n",
1304 usb_unlock_device(us
->pusb_dev
);