2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
42 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode
->i_sb
)->s_journal
,
56 &EXT4_I(inode
)->jinode
,
60 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
63 * Test whether an inode is a fast symlink.
65 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
67 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
68 (inode
->i_sb
->s_blocksize
>> 9) : 0;
70 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
74 * The ext4 forget function must perform a revoke if we are freeing data
75 * which has been journaled. Metadata (eg. indirect blocks) must be
76 * revoked in all cases.
78 * "bh" may be NULL: a metadata block may have been freed from memory
79 * but there may still be a record of it in the journal, and that record
80 * still needs to be revoked.
82 * If the handle isn't valid we're not journaling, but we still need to
83 * call into ext4_journal_revoke() to put the buffer head.
85 int ext4_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
86 struct buffer_head
*bh
, ext4_fsblk_t blocknr
)
92 BUFFER_TRACE(bh
, "enter");
94 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
96 bh
, is_metadata
, inode
->i_mode
,
97 test_opt(inode
->i_sb
, DATA_FLAGS
));
99 /* Never use the revoke function if we are doing full data
100 * journaling: there is no need to, and a V1 superblock won't
101 * support it. Otherwise, only skip the revoke on un-journaled
104 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT4_MOUNT_JOURNAL_DATA
||
105 (!is_metadata
&& !ext4_should_journal_data(inode
))) {
107 BUFFER_TRACE(bh
, "call jbd2_journal_forget");
108 return ext4_journal_forget(handle
, bh
);
114 * data!=journal && (is_metadata || should_journal_data(inode))
116 BUFFER_TRACE(bh
, "call ext4_journal_revoke");
117 err
= ext4_journal_revoke(handle
, blocknr
, bh
);
119 ext4_abort(inode
->i_sb
, __func__
,
120 "error %d when attempting revoke", err
);
121 BUFFER_TRACE(bh
, "exit");
126 * Work out how many blocks we need to proceed with the next chunk of a
127 * truncate transaction.
129 static unsigned long blocks_for_truncate(struct inode
*inode
)
133 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
135 /* Give ourselves just enough room to cope with inodes in which
136 * i_blocks is corrupt: we've seen disk corruptions in the past
137 * which resulted in random data in an inode which looked enough
138 * like a regular file for ext4 to try to delete it. Things
139 * will go a bit crazy if that happens, but at least we should
140 * try not to panic the whole kernel. */
144 /* But we need to bound the transaction so we don't overflow the
146 if (needed
> EXT4_MAX_TRANS_DATA
)
147 needed
= EXT4_MAX_TRANS_DATA
;
149 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
153 * Truncate transactions can be complex and absolutely huge. So we need to
154 * be able to restart the transaction at a conventient checkpoint to make
155 * sure we don't overflow the journal.
157 * start_transaction gets us a new handle for a truncate transaction,
158 * and extend_transaction tries to extend the existing one a bit. If
159 * extend fails, we need to propagate the failure up and restart the
160 * transaction in the top-level truncate loop. --sct
162 static handle_t
*start_transaction(struct inode
*inode
)
166 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
170 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
175 * Try to extend this transaction for the purposes of truncation.
177 * Returns 0 if we managed to create more room. If we can't create more
178 * room, and the transaction must be restarted we return 1.
180 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
182 if (!ext4_handle_valid(handle
))
184 if (ext4_handle_has_enough_credits(handle
, EXT4_RESERVE_TRANS_BLOCKS
+1))
186 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
192 * Restart the transaction associated with *handle. This does a commit,
193 * so before we call here everything must be consistently dirtied against
196 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
202 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203 * moment, get_block can be called only for blocks inside i_size since
204 * page cache has been already dropped and writes are blocked by
205 * i_mutex. So we can safely drop the i_data_sem here.
207 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
208 jbd_debug(2, "restarting handle %p\n", handle
);
209 up_write(&EXT4_I(inode
)->i_data_sem
);
210 ret
= ext4_journal_restart(handle
, blocks_for_truncate(inode
));
211 down_write(&EXT4_I(inode
)->i_data_sem
);
217 * Called at the last iput() if i_nlink is zero.
219 void ext4_delete_inode(struct inode
*inode
)
224 if (ext4_should_order_data(inode
))
225 ext4_begin_ordered_truncate(inode
, 0);
226 truncate_inode_pages(&inode
->i_data
, 0);
228 if (is_bad_inode(inode
))
231 handle
= ext4_journal_start(inode
, blocks_for_truncate(inode
)+3);
232 if (IS_ERR(handle
)) {
233 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
235 * If we're going to skip the normal cleanup, we still need to
236 * make sure that the in-core orphan linked list is properly
239 ext4_orphan_del(NULL
, inode
);
244 ext4_handle_sync(handle
);
246 err
= ext4_mark_inode_dirty(handle
, inode
);
248 ext4_warning(inode
->i_sb
, __func__
,
249 "couldn't mark inode dirty (err %d)", err
);
253 ext4_truncate(inode
);
256 * ext4_ext_truncate() doesn't reserve any slop when it
257 * restarts journal transactions; therefore there may not be
258 * enough credits left in the handle to remove the inode from
259 * the orphan list and set the dtime field.
261 if (!ext4_handle_has_enough_credits(handle
, 3)) {
262 err
= ext4_journal_extend(handle
, 3);
264 err
= ext4_journal_restart(handle
, 3);
266 ext4_warning(inode
->i_sb
, __func__
,
267 "couldn't extend journal (err %d)", err
);
269 ext4_journal_stop(handle
);
275 * Kill off the orphan record which ext4_truncate created.
276 * AKPM: I think this can be inside the above `if'.
277 * Note that ext4_orphan_del() has to be able to cope with the
278 * deletion of a non-existent orphan - this is because we don't
279 * know if ext4_truncate() actually created an orphan record.
280 * (Well, we could do this if we need to, but heck - it works)
282 ext4_orphan_del(handle
, inode
);
283 EXT4_I(inode
)->i_dtime
= get_seconds();
286 * One subtle ordering requirement: if anything has gone wrong
287 * (transaction abort, IO errors, whatever), then we can still
288 * do these next steps (the fs will already have been marked as
289 * having errors), but we can't free the inode if the mark_dirty
292 if (ext4_mark_inode_dirty(handle
, inode
))
293 /* If that failed, just do the required in-core inode clear. */
296 ext4_free_inode(handle
, inode
);
297 ext4_journal_stop(handle
);
300 clear_inode(inode
); /* We must guarantee clearing of inode... */
306 struct buffer_head
*bh
;
309 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
311 p
->key
= *(p
->p
= v
);
316 * ext4_block_to_path - parse the block number into array of offsets
317 * @inode: inode in question (we are only interested in its superblock)
318 * @i_block: block number to be parsed
319 * @offsets: array to store the offsets in
320 * @boundary: set this non-zero if the referred-to block is likely to be
321 * followed (on disk) by an indirect block.
323 * To store the locations of file's data ext4 uses a data structure common
324 * for UNIX filesystems - tree of pointers anchored in the inode, with
325 * data blocks at leaves and indirect blocks in intermediate nodes.
326 * This function translates the block number into path in that tree -
327 * return value is the path length and @offsets[n] is the offset of
328 * pointer to (n+1)th node in the nth one. If @block is out of range
329 * (negative or too large) warning is printed and zero returned.
331 * Note: function doesn't find node addresses, so no IO is needed. All
332 * we need to know is the capacity of indirect blocks (taken from the
337 * Portability note: the last comparison (check that we fit into triple
338 * indirect block) is spelled differently, because otherwise on an
339 * architecture with 32-bit longs and 8Kb pages we might get into trouble
340 * if our filesystem had 8Kb blocks. We might use long long, but that would
341 * kill us on x86. Oh, well, at least the sign propagation does not matter -
342 * i_block would have to be negative in the very beginning, so we would not
346 static int ext4_block_to_path(struct inode
*inode
,
348 ext4_lblk_t offsets
[4], int *boundary
)
350 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
351 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
352 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
353 indirect_blocks
= ptrs
,
354 double_blocks
= (1 << (ptrs_bits
* 2));
358 if (i_block
< direct_blocks
) {
359 offsets
[n
++] = i_block
;
360 final
= direct_blocks
;
361 } else if ((i_block
-= direct_blocks
) < indirect_blocks
) {
362 offsets
[n
++] = EXT4_IND_BLOCK
;
363 offsets
[n
++] = i_block
;
365 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
366 offsets
[n
++] = EXT4_DIND_BLOCK
;
367 offsets
[n
++] = i_block
>> ptrs_bits
;
368 offsets
[n
++] = i_block
& (ptrs
- 1);
370 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
371 offsets
[n
++] = EXT4_TIND_BLOCK
;
372 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
373 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
374 offsets
[n
++] = i_block
& (ptrs
- 1);
377 ext4_warning(inode
->i_sb
, "ext4_block_to_path",
378 "block %lu > max in inode %lu",
379 i_block
+ direct_blocks
+
380 indirect_blocks
+ double_blocks
, inode
->i_ino
);
383 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
387 static int __ext4_check_blockref(const char *function
, struct inode
*inode
,
388 __le32
*p
, unsigned int max
)
393 while (bref
< p
+max
) {
394 blk
= le32_to_cpu(*bref
++);
396 unlikely(!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
398 ext4_error(inode
->i_sb
, function
,
399 "invalid block reference %u "
400 "in inode #%lu", blk
, inode
->i_ino
);
408 #define ext4_check_indirect_blockref(inode, bh) \
409 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
410 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
412 #define ext4_check_inode_blockref(inode) \
413 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
417 * ext4_get_branch - read the chain of indirect blocks leading to data
418 * @inode: inode in question
419 * @depth: depth of the chain (1 - direct pointer, etc.)
420 * @offsets: offsets of pointers in inode/indirect blocks
421 * @chain: place to store the result
422 * @err: here we store the error value
424 * Function fills the array of triples <key, p, bh> and returns %NULL
425 * if everything went OK or the pointer to the last filled triple
426 * (incomplete one) otherwise. Upon the return chain[i].key contains
427 * the number of (i+1)-th block in the chain (as it is stored in memory,
428 * i.e. little-endian 32-bit), chain[i].p contains the address of that
429 * number (it points into struct inode for i==0 and into the bh->b_data
430 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
431 * block for i>0 and NULL for i==0. In other words, it holds the block
432 * numbers of the chain, addresses they were taken from (and where we can
433 * verify that chain did not change) and buffer_heads hosting these
436 * Function stops when it stumbles upon zero pointer (absent block)
437 * (pointer to last triple returned, *@err == 0)
438 * or when it gets an IO error reading an indirect block
439 * (ditto, *@err == -EIO)
440 * or when it reads all @depth-1 indirect blocks successfully and finds
441 * the whole chain, all way to the data (returns %NULL, *err == 0).
443 * Need to be called with
444 * down_read(&EXT4_I(inode)->i_data_sem)
446 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
447 ext4_lblk_t
*offsets
,
448 Indirect chain
[4], int *err
)
450 struct super_block
*sb
= inode
->i_sb
;
452 struct buffer_head
*bh
;
455 /* i_data is not going away, no lock needed */
456 add_chain(chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
460 bh
= sb_getblk(sb
, le32_to_cpu(p
->key
));
464 if (!bh_uptodate_or_lock(bh
)) {
465 if (bh_submit_read(bh
) < 0) {
469 /* validate block references */
470 if (ext4_check_indirect_blockref(inode
, bh
)) {
476 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
490 * ext4_find_near - find a place for allocation with sufficient locality
492 * @ind: descriptor of indirect block.
494 * This function returns the preferred place for block allocation.
495 * It is used when heuristic for sequential allocation fails.
497 * + if there is a block to the left of our position - allocate near it.
498 * + if pointer will live in indirect block - allocate near that block.
499 * + if pointer will live in inode - allocate in the same
502 * In the latter case we colour the starting block by the callers PID to
503 * prevent it from clashing with concurrent allocations for a different inode
504 * in the same block group. The PID is used here so that functionally related
505 * files will be close-by on-disk.
507 * Caller must make sure that @ind is valid and will stay that way.
509 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
511 struct ext4_inode_info
*ei
= EXT4_I(inode
);
512 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
514 ext4_fsblk_t bg_start
;
515 ext4_fsblk_t last_block
;
516 ext4_grpblk_t colour
;
517 ext4_group_t block_group
;
518 int flex_size
= ext4_flex_bg_size(EXT4_SB(inode
->i_sb
));
520 /* Try to find previous block */
521 for (p
= ind
->p
- 1; p
>= start
; p
--) {
523 return le32_to_cpu(*p
);
526 /* No such thing, so let's try location of indirect block */
528 return ind
->bh
->b_blocknr
;
531 * It is going to be referred to from the inode itself? OK, just put it
532 * into the same cylinder group then.
534 block_group
= ei
->i_block_group
;
535 if (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) {
536 block_group
&= ~(flex_size
-1);
537 if (S_ISREG(inode
->i_mode
))
540 bg_start
= ext4_group_first_block_no(inode
->i_sb
, block_group
);
541 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
544 * If we are doing delayed allocation, we don't need take
545 * colour into account.
547 if (test_opt(inode
->i_sb
, DELALLOC
))
550 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
551 colour
= (current
->pid
% 16) *
552 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
554 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
555 return bg_start
+ colour
;
559 * ext4_find_goal - find a preferred place for allocation.
561 * @block: block we want
562 * @partial: pointer to the last triple within a chain
564 * Normally this function find the preferred place for block allocation,
566 * Because this is only used for non-extent files, we limit the block nr
569 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
575 * XXX need to get goal block from mballoc's data structures
578 goal
= ext4_find_near(inode
, partial
);
579 goal
= goal
& EXT4_MAX_BLOCK_FILE_PHYS
;
584 * ext4_blks_to_allocate: Look up the block map and count the number
585 * of direct blocks need to be allocated for the given branch.
587 * @branch: chain of indirect blocks
588 * @k: number of blocks need for indirect blocks
589 * @blks: number of data blocks to be mapped.
590 * @blocks_to_boundary: the offset in the indirect block
592 * return the total number of blocks to be allocate, including the
593 * direct and indirect blocks.
595 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned int blks
,
596 int blocks_to_boundary
)
598 unsigned int count
= 0;
601 * Simple case, [t,d]Indirect block(s) has not allocated yet
602 * then it's clear blocks on that path have not allocated
605 /* right now we don't handle cross boundary allocation */
606 if (blks
< blocks_to_boundary
+ 1)
609 count
+= blocks_to_boundary
+ 1;
614 while (count
< blks
&& count
<= blocks_to_boundary
&&
615 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
622 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
623 * @indirect_blks: the number of blocks need to allocate for indirect
626 * @new_blocks: on return it will store the new block numbers for
627 * the indirect blocks(if needed) and the first direct block,
628 * @blks: on return it will store the total number of allocated
631 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
632 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
633 int indirect_blks
, int blks
,
634 ext4_fsblk_t new_blocks
[4], int *err
)
636 struct ext4_allocation_request ar
;
638 unsigned long count
= 0, blk_allocated
= 0;
640 ext4_fsblk_t current_block
= 0;
644 * Here we try to allocate the requested multiple blocks at once,
645 * on a best-effort basis.
646 * To build a branch, we should allocate blocks for
647 * the indirect blocks(if not allocated yet), and at least
648 * the first direct block of this branch. That's the
649 * minimum number of blocks need to allocate(required)
651 /* first we try to allocate the indirect blocks */
652 target
= indirect_blks
;
655 /* allocating blocks for indirect blocks and direct blocks */
656 current_block
= ext4_new_meta_blocks(handle
, inode
,
661 BUG_ON(current_block
+ count
> EXT4_MAX_BLOCK_FILE_PHYS
);
664 /* allocate blocks for indirect blocks */
665 while (index
< indirect_blks
&& count
) {
666 new_blocks
[index
++] = current_block
++;
671 * save the new block number
672 * for the first direct block
674 new_blocks
[index
] = current_block
;
675 printk(KERN_INFO
"%s returned more blocks than "
676 "requested\n", __func__
);
682 target
= blks
- count
;
683 blk_allocated
= count
;
686 /* Now allocate data blocks */
687 memset(&ar
, 0, sizeof(ar
));
692 if (S_ISREG(inode
->i_mode
))
693 /* enable in-core preallocation only for regular files */
694 ar
.flags
= EXT4_MB_HINT_DATA
;
696 current_block
= ext4_mb_new_blocks(handle
, &ar
, err
);
697 BUG_ON(current_block
+ ar
.len
> EXT4_MAX_BLOCK_FILE_PHYS
);
699 if (*err
&& (target
== blks
)) {
701 * if the allocation failed and we didn't allocate
707 if (target
== blks
) {
709 * save the new block number
710 * for the first direct block
712 new_blocks
[index
] = current_block
;
714 blk_allocated
+= ar
.len
;
717 /* total number of blocks allocated for direct blocks */
722 for (i
= 0; i
< index
; i
++)
723 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
728 * ext4_alloc_branch - allocate and set up a chain of blocks.
730 * @indirect_blks: number of allocated indirect blocks
731 * @blks: number of allocated direct blocks
732 * @offsets: offsets (in the blocks) to store the pointers to next.
733 * @branch: place to store the chain in.
735 * This function allocates blocks, zeroes out all but the last one,
736 * links them into chain and (if we are synchronous) writes them to disk.
737 * In other words, it prepares a branch that can be spliced onto the
738 * inode. It stores the information about that chain in the branch[], in
739 * the same format as ext4_get_branch() would do. We are calling it after
740 * we had read the existing part of chain and partial points to the last
741 * triple of that (one with zero ->key). Upon the exit we have the same
742 * picture as after the successful ext4_get_block(), except that in one
743 * place chain is disconnected - *branch->p is still zero (we did not
744 * set the last link), but branch->key contains the number that should
745 * be placed into *branch->p to fill that gap.
747 * If allocation fails we free all blocks we've allocated (and forget
748 * their buffer_heads) and return the error value the from failed
749 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
750 * as described above and return 0.
752 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
753 ext4_lblk_t iblock
, int indirect_blks
,
754 int *blks
, ext4_fsblk_t goal
,
755 ext4_lblk_t
*offsets
, Indirect
*branch
)
757 int blocksize
= inode
->i_sb
->s_blocksize
;
760 struct buffer_head
*bh
;
762 ext4_fsblk_t new_blocks
[4];
763 ext4_fsblk_t current_block
;
765 num
= ext4_alloc_blocks(handle
, inode
, iblock
, goal
, indirect_blks
,
766 *blks
, new_blocks
, &err
);
770 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
772 * metadata blocks and data blocks are allocated.
774 for (n
= 1; n
<= indirect_blks
; n
++) {
776 * Get buffer_head for parent block, zero it out
777 * and set the pointer to new one, then send
780 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
783 BUFFER_TRACE(bh
, "call get_create_access");
784 err
= ext4_journal_get_create_access(handle
, bh
);
786 /* Don't brelse(bh) here; it's done in
787 * ext4_journal_forget() below */
792 memset(bh
->b_data
, 0, blocksize
);
793 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
794 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
795 *branch
[n
].p
= branch
[n
].key
;
796 if (n
== indirect_blks
) {
797 current_block
= new_blocks
[n
];
799 * End of chain, update the last new metablock of
800 * the chain to point to the new allocated
801 * data blocks numbers
803 for (i
= 1; i
< num
; i
++)
804 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
806 BUFFER_TRACE(bh
, "marking uptodate");
807 set_buffer_uptodate(bh
);
810 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
811 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
818 /* Allocation failed, free what we already allocated */
819 for (i
= 1; i
<= n
; i
++) {
820 BUFFER_TRACE(branch
[i
].bh
, "call jbd2_journal_forget");
821 ext4_journal_forget(handle
, branch
[i
].bh
);
823 for (i
= 0; i
< indirect_blks
; i
++)
824 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
826 ext4_free_blocks(handle
, inode
, new_blocks
[i
], num
, 0);
832 * ext4_splice_branch - splice the allocated branch onto inode.
834 * @block: (logical) number of block we are adding
835 * @chain: chain of indirect blocks (with a missing link - see
837 * @where: location of missing link
838 * @num: number of indirect blocks we are adding
839 * @blks: number of direct blocks we are adding
841 * This function fills the missing link and does all housekeeping needed in
842 * inode (->i_blocks, etc.). In case of success we end up with the full
843 * chain to new block and return 0.
845 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
846 ext4_lblk_t block
, Indirect
*where
, int num
,
851 ext4_fsblk_t current_block
;
854 * If we're splicing into a [td]indirect block (as opposed to the
855 * inode) then we need to get write access to the [td]indirect block
859 BUFFER_TRACE(where
->bh
, "get_write_access");
860 err
= ext4_journal_get_write_access(handle
, where
->bh
);
866 *where
->p
= where
->key
;
869 * Update the host buffer_head or inode to point to more just allocated
870 * direct blocks blocks
872 if (num
== 0 && blks
> 1) {
873 current_block
= le32_to_cpu(where
->key
) + 1;
874 for (i
= 1; i
< blks
; i
++)
875 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
878 /* We are done with atomic stuff, now do the rest of housekeeping */
879 /* had we spliced it onto indirect block? */
882 * If we spliced it onto an indirect block, we haven't
883 * altered the inode. Note however that if it is being spliced
884 * onto an indirect block at the very end of the file (the
885 * file is growing) then we *will* alter the inode to reflect
886 * the new i_size. But that is not done here - it is done in
887 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
889 jbd_debug(5, "splicing indirect only\n");
890 BUFFER_TRACE(where
->bh
, "call ext4_handle_dirty_metadata");
891 err
= ext4_handle_dirty_metadata(handle
, inode
, where
->bh
);
896 * OK, we spliced it into the inode itself on a direct block.
898 ext4_mark_inode_dirty(handle
, inode
);
899 jbd_debug(5, "splicing direct\n");
904 for (i
= 1; i
<= num
; i
++) {
905 BUFFER_TRACE(where
[i
].bh
, "call jbd2_journal_forget");
906 ext4_journal_forget(handle
, where
[i
].bh
);
907 ext4_free_blocks(handle
, inode
,
908 le32_to_cpu(where
[i
-1].key
), 1, 0);
910 ext4_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
, 0);
916 * The ext4_ind_get_blocks() function handles non-extents inodes
917 * (i.e., using the traditional indirect/double-indirect i_blocks
918 * scheme) for ext4_get_blocks().
920 * Allocation strategy is simple: if we have to allocate something, we will
921 * have to go the whole way to leaf. So let's do it before attaching anything
922 * to tree, set linkage between the newborn blocks, write them if sync is
923 * required, recheck the path, free and repeat if check fails, otherwise
924 * set the last missing link (that will protect us from any truncate-generated
925 * removals - all blocks on the path are immune now) and possibly force the
926 * write on the parent block.
927 * That has a nice additional property: no special recovery from the failed
928 * allocations is needed - we simply release blocks and do not touch anything
929 * reachable from inode.
931 * `handle' can be NULL if create == 0.
933 * return > 0, # of blocks mapped or allocated.
934 * return = 0, if plain lookup failed.
935 * return < 0, error case.
937 * The ext4_ind_get_blocks() function should be called with
938 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
939 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
940 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
943 static int ext4_ind_get_blocks(handle_t
*handle
, struct inode
*inode
,
944 ext4_lblk_t iblock
, unsigned int maxblocks
,
945 struct buffer_head
*bh_result
,
949 ext4_lblk_t offsets
[4];
954 int blocks_to_boundary
= 0;
957 ext4_fsblk_t first_block
= 0;
959 J_ASSERT(!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
));
960 J_ASSERT(handle
!= NULL
|| (flags
& EXT4_GET_BLOCKS_CREATE
) == 0);
961 depth
= ext4_block_to_path(inode
, iblock
, offsets
,
962 &blocks_to_boundary
);
967 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
969 /* Simplest case - block found, no allocation needed */
971 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
972 clear_buffer_new(bh_result
);
975 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
978 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
980 if (blk
== first_block
+ count
)
988 /* Next simple case - plain lookup or failed read of indirect block */
989 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0 || err
== -EIO
)
993 * Okay, we need to do block allocation.
995 goal
= ext4_find_goal(inode
, iblock
, partial
);
997 /* the number of blocks need to allocate for [d,t]indirect blocks */
998 indirect_blks
= (chain
+ depth
) - partial
- 1;
1001 * Next look up the indirect map to count the totoal number of
1002 * direct blocks to allocate for this branch.
1004 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
1005 maxblocks
, blocks_to_boundary
);
1007 * Block out ext4_truncate while we alter the tree
1009 err
= ext4_alloc_branch(handle
, inode
, iblock
, indirect_blks
,
1011 offsets
+ (partial
- chain
), partial
);
1014 * The ext4_splice_branch call will free and forget any buffers
1015 * on the new chain if there is a failure, but that risks using
1016 * up transaction credits, especially for bitmaps where the
1017 * credits cannot be returned. Can we handle this somehow? We
1018 * may need to return -EAGAIN upwards in the worst case. --sct
1021 err
= ext4_splice_branch(handle
, inode
, iblock
,
1022 partial
, indirect_blks
, count
);
1026 set_buffer_new(bh_result
);
1028 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
1029 if (count
> blocks_to_boundary
)
1030 set_buffer_boundary(bh_result
);
1032 /* Clean up and exit */
1033 partial
= chain
+ depth
- 1; /* the whole chain */
1035 while (partial
> chain
) {
1036 BUFFER_TRACE(partial
->bh
, "call brelse");
1037 brelse(partial
->bh
);
1040 BUFFER_TRACE(bh_result
, "returned");
1045 qsize_t
ext4_get_reserved_space(struct inode
*inode
)
1047 unsigned long long total
;
1049 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1050 total
= EXT4_I(inode
)->i_reserved_data_blocks
+
1051 EXT4_I(inode
)->i_reserved_meta_blocks
;
1052 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1057 * Calculate the number of metadata blocks need to reserve
1058 * to allocate @blocks for non extent file based file
1060 static int ext4_indirect_calc_metadata_amount(struct inode
*inode
, int blocks
)
1062 int icap
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
1063 int ind_blks
, dind_blks
, tind_blks
;
1065 /* number of new indirect blocks needed */
1066 ind_blks
= (blocks
+ icap
- 1) / icap
;
1068 dind_blks
= (ind_blks
+ icap
- 1) / icap
;
1072 return ind_blks
+ dind_blks
+ tind_blks
;
1076 * Calculate the number of metadata blocks need to reserve
1077 * to allocate given number of blocks
1079 static int ext4_calc_metadata_amount(struct inode
*inode
, int blocks
)
1084 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
1085 return ext4_ext_calc_metadata_amount(inode
, blocks
);
1087 return ext4_indirect_calc_metadata_amount(inode
, blocks
);
1090 static void ext4_da_update_reserve_space(struct inode
*inode
, int used
)
1092 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1093 int total
, mdb
, mdb_free
;
1095 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1096 /* recalculate the number of metablocks still need to be reserved */
1097 total
= EXT4_I(inode
)->i_reserved_data_blocks
- used
;
1098 mdb
= ext4_calc_metadata_amount(inode
, total
);
1100 /* figure out how many metablocks to release */
1101 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1102 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1105 /* Account for allocated meta_blocks */
1106 mdb_free
-= EXT4_I(inode
)->i_allocated_meta_blocks
;
1108 /* update fs dirty blocks counter */
1109 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, mdb_free
);
1110 EXT4_I(inode
)->i_allocated_meta_blocks
= 0;
1111 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1114 /* update per-inode reservations */
1115 BUG_ON(used
> EXT4_I(inode
)->i_reserved_data_blocks
);
1116 EXT4_I(inode
)->i_reserved_data_blocks
-= used
;
1117 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1120 * free those over-booking quota for metadata blocks
1123 vfs_dq_release_reservation_block(inode
, mdb_free
);
1126 * If we have done all the pending block allocations and if
1127 * there aren't any writers on the inode, we can discard the
1128 * inode's preallocations.
1130 if (!total
&& (atomic_read(&inode
->i_writecount
) == 0))
1131 ext4_discard_preallocations(inode
);
1134 static int check_block_validity(struct inode
*inode
, const char *msg
,
1135 sector_t logical
, sector_t phys
, int len
)
1137 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), phys
, len
)) {
1138 ext4_error(inode
->i_sb
, msg
,
1139 "inode #%lu logical block %llu mapped to %llu "
1140 "(size %d)", inode
->i_ino
,
1141 (unsigned long long) logical
,
1142 (unsigned long long) phys
, len
);
1149 * Return the number of contiguous dirty pages in a given inode
1150 * starting at page frame idx.
1152 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
1153 unsigned int max_pages
)
1155 struct address_space
*mapping
= inode
->i_mapping
;
1157 struct pagevec pvec
;
1159 int i
, nr_pages
, done
= 0;
1163 pagevec_init(&pvec
, 0);
1166 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
1167 PAGECACHE_TAG_DIRTY
,
1168 (pgoff_t
)PAGEVEC_SIZE
);
1171 for (i
= 0; i
< nr_pages
; i
++) {
1172 struct page
*page
= pvec
.pages
[i
];
1173 struct buffer_head
*bh
, *head
;
1176 if (unlikely(page
->mapping
!= mapping
) ||
1178 PageWriteback(page
) ||
1179 page
->index
!= idx
) {
1184 if (page_has_buffers(page
)) {
1185 bh
= head
= page_buffers(page
);
1187 if (!buffer_delay(bh
) &&
1188 !buffer_unwritten(bh
))
1190 bh
= bh
->b_this_page
;
1191 } while (!done
&& (bh
!= head
));
1198 if (num
>= max_pages
)
1201 pagevec_release(&pvec
);
1207 * The ext4_get_blocks() function tries to look up the requested blocks,
1208 * and returns if the blocks are already mapped.
1210 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1211 * and store the allocated blocks in the result buffer head and mark it
1214 * If file type is extents based, it will call ext4_ext_get_blocks(),
1215 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1218 * On success, it returns the number of blocks being mapped or allocate.
1219 * if create==0 and the blocks are pre-allocated and uninitialized block,
1220 * the result buffer head is unmapped. If the create ==1, it will make sure
1221 * the buffer head is mapped.
1223 * It returns 0 if plain look up failed (blocks have not been allocated), in
1224 * that casem, buffer head is unmapped
1226 * It returns the error in case of allocation failure.
1228 int ext4_get_blocks(handle_t
*handle
, struct inode
*inode
, sector_t block
,
1229 unsigned int max_blocks
, struct buffer_head
*bh
,
1234 clear_buffer_mapped(bh
);
1235 clear_buffer_unwritten(bh
);
1237 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1238 "logical block %lu\n", inode
->i_ino
, flags
, max_blocks
,
1239 (unsigned long)block
);
1241 * Try to see if we can get the block without requesting a new
1242 * file system block.
1244 down_read((&EXT4_I(inode
)->i_data_sem
));
1245 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1246 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1249 retval
= ext4_ind_get_blocks(handle
, inode
, block
, max_blocks
,
1252 up_read((&EXT4_I(inode
)->i_data_sem
));
1254 if (retval
> 0 && buffer_mapped(bh
)) {
1255 int ret
= check_block_validity(inode
, "file system corruption",
1256 block
, bh
->b_blocknr
, retval
);
1261 /* If it is only a block(s) look up */
1262 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
1266 * Returns if the blocks have already allocated
1268 * Note that if blocks have been preallocated
1269 * ext4_ext_get_block() returns th create = 0
1270 * with buffer head unmapped.
1272 if (retval
> 0 && buffer_mapped(bh
))
1276 * When we call get_blocks without the create flag, the
1277 * BH_Unwritten flag could have gotten set if the blocks
1278 * requested were part of a uninitialized extent. We need to
1279 * clear this flag now that we are committed to convert all or
1280 * part of the uninitialized extent to be an initialized
1281 * extent. This is because we need to avoid the combination
1282 * of BH_Unwritten and BH_Mapped flags being simultaneously
1283 * set on the buffer_head.
1285 clear_buffer_unwritten(bh
);
1288 * New blocks allocate and/or writing to uninitialized extent
1289 * will possibly result in updating i_data, so we take
1290 * the write lock of i_data_sem, and call get_blocks()
1291 * with create == 1 flag.
1293 down_write((&EXT4_I(inode
)->i_data_sem
));
1296 * if the caller is from delayed allocation writeout path
1297 * we have already reserved fs blocks for allocation
1298 * let the underlying get_block() function know to
1299 * avoid double accounting
1301 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1302 EXT4_I(inode
)->i_delalloc_reserved_flag
= 1;
1304 * We need to check for EXT4 here because migrate
1305 * could have changed the inode type in between
1307 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1308 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1311 retval
= ext4_ind_get_blocks(handle
, inode
, block
,
1312 max_blocks
, bh
, flags
);
1314 if (retval
> 0 && buffer_new(bh
)) {
1316 * We allocated new blocks which will result in
1317 * i_data's format changing. Force the migrate
1318 * to fail by clearing migrate flags
1320 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_EXT_MIGRATE
;
1324 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1325 EXT4_I(inode
)->i_delalloc_reserved_flag
= 0;
1328 * Update reserved blocks/metadata blocks after successful
1329 * block allocation which had been deferred till now.
1331 if ((retval
> 0) && (flags
& EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
))
1332 ext4_da_update_reserve_space(inode
, retval
);
1334 up_write((&EXT4_I(inode
)->i_data_sem
));
1335 if (retval
> 0 && buffer_mapped(bh
)) {
1336 int ret
= check_block_validity(inode
, "file system "
1337 "corruption after allocation",
1338 block
, bh
->b_blocknr
, retval
);
1345 /* Maximum number of blocks we map for direct IO at once. */
1346 #define DIO_MAX_BLOCKS 4096
1348 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1349 struct buffer_head
*bh_result
, int create
)
1351 handle_t
*handle
= ext4_journal_current_handle();
1352 int ret
= 0, started
= 0;
1353 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1356 if (create
&& !handle
) {
1357 /* Direct IO write... */
1358 if (max_blocks
> DIO_MAX_BLOCKS
)
1359 max_blocks
= DIO_MAX_BLOCKS
;
1360 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
1361 handle
= ext4_journal_start(inode
, dio_credits
);
1362 if (IS_ERR(handle
)) {
1363 ret
= PTR_ERR(handle
);
1369 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
1370 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1372 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1376 ext4_journal_stop(handle
);
1382 * `handle' can be NULL if create is zero
1384 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1385 ext4_lblk_t block
, int create
, int *errp
)
1387 struct buffer_head dummy
;
1391 J_ASSERT(handle
!= NULL
|| create
== 0);
1394 dummy
.b_blocknr
= -1000;
1395 buffer_trace_init(&dummy
.b_history
);
1397 flags
|= EXT4_GET_BLOCKS_CREATE
;
1398 err
= ext4_get_blocks(handle
, inode
, block
, 1, &dummy
, flags
);
1400 * ext4_get_blocks() returns number of blocks mapped. 0 in
1409 if (!err
&& buffer_mapped(&dummy
)) {
1410 struct buffer_head
*bh
;
1411 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1416 if (buffer_new(&dummy
)) {
1417 J_ASSERT(create
!= 0);
1418 J_ASSERT(handle
!= NULL
);
1421 * Now that we do not always journal data, we should
1422 * keep in mind whether this should always journal the
1423 * new buffer as metadata. For now, regular file
1424 * writes use ext4_get_block instead, so it's not a
1428 BUFFER_TRACE(bh
, "call get_create_access");
1429 fatal
= ext4_journal_get_create_access(handle
, bh
);
1430 if (!fatal
&& !buffer_uptodate(bh
)) {
1431 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1432 set_buffer_uptodate(bh
);
1435 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
1436 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1440 BUFFER_TRACE(bh
, "not a new buffer");
1453 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1454 ext4_lblk_t block
, int create
, int *err
)
1456 struct buffer_head
*bh
;
1458 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1461 if (buffer_uptodate(bh
))
1463 ll_rw_block(READ_META
, 1, &bh
);
1465 if (buffer_uptodate(bh
))
1472 static int walk_page_buffers(handle_t
*handle
,
1473 struct buffer_head
*head
,
1477 int (*fn
)(handle_t
*handle
,
1478 struct buffer_head
*bh
))
1480 struct buffer_head
*bh
;
1481 unsigned block_start
, block_end
;
1482 unsigned blocksize
= head
->b_size
;
1484 struct buffer_head
*next
;
1486 for (bh
= head
, block_start
= 0;
1487 ret
== 0 && (bh
!= head
|| !block_start
);
1488 block_start
= block_end
, bh
= next
) {
1489 next
= bh
->b_this_page
;
1490 block_end
= block_start
+ blocksize
;
1491 if (block_end
<= from
|| block_start
>= to
) {
1492 if (partial
&& !buffer_uptodate(bh
))
1496 err
= (*fn
)(handle
, bh
);
1504 * To preserve ordering, it is essential that the hole instantiation and
1505 * the data write be encapsulated in a single transaction. We cannot
1506 * close off a transaction and start a new one between the ext4_get_block()
1507 * and the commit_write(). So doing the jbd2_journal_start at the start of
1508 * prepare_write() is the right place.
1510 * Also, this function can nest inside ext4_writepage() ->
1511 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1512 * has generated enough buffer credits to do the whole page. So we won't
1513 * block on the journal in that case, which is good, because the caller may
1516 * By accident, ext4 can be reentered when a transaction is open via
1517 * quota file writes. If we were to commit the transaction while thus
1518 * reentered, there can be a deadlock - we would be holding a quota
1519 * lock, and the commit would never complete if another thread had a
1520 * transaction open and was blocking on the quota lock - a ranking
1523 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1524 * will _not_ run commit under these circumstances because handle->h_ref
1525 * is elevated. We'll still have enough credits for the tiny quotafile
1528 static int do_journal_get_write_access(handle_t
*handle
,
1529 struct buffer_head
*bh
)
1531 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1533 return ext4_journal_get_write_access(handle
, bh
);
1536 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1537 loff_t pos
, unsigned len
, unsigned flags
,
1538 struct page
**pagep
, void **fsdata
)
1540 struct inode
*inode
= mapping
->host
;
1541 int ret
, needed_blocks
;
1548 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1550 * Reserve one block more for addition to orphan list in case
1551 * we allocate blocks but write fails for some reason
1553 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1554 index
= pos
>> PAGE_CACHE_SHIFT
;
1555 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1559 handle
= ext4_journal_start(inode
, needed_blocks
);
1560 if (IS_ERR(handle
)) {
1561 ret
= PTR_ERR(handle
);
1565 /* We cannot recurse into the filesystem as the transaction is already
1567 flags
|= AOP_FLAG_NOFS
;
1569 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1571 ext4_journal_stop(handle
);
1577 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1580 if (!ret
&& ext4_should_journal_data(inode
)) {
1581 ret
= walk_page_buffers(handle
, page_buffers(page
),
1582 from
, to
, NULL
, do_journal_get_write_access
);
1587 page_cache_release(page
);
1589 * block_write_begin may have instantiated a few blocks
1590 * outside i_size. Trim these off again. Don't need
1591 * i_size_read because we hold i_mutex.
1593 * Add inode to orphan list in case we crash before
1596 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1597 ext4_orphan_add(handle
, inode
);
1599 ext4_journal_stop(handle
);
1600 if (pos
+ len
> inode
->i_size
) {
1601 ext4_truncate(inode
);
1603 * If truncate failed early the inode might
1604 * still be on the orphan list; we need to
1605 * make sure the inode is removed from the
1606 * orphan list in that case.
1609 ext4_orphan_del(NULL
, inode
);
1613 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1619 /* For write_end() in data=journal mode */
1620 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1622 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1624 set_buffer_uptodate(bh
);
1625 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1628 static int ext4_generic_write_end(struct file
*file
,
1629 struct address_space
*mapping
,
1630 loff_t pos
, unsigned len
, unsigned copied
,
1631 struct page
*page
, void *fsdata
)
1633 int i_size_changed
= 0;
1634 struct inode
*inode
= mapping
->host
;
1635 handle_t
*handle
= ext4_journal_current_handle();
1637 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1640 * No need to use i_size_read() here, the i_size
1641 * cannot change under us because we hold i_mutex.
1643 * But it's important to update i_size while still holding page lock:
1644 * page writeout could otherwise come in and zero beyond i_size.
1646 if (pos
+ copied
> inode
->i_size
) {
1647 i_size_write(inode
, pos
+ copied
);
1651 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1652 /* We need to mark inode dirty even if
1653 * new_i_size is less that inode->i_size
1654 * bu greater than i_disksize.(hint delalloc)
1656 ext4_update_i_disksize(inode
, (pos
+ copied
));
1660 page_cache_release(page
);
1663 * Don't mark the inode dirty under page lock. First, it unnecessarily
1664 * makes the holding time of page lock longer. Second, it forces lock
1665 * ordering of page lock and transaction start for journaling
1669 ext4_mark_inode_dirty(handle
, inode
);
1675 * We need to pick up the new inode size which generic_commit_write gave us
1676 * `file' can be NULL - eg, when called from page_symlink().
1678 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1679 * buffers are managed internally.
1681 static int ext4_ordered_write_end(struct file
*file
,
1682 struct address_space
*mapping
,
1683 loff_t pos
, unsigned len
, unsigned copied
,
1684 struct page
*page
, void *fsdata
)
1686 handle_t
*handle
= ext4_journal_current_handle();
1687 struct inode
*inode
= mapping
->host
;
1690 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1691 ret
= ext4_jbd2_file_inode(handle
, inode
);
1694 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1697 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1698 /* if we have allocated more blocks and copied
1699 * less. We will have blocks allocated outside
1700 * inode->i_size. So truncate them
1702 ext4_orphan_add(handle
, inode
);
1706 ret2
= ext4_journal_stop(handle
);
1710 if (pos
+ len
> inode
->i_size
) {
1711 ext4_truncate(inode
);
1713 * If truncate failed early the inode might still be
1714 * on the orphan list; we need to make sure the inode
1715 * is removed from the orphan list in that case.
1718 ext4_orphan_del(NULL
, inode
);
1722 return ret
? ret
: copied
;
1725 static int ext4_writeback_write_end(struct file
*file
,
1726 struct address_space
*mapping
,
1727 loff_t pos
, unsigned len
, unsigned copied
,
1728 struct page
*page
, void *fsdata
)
1730 handle_t
*handle
= ext4_journal_current_handle();
1731 struct inode
*inode
= mapping
->host
;
1734 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1735 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1738 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1739 /* if we have allocated more blocks and copied
1740 * less. We will have blocks allocated outside
1741 * inode->i_size. So truncate them
1743 ext4_orphan_add(handle
, inode
);
1748 ret2
= ext4_journal_stop(handle
);
1752 if (pos
+ len
> inode
->i_size
) {
1753 ext4_truncate(inode
);
1755 * If truncate failed early the inode might still be
1756 * on the orphan list; we need to make sure the inode
1757 * is removed from the orphan list in that case.
1760 ext4_orphan_del(NULL
, inode
);
1763 return ret
? ret
: copied
;
1766 static int ext4_journalled_write_end(struct file
*file
,
1767 struct address_space
*mapping
,
1768 loff_t pos
, unsigned len
, unsigned copied
,
1769 struct page
*page
, void *fsdata
)
1771 handle_t
*handle
= ext4_journal_current_handle();
1772 struct inode
*inode
= mapping
->host
;
1778 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1779 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1783 if (!PageUptodate(page
))
1785 page_zero_new_buffers(page
, from
+copied
, to
);
1788 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1789 to
, &partial
, write_end_fn
);
1791 SetPageUptodate(page
);
1792 new_i_size
= pos
+ copied
;
1793 if (new_i_size
> inode
->i_size
)
1794 i_size_write(inode
, pos
+copied
);
1795 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
1796 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1797 ext4_update_i_disksize(inode
, new_i_size
);
1798 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1804 page_cache_release(page
);
1805 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1806 /* if we have allocated more blocks and copied
1807 * less. We will have blocks allocated outside
1808 * inode->i_size. So truncate them
1810 ext4_orphan_add(handle
, inode
);
1812 ret2
= ext4_journal_stop(handle
);
1815 if (pos
+ len
> inode
->i_size
) {
1816 ext4_truncate(inode
);
1818 * If truncate failed early the inode might still be
1819 * on the orphan list; we need to make sure the inode
1820 * is removed from the orphan list in that case.
1823 ext4_orphan_del(NULL
, inode
);
1826 return ret
? ret
: copied
;
1829 static int ext4_da_reserve_space(struct inode
*inode
, int nrblocks
)
1832 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1833 unsigned long md_needed
, mdblocks
, total
= 0;
1836 * recalculate the amount of metadata blocks to reserve
1837 * in order to allocate nrblocks
1838 * worse case is one extent per block
1841 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1842 total
= EXT4_I(inode
)->i_reserved_data_blocks
+ nrblocks
;
1843 mdblocks
= ext4_calc_metadata_amount(inode
, total
);
1844 BUG_ON(mdblocks
< EXT4_I(inode
)->i_reserved_meta_blocks
);
1846 md_needed
= mdblocks
- EXT4_I(inode
)->i_reserved_meta_blocks
;
1847 total
= md_needed
+ nrblocks
;
1850 * Make quota reservation here to prevent quota overflow
1851 * later. Real quota accounting is done at pages writeout
1854 if (vfs_dq_reserve_block(inode
, total
)) {
1855 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1859 if (ext4_claim_free_blocks(sbi
, total
)) {
1860 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1861 vfs_dq_release_reservation_block(inode
, total
);
1862 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1868 EXT4_I(inode
)->i_reserved_data_blocks
+= nrblocks
;
1869 EXT4_I(inode
)->i_reserved_meta_blocks
= mdblocks
;
1871 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1872 return 0; /* success */
1875 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1877 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1878 int total
, mdb
, mdb_free
, release
;
1881 return; /* Nothing to release, exit */
1883 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1885 if (!EXT4_I(inode
)->i_reserved_data_blocks
) {
1887 * if there is no reserved blocks, but we try to free some
1888 * then the counter is messed up somewhere.
1889 * but since this function is called from invalidate
1890 * page, it's harmless to return without any action
1892 printk(KERN_INFO
"ext4 delalloc try to release %d reserved "
1893 "blocks for inode %lu, but there is no reserved "
1894 "data blocks\n", to_free
, inode
->i_ino
);
1895 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1899 /* recalculate the number of metablocks still need to be reserved */
1900 total
= EXT4_I(inode
)->i_reserved_data_blocks
- to_free
;
1901 mdb
= ext4_calc_metadata_amount(inode
, total
);
1903 /* figure out how many metablocks to release */
1904 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1905 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1907 release
= to_free
+ mdb_free
;
1909 /* update fs dirty blocks counter for truncate case */
1910 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, release
);
1912 /* update per-inode reservations */
1913 BUG_ON(to_free
> EXT4_I(inode
)->i_reserved_data_blocks
);
1914 EXT4_I(inode
)->i_reserved_data_blocks
-= to_free
;
1916 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1917 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1918 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1920 vfs_dq_release_reservation_block(inode
, release
);
1923 static void ext4_da_page_release_reservation(struct page
*page
,
1924 unsigned long offset
)
1927 struct buffer_head
*head
, *bh
;
1928 unsigned int curr_off
= 0;
1930 head
= page_buffers(page
);
1933 unsigned int next_off
= curr_off
+ bh
->b_size
;
1935 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1937 clear_buffer_delay(bh
);
1939 curr_off
= next_off
;
1940 } while ((bh
= bh
->b_this_page
) != head
);
1941 ext4_da_release_space(page
->mapping
->host
, to_release
);
1945 * Delayed allocation stuff
1949 * mpage_da_submit_io - walks through extent of pages and try to write
1950 * them with writepage() call back
1952 * @mpd->inode: inode
1953 * @mpd->first_page: first page of the extent
1954 * @mpd->next_page: page after the last page of the extent
1956 * By the time mpage_da_submit_io() is called we expect all blocks
1957 * to be allocated. this may be wrong if allocation failed.
1959 * As pages are already locked by write_cache_pages(), we can't use it
1961 static int mpage_da_submit_io(struct mpage_da_data
*mpd
)
1964 struct pagevec pvec
;
1965 unsigned long index
, end
;
1966 int ret
= 0, err
, nr_pages
, i
;
1967 struct inode
*inode
= mpd
->inode
;
1968 struct address_space
*mapping
= inode
->i_mapping
;
1970 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1972 * We need to start from the first_page to the next_page - 1
1973 * to make sure we also write the mapped dirty buffer_heads.
1974 * If we look at mpd->b_blocknr we would only be looking
1975 * at the currently mapped buffer_heads.
1977 index
= mpd
->first_page
;
1978 end
= mpd
->next_page
- 1;
1980 pagevec_init(&pvec
, 0);
1981 while (index
<= end
) {
1982 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1985 for (i
= 0; i
< nr_pages
; i
++) {
1986 struct page
*page
= pvec
.pages
[i
];
1988 index
= page
->index
;
1993 BUG_ON(!PageLocked(page
));
1994 BUG_ON(PageWriteback(page
));
1996 pages_skipped
= mpd
->wbc
->pages_skipped
;
1997 err
= mapping
->a_ops
->writepage(page
, mpd
->wbc
);
1998 if (!err
&& (pages_skipped
== mpd
->wbc
->pages_skipped
))
2000 * have successfully written the page
2001 * without skipping the same
2003 mpd
->pages_written
++;
2005 * In error case, we have to continue because
2006 * remaining pages are still locked
2007 * XXX: unlock and re-dirty them?
2012 pagevec_release(&pvec
);
2018 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2020 * @mpd->inode - inode to walk through
2021 * @exbh->b_blocknr - first block on a disk
2022 * @exbh->b_size - amount of space in bytes
2023 * @logical - first logical block to start assignment with
2025 * the function goes through all passed space and put actual disk
2026 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2028 static void mpage_put_bnr_to_bhs(struct mpage_da_data
*mpd
, sector_t logical
,
2029 struct buffer_head
*exbh
)
2031 struct inode
*inode
= mpd
->inode
;
2032 struct address_space
*mapping
= inode
->i_mapping
;
2033 int blocks
= exbh
->b_size
>> inode
->i_blkbits
;
2034 sector_t pblock
= exbh
->b_blocknr
, cur_logical
;
2035 struct buffer_head
*head
, *bh
;
2037 struct pagevec pvec
;
2040 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2041 end
= (logical
+ blocks
- 1) >> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2042 cur_logical
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2044 pagevec_init(&pvec
, 0);
2046 while (index
<= end
) {
2047 /* XXX: optimize tail */
2048 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2051 for (i
= 0; i
< nr_pages
; i
++) {
2052 struct page
*page
= pvec
.pages
[i
];
2054 index
= page
->index
;
2059 BUG_ON(!PageLocked(page
));
2060 BUG_ON(PageWriteback(page
));
2061 BUG_ON(!page_has_buffers(page
));
2063 bh
= page_buffers(page
);
2066 /* skip blocks out of the range */
2068 if (cur_logical
>= logical
)
2071 } while ((bh
= bh
->b_this_page
) != head
);
2074 if (cur_logical
>= logical
+ blocks
)
2077 if (buffer_delay(bh
) ||
2078 buffer_unwritten(bh
)) {
2080 BUG_ON(bh
->b_bdev
!= inode
->i_sb
->s_bdev
);
2082 if (buffer_delay(bh
)) {
2083 clear_buffer_delay(bh
);
2084 bh
->b_blocknr
= pblock
;
2087 * unwritten already should have
2088 * blocknr assigned. Verify that
2090 clear_buffer_unwritten(bh
);
2091 BUG_ON(bh
->b_blocknr
!= pblock
);
2094 } else if (buffer_mapped(bh
))
2095 BUG_ON(bh
->b_blocknr
!= pblock
);
2099 } while ((bh
= bh
->b_this_page
) != head
);
2101 pagevec_release(&pvec
);
2107 * __unmap_underlying_blocks - just a helper function to unmap
2108 * set of blocks described by @bh
2110 static inline void __unmap_underlying_blocks(struct inode
*inode
,
2111 struct buffer_head
*bh
)
2113 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2116 blocks
= bh
->b_size
>> inode
->i_blkbits
;
2117 for (i
= 0; i
< blocks
; i
++)
2118 unmap_underlying_metadata(bdev
, bh
->b_blocknr
+ i
);
2121 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
,
2122 sector_t logical
, long blk_cnt
)
2126 struct pagevec pvec
;
2127 struct inode
*inode
= mpd
->inode
;
2128 struct address_space
*mapping
= inode
->i_mapping
;
2130 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2131 end
= (logical
+ blk_cnt
- 1) >>
2132 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2133 while (index
<= end
) {
2134 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2137 for (i
= 0; i
< nr_pages
; i
++) {
2138 struct page
*page
= pvec
.pages
[i
];
2139 index
= page
->index
;
2144 BUG_ON(!PageLocked(page
));
2145 BUG_ON(PageWriteback(page
));
2146 block_invalidatepage(page
, 0);
2147 ClearPageUptodate(page
);
2154 static void ext4_print_free_blocks(struct inode
*inode
)
2156 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2157 printk(KERN_CRIT
"Total free blocks count %lld\n",
2158 ext4_count_free_blocks(inode
->i_sb
));
2159 printk(KERN_CRIT
"Free/Dirty block details\n");
2160 printk(KERN_CRIT
"free_blocks=%lld\n",
2161 (long long) percpu_counter_sum(&sbi
->s_freeblocks_counter
));
2162 printk(KERN_CRIT
"dirty_blocks=%lld\n",
2163 (long long) percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
2164 printk(KERN_CRIT
"Block reservation details\n");
2165 printk(KERN_CRIT
"i_reserved_data_blocks=%u\n",
2166 EXT4_I(inode
)->i_reserved_data_blocks
);
2167 printk(KERN_CRIT
"i_reserved_meta_blocks=%u\n",
2168 EXT4_I(inode
)->i_reserved_meta_blocks
);
2173 * mpage_da_map_blocks - go through given space
2175 * @mpd - bh describing space
2177 * The function skips space we know is already mapped to disk blocks.
2180 static int mpage_da_map_blocks(struct mpage_da_data
*mpd
)
2182 int err
, blks
, get_blocks_flags
;
2183 struct buffer_head
new;
2184 sector_t next
= mpd
->b_blocknr
;
2185 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2186 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
2187 handle_t
*handle
= NULL
;
2190 * We consider only non-mapped and non-allocated blocks
2192 if ((mpd
->b_state
& (1 << BH_Mapped
)) &&
2193 !(mpd
->b_state
& (1 << BH_Delay
)) &&
2194 !(mpd
->b_state
& (1 << BH_Unwritten
)))
2198 * If we didn't accumulate anything to write simply return
2203 handle
= ext4_journal_current_handle();
2207 * Call ext4_get_blocks() to allocate any delayed allocation
2208 * blocks, or to convert an uninitialized extent to be
2209 * initialized (in the case where we have written into
2210 * one or more preallocated blocks).
2212 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2213 * indicate that we are on the delayed allocation path. This
2214 * affects functions in many different parts of the allocation
2215 * call path. This flag exists primarily because we don't
2216 * want to change *many* call functions, so ext4_get_blocks()
2217 * will set the magic i_delalloc_reserved_flag once the
2218 * inode's allocation semaphore is taken.
2220 * If the blocks in questions were delalloc blocks, set
2221 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2222 * variables are updated after the blocks have been allocated.
2225 get_blocks_flags
= (EXT4_GET_BLOCKS_CREATE
|
2226 EXT4_GET_BLOCKS_DELALLOC_RESERVE
);
2227 if (mpd
->b_state
& (1 << BH_Delay
))
2228 get_blocks_flags
|= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
;
2229 blks
= ext4_get_blocks(handle
, mpd
->inode
, next
, max_blocks
,
2230 &new, get_blocks_flags
);
2234 * If get block returns with error we simply
2235 * return. Later writepage will redirty the page and
2236 * writepages will find the dirty page again
2241 if (err
== -ENOSPC
&&
2242 ext4_count_free_blocks(mpd
->inode
->i_sb
)) {
2248 * get block failure will cause us to loop in
2249 * writepages, because a_ops->writepage won't be able
2250 * to make progress. The page will be redirtied by
2251 * writepage and writepages will again try to write
2254 ext4_msg(mpd
->inode
->i_sb
, KERN_CRIT
,
2255 "delayed block allocation failed for inode %lu at "
2256 "logical offset %llu with max blocks %zd with "
2257 "error %d\n", mpd
->inode
->i_ino
,
2258 (unsigned long long) next
,
2259 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
2260 printk(KERN_CRIT
"This should not happen!! "
2261 "Data will be lost\n");
2262 if (err
== -ENOSPC
) {
2263 ext4_print_free_blocks(mpd
->inode
);
2265 /* invalidate all the pages */
2266 ext4_da_block_invalidatepages(mpd
, next
,
2267 mpd
->b_size
>> mpd
->inode
->i_blkbits
);
2272 new.b_size
= (blks
<< mpd
->inode
->i_blkbits
);
2274 if (buffer_new(&new))
2275 __unmap_underlying_blocks(mpd
->inode
, &new);
2278 * If blocks are delayed marked, we need to
2279 * put actual blocknr and drop delayed bit
2281 if ((mpd
->b_state
& (1 << BH_Delay
)) ||
2282 (mpd
->b_state
& (1 << BH_Unwritten
)))
2283 mpage_put_bnr_to_bhs(mpd
, next
, &new);
2285 if (ext4_should_order_data(mpd
->inode
)) {
2286 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
2292 * Update on-disk size along with block allocation.
2294 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
2295 if (disksize
> i_size_read(mpd
->inode
))
2296 disksize
= i_size_read(mpd
->inode
);
2297 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
2298 ext4_update_i_disksize(mpd
->inode
, disksize
);
2299 return ext4_mark_inode_dirty(handle
, mpd
->inode
);
2305 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2306 (1 << BH_Delay) | (1 << BH_Unwritten))
2309 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2311 * @mpd->lbh - extent of blocks
2312 * @logical - logical number of the block in the file
2313 * @bh - bh of the block (used to access block's state)
2315 * the function is used to collect contig. blocks in same state
2317 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
2318 sector_t logical
, size_t b_size
,
2319 unsigned long b_state
)
2322 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2324 /* check if thereserved journal credits might overflow */
2325 if (!(EXT4_I(mpd
->inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
2326 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
2328 * With non-extent format we are limited by the journal
2329 * credit available. Total credit needed to insert
2330 * nrblocks contiguous blocks is dependent on the
2331 * nrblocks. So limit nrblocks.
2334 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
2335 EXT4_MAX_TRANS_DATA
) {
2337 * Adding the new buffer_head would make it cross the
2338 * allowed limit for which we have journal credit
2339 * reserved. So limit the new bh->b_size
2341 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
2342 mpd
->inode
->i_blkbits
;
2343 /* we will do mpage_da_submit_io in the next loop */
2347 * First block in the extent
2349 if (mpd
->b_size
== 0) {
2350 mpd
->b_blocknr
= logical
;
2351 mpd
->b_size
= b_size
;
2352 mpd
->b_state
= b_state
& BH_FLAGS
;
2356 next
= mpd
->b_blocknr
+ nrblocks
;
2358 * Can we merge the block to our big extent?
2360 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
2361 mpd
->b_size
+= b_size
;
2367 * We couldn't merge the block to our extent, so we
2368 * need to flush current extent and start new one
2370 if (mpage_da_map_blocks(mpd
) == 0)
2371 mpage_da_submit_io(mpd
);
2376 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
2378 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
2382 * __mpage_da_writepage - finds extent of pages and blocks
2384 * @page: page to consider
2385 * @wbc: not used, we just follow rules
2388 * The function finds extents of pages and scan them for all blocks.
2390 static int __mpage_da_writepage(struct page
*page
,
2391 struct writeback_control
*wbc
, void *data
)
2393 struct mpage_da_data
*mpd
= data
;
2394 struct inode
*inode
= mpd
->inode
;
2395 struct buffer_head
*bh
, *head
;
2400 * Rest of the page in the page_vec
2401 * redirty then and skip then. We will
2402 * try to write them again after
2403 * starting a new transaction
2405 redirty_page_for_writepage(wbc
, page
);
2407 return MPAGE_DA_EXTENT_TAIL
;
2410 * Can we merge this page to current extent?
2412 if (mpd
->next_page
!= page
->index
) {
2414 * Nope, we can't. So, we map non-allocated blocks
2415 * and start IO on them using writepage()
2417 if (mpd
->next_page
!= mpd
->first_page
) {
2418 if (mpage_da_map_blocks(mpd
) == 0)
2419 mpage_da_submit_io(mpd
);
2421 * skip rest of the page in the page_vec
2424 redirty_page_for_writepage(wbc
, page
);
2426 return MPAGE_DA_EXTENT_TAIL
;
2430 * Start next extent of pages ...
2432 mpd
->first_page
= page
->index
;
2442 mpd
->next_page
= page
->index
+ 1;
2443 logical
= (sector_t
) page
->index
<<
2444 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2446 if (!page_has_buffers(page
)) {
2447 mpage_add_bh_to_extent(mpd
, logical
, PAGE_CACHE_SIZE
,
2448 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2450 return MPAGE_DA_EXTENT_TAIL
;
2453 * Page with regular buffer heads, just add all dirty ones
2455 head
= page_buffers(page
);
2458 BUG_ON(buffer_locked(bh
));
2460 * We need to try to allocate
2461 * unmapped blocks in the same page.
2462 * Otherwise we won't make progress
2463 * with the page in ext4_writepage
2465 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2466 mpage_add_bh_to_extent(mpd
, logical
,
2470 return MPAGE_DA_EXTENT_TAIL
;
2471 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2473 * mapped dirty buffer. We need to update
2474 * the b_state because we look at
2475 * b_state in mpage_da_map_blocks. We don't
2476 * update b_size because if we find an
2477 * unmapped buffer_head later we need to
2478 * use the b_state flag of that buffer_head.
2480 if (mpd
->b_size
== 0)
2481 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2484 } while ((bh
= bh
->b_this_page
) != head
);
2491 * This is a special get_blocks_t callback which is used by
2492 * ext4_da_write_begin(). It will either return mapped block or
2493 * reserve space for a single block.
2495 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2496 * We also have b_blocknr = -1 and b_bdev initialized properly
2498 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2499 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2500 * initialized properly.
2502 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2503 struct buffer_head
*bh_result
, int create
)
2506 sector_t invalid_block
= ~((sector_t
) 0xffff);
2508 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
2511 BUG_ON(create
== 0);
2512 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2515 * first, we need to know whether the block is allocated already
2516 * preallocated blocks are unmapped but should treated
2517 * the same as allocated blocks.
2519 ret
= ext4_get_blocks(NULL
, inode
, iblock
, 1, bh_result
, 0);
2520 if ((ret
== 0) && !buffer_delay(bh_result
)) {
2521 /* the block isn't (pre)allocated yet, let's reserve space */
2523 * XXX: __block_prepare_write() unmaps passed block,
2526 ret
= ext4_da_reserve_space(inode
, 1);
2528 /* not enough space to reserve */
2531 map_bh(bh_result
, inode
->i_sb
, invalid_block
);
2532 set_buffer_new(bh_result
);
2533 set_buffer_delay(bh_result
);
2534 } else if (ret
> 0) {
2535 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2536 if (buffer_unwritten(bh_result
)) {
2537 /* A delayed write to unwritten bh should
2538 * be marked new and mapped. Mapped ensures
2539 * that we don't do get_block multiple times
2540 * when we write to the same offset and new
2541 * ensures that we do proper zero out for
2544 set_buffer_new(bh_result
);
2545 set_buffer_mapped(bh_result
);
2554 * This function is used as a standard get_block_t calback function
2555 * when there is no desire to allocate any blocks. It is used as a
2556 * callback function for block_prepare_write(), nobh_writepage(), and
2557 * block_write_full_page(). These functions should only try to map a
2558 * single block at a time.
2560 * Since this function doesn't do block allocations even if the caller
2561 * requests it by passing in create=1, it is critically important that
2562 * any caller checks to make sure that any buffer heads are returned
2563 * by this function are either all already mapped or marked for
2564 * delayed allocation before calling nobh_writepage() or
2565 * block_write_full_page(). Otherwise, b_blocknr could be left
2566 * unitialized, and the page write functions will be taken by
2569 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
2570 struct buffer_head
*bh_result
, int create
)
2573 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
2575 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2578 * we don't want to do block allocation in writepage
2579 * so call get_block_wrap with create = 0
2581 ret
= ext4_get_blocks(NULL
, inode
, iblock
, max_blocks
, bh_result
, 0);
2583 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2589 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2595 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2601 static int __ext4_journalled_writepage(struct page
*page
,
2602 struct writeback_control
*wbc
,
2605 struct address_space
*mapping
= page
->mapping
;
2606 struct inode
*inode
= mapping
->host
;
2607 struct buffer_head
*page_bufs
;
2608 handle_t
*handle
= NULL
;
2612 page_bufs
= page_buffers(page
);
2614 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
2615 /* As soon as we unlock the page, it can go away, but we have
2616 * references to buffers so we are safe */
2619 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
2620 if (IS_ERR(handle
)) {
2621 ret
= PTR_ERR(handle
);
2625 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2626 do_journal_get_write_access
);
2628 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2632 err
= ext4_journal_stop(handle
);
2636 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
2637 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
2643 * Note that we don't need to start a transaction unless we're journaling data
2644 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2645 * need to file the inode to the transaction's list in ordered mode because if
2646 * we are writing back data added by write(), the inode is already there and if
2647 * we are writing back data modified via mmap(), noone guarantees in which
2648 * transaction the data will hit the disk. In case we are journaling data, we
2649 * cannot start transaction directly because transaction start ranks above page
2650 * lock so we have to do some magic.
2652 * This function can get called via...
2653 * - ext4_da_writepages after taking page lock (have journal handle)
2654 * - journal_submit_inode_data_buffers (no journal handle)
2655 * - shrink_page_list via pdflush (no journal handle)
2656 * - grab_page_cache when doing write_begin (have journal handle)
2658 * We don't do any block allocation in this function. If we have page with
2659 * multiple blocks we need to write those buffer_heads that are mapped. This
2660 * is important for mmaped based write. So if we do with blocksize 1K
2661 * truncate(f, 1024);
2662 * a = mmap(f, 0, 4096);
2664 * truncate(f, 4096);
2665 * we have in the page first buffer_head mapped via page_mkwrite call back
2666 * but other bufer_heads would be unmapped but dirty(dirty done via the
2667 * do_wp_page). So writepage should write the first block. If we modify
2668 * the mmap area beyond 1024 we will again get a page_fault and the
2669 * page_mkwrite callback will do the block allocation and mark the
2670 * buffer_heads mapped.
2672 * We redirty the page if we have any buffer_heads that is either delay or
2673 * unwritten in the page.
2675 * We can get recursively called as show below.
2677 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2680 * But since we don't do any block allocation we should not deadlock.
2681 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2683 static int ext4_writepage(struct page
*page
,
2684 struct writeback_control
*wbc
)
2689 struct buffer_head
*page_bufs
;
2690 struct inode
*inode
= page
->mapping
->host
;
2692 trace_ext4_writepage(inode
, page
);
2693 size
= i_size_read(inode
);
2694 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2695 len
= size
& ~PAGE_CACHE_MASK
;
2697 len
= PAGE_CACHE_SIZE
;
2699 if (page_has_buffers(page
)) {
2700 page_bufs
= page_buffers(page
);
2701 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2702 ext4_bh_delay_or_unwritten
)) {
2704 * We don't want to do block allocation
2705 * So redirty the page and return
2706 * We may reach here when we do a journal commit
2707 * via journal_submit_inode_data_buffers.
2708 * If we don't have mapping block we just ignore
2709 * them. We can also reach here via shrink_page_list
2711 redirty_page_for_writepage(wbc
, page
);
2717 * The test for page_has_buffers() is subtle:
2718 * We know the page is dirty but it lost buffers. That means
2719 * that at some moment in time after write_begin()/write_end()
2720 * has been called all buffers have been clean and thus they
2721 * must have been written at least once. So they are all
2722 * mapped and we can happily proceed with mapping them
2723 * and writing the page.
2725 * Try to initialize the buffer_heads and check whether
2726 * all are mapped and non delay. We don't want to
2727 * do block allocation here.
2729 ret
= block_prepare_write(page
, 0, len
,
2730 noalloc_get_block_write
);
2732 page_bufs
= page_buffers(page
);
2733 /* check whether all are mapped and non delay */
2734 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2735 ext4_bh_delay_or_unwritten
)) {
2736 redirty_page_for_writepage(wbc
, page
);
2742 * We can't do block allocation here
2743 * so just redity the page and unlock
2746 redirty_page_for_writepage(wbc
, page
);
2750 /* now mark the buffer_heads as dirty and uptodate */
2751 block_commit_write(page
, 0, len
);
2754 if (PageChecked(page
) && ext4_should_journal_data(inode
)) {
2756 * It's mmapped pagecache. Add buffers and journal it. There
2757 * doesn't seem much point in redirtying the page here.
2759 ClearPageChecked(page
);
2760 return __ext4_journalled_writepage(page
, wbc
, len
);
2763 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
2764 ret
= nobh_writepage(page
, noalloc_get_block_write
, wbc
);
2766 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2773 * This is called via ext4_da_writepages() to
2774 * calulate the total number of credits to reserve to fit
2775 * a single extent allocation into a single transaction,
2776 * ext4_da_writpeages() will loop calling this before
2777 * the block allocation.
2780 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2782 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2785 * With non-extent format the journal credit needed to
2786 * insert nrblocks contiguous block is dependent on
2787 * number of contiguous block. So we will limit
2788 * number of contiguous block to a sane value
2790 if (!(inode
->i_flags
& EXT4_EXTENTS_FL
) &&
2791 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2792 max_blocks
= EXT4_MAX_TRANS_DATA
;
2794 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2797 static int ext4_da_writepages(struct address_space
*mapping
,
2798 struct writeback_control
*wbc
)
2801 int range_whole
= 0;
2802 handle_t
*handle
= NULL
;
2803 struct mpage_da_data mpd
;
2804 struct inode
*inode
= mapping
->host
;
2805 int no_nrwrite_index_update
;
2806 int pages_written
= 0;
2808 unsigned int max_pages
;
2809 int range_cyclic
, cycled
= 1, io_done
= 0;
2810 int needed_blocks
, ret
= 0;
2811 long desired_nr_to_write
, nr_to_writebump
= 0;
2812 loff_t range_start
= wbc
->range_start
;
2813 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2815 trace_ext4_da_writepages(inode
, wbc
);
2818 * No pages to write? This is mainly a kludge to avoid starting
2819 * a transaction for special inodes like journal inode on last iput()
2820 * because that could violate lock ordering on umount
2822 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2826 * If the filesystem has aborted, it is read-only, so return
2827 * right away instead of dumping stack traces later on that
2828 * will obscure the real source of the problem. We test
2829 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2830 * the latter could be true if the filesystem is mounted
2831 * read-only, and in that case, ext4_da_writepages should
2832 * *never* be called, so if that ever happens, we would want
2835 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2838 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2841 range_cyclic
= wbc
->range_cyclic
;
2842 if (wbc
->range_cyclic
) {
2843 index
= mapping
->writeback_index
;
2846 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2847 wbc
->range_end
= LLONG_MAX
;
2848 wbc
->range_cyclic
= 0;
2850 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2853 * This works around two forms of stupidity. The first is in
2854 * the writeback code, which caps the maximum number of pages
2855 * written to be 1024 pages. This is wrong on multiple
2856 * levels; different architectues have a different page size,
2857 * which changes the maximum amount of data which gets
2858 * written. Secondly, 4 megabytes is way too small. XFS
2859 * forces this value to be 16 megabytes by multiplying
2860 * nr_to_write parameter by four, and then relies on its
2861 * allocator to allocate larger extents to make them
2862 * contiguous. Unfortunately this brings us to the second
2863 * stupidity, which is that ext4's mballoc code only allocates
2864 * at most 2048 blocks. So we force contiguous writes up to
2865 * the number of dirty blocks in the inode, or
2866 * sbi->max_writeback_mb_bump whichever is smaller.
2868 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2869 if (!range_cyclic
&& range_whole
)
2870 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2872 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2874 if (desired_nr_to_write
> max_pages
)
2875 desired_nr_to_write
= max_pages
;
2877 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2878 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2879 wbc
->nr_to_write
= desired_nr_to_write
;
2883 mpd
.inode
= mapping
->host
;
2886 * we don't want write_cache_pages to update
2887 * nr_to_write and writeback_index
2889 no_nrwrite_index_update
= wbc
->no_nrwrite_index_update
;
2890 wbc
->no_nrwrite_index_update
= 1;
2891 pages_skipped
= wbc
->pages_skipped
;
2894 while (!ret
&& wbc
->nr_to_write
> 0) {
2897 * we insert one extent at a time. So we need
2898 * credit needed for single extent allocation.
2899 * journalled mode is currently not supported
2902 BUG_ON(ext4_should_journal_data(inode
));
2903 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2905 /* start a new transaction*/
2906 handle
= ext4_journal_start(inode
, needed_blocks
);
2907 if (IS_ERR(handle
)) {
2908 ret
= PTR_ERR(handle
);
2909 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2910 "%ld pages, ino %lu; err %d\n", __func__
,
2911 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2912 goto out_writepages
;
2916 * Now call __mpage_da_writepage to find the next
2917 * contiguous region of logical blocks that need
2918 * blocks to be allocated by ext4. We don't actually
2919 * submit the blocks for I/O here, even though
2920 * write_cache_pages thinks it will, and will set the
2921 * pages as clean for write before calling
2922 * __mpage_da_writepage().
2930 mpd
.pages_written
= 0;
2932 ret
= write_cache_pages(mapping
, wbc
, __mpage_da_writepage
,
2935 * If we have a contigous extent of pages and we
2936 * haven't done the I/O yet, map the blocks and submit
2939 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2940 if (mpage_da_map_blocks(&mpd
) == 0)
2941 mpage_da_submit_io(&mpd
);
2943 ret
= MPAGE_DA_EXTENT_TAIL
;
2945 trace_ext4_da_write_pages(inode
, &mpd
);
2946 wbc
->nr_to_write
-= mpd
.pages_written
;
2948 ext4_journal_stop(handle
);
2950 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2951 /* commit the transaction which would
2952 * free blocks released in the transaction
2955 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2956 wbc
->pages_skipped
= pages_skipped
;
2958 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2960 * got one extent now try with
2963 pages_written
+= mpd
.pages_written
;
2964 wbc
->pages_skipped
= pages_skipped
;
2967 } else if (wbc
->nr_to_write
)
2969 * There is no more writeout needed
2970 * or we requested for a noblocking writeout
2971 * and we found the device congested
2975 if (!io_done
&& !cycled
) {
2978 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2979 wbc
->range_end
= mapping
->writeback_index
- 1;
2982 if (pages_skipped
!= wbc
->pages_skipped
)
2983 ext4_msg(inode
->i_sb
, KERN_CRIT
,
2984 "This should not happen leaving %s "
2985 "with nr_to_write = %ld ret = %d\n",
2986 __func__
, wbc
->nr_to_write
, ret
);
2989 index
+= pages_written
;
2990 wbc
->range_cyclic
= range_cyclic
;
2991 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2993 * set the writeback_index so that range_cyclic
2994 * mode will write it back later
2996 mapping
->writeback_index
= index
;
2999 if (!no_nrwrite_index_update
)
3000 wbc
->no_nrwrite_index_update
= 0;
3001 if (wbc
->nr_to_write
> nr_to_writebump
)
3002 wbc
->nr_to_write
-= nr_to_writebump
;
3003 wbc
->range_start
= range_start
;
3004 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
3008 #define FALL_BACK_TO_NONDELALLOC 1
3009 static int ext4_nonda_switch(struct super_block
*sb
)
3011 s64 free_blocks
, dirty_blocks
;
3012 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3015 * switch to non delalloc mode if we are running low
3016 * on free block. The free block accounting via percpu
3017 * counters can get slightly wrong with percpu_counter_batch getting
3018 * accumulated on each CPU without updating global counters
3019 * Delalloc need an accurate free block accounting. So switch
3020 * to non delalloc when we are near to error range.
3022 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
3023 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
3024 if (2 * free_blocks
< 3 * dirty_blocks
||
3025 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
3027 * free block count is less that 150% of dirty blocks
3028 * or free blocks is less that watermark
3035 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
3036 loff_t pos
, unsigned len
, unsigned flags
,
3037 struct page
**pagep
, void **fsdata
)
3039 int ret
, retries
= 0;
3043 struct inode
*inode
= mapping
->host
;
3046 index
= pos
>> PAGE_CACHE_SHIFT
;
3047 from
= pos
& (PAGE_CACHE_SIZE
- 1);
3050 if (ext4_nonda_switch(inode
->i_sb
)) {
3051 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
3052 return ext4_write_begin(file
, mapping
, pos
,
3053 len
, flags
, pagep
, fsdata
);
3055 *fsdata
= (void *)0;
3056 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
3059 * With delayed allocation, we don't log the i_disksize update
3060 * if there is delayed block allocation. But we still need
3061 * to journalling the i_disksize update if writes to the end
3062 * of file which has an already mapped buffer.
3064 handle
= ext4_journal_start(inode
, 1);
3065 if (IS_ERR(handle
)) {
3066 ret
= PTR_ERR(handle
);
3069 /* We cannot recurse into the filesystem as the transaction is already
3071 flags
|= AOP_FLAG_NOFS
;
3073 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
3075 ext4_journal_stop(handle
);
3081 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
3082 ext4_da_get_block_prep
);
3085 ext4_journal_stop(handle
);
3086 page_cache_release(page
);
3088 * block_write_begin may have instantiated a few blocks
3089 * outside i_size. Trim these off again. Don't need
3090 * i_size_read because we hold i_mutex.
3092 if (pos
+ len
> inode
->i_size
)
3093 ext4_truncate(inode
);
3096 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3103 * Check if we should update i_disksize
3104 * when write to the end of file but not require block allocation
3106 static int ext4_da_should_update_i_disksize(struct page
*page
,
3107 unsigned long offset
)
3109 struct buffer_head
*bh
;
3110 struct inode
*inode
= page
->mapping
->host
;
3114 bh
= page_buffers(page
);
3115 idx
= offset
>> inode
->i_blkbits
;
3117 for (i
= 0; i
< idx
; i
++)
3118 bh
= bh
->b_this_page
;
3120 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3125 static int ext4_da_write_end(struct file
*file
,
3126 struct address_space
*mapping
,
3127 loff_t pos
, unsigned len
, unsigned copied
,
3128 struct page
*page
, void *fsdata
)
3130 struct inode
*inode
= mapping
->host
;
3132 handle_t
*handle
= ext4_journal_current_handle();
3134 unsigned long start
, end
;
3135 int write_mode
= (int)(unsigned long)fsdata
;
3137 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
3138 if (ext4_should_order_data(inode
)) {
3139 return ext4_ordered_write_end(file
, mapping
, pos
,
3140 len
, copied
, page
, fsdata
);
3141 } else if (ext4_should_writeback_data(inode
)) {
3142 return ext4_writeback_write_end(file
, mapping
, pos
,
3143 len
, copied
, page
, fsdata
);
3149 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3150 start
= pos
& (PAGE_CACHE_SIZE
- 1);
3151 end
= start
+ copied
- 1;
3154 * generic_write_end() will run mark_inode_dirty() if i_size
3155 * changes. So let's piggyback the i_disksize mark_inode_dirty
3159 new_i_size
= pos
+ copied
;
3160 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3161 if (ext4_da_should_update_i_disksize(page
, end
)) {
3162 down_write(&EXT4_I(inode
)->i_data_sem
);
3163 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3165 * Updating i_disksize when extending file
3166 * without needing block allocation
3168 if (ext4_should_order_data(inode
))
3169 ret
= ext4_jbd2_file_inode(handle
,
3172 EXT4_I(inode
)->i_disksize
= new_i_size
;
3174 up_write(&EXT4_I(inode
)->i_data_sem
);
3175 /* We need to mark inode dirty even if
3176 * new_i_size is less that inode->i_size
3177 * bu greater than i_disksize.(hint delalloc)
3179 ext4_mark_inode_dirty(handle
, inode
);
3182 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3187 ret2
= ext4_journal_stop(handle
);
3191 return ret
? ret
: copied
;
3194 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
3197 * Drop reserved blocks
3199 BUG_ON(!PageLocked(page
));
3200 if (!page_has_buffers(page
))
3203 ext4_da_page_release_reservation(page
, offset
);
3206 ext4_invalidatepage(page
, offset
);
3212 * Force all delayed allocation blocks to be allocated for a given inode.
3214 int ext4_alloc_da_blocks(struct inode
*inode
)
3216 trace_ext4_alloc_da_blocks(inode
);
3218 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
3219 !EXT4_I(inode
)->i_reserved_meta_blocks
)
3223 * We do something simple for now. The filemap_flush() will
3224 * also start triggering a write of the data blocks, which is
3225 * not strictly speaking necessary (and for users of
3226 * laptop_mode, not even desirable). However, to do otherwise
3227 * would require replicating code paths in:
3229 * ext4_da_writepages() ->
3230 * write_cache_pages() ---> (via passed in callback function)
3231 * __mpage_da_writepage() -->
3232 * mpage_add_bh_to_extent()
3233 * mpage_da_map_blocks()
3235 * The problem is that write_cache_pages(), located in
3236 * mm/page-writeback.c, marks pages clean in preparation for
3237 * doing I/O, which is not desirable if we're not planning on
3240 * We could call write_cache_pages(), and then redirty all of
3241 * the pages by calling redirty_page_for_writeback() but that
3242 * would be ugly in the extreme. So instead we would need to
3243 * replicate parts of the code in the above functions,
3244 * simplifying them becuase we wouldn't actually intend to
3245 * write out the pages, but rather only collect contiguous
3246 * logical block extents, call the multi-block allocator, and
3247 * then update the buffer heads with the block allocations.
3249 * For now, though, we'll cheat by calling filemap_flush(),
3250 * which will map the blocks, and start the I/O, but not
3251 * actually wait for the I/O to complete.
3253 return filemap_flush(inode
->i_mapping
);
3257 * bmap() is special. It gets used by applications such as lilo and by
3258 * the swapper to find the on-disk block of a specific piece of data.
3260 * Naturally, this is dangerous if the block concerned is still in the
3261 * journal. If somebody makes a swapfile on an ext4 data-journaling
3262 * filesystem and enables swap, then they may get a nasty shock when the
3263 * data getting swapped to that swapfile suddenly gets overwritten by
3264 * the original zero's written out previously to the journal and
3265 * awaiting writeback in the kernel's buffer cache.
3267 * So, if we see any bmap calls here on a modified, data-journaled file,
3268 * take extra steps to flush any blocks which might be in the cache.
3270 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3272 struct inode
*inode
= mapping
->host
;
3276 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3277 test_opt(inode
->i_sb
, DELALLOC
)) {
3279 * With delalloc we want to sync the file
3280 * so that we can make sure we allocate
3283 filemap_write_and_wait(mapping
);
3286 if (EXT4_JOURNAL(inode
) && EXT4_I(inode
)->i_state
& EXT4_STATE_JDATA
) {
3288 * This is a REALLY heavyweight approach, but the use of
3289 * bmap on dirty files is expected to be extremely rare:
3290 * only if we run lilo or swapon on a freshly made file
3291 * do we expect this to happen.
3293 * (bmap requires CAP_SYS_RAWIO so this does not
3294 * represent an unprivileged user DOS attack --- we'd be
3295 * in trouble if mortal users could trigger this path at
3298 * NB. EXT4_STATE_JDATA is not set on files other than
3299 * regular files. If somebody wants to bmap a directory
3300 * or symlink and gets confused because the buffer
3301 * hasn't yet been flushed to disk, they deserve
3302 * everything they get.
3305 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_JDATA
;
3306 journal
= EXT4_JOURNAL(inode
);
3307 jbd2_journal_lock_updates(journal
);
3308 err
= jbd2_journal_flush(journal
);
3309 jbd2_journal_unlock_updates(journal
);
3315 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3318 static int ext4_readpage(struct file
*file
, struct page
*page
)
3320 return mpage_readpage(page
, ext4_get_block
);
3324 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3325 struct list_head
*pages
, unsigned nr_pages
)
3327 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3330 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
3332 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3335 * If it's a full truncate we just forget about the pending dirtying
3338 ClearPageChecked(page
);
3341 jbd2_journal_invalidatepage(journal
, page
, offset
);
3343 block_invalidatepage(page
, offset
);
3346 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3348 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3350 WARN_ON(PageChecked(page
));
3351 if (!page_has_buffers(page
))
3354 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3356 return try_to_free_buffers(page
);
3360 * O_DIRECT for ext3 (or indirect map) based files
3362 * If the O_DIRECT write will extend the file then add this inode to the
3363 * orphan list. So recovery will truncate it back to the original size
3364 * if the machine crashes during the write.
3366 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3367 * crashes then stale disk data _may_ be exposed inside the file. But current
3368 * VFS code falls back into buffered path in that case so we are safe.
3370 static ssize_t
ext4_ind_direct_IO(int rw
, struct kiocb
*iocb
,
3371 const struct iovec
*iov
, loff_t offset
,
3372 unsigned long nr_segs
)
3374 struct file
*file
= iocb
->ki_filp
;
3375 struct inode
*inode
= file
->f_mapping
->host
;
3376 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3380 size_t count
= iov_length(iov
, nr_segs
);
3384 loff_t final_size
= offset
+ count
;
3386 if (final_size
> inode
->i_size
) {
3387 /* Credits for sb + inode write */
3388 handle
= ext4_journal_start(inode
, 2);
3389 if (IS_ERR(handle
)) {
3390 ret
= PTR_ERR(handle
);
3393 ret
= ext4_orphan_add(handle
, inode
);
3395 ext4_journal_stop(handle
);
3399 ei
->i_disksize
= inode
->i_size
;
3400 ext4_journal_stop(handle
);
3405 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
3407 ext4_get_block
, NULL
);
3408 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3414 /* Credits for sb + inode write */
3415 handle
= ext4_journal_start(inode
, 2);
3416 if (IS_ERR(handle
)) {
3417 /* This is really bad luck. We've written the data
3418 * but cannot extend i_size. Bail out and pretend
3419 * the write failed... */
3420 ret
= PTR_ERR(handle
);
3424 ext4_orphan_del(handle
, inode
);
3426 loff_t end
= offset
+ ret
;
3427 if (end
> inode
->i_size
) {
3428 ei
->i_disksize
= end
;
3429 i_size_write(inode
, end
);
3431 * We're going to return a positive `ret'
3432 * here due to non-zero-length I/O, so there's
3433 * no way of reporting error returns from
3434 * ext4_mark_inode_dirty() to userspace. So
3437 ext4_mark_inode_dirty(handle
, inode
);
3440 err
= ext4_journal_stop(handle
);
3448 /* Maximum number of blocks we map for direct IO at once. */
3450 static int ext4_get_block_dio_write(struct inode
*inode
, sector_t iblock
,
3451 struct buffer_head
*bh_result
, int create
)
3453 handle_t
*handle
= NULL
;
3455 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
3458 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3459 inode
->i_ino
, create
);
3461 * DIO VFS code passes create = 0 flag for write to
3462 * the middle of file. It does this to avoid block
3463 * allocation for holes, to prevent expose stale data
3464 * out when there is parallel buffered read (which does
3465 * not hold the i_mutex lock) while direct IO write has
3466 * not completed. DIO request on holes finally falls back
3467 * to buffered IO for this reason.
3469 * For ext4 extent based file, since we support fallocate,
3470 * new allocated extent as uninitialized, for holes, we
3471 * could fallocate blocks for holes, thus parallel
3472 * buffered IO read will zero out the page when read on
3473 * a hole while parallel DIO write to the hole has not completed.
3475 * when we come here, we know it's a direct IO write to
3476 * to the middle of file (<i_size)
3477 * so it's safe to override the create flag from VFS.
3479 create
= EXT4_GET_BLOCKS_DIO_CREATE_EXT
;
3481 if (max_blocks
> DIO_MAX_BLOCKS
)
3482 max_blocks
= DIO_MAX_BLOCKS
;
3483 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
3484 handle
= ext4_journal_start(inode
, dio_credits
);
3485 if (IS_ERR(handle
)) {
3486 ret
= PTR_ERR(handle
);
3489 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
3492 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
3495 ext4_journal_stop(handle
);
3500 static void ext4_free_io_end(ext4_io_end_t
*io
)
3506 static void dump_aio_dio_list(struct inode
* inode
)
3509 struct list_head
*cur
, *before
, *after
;
3510 ext4_io_end_t
*io
, *io0
, *io1
;
3512 if (list_empty(&EXT4_I(inode
)->i_aio_dio_complete_list
)){
3513 ext4_debug("inode %lu aio dio list is empty\n", inode
->i_ino
);
3517 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode
->i_ino
);
3518 list_for_each_entry(io
, &EXT4_I(inode
)->i_aio_dio_complete_list
, list
){
3521 io0
= container_of(before
, ext4_io_end_t
, list
);
3523 io1
= container_of(after
, ext4_io_end_t
, list
);
3525 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3526 io
, inode
->i_ino
, io0
, io1
);
3532 * check a range of space and convert unwritten extents to written.
3534 static int ext4_end_aio_dio_nolock(ext4_io_end_t
*io
)
3536 struct inode
*inode
= io
->inode
;
3537 loff_t offset
= io
->offset
;
3538 size_t size
= io
->size
;
3541 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3542 "list->prev 0x%p\n",
3543 io
, inode
->i_ino
, io
->list
.next
, io
->list
.prev
);
3545 if (list_empty(&io
->list
))
3548 if (io
->flag
!= DIO_AIO_UNWRITTEN
)
3551 if (offset
+ size
<= i_size_read(inode
))
3552 ret
= ext4_convert_unwritten_extents(inode
, offset
, size
);
3555 printk(KERN_EMERG
"%s: failed to convert unwritten"
3556 "extents to written extents, error is %d"
3557 " io is still on inode %lu aio dio list\n",
3558 __func__
, ret
, inode
->i_ino
);
3562 /* clear the DIO AIO unwritten flag */
3567 * work on completed aio dio IO, to convert unwritten extents to extents
3569 static void ext4_end_aio_dio_work(struct work_struct
*work
)
3571 ext4_io_end_t
*io
= container_of(work
, ext4_io_end_t
, work
);
3572 struct inode
*inode
= io
->inode
;
3575 mutex_lock(&inode
->i_mutex
);
3576 ret
= ext4_end_aio_dio_nolock(io
);
3578 if (!list_empty(&io
->list
))
3579 list_del_init(&io
->list
);
3580 ext4_free_io_end(io
);
3582 mutex_unlock(&inode
->i_mutex
);
3585 * This function is called from ext4_sync_file().
3587 * When AIO DIO IO is completed, the work to convert unwritten
3588 * extents to written is queued on workqueue but may not get immediately
3589 * scheduled. When fsync is called, we need to ensure the
3590 * conversion is complete before fsync returns.
3591 * The inode keeps track of a list of completed AIO from DIO path
3592 * that might needs to do the conversion. This function walks through
3593 * the list and convert the related unwritten extents to written.
3595 int flush_aio_dio_completed_IO(struct inode
*inode
)
3601 if (list_empty(&EXT4_I(inode
)->i_aio_dio_complete_list
))
3604 dump_aio_dio_list(inode
);
3605 while (!list_empty(&EXT4_I(inode
)->i_aio_dio_complete_list
)){
3606 io
= list_entry(EXT4_I(inode
)->i_aio_dio_complete_list
.next
,
3607 ext4_io_end_t
, list
);
3609 * Calling ext4_end_aio_dio_nolock() to convert completed
3612 * When ext4_sync_file() is called, run_queue() may already
3613 * about to flush the work corresponding to this io structure.
3614 * It will be upset if it founds the io structure related
3615 * to the work-to-be schedule is freed.
3617 * Thus we need to keep the io structure still valid here after
3618 * convertion finished. The io structure has a flag to
3619 * avoid double converting from both fsync and background work
3622 ret
= ext4_end_aio_dio_nolock(io
);
3626 list_del_init(&io
->list
);
3628 return (ret2
< 0) ? ret2
: 0;
3631 static ext4_io_end_t
*ext4_init_io_end (struct inode
*inode
)
3633 ext4_io_end_t
*io
= NULL
;
3635 io
= kmalloc(sizeof(*io
), GFP_NOFS
);
3644 INIT_WORK(&io
->work
, ext4_end_aio_dio_work
);
3645 INIT_LIST_HEAD(&io
->list
);
3651 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3652 ssize_t size
, void *private)
3654 ext4_io_end_t
*io_end
= iocb
->private;
3655 struct workqueue_struct
*wq
;
3657 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3658 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3659 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3661 /* if not async direct IO or dio with 0 bytes write, just return */
3662 if (!io_end
|| !size
)
3665 /* if not aio dio with unwritten extents, just free io and return */
3666 if (io_end
->flag
!= DIO_AIO_UNWRITTEN
){
3667 ext4_free_io_end(io_end
);
3668 iocb
->private = NULL
;
3672 io_end
->offset
= offset
;
3673 io_end
->size
= size
;
3674 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
3676 /* queue the work to convert unwritten extents to written */
3677 queue_work(wq
, &io_end
->work
);
3679 /* Add the io_end to per-inode completed aio dio list*/
3680 list_add_tail(&io_end
->list
,
3681 &EXT4_I(io_end
->inode
)->i_aio_dio_complete_list
);
3682 iocb
->private = NULL
;
3685 * For ext4 extent files, ext4 will do direct-io write to holes,
3686 * preallocated extents, and those write extend the file, no need to
3687 * fall back to buffered IO.
3689 * For holes, we fallocate those blocks, mark them as unintialized
3690 * If those blocks were preallocated, we mark sure they are splited, but
3691 * still keep the range to write as unintialized.
3693 * The unwrritten extents will be converted to written when DIO is completed.
3694 * For async direct IO, since the IO may still pending when return, we
3695 * set up an end_io call back function, which will do the convertion
3696 * when async direct IO completed.
3698 * If the O_DIRECT write will extend the file then add this inode to the
3699 * orphan list. So recovery will truncate it back to the original size
3700 * if the machine crashes during the write.
3703 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3704 const struct iovec
*iov
, loff_t offset
,
3705 unsigned long nr_segs
)
3707 struct file
*file
= iocb
->ki_filp
;
3708 struct inode
*inode
= file
->f_mapping
->host
;
3710 size_t count
= iov_length(iov
, nr_segs
);
3712 loff_t final_size
= offset
+ count
;
3713 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
3715 * We could direct write to holes and fallocate.
3717 * Allocated blocks to fill the hole are marked as uninitialized
3718 * to prevent paralel buffered read to expose the stale data
3719 * before DIO complete the data IO.
3721 * As to previously fallocated extents, ext4 get_block
3722 * will just simply mark the buffer mapped but still
3723 * keep the extents uninitialized.
3725 * for non AIO case, we will convert those unwritten extents
3726 * to written after return back from blockdev_direct_IO.
3728 * for async DIO, the conversion needs to be defered when
3729 * the IO is completed. The ext4 end_io callback function
3730 * will be called to take care of the conversion work.
3731 * Here for async case, we allocate an io_end structure to
3734 iocb
->private = NULL
;
3735 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3736 if (!is_sync_kiocb(iocb
)) {
3737 iocb
->private = ext4_init_io_end(inode
);
3741 * we save the io structure for current async
3742 * direct IO, so that later ext4_get_blocks()
3743 * could flag the io structure whether there
3744 * is a unwritten extents needs to be converted
3745 * when IO is completed.
3747 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
3750 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3751 inode
->i_sb
->s_bdev
, iov
,
3753 ext4_get_block_dio_write
,
3756 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3758 * The io_end structure takes a reference to the inode,
3759 * that structure needs to be destroyed and the
3760 * reference to the inode need to be dropped, when IO is
3761 * complete, even with 0 byte write, or failed.
3763 * In the successful AIO DIO case, the io_end structure will be
3764 * desctroyed and the reference to the inode will be dropped
3765 * after the end_io call back function is called.
3767 * In the case there is 0 byte write, or error case, since
3768 * VFS direct IO won't invoke the end_io call back function,
3769 * we need to free the end_io structure here.
3771 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
3772 ext4_free_io_end(iocb
->private);
3773 iocb
->private = NULL
;
3776 * for non AIO case, since the IO is already
3777 * completed, we could do the convertion right here
3779 ret
= ext4_convert_unwritten_extents(inode
,
3784 /* for write the the end of file case, we fall back to old way */
3785 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3788 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3789 const struct iovec
*iov
, loff_t offset
,
3790 unsigned long nr_segs
)
3792 struct file
*file
= iocb
->ki_filp
;
3793 struct inode
*inode
= file
->f_mapping
->host
;
3795 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
3796 return ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3798 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3802 * Pages can be marked dirty completely asynchronously from ext4's journalling
3803 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3804 * much here because ->set_page_dirty is called under VFS locks. The page is
3805 * not necessarily locked.
3807 * We cannot just dirty the page and leave attached buffers clean, because the
3808 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3809 * or jbddirty because all the journalling code will explode.
3811 * So what we do is to mark the page "pending dirty" and next time writepage
3812 * is called, propagate that into the buffers appropriately.
3814 static int ext4_journalled_set_page_dirty(struct page
*page
)
3816 SetPageChecked(page
);
3817 return __set_page_dirty_nobuffers(page
);
3820 static const struct address_space_operations ext4_ordered_aops
= {
3821 .readpage
= ext4_readpage
,
3822 .readpages
= ext4_readpages
,
3823 .writepage
= ext4_writepage
,
3824 .sync_page
= block_sync_page
,
3825 .write_begin
= ext4_write_begin
,
3826 .write_end
= ext4_ordered_write_end
,
3828 .invalidatepage
= ext4_invalidatepage
,
3829 .releasepage
= ext4_releasepage
,
3830 .direct_IO
= ext4_direct_IO
,
3831 .migratepage
= buffer_migrate_page
,
3832 .is_partially_uptodate
= block_is_partially_uptodate
,
3833 .error_remove_page
= generic_error_remove_page
,
3836 static const struct address_space_operations ext4_writeback_aops
= {
3837 .readpage
= ext4_readpage
,
3838 .readpages
= ext4_readpages
,
3839 .writepage
= ext4_writepage
,
3840 .sync_page
= block_sync_page
,
3841 .write_begin
= ext4_write_begin
,
3842 .write_end
= ext4_writeback_write_end
,
3844 .invalidatepage
= ext4_invalidatepage
,
3845 .releasepage
= ext4_releasepage
,
3846 .direct_IO
= ext4_direct_IO
,
3847 .migratepage
= buffer_migrate_page
,
3848 .is_partially_uptodate
= block_is_partially_uptodate
,
3849 .error_remove_page
= generic_error_remove_page
,
3852 static const struct address_space_operations ext4_journalled_aops
= {
3853 .readpage
= ext4_readpage
,
3854 .readpages
= ext4_readpages
,
3855 .writepage
= ext4_writepage
,
3856 .sync_page
= block_sync_page
,
3857 .write_begin
= ext4_write_begin
,
3858 .write_end
= ext4_journalled_write_end
,
3859 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3861 .invalidatepage
= ext4_invalidatepage
,
3862 .releasepage
= ext4_releasepage
,
3863 .is_partially_uptodate
= block_is_partially_uptodate
,
3864 .error_remove_page
= generic_error_remove_page
,
3867 static const struct address_space_operations ext4_da_aops
= {
3868 .readpage
= ext4_readpage
,
3869 .readpages
= ext4_readpages
,
3870 .writepage
= ext4_writepage
,
3871 .writepages
= ext4_da_writepages
,
3872 .sync_page
= block_sync_page
,
3873 .write_begin
= ext4_da_write_begin
,
3874 .write_end
= ext4_da_write_end
,
3876 .invalidatepage
= ext4_da_invalidatepage
,
3877 .releasepage
= ext4_releasepage
,
3878 .direct_IO
= ext4_direct_IO
,
3879 .migratepage
= buffer_migrate_page
,
3880 .is_partially_uptodate
= block_is_partially_uptodate
,
3881 .error_remove_page
= generic_error_remove_page
,
3884 void ext4_set_aops(struct inode
*inode
)
3886 if (ext4_should_order_data(inode
) &&
3887 test_opt(inode
->i_sb
, DELALLOC
))
3888 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3889 else if (ext4_should_order_data(inode
))
3890 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3891 else if (ext4_should_writeback_data(inode
) &&
3892 test_opt(inode
->i_sb
, DELALLOC
))
3893 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3894 else if (ext4_should_writeback_data(inode
))
3895 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3897 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3901 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3902 * up to the end of the block which corresponds to `from'.
3903 * This required during truncate. We need to physically zero the tail end
3904 * of that block so it doesn't yield old data if the file is later grown.
3906 int ext4_block_truncate_page(handle_t
*handle
,
3907 struct address_space
*mapping
, loff_t from
)
3909 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3910 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3911 unsigned blocksize
, length
, pos
;
3913 struct inode
*inode
= mapping
->host
;
3914 struct buffer_head
*bh
;
3918 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3919 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3923 blocksize
= inode
->i_sb
->s_blocksize
;
3924 length
= blocksize
- (offset
& (blocksize
- 1));
3925 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3928 * For "nobh" option, we can only work if we don't need to
3929 * read-in the page - otherwise we create buffers to do the IO.
3931 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
3932 ext4_should_writeback_data(inode
) && PageUptodate(page
)) {
3933 zero_user(page
, offset
, length
);
3934 set_page_dirty(page
);
3938 if (!page_has_buffers(page
))
3939 create_empty_buffers(page
, blocksize
, 0);
3941 /* Find the buffer that contains "offset" */
3942 bh
= page_buffers(page
);
3944 while (offset
>= pos
) {
3945 bh
= bh
->b_this_page
;
3951 if (buffer_freed(bh
)) {
3952 BUFFER_TRACE(bh
, "freed: skip");
3956 if (!buffer_mapped(bh
)) {
3957 BUFFER_TRACE(bh
, "unmapped");
3958 ext4_get_block(inode
, iblock
, bh
, 0);
3959 /* unmapped? It's a hole - nothing to do */
3960 if (!buffer_mapped(bh
)) {
3961 BUFFER_TRACE(bh
, "still unmapped");
3966 /* Ok, it's mapped. Make sure it's up-to-date */
3967 if (PageUptodate(page
))
3968 set_buffer_uptodate(bh
);
3970 if (!buffer_uptodate(bh
)) {
3972 ll_rw_block(READ
, 1, &bh
);
3974 /* Uhhuh. Read error. Complain and punt. */
3975 if (!buffer_uptodate(bh
))
3979 if (ext4_should_journal_data(inode
)) {
3980 BUFFER_TRACE(bh
, "get write access");
3981 err
= ext4_journal_get_write_access(handle
, bh
);
3986 zero_user(page
, offset
, length
);
3988 BUFFER_TRACE(bh
, "zeroed end of block");
3991 if (ext4_should_journal_data(inode
)) {
3992 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3994 if (ext4_should_order_data(inode
))
3995 err
= ext4_jbd2_file_inode(handle
, inode
);
3996 mark_buffer_dirty(bh
);
4001 page_cache_release(page
);
4006 * Probably it should be a library function... search for first non-zero word
4007 * or memcmp with zero_page, whatever is better for particular architecture.
4010 static inline int all_zeroes(__le32
*p
, __le32
*q
)
4019 * ext4_find_shared - find the indirect blocks for partial truncation.
4020 * @inode: inode in question
4021 * @depth: depth of the affected branch
4022 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4023 * @chain: place to store the pointers to partial indirect blocks
4024 * @top: place to the (detached) top of branch
4026 * This is a helper function used by ext4_truncate().
4028 * When we do truncate() we may have to clean the ends of several
4029 * indirect blocks but leave the blocks themselves alive. Block is
4030 * partially truncated if some data below the new i_size is refered
4031 * from it (and it is on the path to the first completely truncated
4032 * data block, indeed). We have to free the top of that path along
4033 * with everything to the right of the path. Since no allocation
4034 * past the truncation point is possible until ext4_truncate()
4035 * finishes, we may safely do the latter, but top of branch may
4036 * require special attention - pageout below the truncation point
4037 * might try to populate it.
4039 * We atomically detach the top of branch from the tree, store the
4040 * block number of its root in *@top, pointers to buffer_heads of
4041 * partially truncated blocks - in @chain[].bh and pointers to
4042 * their last elements that should not be removed - in
4043 * @chain[].p. Return value is the pointer to last filled element
4046 * The work left to caller to do the actual freeing of subtrees:
4047 * a) free the subtree starting from *@top
4048 * b) free the subtrees whose roots are stored in
4049 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4050 * c) free the subtrees growing from the inode past the @chain[0].
4051 * (no partially truncated stuff there). */
4053 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
4054 ext4_lblk_t offsets
[4], Indirect chain
[4],
4057 Indirect
*partial
, *p
;
4061 /* Make k index the deepest non-null offest + 1 */
4062 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
4064 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
4065 /* Writer: pointers */
4067 partial
= chain
+ k
-1;
4069 * If the branch acquired continuation since we've looked at it -
4070 * fine, it should all survive and (new) top doesn't belong to us.
4072 if (!partial
->key
&& *partial
->p
)
4075 for (p
= partial
; (p
> chain
) && all_zeroes((__le32
*) p
->bh
->b_data
, p
->p
); p
--)
4078 * OK, we've found the last block that must survive. The rest of our
4079 * branch should be detached before unlocking. However, if that rest
4080 * of branch is all ours and does not grow immediately from the inode
4081 * it's easier to cheat and just decrement partial->p.
4083 if (p
== chain
+ k
- 1 && p
> chain
) {
4087 /* Nope, don't do this in ext4. Must leave the tree intact */
4094 while (partial
> p
) {
4095 brelse(partial
->bh
);
4103 * Zero a number of block pointers in either an inode or an indirect block.
4104 * If we restart the transaction we must again get write access to the
4105 * indirect block for further modification.
4107 * We release `count' blocks on disk, but (last - first) may be greater
4108 * than `count' because there can be holes in there.
4110 static void ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
4111 struct buffer_head
*bh
,
4112 ext4_fsblk_t block_to_free
,
4113 unsigned long count
, __le32
*first
,
4117 if (try_to_extend_transaction(handle
, inode
)) {
4119 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4120 ext4_handle_dirty_metadata(handle
, inode
, bh
);
4122 ext4_mark_inode_dirty(handle
, inode
);
4123 ext4_truncate_restart_trans(handle
, inode
,
4124 blocks_for_truncate(inode
));
4126 BUFFER_TRACE(bh
, "retaking write access");
4127 ext4_journal_get_write_access(handle
, bh
);
4132 * Any buffers which are on the journal will be in memory. We
4133 * find them on the hash table so jbd2_journal_revoke() will
4134 * run jbd2_journal_forget() on them. We've already detached
4135 * each block from the file, so bforget() in
4136 * jbd2_journal_forget() should be safe.
4138 * AKPM: turn on bforget in jbd2_journal_forget()!!!
4140 for (p
= first
; p
< last
; p
++) {
4141 u32 nr
= le32_to_cpu(*p
);
4143 struct buffer_head
*tbh
;
4146 tbh
= sb_find_get_block(inode
->i_sb
, nr
);
4147 ext4_forget(handle
, 0, inode
, tbh
, nr
);
4151 ext4_free_blocks(handle
, inode
, block_to_free
, count
, 0);
4155 * ext4_free_data - free a list of data blocks
4156 * @handle: handle for this transaction
4157 * @inode: inode we are dealing with
4158 * @this_bh: indirect buffer_head which contains *@first and *@last
4159 * @first: array of block numbers
4160 * @last: points immediately past the end of array
4162 * We are freeing all blocks refered from that array (numbers are stored as
4163 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4165 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4166 * blocks are contiguous then releasing them at one time will only affect one
4167 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4168 * actually use a lot of journal space.
4170 * @this_bh will be %NULL if @first and @last point into the inode's direct
4173 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
4174 struct buffer_head
*this_bh
,
4175 __le32
*first
, __le32
*last
)
4177 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
4178 unsigned long count
= 0; /* Number of blocks in the run */
4179 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
4182 ext4_fsblk_t nr
; /* Current block # */
4183 __le32
*p
; /* Pointer into inode/ind
4184 for current block */
4187 if (this_bh
) { /* For indirect block */
4188 BUFFER_TRACE(this_bh
, "get_write_access");
4189 err
= ext4_journal_get_write_access(handle
, this_bh
);
4190 /* Important: if we can't update the indirect pointers
4191 * to the blocks, we can't free them. */
4196 for (p
= first
; p
< last
; p
++) {
4197 nr
= le32_to_cpu(*p
);
4199 /* accumulate blocks to free if they're contiguous */
4202 block_to_free_p
= p
;
4204 } else if (nr
== block_to_free
+ count
) {
4207 ext4_clear_blocks(handle
, inode
, this_bh
,
4209 count
, block_to_free_p
, p
);
4211 block_to_free_p
= p
;
4218 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
4219 count
, block_to_free_p
, p
);
4222 BUFFER_TRACE(this_bh
, "call ext4_handle_dirty_metadata");
4225 * The buffer head should have an attached journal head at this
4226 * point. However, if the data is corrupted and an indirect
4227 * block pointed to itself, it would have been detached when
4228 * the block was cleared. Check for this instead of OOPSing.
4230 if ((EXT4_JOURNAL(inode
) == NULL
) || bh2jh(this_bh
))
4231 ext4_handle_dirty_metadata(handle
, inode
, this_bh
);
4233 ext4_error(inode
->i_sb
, __func__
,
4234 "circular indirect block detected, "
4235 "inode=%lu, block=%llu",
4237 (unsigned long long) this_bh
->b_blocknr
);
4242 * ext4_free_branches - free an array of branches
4243 * @handle: JBD handle for this transaction
4244 * @inode: inode we are dealing with
4245 * @parent_bh: the buffer_head which contains *@first and *@last
4246 * @first: array of block numbers
4247 * @last: pointer immediately past the end of array
4248 * @depth: depth of the branches to free
4250 * We are freeing all blocks refered from these branches (numbers are
4251 * stored as little-endian 32-bit) and updating @inode->i_blocks
4254 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
4255 struct buffer_head
*parent_bh
,
4256 __le32
*first
, __le32
*last
, int depth
)
4261 if (ext4_handle_is_aborted(handle
))
4265 struct buffer_head
*bh
;
4266 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4268 while (--p
>= first
) {
4269 nr
= le32_to_cpu(*p
);
4271 continue; /* A hole */
4273 /* Go read the buffer for the next level down */
4274 bh
= sb_bread(inode
->i_sb
, nr
);
4277 * A read failure? Report error and clear slot
4281 ext4_error(inode
->i_sb
, "ext4_free_branches",
4282 "Read failure, inode=%lu, block=%llu",
4287 /* This zaps the entire block. Bottom up. */
4288 BUFFER_TRACE(bh
, "free child branches");
4289 ext4_free_branches(handle
, inode
, bh
,
4290 (__le32
*) bh
->b_data
,
4291 (__le32
*) bh
->b_data
+ addr_per_block
,
4295 * We've probably journalled the indirect block several
4296 * times during the truncate. But it's no longer
4297 * needed and we now drop it from the transaction via
4298 * jbd2_journal_revoke().
4300 * That's easy if it's exclusively part of this
4301 * transaction. But if it's part of the committing
4302 * transaction then jbd2_journal_forget() will simply
4303 * brelse() it. That means that if the underlying
4304 * block is reallocated in ext4_get_block(),
4305 * unmap_underlying_metadata() will find this block
4306 * and will try to get rid of it. damn, damn.
4308 * If this block has already been committed to the
4309 * journal, a revoke record will be written. And
4310 * revoke records must be emitted *before* clearing
4311 * this block's bit in the bitmaps.
4313 ext4_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
4316 * Everything below this this pointer has been
4317 * released. Now let this top-of-subtree go.
4319 * We want the freeing of this indirect block to be
4320 * atomic in the journal with the updating of the
4321 * bitmap block which owns it. So make some room in
4324 * We zero the parent pointer *after* freeing its
4325 * pointee in the bitmaps, so if extend_transaction()
4326 * for some reason fails to put the bitmap changes and
4327 * the release into the same transaction, recovery
4328 * will merely complain about releasing a free block,
4329 * rather than leaking blocks.
4331 if (ext4_handle_is_aborted(handle
))
4333 if (try_to_extend_transaction(handle
, inode
)) {
4334 ext4_mark_inode_dirty(handle
, inode
);
4335 ext4_truncate_restart_trans(handle
, inode
,
4336 blocks_for_truncate(inode
));
4339 ext4_free_blocks(handle
, inode
, nr
, 1, 1);
4343 * The block which we have just freed is
4344 * pointed to by an indirect block: journal it
4346 BUFFER_TRACE(parent_bh
, "get_write_access");
4347 if (!ext4_journal_get_write_access(handle
,
4350 BUFFER_TRACE(parent_bh
,
4351 "call ext4_handle_dirty_metadata");
4352 ext4_handle_dirty_metadata(handle
,
4359 /* We have reached the bottom of the tree. */
4360 BUFFER_TRACE(parent_bh
, "free data blocks");
4361 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
4365 int ext4_can_truncate(struct inode
*inode
)
4367 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4369 if (S_ISREG(inode
->i_mode
))
4371 if (S_ISDIR(inode
->i_mode
))
4373 if (S_ISLNK(inode
->i_mode
))
4374 return !ext4_inode_is_fast_symlink(inode
);
4381 * We block out ext4_get_block() block instantiations across the entire
4382 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4383 * simultaneously on behalf of the same inode.
4385 * As we work through the truncate and commmit bits of it to the journal there
4386 * is one core, guiding principle: the file's tree must always be consistent on
4387 * disk. We must be able to restart the truncate after a crash.
4389 * The file's tree may be transiently inconsistent in memory (although it
4390 * probably isn't), but whenever we close off and commit a journal transaction,
4391 * the contents of (the filesystem + the journal) must be consistent and
4392 * restartable. It's pretty simple, really: bottom up, right to left (although
4393 * left-to-right works OK too).
4395 * Note that at recovery time, journal replay occurs *before* the restart of
4396 * truncate against the orphan inode list.
4398 * The committed inode has the new, desired i_size (which is the same as
4399 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4400 * that this inode's truncate did not complete and it will again call
4401 * ext4_truncate() to have another go. So there will be instantiated blocks
4402 * to the right of the truncation point in a crashed ext4 filesystem. But
4403 * that's fine - as long as they are linked from the inode, the post-crash
4404 * ext4_truncate() run will find them and release them.
4406 void ext4_truncate(struct inode
*inode
)
4409 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4410 __le32
*i_data
= ei
->i_data
;
4411 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4412 struct address_space
*mapping
= inode
->i_mapping
;
4413 ext4_lblk_t offsets
[4];
4418 ext4_lblk_t last_block
;
4419 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
4421 if (!ext4_can_truncate(inode
))
4424 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
4425 ei
->i_state
|= EXT4_STATE_DA_ALLOC_CLOSE
;
4427 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
4428 ext4_ext_truncate(inode
);
4432 handle
= start_transaction(inode
);
4434 return; /* AKPM: return what? */
4436 last_block
= (inode
->i_size
+ blocksize
-1)
4437 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
4439 if (inode
->i_size
& (blocksize
- 1))
4440 if (ext4_block_truncate_page(handle
, mapping
, inode
->i_size
))
4443 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
4445 goto out_stop
; /* error */
4448 * OK. This truncate is going to happen. We add the inode to the
4449 * orphan list, so that if this truncate spans multiple transactions,
4450 * and we crash, we will resume the truncate when the filesystem
4451 * recovers. It also marks the inode dirty, to catch the new size.
4453 * Implication: the file must always be in a sane, consistent
4454 * truncatable state while each transaction commits.
4456 if (ext4_orphan_add(handle
, inode
))
4460 * From here we block out all ext4_get_block() callers who want to
4461 * modify the block allocation tree.
4463 down_write(&ei
->i_data_sem
);
4465 ext4_discard_preallocations(inode
);
4468 * The orphan list entry will now protect us from any crash which
4469 * occurs before the truncate completes, so it is now safe to propagate
4470 * the new, shorter inode size (held for now in i_size) into the
4471 * on-disk inode. We do this via i_disksize, which is the value which
4472 * ext4 *really* writes onto the disk inode.
4474 ei
->i_disksize
= inode
->i_size
;
4476 if (n
== 1) { /* direct blocks */
4477 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
4478 i_data
+ EXT4_NDIR_BLOCKS
);
4482 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
4483 /* Kill the top of shared branch (not detached) */
4485 if (partial
== chain
) {
4486 /* Shared branch grows from the inode */
4487 ext4_free_branches(handle
, inode
, NULL
,
4488 &nr
, &nr
+1, (chain
+n
-1) - partial
);
4491 * We mark the inode dirty prior to restart,
4492 * and prior to stop. No need for it here.
4495 /* Shared branch grows from an indirect block */
4496 BUFFER_TRACE(partial
->bh
, "get_write_access");
4497 ext4_free_branches(handle
, inode
, partial
->bh
,
4499 partial
->p
+1, (chain
+n
-1) - partial
);
4502 /* Clear the ends of indirect blocks on the shared branch */
4503 while (partial
> chain
) {
4504 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
4505 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
4506 (chain
+n
-1) - partial
);
4507 BUFFER_TRACE(partial
->bh
, "call brelse");
4508 brelse(partial
->bh
);
4512 /* Kill the remaining (whole) subtrees */
4513 switch (offsets
[0]) {
4515 nr
= i_data
[EXT4_IND_BLOCK
];
4517 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
4518 i_data
[EXT4_IND_BLOCK
] = 0;
4520 case EXT4_IND_BLOCK
:
4521 nr
= i_data
[EXT4_DIND_BLOCK
];
4523 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
4524 i_data
[EXT4_DIND_BLOCK
] = 0;
4526 case EXT4_DIND_BLOCK
:
4527 nr
= i_data
[EXT4_TIND_BLOCK
];
4529 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
4530 i_data
[EXT4_TIND_BLOCK
] = 0;
4532 case EXT4_TIND_BLOCK
:
4536 up_write(&ei
->i_data_sem
);
4537 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4538 ext4_mark_inode_dirty(handle
, inode
);
4541 * In a multi-transaction truncate, we only make the final transaction
4545 ext4_handle_sync(handle
);
4548 * If this was a simple ftruncate(), and the file will remain alive
4549 * then we need to clear up the orphan record which we created above.
4550 * However, if this was a real unlink then we were called by
4551 * ext4_delete_inode(), and we allow that function to clean up the
4552 * orphan info for us.
4555 ext4_orphan_del(handle
, inode
);
4557 ext4_journal_stop(handle
);
4561 * ext4_get_inode_loc returns with an extra refcount against the inode's
4562 * underlying buffer_head on success. If 'in_mem' is true, we have all
4563 * data in memory that is needed to recreate the on-disk version of this
4566 static int __ext4_get_inode_loc(struct inode
*inode
,
4567 struct ext4_iloc
*iloc
, int in_mem
)
4569 struct ext4_group_desc
*gdp
;
4570 struct buffer_head
*bh
;
4571 struct super_block
*sb
= inode
->i_sb
;
4573 int inodes_per_block
, inode_offset
;
4576 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4579 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4580 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4585 * Figure out the offset within the block group inode table
4587 inodes_per_block
= (EXT4_BLOCK_SIZE(sb
) / EXT4_INODE_SIZE(sb
));
4588 inode_offset
= ((inode
->i_ino
- 1) %
4589 EXT4_INODES_PER_GROUP(sb
));
4590 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4591 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4593 bh
= sb_getblk(sb
, block
);
4595 ext4_error(sb
, "ext4_get_inode_loc", "unable to read "
4596 "inode block - inode=%lu, block=%llu",
4597 inode
->i_ino
, block
);
4600 if (!buffer_uptodate(bh
)) {
4604 * If the buffer has the write error flag, we have failed
4605 * to write out another inode in the same block. In this
4606 * case, we don't have to read the block because we may
4607 * read the old inode data successfully.
4609 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4610 set_buffer_uptodate(bh
);
4612 if (buffer_uptodate(bh
)) {
4613 /* someone brought it uptodate while we waited */
4619 * If we have all information of the inode in memory and this
4620 * is the only valid inode in the block, we need not read the
4624 struct buffer_head
*bitmap_bh
;
4627 start
= inode_offset
& ~(inodes_per_block
- 1);
4629 /* Is the inode bitmap in cache? */
4630 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4635 * If the inode bitmap isn't in cache then the
4636 * optimisation may end up performing two reads instead
4637 * of one, so skip it.
4639 if (!buffer_uptodate(bitmap_bh
)) {
4643 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4644 if (i
== inode_offset
)
4646 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4650 if (i
== start
+ inodes_per_block
) {
4651 /* all other inodes are free, so skip I/O */
4652 memset(bh
->b_data
, 0, bh
->b_size
);
4653 set_buffer_uptodate(bh
);
4661 * If we need to do any I/O, try to pre-readahead extra
4662 * blocks from the inode table.
4664 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4665 ext4_fsblk_t b
, end
, table
;
4668 table
= ext4_inode_table(sb
, gdp
);
4669 /* s_inode_readahead_blks is always a power of 2 */
4670 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
4673 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
4674 num
= EXT4_INODES_PER_GROUP(sb
);
4675 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4676 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
4677 num
-= ext4_itable_unused_count(sb
, gdp
);
4678 table
+= num
/ inodes_per_block
;
4682 sb_breadahead(sb
, b
++);
4686 * There are other valid inodes in the buffer, this inode
4687 * has in-inode xattrs, or we don't have this inode in memory.
4688 * Read the block from disk.
4691 bh
->b_end_io
= end_buffer_read_sync
;
4692 submit_bh(READ_META
, bh
);
4694 if (!buffer_uptodate(bh
)) {
4695 ext4_error(sb
, __func__
,
4696 "unable to read inode block - inode=%lu, "
4697 "block=%llu", inode
->i_ino
, block
);
4707 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4709 /* We have all inode data except xattrs in memory here. */
4710 return __ext4_get_inode_loc(inode
, iloc
,
4711 !(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
));
4714 void ext4_set_inode_flags(struct inode
*inode
)
4716 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4718 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4719 if (flags
& EXT4_SYNC_FL
)
4720 inode
->i_flags
|= S_SYNC
;
4721 if (flags
& EXT4_APPEND_FL
)
4722 inode
->i_flags
|= S_APPEND
;
4723 if (flags
& EXT4_IMMUTABLE_FL
)
4724 inode
->i_flags
|= S_IMMUTABLE
;
4725 if (flags
& EXT4_NOATIME_FL
)
4726 inode
->i_flags
|= S_NOATIME
;
4727 if (flags
& EXT4_DIRSYNC_FL
)
4728 inode
->i_flags
|= S_DIRSYNC
;
4731 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4732 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4734 unsigned int flags
= ei
->vfs_inode
.i_flags
;
4736 ei
->i_flags
&= ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4737 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|EXT4_DIRSYNC_FL
);
4739 ei
->i_flags
|= EXT4_SYNC_FL
;
4740 if (flags
& S_APPEND
)
4741 ei
->i_flags
|= EXT4_APPEND_FL
;
4742 if (flags
& S_IMMUTABLE
)
4743 ei
->i_flags
|= EXT4_IMMUTABLE_FL
;
4744 if (flags
& S_NOATIME
)
4745 ei
->i_flags
|= EXT4_NOATIME_FL
;
4746 if (flags
& S_DIRSYNC
)
4747 ei
->i_flags
|= EXT4_DIRSYNC_FL
;
4750 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4751 struct ext4_inode_info
*ei
)
4754 struct inode
*inode
= &(ei
->vfs_inode
);
4755 struct super_block
*sb
= inode
->i_sb
;
4757 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4758 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4759 /* we are using combined 48 bit field */
4760 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4761 le32_to_cpu(raw_inode
->i_blocks_lo
);
4762 if (ei
->i_flags
& EXT4_HUGE_FILE_FL
) {
4763 /* i_blocks represent file system block size */
4764 return i_blocks
<< (inode
->i_blkbits
- 9);
4769 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4773 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4775 struct ext4_iloc iloc
;
4776 struct ext4_inode
*raw_inode
;
4777 struct ext4_inode_info
*ei
;
4778 struct buffer_head
*bh
;
4779 struct inode
*inode
;
4783 inode
= iget_locked(sb
, ino
);
4785 return ERR_PTR(-ENOMEM
);
4786 if (!(inode
->i_state
& I_NEW
))
4791 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4795 raw_inode
= ext4_raw_inode(&iloc
);
4796 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4797 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4798 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4799 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4800 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4801 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4803 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
4806 ei
->i_dir_start_lookup
= 0;
4807 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4808 /* We now have enough fields to check if the inode was active or not.
4809 * This is needed because nfsd might try to access dead inodes
4810 * the test is that same one that e2fsck uses
4811 * NeilBrown 1999oct15
4813 if (inode
->i_nlink
== 0) {
4814 if (inode
->i_mode
== 0 ||
4815 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
4816 /* this inode is deleted */
4821 /* The only unlinked inodes we let through here have
4822 * valid i_mode and are being read by the orphan
4823 * recovery code: that's fine, we're about to complete
4824 * the process of deleting those. */
4826 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4827 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4828 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4829 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4831 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4832 inode
->i_size
= ext4_isize(raw_inode
);
4833 ei
->i_disksize
= inode
->i_size
;
4834 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4835 ei
->i_block_group
= iloc
.block_group
;
4836 ei
->i_last_alloc_group
= ~0;
4838 * NOTE! The in-memory inode i_data array is in little-endian order
4839 * even on big-endian machines: we do NOT byteswap the block numbers!
4841 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4842 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4843 INIT_LIST_HEAD(&ei
->i_orphan
);
4845 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4846 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4847 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4848 EXT4_INODE_SIZE(inode
->i_sb
)) {
4853 if (ei
->i_extra_isize
== 0) {
4854 /* The extra space is currently unused. Use it. */
4855 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4856 EXT4_GOOD_OLD_INODE_SIZE
;
4858 __le32
*magic
= (void *)raw_inode
+
4859 EXT4_GOOD_OLD_INODE_SIZE
+
4861 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
4862 ei
->i_state
|= EXT4_STATE_XATTR
;
4865 ei
->i_extra_isize
= 0;
4867 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4868 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4869 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4870 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4872 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4873 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4874 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4876 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4880 if (ei
->i_file_acl
&&
4882 (le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
) +
4883 EXT4_SB(sb
)->s_gdb_count
)) ||
4884 (ei
->i_file_acl
>= ext4_blocks_count(EXT4_SB(sb
)->s_es
)))) {
4885 ext4_error(sb
, __func__
,
4886 "bad extended attribute block %llu in inode #%lu",
4887 ei
->i_file_acl
, inode
->i_ino
);
4890 } else if (ei
->i_flags
& EXT4_EXTENTS_FL
) {
4891 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4892 (S_ISLNK(inode
->i_mode
) &&
4893 !ext4_inode_is_fast_symlink(inode
)))
4894 /* Validate extent which is part of inode */
4895 ret
= ext4_ext_check_inode(inode
);
4896 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4897 (S_ISLNK(inode
->i_mode
) &&
4898 !ext4_inode_is_fast_symlink(inode
))) {
4899 /* Validate block references which are part of inode */
4900 ret
= ext4_check_inode_blockref(inode
);
4907 if (S_ISREG(inode
->i_mode
)) {
4908 inode
->i_op
= &ext4_file_inode_operations
;
4909 inode
->i_fop
= &ext4_file_operations
;
4910 ext4_set_aops(inode
);
4911 } else if (S_ISDIR(inode
->i_mode
)) {
4912 inode
->i_op
= &ext4_dir_inode_operations
;
4913 inode
->i_fop
= &ext4_dir_operations
;
4914 } else if (S_ISLNK(inode
->i_mode
)) {
4915 if (ext4_inode_is_fast_symlink(inode
)) {
4916 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4917 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4918 sizeof(ei
->i_data
) - 1);
4920 inode
->i_op
= &ext4_symlink_inode_operations
;
4921 ext4_set_aops(inode
);
4923 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4924 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4925 inode
->i_op
= &ext4_special_inode_operations
;
4926 if (raw_inode
->i_block
[0])
4927 init_special_inode(inode
, inode
->i_mode
,
4928 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4930 init_special_inode(inode
, inode
->i_mode
,
4931 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4935 ext4_error(inode
->i_sb
, __func__
,
4936 "bogus i_mode (%o) for inode=%lu",
4937 inode
->i_mode
, inode
->i_ino
);
4941 ext4_set_inode_flags(inode
);
4942 unlock_new_inode(inode
);
4947 return ERR_PTR(ret
);
4950 static int ext4_inode_blocks_set(handle_t
*handle
,
4951 struct ext4_inode
*raw_inode
,
4952 struct ext4_inode_info
*ei
)
4954 struct inode
*inode
= &(ei
->vfs_inode
);
4955 u64 i_blocks
= inode
->i_blocks
;
4956 struct super_block
*sb
= inode
->i_sb
;
4958 if (i_blocks
<= ~0U) {
4960 * i_blocks can be represnted in a 32 bit variable
4961 * as multiple of 512 bytes
4963 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4964 raw_inode
->i_blocks_high
= 0;
4965 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
4968 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
4971 if (i_blocks
<= 0xffffffffffffULL
) {
4973 * i_blocks can be represented in a 48 bit variable
4974 * as multiple of 512 bytes
4976 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4977 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4978 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
4980 ei
->i_flags
|= EXT4_HUGE_FILE_FL
;
4981 /* i_block is stored in file system block size */
4982 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4983 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4984 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4990 * Post the struct inode info into an on-disk inode location in the
4991 * buffer-cache. This gobbles the caller's reference to the
4992 * buffer_head in the inode location struct.
4994 * The caller must have write access to iloc->bh.
4996 static int ext4_do_update_inode(handle_t
*handle
,
4997 struct inode
*inode
,
4998 struct ext4_iloc
*iloc
)
5000 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
5001 struct ext4_inode_info
*ei
= EXT4_I(inode
);
5002 struct buffer_head
*bh
= iloc
->bh
;
5003 int err
= 0, rc
, block
;
5005 /* For fields not not tracking in the in-memory inode,
5006 * initialise them to zero for new inodes. */
5007 if (ei
->i_state
& EXT4_STATE_NEW
)
5008 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
5010 ext4_get_inode_flags(ei
);
5011 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
5012 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
5013 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
5014 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
5016 * Fix up interoperability with old kernels. Otherwise, old inodes get
5017 * re-used with the upper 16 bits of the uid/gid intact
5020 raw_inode
->i_uid_high
=
5021 cpu_to_le16(high_16_bits(inode
->i_uid
));
5022 raw_inode
->i_gid_high
=
5023 cpu_to_le16(high_16_bits(inode
->i_gid
));
5025 raw_inode
->i_uid_high
= 0;
5026 raw_inode
->i_gid_high
= 0;
5029 raw_inode
->i_uid_low
=
5030 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
5031 raw_inode
->i_gid_low
=
5032 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
5033 raw_inode
->i_uid_high
= 0;
5034 raw_inode
->i_gid_high
= 0;
5036 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
5038 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
5039 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
5040 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
5041 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
5043 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
5045 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
5046 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
5047 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
5048 cpu_to_le32(EXT4_OS_HURD
))
5049 raw_inode
->i_file_acl_high
=
5050 cpu_to_le16(ei
->i_file_acl
>> 32);
5051 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
5052 ext4_isize_set(raw_inode
, ei
->i_disksize
);
5053 if (ei
->i_disksize
> 0x7fffffffULL
) {
5054 struct super_block
*sb
= inode
->i_sb
;
5055 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
5056 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
5057 EXT4_SB(sb
)->s_es
->s_rev_level
==
5058 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
5059 /* If this is the first large file
5060 * created, add a flag to the superblock.
5062 err
= ext4_journal_get_write_access(handle
,
5063 EXT4_SB(sb
)->s_sbh
);
5066 ext4_update_dynamic_rev(sb
);
5067 EXT4_SET_RO_COMPAT_FEATURE(sb
,
5068 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
5070 ext4_handle_sync(handle
);
5071 err
= ext4_handle_dirty_metadata(handle
, inode
,
5072 EXT4_SB(sb
)->s_sbh
);
5075 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
5076 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
5077 if (old_valid_dev(inode
->i_rdev
)) {
5078 raw_inode
->i_block
[0] =
5079 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
5080 raw_inode
->i_block
[1] = 0;
5082 raw_inode
->i_block
[0] = 0;
5083 raw_inode
->i_block
[1] =
5084 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
5085 raw_inode
->i_block
[2] = 0;
5088 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
5089 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
5091 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
5092 if (ei
->i_extra_isize
) {
5093 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5094 raw_inode
->i_version_hi
=
5095 cpu_to_le32(inode
->i_version
>> 32);
5096 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
5099 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
5100 rc
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
5103 ei
->i_state
&= ~EXT4_STATE_NEW
;
5107 ext4_std_error(inode
->i_sb
, err
);
5112 * ext4_write_inode()
5114 * We are called from a few places:
5116 * - Within generic_file_write() for O_SYNC files.
5117 * Here, there will be no transaction running. We wait for any running
5118 * trasnaction to commit.
5120 * - Within sys_sync(), kupdate and such.
5121 * We wait on commit, if tol to.
5123 * - Within prune_icache() (PF_MEMALLOC == true)
5124 * Here we simply return. We can't afford to block kswapd on the
5127 * In all cases it is actually safe for us to return without doing anything,
5128 * because the inode has been copied into a raw inode buffer in
5129 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5132 * Note that we are absolutely dependent upon all inode dirtiers doing the
5133 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5134 * which we are interested.
5136 * It would be a bug for them to not do this. The code:
5138 * mark_inode_dirty(inode)
5140 * inode->i_size = expr;
5142 * is in error because a kswapd-driven write_inode() could occur while
5143 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5144 * will no longer be on the superblock's dirty inode list.
5146 int ext4_write_inode(struct inode
*inode
, int wait
)
5150 if (current
->flags
& PF_MEMALLOC
)
5153 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
5154 if (ext4_journal_current_handle()) {
5155 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5163 err
= ext4_force_commit(inode
->i_sb
);
5165 struct ext4_iloc iloc
;
5167 err
= ext4_get_inode_loc(inode
, &iloc
);
5171 sync_dirty_buffer(iloc
.bh
);
5172 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
5173 ext4_error(inode
->i_sb
, __func__
,
5174 "IO error syncing inode, "
5175 "inode=%lu, block=%llu",
5177 (unsigned long long)iloc
.bh
->b_blocknr
);
5187 * Called from notify_change.
5189 * We want to trap VFS attempts to truncate the file as soon as
5190 * possible. In particular, we want to make sure that when the VFS
5191 * shrinks i_size, we put the inode on the orphan list and modify
5192 * i_disksize immediately, so that during the subsequent flushing of
5193 * dirty pages and freeing of disk blocks, we can guarantee that any
5194 * commit will leave the blocks being flushed in an unused state on
5195 * disk. (On recovery, the inode will get truncated and the blocks will
5196 * be freed, so we have a strong guarantee that no future commit will
5197 * leave these blocks visible to the user.)
5199 * Another thing we have to assure is that if we are in ordered mode
5200 * and inode is still attached to the committing transaction, we must
5201 * we start writeout of all the dirty pages which are being truncated.
5202 * This way we are sure that all the data written in the previous
5203 * transaction are already on disk (truncate waits for pages under
5206 * Called with inode->i_mutex down.
5208 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5210 struct inode
*inode
= dentry
->d_inode
;
5212 const unsigned int ia_valid
= attr
->ia_valid
;
5214 error
= inode_change_ok(inode
, attr
);
5218 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
5219 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
5222 /* (user+group)*(old+new) structure, inode write (sb,
5223 * inode block, ? - but truncate inode update has it) */
5224 handle
= ext4_journal_start(inode
, 2*(EXT4_QUOTA_INIT_BLOCKS(inode
->i_sb
)+
5225 EXT4_QUOTA_DEL_BLOCKS(inode
->i_sb
))+3);
5226 if (IS_ERR(handle
)) {
5227 error
= PTR_ERR(handle
);
5230 error
= vfs_dq_transfer(inode
, attr
) ? -EDQUOT
: 0;
5232 ext4_journal_stop(handle
);
5235 /* Update corresponding info in inode so that everything is in
5236 * one transaction */
5237 if (attr
->ia_valid
& ATTR_UID
)
5238 inode
->i_uid
= attr
->ia_uid
;
5239 if (attr
->ia_valid
& ATTR_GID
)
5240 inode
->i_gid
= attr
->ia_gid
;
5241 error
= ext4_mark_inode_dirty(handle
, inode
);
5242 ext4_journal_stop(handle
);
5245 if (attr
->ia_valid
& ATTR_SIZE
) {
5246 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
5247 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5249 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
) {
5256 if (S_ISREG(inode
->i_mode
) &&
5257 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
5260 handle
= ext4_journal_start(inode
, 3);
5261 if (IS_ERR(handle
)) {
5262 error
= PTR_ERR(handle
);
5266 error
= ext4_orphan_add(handle
, inode
);
5267 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
5268 rc
= ext4_mark_inode_dirty(handle
, inode
);
5271 ext4_journal_stop(handle
);
5273 if (ext4_should_order_data(inode
)) {
5274 error
= ext4_begin_ordered_truncate(inode
,
5277 /* Do as much error cleanup as possible */
5278 handle
= ext4_journal_start(inode
, 3);
5279 if (IS_ERR(handle
)) {
5280 ext4_orphan_del(NULL
, inode
);
5283 ext4_orphan_del(handle
, inode
);
5284 ext4_journal_stop(handle
);
5290 rc
= inode_setattr(inode
, attr
);
5292 /* If inode_setattr's call to ext4_truncate failed to get a
5293 * transaction handle at all, we need to clean up the in-core
5294 * orphan list manually. */
5296 ext4_orphan_del(NULL
, inode
);
5298 if (!rc
&& (ia_valid
& ATTR_MODE
))
5299 rc
= ext4_acl_chmod(inode
);
5302 ext4_std_error(inode
->i_sb
, error
);
5308 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
5311 struct inode
*inode
;
5312 unsigned long delalloc_blocks
;
5314 inode
= dentry
->d_inode
;
5315 generic_fillattr(inode
, stat
);
5318 * We can't update i_blocks if the block allocation is delayed
5319 * otherwise in the case of system crash before the real block
5320 * allocation is done, we will have i_blocks inconsistent with
5321 * on-disk file blocks.
5322 * We always keep i_blocks updated together with real
5323 * allocation. But to not confuse with user, stat
5324 * will return the blocks that include the delayed allocation
5325 * blocks for this file.
5327 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
5328 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
5329 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
5331 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
5335 static int ext4_indirect_trans_blocks(struct inode
*inode
, int nrblocks
,
5340 /* if nrblocks are contiguous */
5343 * With N contiguous data blocks, it need at most
5344 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5345 * 2 dindirect blocks
5348 indirects
= nrblocks
/ EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
5349 return indirects
+ 3;
5352 * if nrblocks are not contiguous, worse case, each block touch
5353 * a indirect block, and each indirect block touch a double indirect
5354 * block, plus a triple indirect block
5356 indirects
= nrblocks
* 2 + 1;
5360 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5362 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
))
5363 return ext4_indirect_trans_blocks(inode
, nrblocks
, chunk
);
5364 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
5368 * Account for index blocks, block groups bitmaps and block group
5369 * descriptor blocks if modify datablocks and index blocks
5370 * worse case, the indexs blocks spread over different block groups
5372 * If datablocks are discontiguous, they are possible to spread over
5373 * different block groups too. If they are contiugous, with flexbg,
5374 * they could still across block group boundary.
5376 * Also account for superblock, inode, quota and xattr blocks
5378 int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5380 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
5386 * How many index blocks need to touch to modify nrblocks?
5387 * The "Chunk" flag indicating whether the nrblocks is
5388 * physically contiguous on disk
5390 * For Direct IO and fallocate, they calls get_block to allocate
5391 * one single extent at a time, so they could set the "Chunk" flag
5393 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
5398 * Now let's see how many group bitmaps and group descriptors need
5408 if (groups
> ngroups
)
5410 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5411 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5413 /* bitmaps and block group descriptor blocks */
5414 ret
+= groups
+ gdpblocks
;
5416 /* Blocks for super block, inode, quota and xattr blocks */
5417 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5423 * Calulate the total number of credits to reserve to fit
5424 * the modification of a single pages into a single transaction,
5425 * which may include multiple chunks of block allocations.
5427 * This could be called via ext4_write_begin()
5429 * We need to consider the worse case, when
5430 * one new block per extent.
5432 int ext4_writepage_trans_blocks(struct inode
*inode
)
5434 int bpp
= ext4_journal_blocks_per_page(inode
);
5437 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
5439 /* Account for data blocks for journalled mode */
5440 if (ext4_should_journal_data(inode
))
5446 * Calculate the journal credits for a chunk of data modification.
5448 * This is called from DIO, fallocate or whoever calling
5449 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5451 * journal buffers for data blocks are not included here, as DIO
5452 * and fallocate do no need to journal data buffers.
5454 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5456 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5460 * The caller must have previously called ext4_reserve_inode_write().
5461 * Give this, we know that the caller already has write access to iloc->bh.
5463 int ext4_mark_iloc_dirty(handle_t
*handle
,
5464 struct inode
*inode
, struct ext4_iloc
*iloc
)
5468 if (test_opt(inode
->i_sb
, I_VERSION
))
5469 inode_inc_iversion(inode
);
5471 /* the do_update_inode consumes one bh->b_count */
5474 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5475 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5481 * On success, We end up with an outstanding reference count against
5482 * iloc->bh. This _must_ be cleaned up later.
5486 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5487 struct ext4_iloc
*iloc
)
5491 err
= ext4_get_inode_loc(inode
, iloc
);
5493 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5494 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5500 ext4_std_error(inode
->i_sb
, err
);
5505 * Expand an inode by new_extra_isize bytes.
5506 * Returns 0 on success or negative error number on failure.
5508 static int ext4_expand_extra_isize(struct inode
*inode
,
5509 unsigned int new_extra_isize
,
5510 struct ext4_iloc iloc
,
5513 struct ext4_inode
*raw_inode
;
5514 struct ext4_xattr_ibody_header
*header
;
5515 struct ext4_xattr_entry
*entry
;
5517 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5520 raw_inode
= ext4_raw_inode(&iloc
);
5522 header
= IHDR(inode
, raw_inode
);
5523 entry
= IFIRST(header
);
5525 /* No extended attributes present */
5526 if (!(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
) ||
5527 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5528 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5530 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5534 /* try to expand with EAs present */
5535 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5540 * What we do here is to mark the in-core inode as clean with respect to inode
5541 * dirtiness (it may still be data-dirty).
5542 * This means that the in-core inode may be reaped by prune_icache
5543 * without having to perform any I/O. This is a very good thing,
5544 * because *any* task may call prune_icache - even ones which
5545 * have a transaction open against a different journal.
5547 * Is this cheating? Not really. Sure, we haven't written the
5548 * inode out, but prune_icache isn't a user-visible syncing function.
5549 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5550 * we start and wait on commits.
5552 * Is this efficient/effective? Well, we're being nice to the system
5553 * by cleaning up our inodes proactively so they can be reaped
5554 * without I/O. But we are potentially leaving up to five seconds'
5555 * worth of inodes floating about which prune_icache wants us to
5556 * write out. One way to fix that would be to get prune_icache()
5557 * to do a write_super() to free up some memory. It has the desired
5560 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5562 struct ext4_iloc iloc
;
5563 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5564 static unsigned int mnt_count
;
5568 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5569 if (ext4_handle_valid(handle
) &&
5570 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5571 !(EXT4_I(inode
)->i_state
& EXT4_STATE_NO_EXPAND
)) {
5573 * We need extra buffer credits since we may write into EA block
5574 * with this same handle. If journal_extend fails, then it will
5575 * only result in a minor loss of functionality for that inode.
5576 * If this is felt to be critical, then e2fsck should be run to
5577 * force a large enough s_min_extra_isize.
5579 if ((jbd2_journal_extend(handle
,
5580 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5581 ret
= ext4_expand_extra_isize(inode
,
5582 sbi
->s_want_extra_isize
,
5585 EXT4_I(inode
)->i_state
|= EXT4_STATE_NO_EXPAND
;
5587 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5588 ext4_warning(inode
->i_sb
, __func__
,
5589 "Unable to expand inode %lu. Delete"
5590 " some EAs or run e2fsck.",
5593 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5599 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5604 * ext4_dirty_inode() is called from __mark_inode_dirty()
5606 * We're really interested in the case where a file is being extended.
5607 * i_size has been changed by generic_commit_write() and we thus need
5608 * to include the updated inode in the current transaction.
5610 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5611 * are allocated to the file.
5613 * If the inode is marked synchronous, we don't honour that here - doing
5614 * so would cause a commit on atime updates, which we don't bother doing.
5615 * We handle synchronous inodes at the highest possible level.
5617 void ext4_dirty_inode(struct inode
*inode
)
5621 handle
= ext4_journal_start(inode
, 2);
5625 ext4_mark_inode_dirty(handle
, inode
);
5627 ext4_journal_stop(handle
);
5634 * Bind an inode's backing buffer_head into this transaction, to prevent
5635 * it from being flushed to disk early. Unlike
5636 * ext4_reserve_inode_write, this leaves behind no bh reference and
5637 * returns no iloc structure, so the caller needs to repeat the iloc
5638 * lookup to mark the inode dirty later.
5640 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5642 struct ext4_iloc iloc
;
5646 err
= ext4_get_inode_loc(inode
, &iloc
);
5648 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5649 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5651 err
= ext4_handle_dirty_metadata(handle
,
5657 ext4_std_error(inode
->i_sb
, err
);
5662 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5669 * We have to be very careful here: changing a data block's
5670 * journaling status dynamically is dangerous. If we write a
5671 * data block to the journal, change the status and then delete
5672 * that block, we risk forgetting to revoke the old log record
5673 * from the journal and so a subsequent replay can corrupt data.
5674 * So, first we make sure that the journal is empty and that
5675 * nobody is changing anything.
5678 journal
= EXT4_JOURNAL(inode
);
5681 if (is_journal_aborted(journal
))
5684 jbd2_journal_lock_updates(journal
);
5685 jbd2_journal_flush(journal
);
5688 * OK, there are no updates running now, and all cached data is
5689 * synced to disk. We are now in a completely consistent state
5690 * which doesn't have anything in the journal, and we know that
5691 * no filesystem updates are running, so it is safe to modify
5692 * the inode's in-core data-journaling state flag now.
5696 EXT4_I(inode
)->i_flags
|= EXT4_JOURNAL_DATA_FL
;
5698 EXT4_I(inode
)->i_flags
&= ~EXT4_JOURNAL_DATA_FL
;
5699 ext4_set_aops(inode
);
5701 jbd2_journal_unlock_updates(journal
);
5703 /* Finally we can mark the inode as dirty. */
5705 handle
= ext4_journal_start(inode
, 1);
5707 return PTR_ERR(handle
);
5709 err
= ext4_mark_inode_dirty(handle
, inode
);
5710 ext4_handle_sync(handle
);
5711 ext4_journal_stop(handle
);
5712 ext4_std_error(inode
->i_sb
, err
);
5717 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5719 return !buffer_mapped(bh
);
5722 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5724 struct page
*page
= vmf
->page
;
5729 struct file
*file
= vma
->vm_file
;
5730 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
5731 struct address_space
*mapping
= inode
->i_mapping
;
5734 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5735 * get i_mutex because we are already holding mmap_sem.
5737 down_read(&inode
->i_alloc_sem
);
5738 size
= i_size_read(inode
);
5739 if (page
->mapping
!= mapping
|| size
<= page_offset(page
)
5740 || !PageUptodate(page
)) {
5741 /* page got truncated from under us? */
5745 if (PageMappedToDisk(page
))
5748 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5749 len
= size
& ~PAGE_CACHE_MASK
;
5751 len
= PAGE_CACHE_SIZE
;
5755 * return if we have all the buffers mapped. This avoid
5756 * the need to call write_begin/write_end which does a
5757 * journal_start/journal_stop which can block and take
5760 if (page_has_buffers(page
)) {
5761 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
5762 ext4_bh_unmapped
)) {
5769 * OK, we need to fill the hole... Do write_begin write_end
5770 * to do block allocation/reservation.We are not holding
5771 * inode.i__mutex here. That allow * parallel write_begin,
5772 * write_end call. lock_page prevent this from happening
5773 * on the same page though
5775 ret
= mapping
->a_ops
->write_begin(file
, mapping
, page_offset(page
),
5776 len
, AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
5779 ret
= mapping
->a_ops
->write_end(file
, mapping
, page_offset(page
),
5780 len
, len
, page
, fsdata
);
5786 ret
= VM_FAULT_SIGBUS
;
5787 up_read(&inode
->i_alloc_sem
);