2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
39 #include "xfs_iomap.h"
40 #include "xfs_vnodeops.h"
41 #include <linux/mpage.h>
42 #include <linux/pagevec.h>
43 #include <linux/writeback.h>
47 * Prime number of hash buckets since address is used as the key.
50 #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
51 static wait_queue_head_t xfs_ioend_wq
[NVSYNC
];
58 for (i
= 0; i
< NVSYNC
; i
++)
59 init_waitqueue_head(&xfs_ioend_wq
[i
]);
66 wait_queue_head_t
*wq
= to_ioend_wq(ip
);
68 wait_event(*wq
, (atomic_read(&ip
->i_iocount
) == 0));
75 if (atomic_dec_and_test(&ip
->i_iocount
))
76 wake_up(to_ioend_wq(ip
));
86 struct buffer_head
*bh
, *head
;
88 *delalloc
= *unmapped
= *unwritten
= 0;
90 bh
= head
= page_buffers(page
);
92 if (buffer_uptodate(bh
) && !buffer_mapped(bh
))
94 else if (buffer_unwritten(bh
))
96 else if (buffer_delay(bh
))
98 } while ((bh
= bh
->b_this_page
) != head
);
101 #if defined(XFS_RW_TRACE)
110 loff_t isize
= i_size_read(inode
);
111 loff_t offset
= page_offset(page
);
112 int delalloc
= -1, unmapped
= -1, unwritten
= -1;
114 if (page_has_buffers(page
))
115 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
121 ktrace_enter(ip
->i_rwtrace
,
122 (void *)((unsigned long)tag
),
127 (void *)((unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff)),
128 (void *)((unsigned long)(ip
->i_d
.di_size
& 0xffffffff)),
129 (void *)((unsigned long)((isize
>> 32) & 0xffffffff)),
130 (void *)((unsigned long)(isize
& 0xffffffff)),
131 (void *)((unsigned long)((offset
>> 32) & 0xffffffff)),
132 (void *)((unsigned long)(offset
& 0xffffffff)),
133 (void *)((unsigned long)delalloc
),
134 (void *)((unsigned long)unmapped
),
135 (void *)((unsigned long)unwritten
),
136 (void *)((unsigned long)current_pid()),
140 #define xfs_page_trace(tag, inode, page, pgoff)
143 STATIC
struct block_device
*
144 xfs_find_bdev_for_inode(
145 struct xfs_inode
*ip
)
147 struct xfs_mount
*mp
= ip
->i_mount
;
149 if (XFS_IS_REALTIME_INODE(ip
))
150 return mp
->m_rtdev_targp
->bt_bdev
;
152 return mp
->m_ddev_targp
->bt_bdev
;
156 * We're now finished for good with this ioend structure.
157 * Update the page state via the associated buffer_heads,
158 * release holds on the inode and bio, and finally free
159 * up memory. Do not use the ioend after this.
165 struct buffer_head
*bh
, *next
;
166 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
168 for (bh
= ioend
->io_buffer_head
; bh
; bh
= next
) {
169 next
= bh
->b_private
;
170 bh
->b_end_io(bh
, !ioend
->io_error
);
174 * Volume managers supporting multiple paths can send back ENODEV
175 * when the final path disappears. In this case continuing to fill
176 * the page cache with dirty data which cannot be written out is
177 * evil, so prevent that.
179 if (unlikely(ioend
->io_error
== -ENODEV
)) {
180 xfs_do_force_shutdown(ip
->i_mount
, SHUTDOWN_DEVICE_REQ
,
185 mempool_free(ioend
, xfs_ioend_pool
);
189 * If the end of the current ioend is beyond the current EOF,
190 * return the new EOF value, otherwise zero.
196 xfs_inode_t
*ip
= XFS_I(ioend
->io_inode
);
200 bsize
= ioend
->io_offset
+ ioend
->io_size
;
201 isize
= MAX(ip
->i_size
, ip
->i_new_size
);
202 isize
= MIN(isize
, bsize
);
203 return isize
> ip
->i_d
.di_size
? isize
: 0;
207 * Update on-disk file size now that data has been written to disk.
208 * The current in-memory file size is i_size. If a write is beyond
209 * eof i_new_size will be the intended file size until i_size is
210 * updated. If this write does not extend all the way to the valid
211 * file size then restrict this update to the end of the write.
218 xfs_inode_t
*ip
= XFS_I(ioend
->io_inode
);
221 ASSERT((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
);
222 ASSERT(ioend
->io_type
!= IOMAP_READ
);
224 if (unlikely(ioend
->io_error
))
227 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
228 isize
= xfs_ioend_new_eof(ioend
);
230 ip
->i_d
.di_size
= isize
;
231 xfs_mark_inode_dirty_sync(ip
);
234 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
238 * Buffered IO write completion for delayed allocate extents.
241 xfs_end_bio_delalloc(
242 struct work_struct
*work
)
245 container_of(work
, xfs_ioend_t
, io_work
);
247 xfs_setfilesize(ioend
);
248 xfs_destroy_ioend(ioend
);
252 * Buffered IO write completion for regular, written extents.
256 struct work_struct
*work
)
259 container_of(work
, xfs_ioend_t
, io_work
);
261 xfs_setfilesize(ioend
);
262 xfs_destroy_ioend(ioend
);
266 * IO write completion for unwritten extents.
268 * Issue transactions to convert a buffer range from unwritten
269 * to written extents.
272 xfs_end_bio_unwritten(
273 struct work_struct
*work
)
276 container_of(work
, xfs_ioend_t
, io_work
);
277 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
278 xfs_off_t offset
= ioend
->io_offset
;
279 size_t size
= ioend
->io_size
;
281 if (likely(!ioend
->io_error
)) {
282 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
284 error
= xfs_iomap_write_unwritten(ip
, offset
, size
);
286 ioend
->io_error
= error
;
288 xfs_setfilesize(ioend
);
290 xfs_destroy_ioend(ioend
);
294 * IO read completion for regular, written extents.
298 struct work_struct
*work
)
301 container_of(work
, xfs_ioend_t
, io_work
);
303 xfs_destroy_ioend(ioend
);
307 * Schedule IO completion handling on a xfsdatad if this was
308 * the final hold on this ioend. If we are asked to wait,
309 * flush the workqueue.
316 if (atomic_dec_and_test(&ioend
->io_remaining
)) {
317 struct workqueue_struct
*wq
= xfsdatad_workqueue
;
318 if (ioend
->io_work
.func
== xfs_end_bio_unwritten
)
319 wq
= xfsconvertd_workqueue
;
321 queue_work(wq
, &ioend
->io_work
);
328 * Allocate and initialise an IO completion structure.
329 * We need to track unwritten extent write completion here initially.
330 * We'll need to extend this for updating the ondisk inode size later
340 ioend
= mempool_alloc(xfs_ioend_pool
, GFP_NOFS
);
343 * Set the count to 1 initially, which will prevent an I/O
344 * completion callback from happening before we have started
345 * all the I/O from calling the completion routine too early.
347 atomic_set(&ioend
->io_remaining
, 1);
349 ioend
->io_list
= NULL
;
350 ioend
->io_type
= type
;
351 ioend
->io_inode
= inode
;
352 ioend
->io_buffer_head
= NULL
;
353 ioend
->io_buffer_tail
= NULL
;
354 atomic_inc(&XFS_I(ioend
->io_inode
)->i_iocount
);
355 ioend
->io_offset
= 0;
358 if (type
== IOMAP_UNWRITTEN
)
359 INIT_WORK(&ioend
->io_work
, xfs_end_bio_unwritten
);
360 else if (type
== IOMAP_DELAY
)
361 INIT_WORK(&ioend
->io_work
, xfs_end_bio_delalloc
);
362 else if (type
== IOMAP_READ
)
363 INIT_WORK(&ioend
->io_work
, xfs_end_bio_read
);
365 INIT_WORK(&ioend
->io_work
, xfs_end_bio_written
);
380 return -xfs_iomap(XFS_I(inode
), offset
, count
, flags
, mapp
, &nmaps
);
388 return offset
>= iomapp
->iomap_offset
&&
389 offset
< iomapp
->iomap_offset
+ iomapp
->iomap_bsize
;
393 * BIO completion handler for buffered IO.
400 xfs_ioend_t
*ioend
= bio
->bi_private
;
402 ASSERT(atomic_read(&bio
->bi_cnt
) >= 1);
403 ioend
->io_error
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
) ? 0 : error
;
405 /* Toss bio and pass work off to an xfsdatad thread */
406 bio
->bi_private
= NULL
;
407 bio
->bi_end_io
= NULL
;
410 xfs_finish_ioend(ioend
, 0);
414 xfs_submit_ioend_bio(
418 atomic_inc(&ioend
->io_remaining
);
419 bio
->bi_private
= ioend
;
420 bio
->bi_end_io
= xfs_end_bio
;
423 * If the I/O is beyond EOF we mark the inode dirty immediately
424 * but don't update the inode size until I/O completion.
426 if (xfs_ioend_new_eof(ioend
))
427 xfs_mark_inode_dirty_sync(XFS_I(ioend
->io_inode
));
429 submit_bio(WRITE
, bio
);
430 ASSERT(!bio_flagged(bio
, BIO_EOPNOTSUPP
));
436 struct buffer_head
*bh
)
439 int nvecs
= bio_get_nr_vecs(bh
->b_bdev
);
442 bio
= bio_alloc(GFP_NOIO
, nvecs
);
446 ASSERT(bio
->bi_private
== NULL
);
447 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
448 bio
->bi_bdev
= bh
->b_bdev
;
454 xfs_start_buffer_writeback(
455 struct buffer_head
*bh
)
457 ASSERT(buffer_mapped(bh
));
458 ASSERT(buffer_locked(bh
));
459 ASSERT(!buffer_delay(bh
));
460 ASSERT(!buffer_unwritten(bh
));
462 mark_buffer_async_write(bh
);
463 set_buffer_uptodate(bh
);
464 clear_buffer_dirty(bh
);
468 xfs_start_page_writeback(
473 ASSERT(PageLocked(page
));
474 ASSERT(!PageWriteback(page
));
476 clear_page_dirty_for_io(page
);
477 set_page_writeback(page
);
479 /* If no buffers on the page are to be written, finish it here */
481 end_page_writeback(page
);
484 static inline int bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
486 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
490 * Submit all of the bios for all of the ioends we have saved up, covering the
491 * initial writepage page and also any probed pages.
493 * Because we may have multiple ioends spanning a page, we need to start
494 * writeback on all the buffers before we submit them for I/O. If we mark the
495 * buffers as we got, then we can end up with a page that only has buffers
496 * marked async write and I/O complete on can occur before we mark the other
497 * buffers async write.
499 * The end result of this is that we trip a bug in end_page_writeback() because
500 * we call it twice for the one page as the code in end_buffer_async_write()
501 * assumes that all buffers on the page are started at the same time.
503 * The fix is two passes across the ioend list - one to start writeback on the
504 * buffer_heads, and then submit them for I/O on the second pass.
510 xfs_ioend_t
*head
= ioend
;
512 struct buffer_head
*bh
;
514 sector_t lastblock
= 0;
516 /* Pass 1 - start writeback */
518 next
= ioend
->io_list
;
519 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
520 xfs_start_buffer_writeback(bh
);
522 } while ((ioend
= next
) != NULL
);
524 /* Pass 2 - submit I/O */
527 next
= ioend
->io_list
;
530 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
534 bio
= xfs_alloc_ioend_bio(bh
);
535 } else if (bh
->b_blocknr
!= lastblock
+ 1) {
536 xfs_submit_ioend_bio(ioend
, bio
);
540 if (bio_add_buffer(bio
, bh
) != bh
->b_size
) {
541 xfs_submit_ioend_bio(ioend
, bio
);
545 lastblock
= bh
->b_blocknr
;
548 xfs_submit_ioend_bio(ioend
, bio
);
549 xfs_finish_ioend(ioend
, 0);
550 } while ((ioend
= next
) != NULL
);
554 * Cancel submission of all buffer_heads so far in this endio.
555 * Toss the endio too. Only ever called for the initial page
556 * in a writepage request, so only ever one page.
563 struct buffer_head
*bh
, *next_bh
;
566 next
= ioend
->io_list
;
567 bh
= ioend
->io_buffer_head
;
569 next_bh
= bh
->b_private
;
570 clear_buffer_async_write(bh
);
572 } while ((bh
= next_bh
) != NULL
);
574 xfs_ioend_wake(XFS_I(ioend
->io_inode
));
575 mempool_free(ioend
, xfs_ioend_pool
);
576 } while ((ioend
= next
) != NULL
);
580 * Test to see if we've been building up a completion structure for
581 * earlier buffers -- if so, we try to append to this ioend if we
582 * can, otherwise we finish off any current ioend and start another.
583 * Return true if we've finished the given ioend.
588 struct buffer_head
*bh
,
591 xfs_ioend_t
**result
,
594 xfs_ioend_t
*ioend
= *result
;
596 if (!ioend
|| need_ioend
|| type
!= ioend
->io_type
) {
597 xfs_ioend_t
*previous
= *result
;
599 ioend
= xfs_alloc_ioend(inode
, type
);
600 ioend
->io_offset
= offset
;
601 ioend
->io_buffer_head
= bh
;
602 ioend
->io_buffer_tail
= bh
;
604 previous
->io_list
= ioend
;
607 ioend
->io_buffer_tail
->b_private
= bh
;
608 ioend
->io_buffer_tail
= bh
;
611 bh
->b_private
= NULL
;
612 ioend
->io_size
+= bh
->b_size
;
617 struct buffer_head
*bh
,
624 ASSERT(mp
->iomap_bn
!= IOMAP_DADDR_NULL
);
626 bn
= (mp
->iomap_bn
>> (block_bits
- BBSHIFT
)) +
627 ((offset
- mp
->iomap_offset
) >> block_bits
);
629 ASSERT(bn
|| (mp
->iomap_flags
& IOMAP_REALTIME
));
632 set_buffer_mapped(bh
);
637 struct buffer_head
*bh
,
642 ASSERT(!(iomapp
->iomap_flags
& IOMAP_HOLE
));
643 ASSERT(!(iomapp
->iomap_flags
& IOMAP_DELAY
));
646 xfs_map_buffer(bh
, iomapp
, offset
, block_bits
);
647 bh
->b_bdev
= iomapp
->iomap_target
->bt_bdev
;
648 set_buffer_mapped(bh
);
649 clear_buffer_delay(bh
);
650 clear_buffer_unwritten(bh
);
654 * Look for a page at index that is suitable for clustering.
659 unsigned int pg_offset
,
664 if (PageWriteback(page
))
667 if (page
->mapping
&& PageDirty(page
)) {
668 if (page_has_buffers(page
)) {
669 struct buffer_head
*bh
, *head
;
671 bh
= head
= page_buffers(page
);
673 if (!buffer_uptodate(bh
))
675 if (mapped
!= buffer_mapped(bh
))
678 if (ret
>= pg_offset
)
680 } while ((bh
= bh
->b_this_page
) != head
);
682 ret
= mapped
? 0 : PAGE_CACHE_SIZE
;
691 struct page
*startpage
,
692 struct buffer_head
*bh
,
693 struct buffer_head
*head
,
697 pgoff_t tindex
, tlast
, tloff
;
701 /* First sum forwards in this page */
703 if (!buffer_uptodate(bh
) || (mapped
!= buffer_mapped(bh
)))
706 } while ((bh
= bh
->b_this_page
) != head
);
708 /* if we reached the end of the page, sum forwards in following pages */
709 tlast
= i_size_read(inode
) >> PAGE_CACHE_SHIFT
;
710 tindex
= startpage
->index
+ 1;
712 /* Prune this back to avoid pathological behavior */
713 tloff
= min(tlast
, startpage
->index
+ 64);
715 pagevec_init(&pvec
, 0);
716 while (!done
&& tindex
<= tloff
) {
717 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
719 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
722 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
723 struct page
*page
= pvec
.pages
[i
];
724 size_t pg_offset
, pg_len
= 0;
726 if (tindex
== tlast
) {
728 i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1);
734 pg_offset
= PAGE_CACHE_SIZE
;
736 if (page
->index
== tindex
&& trylock_page(page
)) {
737 pg_len
= xfs_probe_page(page
, pg_offset
, mapped
);
750 pagevec_release(&pvec
);
758 * Test if a given page is suitable for writing as part of an unwritten
759 * or delayed allocate extent.
766 if (PageWriteback(page
))
769 if (page
->mapping
&& page_has_buffers(page
)) {
770 struct buffer_head
*bh
, *head
;
773 bh
= head
= page_buffers(page
);
775 if (buffer_unwritten(bh
))
776 acceptable
= (type
== IOMAP_UNWRITTEN
);
777 else if (buffer_delay(bh
))
778 acceptable
= (type
== IOMAP_DELAY
);
779 else if (buffer_dirty(bh
) && buffer_mapped(bh
))
780 acceptable
= (type
== IOMAP_NEW
);
783 } while ((bh
= bh
->b_this_page
) != head
);
793 * Allocate & map buffers for page given the extent map. Write it out.
794 * except for the original page of a writepage, this is called on
795 * delalloc/unwritten pages only, for the original page it is possible
796 * that the page has no mapping at all.
804 xfs_ioend_t
**ioendp
,
805 struct writeback_control
*wbc
,
809 struct buffer_head
*bh
, *head
;
810 xfs_off_t end_offset
;
811 unsigned long p_offset
;
813 int bbits
= inode
->i_blkbits
;
815 int count
= 0, done
= 0, uptodate
= 1;
816 xfs_off_t offset
= page_offset(page
);
818 if (page
->index
!= tindex
)
820 if (!trylock_page(page
))
822 if (PageWriteback(page
))
823 goto fail_unlock_page
;
824 if (page
->mapping
!= inode
->i_mapping
)
825 goto fail_unlock_page
;
826 if (!xfs_is_delayed_page(page
, (*ioendp
)->io_type
))
827 goto fail_unlock_page
;
830 * page_dirty is initially a count of buffers on the page before
831 * EOF and is decremented as we move each into a cleanable state.
835 * End offset is the highest offset that this page should represent.
836 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
837 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
838 * hence give us the correct page_dirty count. On any other page,
839 * it will be zero and in that case we need page_dirty to be the
840 * count of buffers on the page.
842 end_offset
= min_t(unsigned long long,
843 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
846 len
= 1 << inode
->i_blkbits
;
847 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
849 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
850 page_dirty
= p_offset
/ len
;
852 bh
= head
= page_buffers(page
);
854 if (offset
>= end_offset
)
856 if (!buffer_uptodate(bh
))
858 if (!(PageUptodate(page
) || buffer_uptodate(bh
))) {
863 if (buffer_unwritten(bh
) || buffer_delay(bh
)) {
864 if (buffer_unwritten(bh
))
865 type
= IOMAP_UNWRITTEN
;
869 if (!xfs_iomap_valid(mp
, offset
)) {
874 ASSERT(!(mp
->iomap_flags
& IOMAP_HOLE
));
875 ASSERT(!(mp
->iomap_flags
& IOMAP_DELAY
));
877 xfs_map_at_offset(bh
, offset
, bbits
, mp
);
879 xfs_add_to_ioend(inode
, bh
, offset
,
882 set_buffer_dirty(bh
);
884 mark_buffer_dirty(bh
);
890 if (buffer_mapped(bh
) && all_bh
&& startio
) {
892 xfs_add_to_ioend(inode
, bh
, offset
,
900 } while (offset
+= len
, (bh
= bh
->b_this_page
) != head
);
902 if (uptodate
&& bh
== head
)
903 SetPageUptodate(page
);
907 struct backing_dev_info
*bdi
;
909 bdi
= inode
->i_mapping
->backing_dev_info
;
911 if (bdi_write_congested(bdi
)) {
912 wbc
->encountered_congestion
= 1;
914 } else if (wbc
->nr_to_write
<= 0) {
918 xfs_start_page_writeback(page
, !page_dirty
, count
);
929 * Convert & write out a cluster of pages in the same extent as defined
930 * by mp and following the start page.
937 xfs_ioend_t
**ioendp
,
938 struct writeback_control
*wbc
,
946 pagevec_init(&pvec
, 0);
947 while (!done
&& tindex
<= tlast
) {
948 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
950 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
953 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
954 done
= xfs_convert_page(inode
, pvec
.pages
[i
], tindex
++,
955 iomapp
, ioendp
, wbc
, startio
, all_bh
);
960 pagevec_release(&pvec
);
966 * Calling this without startio set means we are being asked to make a dirty
967 * page ready for freeing it's buffers. When called with startio set then
968 * we are coming from writepage.
970 * When called with startio set it is important that we write the WHOLE
972 * The bh->b_state's cannot know if any of the blocks or which block for
973 * that matter are dirty due to mmap writes, and therefore bh uptodate is
974 * only valid if the page itself isn't completely uptodate. Some layers
975 * may clear the page dirty flag prior to calling write page, under the
976 * assumption the entire page will be written out; by not writing out the
977 * whole page the page can be reused before all valid dirty data is
978 * written out. Note: in the case of a page that has been dirty'd by
979 * mapwrite and but partially setup by block_prepare_write the
980 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
981 * valid state, thus the whole page must be written out thing.
985 xfs_page_state_convert(
988 struct writeback_control
*wbc
,
990 int unmapped
) /* also implies page uptodate */
992 struct buffer_head
*bh
, *head
;
994 xfs_ioend_t
*ioend
= NULL
, *iohead
= NULL
;
996 unsigned long p_offset
= 0;
998 __uint64_t end_offset
;
999 pgoff_t end_index
, last_index
, tlast
;
1001 int flags
, err
, iomap_valid
= 0, uptodate
= 1;
1002 int page_dirty
, count
= 0;
1004 int all_bh
= unmapped
;
1007 if (wbc
->sync_mode
== WB_SYNC_NONE
&& wbc
->nonblocking
)
1008 trylock
|= BMAPI_TRYLOCK
;
1011 /* Is this page beyond the end of the file? */
1012 offset
= i_size_read(inode
);
1013 end_index
= offset
>> PAGE_CACHE_SHIFT
;
1014 last_index
= (offset
- 1) >> PAGE_CACHE_SHIFT
;
1015 if (page
->index
>= end_index
) {
1016 if ((page
->index
>= end_index
+ 1) ||
1017 !(i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1))) {
1025 * page_dirty is initially a count of buffers on the page before
1026 * EOF and is decremented as we move each into a cleanable state.
1030 * End offset is the highest offset that this page should represent.
1031 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
1032 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
1033 * hence give us the correct page_dirty count. On any other page,
1034 * it will be zero and in that case we need page_dirty to be the
1035 * count of buffers on the page.
1037 end_offset
= min_t(unsigned long long,
1038 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
, offset
);
1039 len
= 1 << inode
->i_blkbits
;
1040 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
1042 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
1043 page_dirty
= p_offset
/ len
;
1045 bh
= head
= page_buffers(page
);
1046 offset
= page_offset(page
);
1050 /* TODO: cleanup count and page_dirty */
1053 if (offset
>= end_offset
)
1055 if (!buffer_uptodate(bh
))
1057 if (!(PageUptodate(page
) || buffer_uptodate(bh
)) && !startio
) {
1059 * the iomap is actually still valid, but the ioend
1060 * isn't. shouldn't happen too often.
1067 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1070 * First case, map an unwritten extent and prepare for
1071 * extent state conversion transaction on completion.
1073 * Second case, allocate space for a delalloc buffer.
1074 * We can return EAGAIN here in the release page case.
1076 * Third case, an unmapped buffer was found, and we are
1077 * in a path where we need to write the whole page out.
1079 if (buffer_unwritten(bh
) || buffer_delay(bh
) ||
1080 ((buffer_uptodate(bh
) || PageUptodate(page
)) &&
1081 !buffer_mapped(bh
) && (unmapped
|| startio
))) {
1085 * Make sure we don't use a read-only iomap
1087 if (flags
== BMAPI_READ
)
1090 if (buffer_unwritten(bh
)) {
1091 type
= IOMAP_UNWRITTEN
;
1092 flags
= BMAPI_WRITE
| BMAPI_IGNSTATE
;
1093 } else if (buffer_delay(bh
)) {
1095 flags
= BMAPI_ALLOCATE
| trylock
;
1098 flags
= BMAPI_WRITE
| BMAPI_MMAP
;
1103 * if we didn't have a valid mapping then we
1104 * need to ensure that we put the new mapping
1105 * in a new ioend structure. This needs to be
1106 * done to ensure that the ioends correctly
1107 * reflect the block mappings at io completion
1108 * for unwritten extent conversion.
1111 if (type
== IOMAP_NEW
) {
1112 size
= xfs_probe_cluster(inode
,
1118 err
= xfs_map_blocks(inode
, offset
, size
,
1122 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1125 xfs_map_at_offset(bh
, offset
,
1126 inode
->i_blkbits
, &iomap
);
1128 xfs_add_to_ioend(inode
, bh
, offset
,
1132 set_buffer_dirty(bh
);
1134 mark_buffer_dirty(bh
);
1139 } else if (buffer_uptodate(bh
) && startio
) {
1141 * we got here because the buffer is already mapped.
1142 * That means it must already have extents allocated
1143 * underneath it. Map the extent by reading it.
1145 if (!iomap_valid
|| flags
!= BMAPI_READ
) {
1147 size
= xfs_probe_cluster(inode
, page
, bh
,
1149 err
= xfs_map_blocks(inode
, offset
, size
,
1153 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1157 * We set the type to IOMAP_NEW in case we are doing a
1158 * small write at EOF that is extending the file but
1159 * without needing an allocation. We need to update the
1160 * file size on I/O completion in this case so it is
1161 * the same case as having just allocated a new extent
1162 * that we are writing into for the first time.
1165 if (trylock_buffer(bh
)) {
1166 ASSERT(buffer_mapped(bh
));
1169 xfs_add_to_ioend(inode
, bh
, offset
, type
,
1170 &ioend
, !iomap_valid
);
1176 } else if ((buffer_uptodate(bh
) || PageUptodate(page
)) &&
1177 (unmapped
|| startio
)) {
1184 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
1186 if (uptodate
&& bh
== head
)
1187 SetPageUptodate(page
);
1190 xfs_start_page_writeback(page
, 1, count
);
1192 if (ioend
&& iomap_valid
) {
1193 offset
= (iomap
.iomap_offset
+ iomap
.iomap_bsize
- 1) >>
1195 tlast
= min_t(pgoff_t
, offset
, last_index
);
1196 xfs_cluster_write(inode
, page
->index
+ 1, &iomap
, &ioend
,
1197 wbc
, startio
, all_bh
, tlast
);
1201 xfs_submit_ioend(iohead
);
1207 xfs_cancel_ioend(iohead
);
1210 * If it's delalloc and we have nowhere to put it,
1211 * throw it away, unless the lower layers told
1214 if (err
!= -EAGAIN
) {
1216 block_invalidatepage(page
, 0);
1217 ClearPageUptodate(page
);
1223 * writepage: Called from one of two places:
1225 * 1. we are flushing a delalloc buffer head.
1227 * 2. we are writing out a dirty page. Typically the page dirty
1228 * state is cleared before we get here. In this case is it
1229 * conceivable we have no buffer heads.
1231 * For delalloc space on the page we need to allocate space and
1232 * flush it. For unmapped buffer heads on the page we should
1233 * allocate space if the page is uptodate. For any other dirty
1234 * buffer heads on the page we should flush them.
1236 * If we detect that a transaction would be required to flush
1237 * the page, we have to check the process flags first, if we
1238 * are already in a transaction or disk I/O during allocations
1239 * is off, we need to fail the writepage and redirty the page.
1245 struct writeback_control
*wbc
)
1249 int delalloc
, unmapped
, unwritten
;
1250 struct inode
*inode
= page
->mapping
->host
;
1252 xfs_page_trace(XFS_WRITEPAGE_ENTER
, inode
, page
, 0);
1255 * We need a transaction if:
1256 * 1. There are delalloc buffers on the page
1257 * 2. The page is uptodate and we have unmapped buffers
1258 * 3. The page is uptodate and we have no buffers
1259 * 4. There are unwritten buffers on the page
1262 if (!page_has_buffers(page
)) {
1266 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
1267 if (!PageUptodate(page
))
1269 need_trans
= delalloc
+ unmapped
+ unwritten
;
1273 * If we need a transaction and the process flags say
1274 * we are already in a transaction, or no IO is allowed
1275 * then mark the page dirty again and leave the page
1278 if (current_test_flags(PF_FSTRANS
) && need_trans
)
1282 * Delay hooking up buffer heads until we have
1283 * made our go/no-go decision.
1285 if (!page_has_buffers(page
))
1286 create_empty_buffers(page
, 1 << inode
->i_blkbits
, 0);
1290 * VM calculation for nr_to_write seems off. Bump it way
1291 * up, this gets simple streaming writes zippy again.
1292 * To be reviewed again after Jens' writeback changes.
1294 wbc
->nr_to_write
*= 4;
1297 * Convert delayed allocate, unwritten or unmapped space
1298 * to real space and flush out to disk.
1300 error
= xfs_page_state_convert(inode
, page
, wbc
, 1, unmapped
);
1301 if (error
== -EAGAIN
)
1303 if (unlikely(error
< 0))
1309 redirty_page_for_writepage(wbc
, page
);
1319 struct address_space
*mapping
,
1320 struct writeback_control
*wbc
)
1322 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1323 return generic_writepages(mapping
, wbc
);
1327 * Called to move a page into cleanable state - and from there
1328 * to be released. Possibly the page is already clean. We always
1329 * have buffer heads in this call.
1331 * Returns 0 if the page is ok to release, 1 otherwise.
1333 * Possible scenarios are:
1335 * 1. We are being called to release a page which has been written
1336 * to via regular I/O. buffer heads will be dirty and possibly
1337 * delalloc. If no delalloc buffer heads in this case then we
1338 * can just return zero.
1340 * 2. We are called to release a page which has been written via
1341 * mmap, all we need to do is ensure there is no delalloc
1342 * state in the buffer heads, if not we can let the caller
1343 * free them and we should come back later via writepage.
1350 struct inode
*inode
= page
->mapping
->host
;
1351 int dirty
, delalloc
, unmapped
, unwritten
;
1352 struct writeback_control wbc
= {
1353 .sync_mode
= WB_SYNC_ALL
,
1357 xfs_page_trace(XFS_RELEASEPAGE_ENTER
, inode
, page
, 0);
1359 if (!page_has_buffers(page
))
1362 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
1363 if (!delalloc
&& !unwritten
)
1366 if (!(gfp_mask
& __GFP_FS
))
1369 /* If we are already inside a transaction or the thread cannot
1370 * do I/O, we cannot release this page.
1372 if (current_test_flags(PF_FSTRANS
))
1376 * Convert delalloc space to real space, do not flush the
1377 * data out to disk, that will be done by the caller.
1378 * Never need to allocate space here - we will always
1379 * come back to writepage in that case.
1381 dirty
= xfs_page_state_convert(inode
, page
, &wbc
, 0, 0);
1382 if (dirty
== 0 && !unwritten
)
1387 return try_to_free_buffers(page
);
1392 struct inode
*inode
,
1394 struct buffer_head
*bh_result
,
1397 bmapi_flags_t flags
)
1405 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1406 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1407 size
= bh_result
->b_size
;
1409 if (!create
&& direct
&& offset
>= i_size_read(inode
))
1412 error
= xfs_iomap(XFS_I(inode
), offset
, size
,
1413 create
? flags
: BMAPI_READ
, &iomap
, &niomap
);
1419 if (iomap
.iomap_bn
!= IOMAP_DADDR_NULL
) {
1421 * For unwritten extents do not report a disk address on
1422 * the read case (treat as if we're reading into a hole).
1424 if (create
|| !(iomap
.iomap_flags
& IOMAP_UNWRITTEN
)) {
1425 xfs_map_buffer(bh_result
, &iomap
, offset
,
1428 if (create
&& (iomap
.iomap_flags
& IOMAP_UNWRITTEN
)) {
1430 bh_result
->b_private
= inode
;
1431 set_buffer_unwritten(bh_result
);
1436 * If this is a realtime file, data may be on a different device.
1437 * to that pointed to from the buffer_head b_bdev currently.
1439 bh_result
->b_bdev
= iomap
.iomap_target
->bt_bdev
;
1442 * If we previously allocated a block out beyond eof and we are now
1443 * coming back to use it then we will need to flag it as new even if it
1444 * has a disk address.
1446 * With sub-block writes into unwritten extents we also need to mark
1447 * the buffer as new so that the unwritten parts of the buffer gets
1451 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1452 (offset
>= i_size_read(inode
)) ||
1453 (iomap
.iomap_flags
& (IOMAP_NEW
|IOMAP_UNWRITTEN
))))
1454 set_buffer_new(bh_result
);
1456 if (iomap
.iomap_flags
& IOMAP_DELAY
) {
1459 set_buffer_uptodate(bh_result
);
1460 set_buffer_mapped(bh_result
);
1461 set_buffer_delay(bh_result
);
1465 if (direct
|| size
> (1 << inode
->i_blkbits
)) {
1466 ASSERT(iomap
.iomap_bsize
- iomap
.iomap_delta
> 0);
1467 offset
= min_t(xfs_off_t
,
1468 iomap
.iomap_bsize
- iomap
.iomap_delta
, size
);
1469 bh_result
->b_size
= (ssize_t
)min_t(xfs_off_t
, LONG_MAX
, offset
);
1477 struct inode
*inode
,
1479 struct buffer_head
*bh_result
,
1482 return __xfs_get_blocks(inode
, iblock
,
1483 bh_result
, create
, 0, BMAPI_WRITE
);
1487 xfs_get_blocks_direct(
1488 struct inode
*inode
,
1490 struct buffer_head
*bh_result
,
1493 return __xfs_get_blocks(inode
, iblock
,
1494 bh_result
, create
, 1, BMAPI_WRITE
|BMAPI_DIRECT
);
1504 xfs_ioend_t
*ioend
= iocb
->private;
1507 * Non-NULL private data means we need to issue a transaction to
1508 * convert a range from unwritten to written extents. This needs
1509 * to happen from process context but aio+dio I/O completion
1510 * happens from irq context so we need to defer it to a workqueue.
1511 * This is not necessary for synchronous direct I/O, but we do
1512 * it anyway to keep the code uniform and simpler.
1514 * Well, if only it were that simple. Because synchronous direct I/O
1515 * requires extent conversion to occur *before* we return to userspace,
1516 * we have to wait for extent conversion to complete. Look at the
1517 * iocb that has been passed to us to determine if this is AIO or
1518 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1519 * workqueue and wait for it to complete.
1521 * The core direct I/O code might be changed to always call the
1522 * completion handler in the future, in which case all this can
1525 ioend
->io_offset
= offset
;
1526 ioend
->io_size
= size
;
1527 if (ioend
->io_type
== IOMAP_READ
) {
1528 xfs_finish_ioend(ioend
, 0);
1529 } else if (private && size
> 0) {
1530 xfs_finish_ioend(ioend
, is_sync_kiocb(iocb
));
1533 * A direct I/O write ioend starts it's life in unwritten
1534 * state in case they map an unwritten extent. This write
1535 * didn't map an unwritten extent so switch it's completion
1538 INIT_WORK(&ioend
->io_work
, xfs_end_bio_written
);
1539 xfs_finish_ioend(ioend
, 0);
1543 * blockdev_direct_IO can return an error even after the I/O
1544 * completion handler was called. Thus we need to protect
1545 * against double-freeing.
1547 iocb
->private = NULL
;
1554 const struct iovec
*iov
,
1556 unsigned long nr_segs
)
1558 struct file
*file
= iocb
->ki_filp
;
1559 struct inode
*inode
= file
->f_mapping
->host
;
1560 struct block_device
*bdev
;
1563 bdev
= xfs_find_bdev_for_inode(XFS_I(inode
));
1566 iocb
->private = xfs_alloc_ioend(inode
, IOMAP_UNWRITTEN
);
1567 ret
= blockdev_direct_IO_own_locking(rw
, iocb
, inode
,
1568 bdev
, iov
, offset
, nr_segs
,
1569 xfs_get_blocks_direct
,
1572 iocb
->private = xfs_alloc_ioend(inode
, IOMAP_READ
);
1573 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
,
1574 bdev
, iov
, offset
, nr_segs
,
1575 xfs_get_blocks_direct
,
1579 if (unlikely(ret
!= -EIOCBQUEUED
&& iocb
->private))
1580 xfs_destroy_ioend(iocb
->private);
1587 struct address_space
*mapping
,
1591 struct page
**pagep
,
1595 return block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1601 struct address_space
*mapping
,
1604 struct inode
*inode
= (struct inode
*)mapping
->host
;
1605 struct xfs_inode
*ip
= XFS_I(inode
);
1607 xfs_itrace_entry(XFS_I(inode
));
1608 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
1609 xfs_flush_pages(ip
, (xfs_off_t
)0, -1, 0, FI_REMAPF
);
1610 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1611 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1616 struct file
*unused
,
1619 return mpage_readpage(page
, xfs_get_blocks
);
1624 struct file
*unused
,
1625 struct address_space
*mapping
,
1626 struct list_head
*pages
,
1629 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1633 xfs_vm_invalidatepage(
1635 unsigned long offset
)
1637 xfs_page_trace(XFS_INVALIDPAGE_ENTER
,
1638 page
->mapping
->host
, page
, offset
);
1639 block_invalidatepage(page
, offset
);
1642 const struct address_space_operations xfs_address_space_operations
= {
1643 .readpage
= xfs_vm_readpage
,
1644 .readpages
= xfs_vm_readpages
,
1645 .writepage
= xfs_vm_writepage
,
1646 .writepages
= xfs_vm_writepages
,
1647 .sync_page
= block_sync_page
,
1648 .releasepage
= xfs_vm_releasepage
,
1649 .invalidatepage
= xfs_vm_invalidatepage
,
1650 .write_begin
= xfs_vm_write_begin
,
1651 .write_end
= generic_write_end
,
1652 .bmap
= xfs_vm_bmap
,
1653 .direct_IO
= xfs_vm_direct_IO
,
1654 .migratepage
= buffer_migrate_page
,
1655 .is_partially_uptodate
= block_is_partially_uptodate
,
1656 .error_remove_page
= generic_error_remove_page
,