Full support for Ginger Console
[linux-ginger.git] / net / ipv4 / udp.c
blobd0d436d6216c910eafb36742f3f50e85bac7e8a7
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/highmem.h>
85 #include <linux/swap.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <net/tcp_states.h>
99 #include <linux/skbuff.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <net/net_namespace.h>
103 #include <net/icmp.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include "udp_impl.h"
109 struct udp_table udp_table;
110 EXPORT_SYMBOL(udp_table);
112 int sysctl_udp_mem[3] __read_mostly;
113 EXPORT_SYMBOL(sysctl_udp_mem);
115 int sysctl_udp_rmem_min __read_mostly;
116 EXPORT_SYMBOL(sysctl_udp_rmem_min);
118 int sysctl_udp_wmem_min __read_mostly;
119 EXPORT_SYMBOL(sysctl_udp_wmem_min);
121 atomic_t udp_memory_allocated;
122 EXPORT_SYMBOL(udp_memory_allocated);
124 #define PORTS_PER_CHAIN (65536 / UDP_HTABLE_SIZE)
126 static int udp_lib_lport_inuse(struct net *net, __u16 num,
127 const struct udp_hslot *hslot,
128 unsigned long *bitmap,
129 struct sock *sk,
130 int (*saddr_comp)(const struct sock *sk1,
131 const struct sock *sk2))
133 struct sock *sk2;
134 struct hlist_nulls_node *node;
136 sk_nulls_for_each(sk2, node, &hslot->head)
137 if (net_eq(sock_net(sk2), net) &&
138 sk2 != sk &&
139 (bitmap || sk2->sk_hash == num) &&
140 (!sk2->sk_reuse || !sk->sk_reuse) &&
141 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
142 || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
143 (*saddr_comp)(sk, sk2)) {
144 if (bitmap)
145 __set_bit(sk2->sk_hash / UDP_HTABLE_SIZE,
146 bitmap);
147 else
148 return 1;
150 return 0;
154 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
156 * @sk: socket struct in question
157 * @snum: port number to look up
158 * @saddr_comp: AF-dependent comparison of bound local IP addresses
160 int udp_lib_get_port(struct sock *sk, unsigned short snum,
161 int (*saddr_comp)(const struct sock *sk1,
162 const struct sock *sk2))
164 struct udp_hslot *hslot;
165 struct udp_table *udptable = sk->sk_prot->h.udp_table;
166 int error = 1;
167 struct net *net = sock_net(sk);
169 if (!snum) {
170 int low, high, remaining;
171 unsigned rand;
172 unsigned short first, last;
173 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
175 inet_get_local_port_range(&low, &high);
176 remaining = (high - low) + 1;
178 rand = net_random();
179 first = (((u64)rand * remaining) >> 32) + low;
181 * force rand to be an odd multiple of UDP_HTABLE_SIZE
183 rand = (rand | 1) * UDP_HTABLE_SIZE;
184 for (last = first + UDP_HTABLE_SIZE; first != last; first++) {
185 hslot = &udptable->hash[udp_hashfn(net, first)];
186 bitmap_zero(bitmap, PORTS_PER_CHAIN);
187 spin_lock_bh(&hslot->lock);
188 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
189 saddr_comp);
191 snum = first;
193 * Iterate on all possible values of snum for this hash.
194 * Using steps of an odd multiple of UDP_HTABLE_SIZE
195 * give us randomization and full range coverage.
197 do {
198 if (low <= snum && snum <= high &&
199 !test_bit(snum / UDP_HTABLE_SIZE, bitmap))
200 goto found;
201 snum += rand;
202 } while (snum != first);
203 spin_unlock_bh(&hslot->lock);
205 goto fail;
206 } else {
207 hslot = &udptable->hash[udp_hashfn(net, snum)];
208 spin_lock_bh(&hslot->lock);
209 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, saddr_comp))
210 goto fail_unlock;
212 found:
213 inet_sk(sk)->num = snum;
214 sk->sk_hash = snum;
215 if (sk_unhashed(sk)) {
216 sk_nulls_add_node_rcu(sk, &hslot->head);
217 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
219 error = 0;
220 fail_unlock:
221 spin_unlock_bh(&hslot->lock);
222 fail:
223 return error;
225 EXPORT_SYMBOL(udp_lib_get_port);
227 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
229 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
231 return (!ipv6_only_sock(sk2) &&
232 (!inet1->rcv_saddr || !inet2->rcv_saddr ||
233 inet1->rcv_saddr == inet2->rcv_saddr));
236 int udp_v4_get_port(struct sock *sk, unsigned short snum)
238 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal);
241 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
242 unsigned short hnum,
243 __be16 sport, __be32 daddr, __be16 dport, int dif)
245 int score = -1;
247 if (net_eq(sock_net(sk), net) && sk->sk_hash == hnum &&
248 !ipv6_only_sock(sk)) {
249 struct inet_sock *inet = inet_sk(sk);
251 score = (sk->sk_family == PF_INET ? 1 : 0);
252 if (inet->rcv_saddr) {
253 if (inet->rcv_saddr != daddr)
254 return -1;
255 score += 2;
257 if (inet->daddr) {
258 if (inet->daddr != saddr)
259 return -1;
260 score += 2;
262 if (inet->dport) {
263 if (inet->dport != sport)
264 return -1;
265 score += 2;
267 if (sk->sk_bound_dev_if) {
268 if (sk->sk_bound_dev_if != dif)
269 return -1;
270 score += 2;
273 return score;
276 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
277 * harder than this. -DaveM
279 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
280 __be16 sport, __be32 daddr, __be16 dport,
281 int dif, struct udp_table *udptable)
283 struct sock *sk, *result;
284 struct hlist_nulls_node *node;
285 unsigned short hnum = ntohs(dport);
286 unsigned int hash = udp_hashfn(net, hnum);
287 struct udp_hslot *hslot = &udptable->hash[hash];
288 int score, badness;
290 rcu_read_lock();
291 begin:
292 result = NULL;
293 badness = -1;
294 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
295 score = compute_score(sk, net, saddr, hnum, sport,
296 daddr, dport, dif);
297 if (score > badness) {
298 result = sk;
299 badness = score;
303 * if the nulls value we got at the end of this lookup is
304 * not the expected one, we must restart lookup.
305 * We probably met an item that was moved to another chain.
307 if (get_nulls_value(node) != hash)
308 goto begin;
310 if (result) {
311 if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
312 result = NULL;
313 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
314 daddr, dport, dif) < badness)) {
315 sock_put(result);
316 goto begin;
319 rcu_read_unlock();
320 return result;
323 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
324 __be16 sport, __be16 dport,
325 struct udp_table *udptable)
327 struct sock *sk;
328 const struct iphdr *iph = ip_hdr(skb);
330 if (unlikely(sk = skb_steal_sock(skb)))
331 return sk;
332 else
333 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
334 iph->daddr, dport, inet_iif(skb),
335 udptable);
338 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
339 __be32 daddr, __be16 dport, int dif)
341 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
343 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
345 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
346 __be16 loc_port, __be32 loc_addr,
347 __be16 rmt_port, __be32 rmt_addr,
348 int dif)
350 struct hlist_nulls_node *node;
351 struct sock *s = sk;
352 unsigned short hnum = ntohs(loc_port);
354 sk_nulls_for_each_from(s, node) {
355 struct inet_sock *inet = inet_sk(s);
357 if (!net_eq(sock_net(s), net) ||
358 s->sk_hash != hnum ||
359 (inet->daddr && inet->daddr != rmt_addr) ||
360 (inet->dport != rmt_port && inet->dport) ||
361 (inet->rcv_saddr && inet->rcv_saddr != loc_addr) ||
362 ipv6_only_sock(s) ||
363 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
364 continue;
365 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
366 continue;
367 goto found;
369 s = NULL;
370 found:
371 return s;
375 * This routine is called by the ICMP module when it gets some
376 * sort of error condition. If err < 0 then the socket should
377 * be closed and the error returned to the user. If err > 0
378 * it's just the icmp type << 8 | icmp code.
379 * Header points to the ip header of the error packet. We move
380 * on past this. Then (as it used to claim before adjustment)
381 * header points to the first 8 bytes of the udp header. We need
382 * to find the appropriate port.
385 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
387 struct inet_sock *inet;
388 struct iphdr *iph = (struct iphdr *)skb->data;
389 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
390 const int type = icmp_hdr(skb)->type;
391 const int code = icmp_hdr(skb)->code;
392 struct sock *sk;
393 int harderr;
394 int err;
395 struct net *net = dev_net(skb->dev);
397 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
398 iph->saddr, uh->source, skb->dev->ifindex, udptable);
399 if (sk == NULL) {
400 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
401 return; /* No socket for error */
404 err = 0;
405 harderr = 0;
406 inet = inet_sk(sk);
408 switch (type) {
409 default:
410 case ICMP_TIME_EXCEEDED:
411 err = EHOSTUNREACH;
412 break;
413 case ICMP_SOURCE_QUENCH:
414 goto out;
415 case ICMP_PARAMETERPROB:
416 err = EPROTO;
417 harderr = 1;
418 break;
419 case ICMP_DEST_UNREACH:
420 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
421 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
422 err = EMSGSIZE;
423 harderr = 1;
424 break;
426 goto out;
428 err = EHOSTUNREACH;
429 if (code <= NR_ICMP_UNREACH) {
430 harderr = icmp_err_convert[code].fatal;
431 err = icmp_err_convert[code].errno;
433 break;
437 * RFC1122: OK. Passes ICMP errors back to application, as per
438 * 4.1.3.3.
440 if (!inet->recverr) {
441 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
442 goto out;
443 } else {
444 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
446 sk->sk_err = err;
447 sk->sk_error_report(sk);
448 out:
449 sock_put(sk);
452 void udp_err(struct sk_buff *skb, u32 info)
454 __udp4_lib_err(skb, info, &udp_table);
458 * Throw away all pending data and cancel the corking. Socket is locked.
460 void udp_flush_pending_frames(struct sock *sk)
462 struct udp_sock *up = udp_sk(sk);
464 if (up->pending) {
465 up->len = 0;
466 up->pending = 0;
467 ip_flush_pending_frames(sk);
470 EXPORT_SYMBOL(udp_flush_pending_frames);
473 * udp4_hwcsum_outgoing - handle outgoing HW checksumming
474 * @sk: socket we are sending on
475 * @skb: sk_buff containing the filled-in UDP header
476 * (checksum field must be zeroed out)
478 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
479 __be32 src, __be32 dst, int len)
481 unsigned int offset;
482 struct udphdr *uh = udp_hdr(skb);
483 __wsum csum = 0;
485 if (skb_queue_len(&sk->sk_write_queue) == 1) {
487 * Only one fragment on the socket.
489 skb->csum_start = skb_transport_header(skb) - skb->head;
490 skb->csum_offset = offsetof(struct udphdr, check);
491 uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
492 } else {
494 * HW-checksum won't work as there are two or more
495 * fragments on the socket so that all csums of sk_buffs
496 * should be together
498 offset = skb_transport_offset(skb);
499 skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
501 skb->ip_summed = CHECKSUM_NONE;
503 skb_queue_walk(&sk->sk_write_queue, skb) {
504 csum = csum_add(csum, skb->csum);
507 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
508 if (uh->check == 0)
509 uh->check = CSUM_MANGLED_0;
514 * Push out all pending data as one UDP datagram. Socket is locked.
516 static int udp_push_pending_frames(struct sock *sk)
518 struct udp_sock *up = udp_sk(sk);
519 struct inet_sock *inet = inet_sk(sk);
520 struct flowi *fl = &inet->cork.fl;
521 struct sk_buff *skb;
522 struct udphdr *uh;
523 int err = 0;
524 int is_udplite = IS_UDPLITE(sk);
525 __wsum csum = 0;
527 /* Grab the skbuff where UDP header space exists. */
528 if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
529 goto out;
532 * Create a UDP header
534 uh = udp_hdr(skb);
535 uh->source = fl->fl_ip_sport;
536 uh->dest = fl->fl_ip_dport;
537 uh->len = htons(up->len);
538 uh->check = 0;
540 if (is_udplite) /* UDP-Lite */
541 csum = udplite_csum_outgoing(sk, skb);
543 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
545 skb->ip_summed = CHECKSUM_NONE;
546 goto send;
548 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
550 udp4_hwcsum_outgoing(sk, skb, fl->fl4_src, fl->fl4_dst, up->len);
551 goto send;
553 } else /* `normal' UDP */
554 csum = udp_csum_outgoing(sk, skb);
556 /* add protocol-dependent pseudo-header */
557 uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
558 sk->sk_protocol, csum);
559 if (uh->check == 0)
560 uh->check = CSUM_MANGLED_0;
562 send:
563 err = ip_push_pending_frames(sk);
564 if (err) {
565 if (err == -ENOBUFS && !inet->recverr) {
566 UDP_INC_STATS_USER(sock_net(sk),
567 UDP_MIB_SNDBUFERRORS, is_udplite);
568 err = 0;
570 } else
571 UDP_INC_STATS_USER(sock_net(sk),
572 UDP_MIB_OUTDATAGRAMS, is_udplite);
573 out:
574 up->len = 0;
575 up->pending = 0;
576 return err;
579 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
580 size_t len)
582 struct inet_sock *inet = inet_sk(sk);
583 struct udp_sock *up = udp_sk(sk);
584 int ulen = len;
585 struct ipcm_cookie ipc;
586 struct rtable *rt = NULL;
587 int free = 0;
588 int connected = 0;
589 __be32 daddr, faddr, saddr;
590 __be16 dport;
591 u8 tos;
592 int err, is_udplite = IS_UDPLITE(sk);
593 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
594 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
596 if (len > 0xFFFF)
597 return -EMSGSIZE;
600 * Check the flags.
603 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
604 return -EOPNOTSUPP;
606 ipc.opt = NULL;
607 ipc.shtx.flags = 0;
609 if (up->pending) {
611 * There are pending frames.
612 * The socket lock must be held while it's corked.
614 lock_sock(sk);
615 if (likely(up->pending)) {
616 if (unlikely(up->pending != AF_INET)) {
617 release_sock(sk);
618 return -EINVAL;
620 goto do_append_data;
622 release_sock(sk);
624 ulen += sizeof(struct udphdr);
627 * Get and verify the address.
629 if (msg->msg_name) {
630 struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
631 if (msg->msg_namelen < sizeof(*usin))
632 return -EINVAL;
633 if (usin->sin_family != AF_INET) {
634 if (usin->sin_family != AF_UNSPEC)
635 return -EAFNOSUPPORT;
638 daddr = usin->sin_addr.s_addr;
639 dport = usin->sin_port;
640 if (dport == 0)
641 return -EINVAL;
642 } else {
643 if (sk->sk_state != TCP_ESTABLISHED)
644 return -EDESTADDRREQ;
645 daddr = inet->daddr;
646 dport = inet->dport;
647 /* Open fast path for connected socket.
648 Route will not be used, if at least one option is set.
650 connected = 1;
652 ipc.addr = inet->saddr;
654 ipc.oif = sk->sk_bound_dev_if;
655 err = sock_tx_timestamp(msg, sk, &ipc.shtx);
656 if (err)
657 return err;
658 if (msg->msg_controllen) {
659 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
660 if (err)
661 return err;
662 if (ipc.opt)
663 free = 1;
664 connected = 0;
666 if (!ipc.opt)
667 ipc.opt = inet->opt;
669 saddr = ipc.addr;
670 ipc.addr = faddr = daddr;
672 if (ipc.opt && ipc.opt->srr) {
673 if (!daddr)
674 return -EINVAL;
675 faddr = ipc.opt->faddr;
676 connected = 0;
678 tos = RT_TOS(inet->tos);
679 if (sock_flag(sk, SOCK_LOCALROUTE) ||
680 (msg->msg_flags & MSG_DONTROUTE) ||
681 (ipc.opt && ipc.opt->is_strictroute)) {
682 tos |= RTO_ONLINK;
683 connected = 0;
686 if (ipv4_is_multicast(daddr)) {
687 if (!ipc.oif)
688 ipc.oif = inet->mc_index;
689 if (!saddr)
690 saddr = inet->mc_addr;
691 connected = 0;
694 if (connected)
695 rt = (struct rtable *)sk_dst_check(sk, 0);
697 if (rt == NULL) {
698 struct flowi fl = { .oif = ipc.oif,
699 .mark = sk->sk_mark,
700 .nl_u = { .ip4_u =
701 { .daddr = faddr,
702 .saddr = saddr,
703 .tos = tos } },
704 .proto = sk->sk_protocol,
705 .flags = inet_sk_flowi_flags(sk),
706 .uli_u = { .ports =
707 { .sport = inet->sport,
708 .dport = dport } } };
709 struct net *net = sock_net(sk);
711 security_sk_classify_flow(sk, &fl);
712 err = ip_route_output_flow(net, &rt, &fl, sk, 1);
713 if (err) {
714 if (err == -ENETUNREACH)
715 IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
716 goto out;
719 err = -EACCES;
720 if ((rt->rt_flags & RTCF_BROADCAST) &&
721 !sock_flag(sk, SOCK_BROADCAST))
722 goto out;
723 if (connected)
724 sk_dst_set(sk, dst_clone(&rt->u.dst));
727 if (msg->msg_flags&MSG_CONFIRM)
728 goto do_confirm;
729 back_from_confirm:
731 saddr = rt->rt_src;
732 if (!ipc.addr)
733 daddr = ipc.addr = rt->rt_dst;
735 lock_sock(sk);
736 if (unlikely(up->pending)) {
737 /* The socket is already corked while preparing it. */
738 /* ... which is an evident application bug. --ANK */
739 release_sock(sk);
741 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
742 err = -EINVAL;
743 goto out;
746 * Now cork the socket to pend data.
748 inet->cork.fl.fl4_dst = daddr;
749 inet->cork.fl.fl_ip_dport = dport;
750 inet->cork.fl.fl4_src = saddr;
751 inet->cork.fl.fl_ip_sport = inet->sport;
752 up->pending = AF_INET;
754 do_append_data:
755 up->len += ulen;
756 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
757 err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
758 sizeof(struct udphdr), &ipc, &rt,
759 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
760 if (err)
761 udp_flush_pending_frames(sk);
762 else if (!corkreq)
763 err = udp_push_pending_frames(sk);
764 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
765 up->pending = 0;
766 release_sock(sk);
768 out:
769 ip_rt_put(rt);
770 if (free)
771 kfree(ipc.opt);
772 if (!err)
773 return len;
775 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
776 * ENOBUFS might not be good (it's not tunable per se), but otherwise
777 * we don't have a good statistic (IpOutDiscards but it can be too many
778 * things). We could add another new stat but at least for now that
779 * seems like overkill.
781 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
782 UDP_INC_STATS_USER(sock_net(sk),
783 UDP_MIB_SNDBUFERRORS, is_udplite);
785 return err;
787 do_confirm:
788 dst_confirm(&rt->u.dst);
789 if (!(msg->msg_flags&MSG_PROBE) || len)
790 goto back_from_confirm;
791 err = 0;
792 goto out;
794 EXPORT_SYMBOL(udp_sendmsg);
796 int udp_sendpage(struct sock *sk, struct page *page, int offset,
797 size_t size, int flags)
799 struct udp_sock *up = udp_sk(sk);
800 int ret;
802 if (!up->pending) {
803 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
805 /* Call udp_sendmsg to specify destination address which
806 * sendpage interface can't pass.
807 * This will succeed only when the socket is connected.
809 ret = udp_sendmsg(NULL, sk, &msg, 0);
810 if (ret < 0)
811 return ret;
814 lock_sock(sk);
816 if (unlikely(!up->pending)) {
817 release_sock(sk);
819 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
820 return -EINVAL;
823 ret = ip_append_page(sk, page, offset, size, flags);
824 if (ret == -EOPNOTSUPP) {
825 release_sock(sk);
826 return sock_no_sendpage(sk->sk_socket, page, offset,
827 size, flags);
829 if (ret < 0) {
830 udp_flush_pending_frames(sk);
831 goto out;
834 up->len += size;
835 if (!(up->corkflag || (flags&MSG_MORE)))
836 ret = udp_push_pending_frames(sk);
837 if (!ret)
838 ret = size;
839 out:
840 release_sock(sk);
841 return ret;
846 * first_packet_length - return length of first packet in receive queue
847 * @sk: socket
849 * Drops all bad checksum frames, until a valid one is found.
850 * Returns the length of found skb, or 0 if none is found.
852 static unsigned int first_packet_length(struct sock *sk)
854 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
855 struct sk_buff *skb;
856 unsigned int res;
858 __skb_queue_head_init(&list_kill);
860 spin_lock_bh(&rcvq->lock);
861 while ((skb = skb_peek(rcvq)) != NULL &&
862 udp_lib_checksum_complete(skb)) {
863 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
864 IS_UDPLITE(sk));
865 __skb_unlink(skb, rcvq);
866 __skb_queue_tail(&list_kill, skb);
868 res = skb ? skb->len : 0;
869 spin_unlock_bh(&rcvq->lock);
871 if (!skb_queue_empty(&list_kill)) {
872 lock_sock(sk);
873 __skb_queue_purge(&list_kill);
874 sk_mem_reclaim_partial(sk);
875 release_sock(sk);
877 return res;
881 * IOCTL requests applicable to the UDP protocol
884 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
886 switch (cmd) {
887 case SIOCOUTQ:
889 int amount = sk_wmem_alloc_get(sk);
891 return put_user(amount, (int __user *)arg);
894 case SIOCINQ:
896 unsigned int amount = first_packet_length(sk);
898 if (amount)
900 * We will only return the amount
901 * of this packet since that is all
902 * that will be read.
904 amount -= sizeof(struct udphdr);
906 return put_user(amount, (int __user *)arg);
909 default:
910 return -ENOIOCTLCMD;
913 return 0;
915 EXPORT_SYMBOL(udp_ioctl);
918 * This should be easy, if there is something there we
919 * return it, otherwise we block.
922 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
923 size_t len, int noblock, int flags, int *addr_len)
925 struct inet_sock *inet = inet_sk(sk);
926 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
927 struct sk_buff *skb;
928 unsigned int ulen, copied;
929 int peeked;
930 int err;
931 int is_udplite = IS_UDPLITE(sk);
934 * Check any passed addresses
936 if (addr_len)
937 *addr_len = sizeof(*sin);
939 if (flags & MSG_ERRQUEUE)
940 return ip_recv_error(sk, msg, len);
942 try_again:
943 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
944 &peeked, &err);
945 if (!skb)
946 goto out;
948 ulen = skb->len - sizeof(struct udphdr);
949 copied = len;
950 if (copied > ulen)
951 copied = ulen;
952 else if (copied < ulen)
953 msg->msg_flags |= MSG_TRUNC;
956 * If checksum is needed at all, try to do it while copying the
957 * data. If the data is truncated, or if we only want a partial
958 * coverage checksum (UDP-Lite), do it before the copy.
961 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
962 if (udp_lib_checksum_complete(skb))
963 goto csum_copy_err;
966 if (skb_csum_unnecessary(skb))
967 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
968 msg->msg_iov, copied);
969 else {
970 err = skb_copy_and_csum_datagram_iovec(skb,
971 sizeof(struct udphdr),
972 msg->msg_iov);
974 if (err == -EINVAL)
975 goto csum_copy_err;
978 if (err)
979 goto out_free;
981 if (!peeked)
982 UDP_INC_STATS_USER(sock_net(sk),
983 UDP_MIB_INDATAGRAMS, is_udplite);
985 sock_recv_timestamp(msg, sk, skb);
987 /* Copy the address. */
988 if (sin) {
989 sin->sin_family = AF_INET;
990 sin->sin_port = udp_hdr(skb)->source;
991 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
992 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
994 if (inet->cmsg_flags)
995 ip_cmsg_recv(msg, skb);
997 err = copied;
998 if (flags & MSG_TRUNC)
999 err = ulen;
1001 out_free:
1002 lock_sock(sk);
1003 skb_free_datagram(sk, skb);
1004 release_sock(sk);
1005 out:
1006 return err;
1008 csum_copy_err:
1009 lock_sock(sk);
1010 if (!skb_kill_datagram(sk, skb, flags))
1011 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1012 release_sock(sk);
1014 if (noblock)
1015 return -EAGAIN;
1016 goto try_again;
1020 int udp_disconnect(struct sock *sk, int flags)
1022 struct inet_sock *inet = inet_sk(sk);
1024 * 1003.1g - break association.
1027 sk->sk_state = TCP_CLOSE;
1028 inet->daddr = 0;
1029 inet->dport = 0;
1030 sk->sk_bound_dev_if = 0;
1031 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1032 inet_reset_saddr(sk);
1034 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1035 sk->sk_prot->unhash(sk);
1036 inet->sport = 0;
1038 sk_dst_reset(sk);
1039 return 0;
1041 EXPORT_SYMBOL(udp_disconnect);
1043 void udp_lib_unhash(struct sock *sk)
1045 if (sk_hashed(sk)) {
1046 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1047 unsigned int hash = udp_hashfn(sock_net(sk), sk->sk_hash);
1048 struct udp_hslot *hslot = &udptable->hash[hash];
1050 spin_lock_bh(&hslot->lock);
1051 if (sk_nulls_del_node_init_rcu(sk)) {
1052 inet_sk(sk)->num = 0;
1053 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1055 spin_unlock_bh(&hslot->lock);
1058 EXPORT_SYMBOL(udp_lib_unhash);
1060 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1062 int is_udplite = IS_UDPLITE(sk);
1063 int rc;
1065 if ((rc = sock_queue_rcv_skb(sk, skb)) < 0) {
1066 /* Note that an ENOMEM error is charged twice */
1067 if (rc == -ENOMEM) {
1068 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1069 is_udplite);
1070 atomic_inc(&sk->sk_drops);
1072 goto drop;
1075 return 0;
1077 drop:
1078 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1079 kfree_skb(skb);
1080 return -1;
1083 /* returns:
1084 * -1: error
1085 * 0: success
1086 * >0: "udp encap" protocol resubmission
1088 * Note that in the success and error cases, the skb is assumed to
1089 * have either been requeued or freed.
1091 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1093 struct udp_sock *up = udp_sk(sk);
1094 int rc;
1095 int is_udplite = IS_UDPLITE(sk);
1098 * Charge it to the socket, dropping if the queue is full.
1100 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1101 goto drop;
1102 nf_reset(skb);
1104 if (up->encap_type) {
1106 * This is an encapsulation socket so pass the skb to
1107 * the socket's udp_encap_rcv() hook. Otherwise, just
1108 * fall through and pass this up the UDP socket.
1109 * up->encap_rcv() returns the following value:
1110 * =0 if skb was successfully passed to the encap
1111 * handler or was discarded by it.
1112 * >0 if skb should be passed on to UDP.
1113 * <0 if skb should be resubmitted as proto -N
1116 /* if we're overly short, let UDP handle it */
1117 if (skb->len > sizeof(struct udphdr) &&
1118 up->encap_rcv != NULL) {
1119 int ret;
1121 ret = (*up->encap_rcv)(sk, skb);
1122 if (ret <= 0) {
1123 UDP_INC_STATS_BH(sock_net(sk),
1124 UDP_MIB_INDATAGRAMS,
1125 is_udplite);
1126 return -ret;
1130 /* FALLTHROUGH -- it's a UDP Packet */
1134 * UDP-Lite specific tests, ignored on UDP sockets
1136 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1139 * MIB statistics other than incrementing the error count are
1140 * disabled for the following two types of errors: these depend
1141 * on the application settings, not on the functioning of the
1142 * protocol stack as such.
1144 * RFC 3828 here recommends (sec 3.3): "There should also be a
1145 * way ... to ... at least let the receiving application block
1146 * delivery of packets with coverage values less than a value
1147 * provided by the application."
1149 if (up->pcrlen == 0) { /* full coverage was set */
1150 LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1151 "%d while full coverage %d requested\n",
1152 UDP_SKB_CB(skb)->cscov, skb->len);
1153 goto drop;
1155 /* The next case involves violating the min. coverage requested
1156 * by the receiver. This is subtle: if receiver wants x and x is
1157 * greater than the buffersize/MTU then receiver will complain
1158 * that it wants x while sender emits packets of smaller size y.
1159 * Therefore the above ...()->partial_cov statement is essential.
1161 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1162 LIMIT_NETDEBUG(KERN_WARNING
1163 "UDPLITE: coverage %d too small, need min %d\n",
1164 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1165 goto drop;
1169 if (sk->sk_filter) {
1170 if (udp_lib_checksum_complete(skb))
1171 goto drop;
1174 rc = 0;
1176 bh_lock_sock(sk);
1177 if (!sock_owned_by_user(sk))
1178 rc = __udp_queue_rcv_skb(sk, skb);
1179 else
1180 sk_add_backlog(sk, skb);
1181 bh_unlock_sock(sk);
1183 return rc;
1185 drop:
1186 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1187 kfree_skb(skb);
1188 return -1;
1192 * Multicasts and broadcasts go to each listener.
1194 * Note: called only from the BH handler context,
1195 * so we don't need to lock the hashes.
1197 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1198 struct udphdr *uh,
1199 __be32 saddr, __be32 daddr,
1200 struct udp_table *udptable)
1202 struct sock *sk;
1203 struct udp_hslot *hslot = &udptable->hash[udp_hashfn(net, ntohs(uh->dest))];
1204 int dif;
1206 spin_lock(&hslot->lock);
1207 sk = sk_nulls_head(&hslot->head);
1208 dif = skb->dev->ifindex;
1209 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1210 if (sk) {
1211 struct sock *sknext = NULL;
1213 do {
1214 struct sk_buff *skb1 = skb;
1216 sknext = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1217 daddr, uh->source, saddr,
1218 dif);
1219 if (sknext)
1220 skb1 = skb_clone(skb, GFP_ATOMIC);
1222 if (skb1) {
1223 int ret = udp_queue_rcv_skb(sk, skb1);
1224 if (ret > 0)
1225 /* we should probably re-process instead
1226 * of dropping packets here. */
1227 kfree_skb(skb1);
1229 sk = sknext;
1230 } while (sknext);
1231 } else
1232 consume_skb(skb);
1233 spin_unlock(&hslot->lock);
1234 return 0;
1237 /* Initialize UDP checksum. If exited with zero value (success),
1238 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1239 * Otherwise, csum completion requires chacksumming packet body,
1240 * including udp header and folding it to skb->csum.
1242 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1243 int proto)
1245 const struct iphdr *iph;
1246 int err;
1248 UDP_SKB_CB(skb)->partial_cov = 0;
1249 UDP_SKB_CB(skb)->cscov = skb->len;
1251 if (proto == IPPROTO_UDPLITE) {
1252 err = udplite_checksum_init(skb, uh);
1253 if (err)
1254 return err;
1257 iph = ip_hdr(skb);
1258 if (uh->check == 0) {
1259 skb->ip_summed = CHECKSUM_UNNECESSARY;
1260 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1261 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1262 proto, skb->csum))
1263 skb->ip_summed = CHECKSUM_UNNECESSARY;
1265 if (!skb_csum_unnecessary(skb))
1266 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1267 skb->len, proto, 0);
1268 /* Probably, we should checksum udp header (it should be in cache
1269 * in any case) and data in tiny packets (< rx copybreak).
1272 return 0;
1276 * All we need to do is get the socket, and then do a checksum.
1279 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1280 int proto)
1282 struct sock *sk;
1283 struct udphdr *uh;
1284 unsigned short ulen;
1285 struct rtable *rt = skb_rtable(skb);
1286 __be32 saddr, daddr;
1287 struct net *net = dev_net(skb->dev);
1290 * Validate the packet.
1292 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1293 goto drop; /* No space for header. */
1295 uh = udp_hdr(skb);
1296 ulen = ntohs(uh->len);
1297 if (ulen > skb->len)
1298 goto short_packet;
1300 if (proto == IPPROTO_UDP) {
1301 /* UDP validates ulen. */
1302 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1303 goto short_packet;
1304 uh = udp_hdr(skb);
1307 if (udp4_csum_init(skb, uh, proto))
1308 goto csum_error;
1310 saddr = ip_hdr(skb)->saddr;
1311 daddr = ip_hdr(skb)->daddr;
1313 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1314 return __udp4_lib_mcast_deliver(net, skb, uh,
1315 saddr, daddr, udptable);
1317 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1319 if (sk != NULL) {
1320 int ret = udp_queue_rcv_skb(sk, skb);
1321 sock_put(sk);
1323 /* a return value > 0 means to resubmit the input, but
1324 * it wants the return to be -protocol, or 0
1326 if (ret > 0)
1327 return -ret;
1328 return 0;
1331 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1332 goto drop;
1333 nf_reset(skb);
1335 /* No socket. Drop packet silently, if checksum is wrong */
1336 if (udp_lib_checksum_complete(skb))
1337 goto csum_error;
1339 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1340 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1343 * Hmm. We got an UDP packet to a port to which we
1344 * don't wanna listen. Ignore it.
1346 kfree_skb(skb);
1347 return 0;
1349 short_packet:
1350 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1351 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1352 &saddr,
1353 ntohs(uh->source),
1354 ulen,
1355 skb->len,
1356 &daddr,
1357 ntohs(uh->dest));
1358 goto drop;
1360 csum_error:
1362 * RFC1122: OK. Discards the bad packet silently (as far as
1363 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1365 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1366 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1367 &saddr,
1368 ntohs(uh->source),
1369 &daddr,
1370 ntohs(uh->dest),
1371 ulen);
1372 drop:
1373 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1374 kfree_skb(skb);
1375 return 0;
1378 int udp_rcv(struct sk_buff *skb)
1380 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1383 void udp_destroy_sock(struct sock *sk)
1385 lock_sock(sk);
1386 udp_flush_pending_frames(sk);
1387 release_sock(sk);
1391 * Socket option code for UDP
1393 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1394 char __user *optval, unsigned int optlen,
1395 int (*push_pending_frames)(struct sock *))
1397 struct udp_sock *up = udp_sk(sk);
1398 int val;
1399 int err = 0;
1400 int is_udplite = IS_UDPLITE(sk);
1402 if (optlen < sizeof(int))
1403 return -EINVAL;
1405 if (get_user(val, (int __user *)optval))
1406 return -EFAULT;
1408 switch (optname) {
1409 case UDP_CORK:
1410 if (val != 0) {
1411 up->corkflag = 1;
1412 } else {
1413 up->corkflag = 0;
1414 lock_sock(sk);
1415 (*push_pending_frames)(sk);
1416 release_sock(sk);
1418 break;
1420 case UDP_ENCAP:
1421 switch (val) {
1422 case 0:
1423 case UDP_ENCAP_ESPINUDP:
1424 case UDP_ENCAP_ESPINUDP_NON_IKE:
1425 up->encap_rcv = xfrm4_udp_encap_rcv;
1426 /* FALLTHROUGH */
1427 case UDP_ENCAP_L2TPINUDP:
1428 up->encap_type = val;
1429 break;
1430 default:
1431 err = -ENOPROTOOPT;
1432 break;
1434 break;
1437 * UDP-Lite's partial checksum coverage (RFC 3828).
1439 /* The sender sets actual checksum coverage length via this option.
1440 * The case coverage > packet length is handled by send module. */
1441 case UDPLITE_SEND_CSCOV:
1442 if (!is_udplite) /* Disable the option on UDP sockets */
1443 return -ENOPROTOOPT;
1444 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1445 val = 8;
1446 else if (val > USHORT_MAX)
1447 val = USHORT_MAX;
1448 up->pcslen = val;
1449 up->pcflag |= UDPLITE_SEND_CC;
1450 break;
1452 /* The receiver specifies a minimum checksum coverage value. To make
1453 * sense, this should be set to at least 8 (as done below). If zero is
1454 * used, this again means full checksum coverage. */
1455 case UDPLITE_RECV_CSCOV:
1456 if (!is_udplite) /* Disable the option on UDP sockets */
1457 return -ENOPROTOOPT;
1458 if (val != 0 && val < 8) /* Avoid silly minimal values. */
1459 val = 8;
1460 else if (val > USHORT_MAX)
1461 val = USHORT_MAX;
1462 up->pcrlen = val;
1463 up->pcflag |= UDPLITE_RECV_CC;
1464 break;
1466 default:
1467 err = -ENOPROTOOPT;
1468 break;
1471 return err;
1473 EXPORT_SYMBOL(udp_lib_setsockopt);
1475 int udp_setsockopt(struct sock *sk, int level, int optname,
1476 char __user *optval, unsigned int optlen)
1478 if (level == SOL_UDP || level == SOL_UDPLITE)
1479 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1480 udp_push_pending_frames);
1481 return ip_setsockopt(sk, level, optname, optval, optlen);
1484 #ifdef CONFIG_COMPAT
1485 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1486 char __user *optval, unsigned int optlen)
1488 if (level == SOL_UDP || level == SOL_UDPLITE)
1489 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1490 udp_push_pending_frames);
1491 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1493 #endif
1495 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1496 char __user *optval, int __user *optlen)
1498 struct udp_sock *up = udp_sk(sk);
1499 int val, len;
1501 if (get_user(len, optlen))
1502 return -EFAULT;
1504 len = min_t(unsigned int, len, sizeof(int));
1506 if (len < 0)
1507 return -EINVAL;
1509 switch (optname) {
1510 case UDP_CORK:
1511 val = up->corkflag;
1512 break;
1514 case UDP_ENCAP:
1515 val = up->encap_type;
1516 break;
1518 /* The following two cannot be changed on UDP sockets, the return is
1519 * always 0 (which corresponds to the full checksum coverage of UDP). */
1520 case UDPLITE_SEND_CSCOV:
1521 val = up->pcslen;
1522 break;
1524 case UDPLITE_RECV_CSCOV:
1525 val = up->pcrlen;
1526 break;
1528 default:
1529 return -ENOPROTOOPT;
1532 if (put_user(len, optlen))
1533 return -EFAULT;
1534 if (copy_to_user(optval, &val, len))
1535 return -EFAULT;
1536 return 0;
1538 EXPORT_SYMBOL(udp_lib_getsockopt);
1540 int udp_getsockopt(struct sock *sk, int level, int optname,
1541 char __user *optval, int __user *optlen)
1543 if (level == SOL_UDP || level == SOL_UDPLITE)
1544 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1545 return ip_getsockopt(sk, level, optname, optval, optlen);
1548 #ifdef CONFIG_COMPAT
1549 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1550 char __user *optval, int __user *optlen)
1552 if (level == SOL_UDP || level == SOL_UDPLITE)
1553 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1554 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1556 #endif
1558 * udp_poll - wait for a UDP event.
1559 * @file - file struct
1560 * @sock - socket
1561 * @wait - poll table
1563 * This is same as datagram poll, except for the special case of
1564 * blocking sockets. If application is using a blocking fd
1565 * and a packet with checksum error is in the queue;
1566 * then it could get return from select indicating data available
1567 * but then block when reading it. Add special case code
1568 * to work around these arguably broken applications.
1570 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1572 unsigned int mask = datagram_poll(file, sock, wait);
1573 struct sock *sk = sock->sk;
1575 /* Check for false positives due to checksum errors */
1576 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1577 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1578 mask &= ~(POLLIN | POLLRDNORM);
1580 return mask;
1583 EXPORT_SYMBOL(udp_poll);
1585 struct proto udp_prot = {
1586 .name = "UDP",
1587 .owner = THIS_MODULE,
1588 .close = udp_lib_close,
1589 .connect = ip4_datagram_connect,
1590 .disconnect = udp_disconnect,
1591 .ioctl = udp_ioctl,
1592 .destroy = udp_destroy_sock,
1593 .setsockopt = udp_setsockopt,
1594 .getsockopt = udp_getsockopt,
1595 .sendmsg = udp_sendmsg,
1596 .recvmsg = udp_recvmsg,
1597 .sendpage = udp_sendpage,
1598 .backlog_rcv = __udp_queue_rcv_skb,
1599 .hash = udp_lib_hash,
1600 .unhash = udp_lib_unhash,
1601 .get_port = udp_v4_get_port,
1602 .memory_allocated = &udp_memory_allocated,
1603 .sysctl_mem = sysctl_udp_mem,
1604 .sysctl_wmem = &sysctl_udp_wmem_min,
1605 .sysctl_rmem = &sysctl_udp_rmem_min,
1606 .obj_size = sizeof(struct udp_sock),
1607 .slab_flags = SLAB_DESTROY_BY_RCU,
1608 .h.udp_table = &udp_table,
1609 #ifdef CONFIG_COMPAT
1610 .compat_setsockopt = compat_udp_setsockopt,
1611 .compat_getsockopt = compat_udp_getsockopt,
1612 #endif
1614 EXPORT_SYMBOL(udp_prot);
1616 /* ------------------------------------------------------------------------ */
1617 #ifdef CONFIG_PROC_FS
1619 static struct sock *udp_get_first(struct seq_file *seq, int start)
1621 struct sock *sk;
1622 struct udp_iter_state *state = seq->private;
1623 struct net *net = seq_file_net(seq);
1625 for (state->bucket = start; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1626 struct hlist_nulls_node *node;
1627 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1628 spin_lock_bh(&hslot->lock);
1629 sk_nulls_for_each(sk, node, &hslot->head) {
1630 if (!net_eq(sock_net(sk), net))
1631 continue;
1632 if (sk->sk_family == state->family)
1633 goto found;
1635 spin_unlock_bh(&hslot->lock);
1637 sk = NULL;
1638 found:
1639 return sk;
1642 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1644 struct udp_iter_state *state = seq->private;
1645 struct net *net = seq_file_net(seq);
1647 do {
1648 sk = sk_nulls_next(sk);
1649 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1651 if (!sk) {
1652 if (state->bucket < UDP_HTABLE_SIZE)
1653 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1654 return udp_get_first(seq, state->bucket + 1);
1656 return sk;
1659 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1661 struct sock *sk = udp_get_first(seq, 0);
1663 if (sk)
1664 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1665 --pos;
1666 return pos ? NULL : sk;
1669 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1671 struct udp_iter_state *state = seq->private;
1672 state->bucket = UDP_HTABLE_SIZE;
1674 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1677 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1679 struct sock *sk;
1681 if (v == SEQ_START_TOKEN)
1682 sk = udp_get_idx(seq, 0);
1683 else
1684 sk = udp_get_next(seq, v);
1686 ++*pos;
1687 return sk;
1690 static void udp_seq_stop(struct seq_file *seq, void *v)
1692 struct udp_iter_state *state = seq->private;
1694 if (state->bucket < UDP_HTABLE_SIZE)
1695 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1698 static int udp_seq_open(struct inode *inode, struct file *file)
1700 struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1701 struct udp_iter_state *s;
1702 int err;
1704 err = seq_open_net(inode, file, &afinfo->seq_ops,
1705 sizeof(struct udp_iter_state));
1706 if (err < 0)
1707 return err;
1709 s = ((struct seq_file *)file->private_data)->private;
1710 s->family = afinfo->family;
1711 s->udp_table = afinfo->udp_table;
1712 return err;
1715 /* ------------------------------------------------------------------------ */
1716 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
1718 struct proc_dir_entry *p;
1719 int rc = 0;
1721 afinfo->seq_fops.open = udp_seq_open;
1722 afinfo->seq_fops.read = seq_read;
1723 afinfo->seq_fops.llseek = seq_lseek;
1724 afinfo->seq_fops.release = seq_release_net;
1726 afinfo->seq_ops.start = udp_seq_start;
1727 afinfo->seq_ops.next = udp_seq_next;
1728 afinfo->seq_ops.stop = udp_seq_stop;
1730 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
1731 &afinfo->seq_fops, afinfo);
1732 if (!p)
1733 rc = -ENOMEM;
1734 return rc;
1736 EXPORT_SYMBOL(udp_proc_register);
1738 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
1740 proc_net_remove(net, afinfo->name);
1742 EXPORT_SYMBOL(udp_proc_unregister);
1744 /* ------------------------------------------------------------------------ */
1745 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
1746 int bucket, int *len)
1748 struct inet_sock *inet = inet_sk(sp);
1749 __be32 dest = inet->daddr;
1750 __be32 src = inet->rcv_saddr;
1751 __u16 destp = ntohs(inet->dport);
1752 __u16 srcp = ntohs(inet->sport);
1754 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
1755 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
1756 bucket, src, srcp, dest, destp, sp->sk_state,
1757 sk_wmem_alloc_get(sp),
1758 sk_rmem_alloc_get(sp),
1759 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1760 atomic_read(&sp->sk_refcnt), sp,
1761 atomic_read(&sp->sk_drops), len);
1764 int udp4_seq_show(struct seq_file *seq, void *v)
1766 if (v == SEQ_START_TOKEN)
1767 seq_printf(seq, "%-127s\n",
1768 " sl local_address rem_address st tx_queue "
1769 "rx_queue tr tm->when retrnsmt uid timeout "
1770 "inode ref pointer drops");
1771 else {
1772 struct udp_iter_state *state = seq->private;
1773 int len;
1775 udp4_format_sock(v, seq, state->bucket, &len);
1776 seq_printf(seq, "%*s\n", 127 - len, "");
1778 return 0;
1781 /* ------------------------------------------------------------------------ */
1782 static struct udp_seq_afinfo udp4_seq_afinfo = {
1783 .name = "udp",
1784 .family = AF_INET,
1785 .udp_table = &udp_table,
1786 .seq_fops = {
1787 .owner = THIS_MODULE,
1789 .seq_ops = {
1790 .show = udp4_seq_show,
1794 static int udp4_proc_init_net(struct net *net)
1796 return udp_proc_register(net, &udp4_seq_afinfo);
1799 static void udp4_proc_exit_net(struct net *net)
1801 udp_proc_unregister(net, &udp4_seq_afinfo);
1804 static struct pernet_operations udp4_net_ops = {
1805 .init = udp4_proc_init_net,
1806 .exit = udp4_proc_exit_net,
1809 int __init udp4_proc_init(void)
1811 return register_pernet_subsys(&udp4_net_ops);
1814 void udp4_proc_exit(void)
1816 unregister_pernet_subsys(&udp4_net_ops);
1818 #endif /* CONFIG_PROC_FS */
1820 void __init udp_table_init(struct udp_table *table)
1822 int i;
1824 for (i = 0; i < UDP_HTABLE_SIZE; i++) {
1825 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
1826 spin_lock_init(&table->hash[i].lock);
1830 void __init udp_init(void)
1832 unsigned long nr_pages, limit;
1834 udp_table_init(&udp_table);
1835 /* Set the pressure threshold up by the same strategy of TCP. It is a
1836 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
1837 * toward zero with the amount of memory, with a floor of 128 pages.
1839 nr_pages = totalram_pages - totalhigh_pages;
1840 limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
1841 limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
1842 limit = max(limit, 128UL);
1843 sysctl_udp_mem[0] = limit / 4 * 3;
1844 sysctl_udp_mem[1] = limit;
1845 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
1847 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
1848 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
1851 int udp4_ufo_send_check(struct sk_buff *skb)
1853 const struct iphdr *iph;
1854 struct udphdr *uh;
1856 if (!pskb_may_pull(skb, sizeof(*uh)))
1857 return -EINVAL;
1859 iph = ip_hdr(skb);
1860 uh = udp_hdr(skb);
1862 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1863 IPPROTO_UDP, 0);
1864 skb->csum_start = skb_transport_header(skb) - skb->head;
1865 skb->csum_offset = offsetof(struct udphdr, check);
1866 skb->ip_summed = CHECKSUM_PARTIAL;
1867 return 0;
1870 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, int features)
1872 struct sk_buff *segs = ERR_PTR(-EINVAL);
1873 unsigned int mss;
1874 int offset;
1875 __wsum csum;
1877 mss = skb_shinfo(skb)->gso_size;
1878 if (unlikely(skb->len <= mss))
1879 goto out;
1881 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
1882 /* Packet is from an untrusted source, reset gso_segs. */
1883 int type = skb_shinfo(skb)->gso_type;
1885 if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
1886 !(type & (SKB_GSO_UDP))))
1887 goto out;
1889 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
1891 segs = NULL;
1892 goto out;
1895 /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
1896 * do checksum of UDP packets sent as multiple IP fragments.
1898 offset = skb->csum_start - skb_headroom(skb);
1899 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1900 offset += skb->csum_offset;
1901 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1902 skb->ip_summed = CHECKSUM_NONE;
1904 /* Fragment the skb. IP headers of the fragments are updated in
1905 * inet_gso_segment()
1907 segs = skb_segment(skb, features);
1908 out:
1909 return segs;