2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
36 #include <linux/list.h>
41 /* When transmitting messages in rds_send_xmit, we need to emerge from
42 * time to time and briefly release the CPU. Otherwise the softlock watchdog
44 * Also, it seems fairer to not let one busy connection stall all the
47 * send_batch_count is the number of times we'll loop in send_xmit. Setting
48 * it to 0 will restore the old behavior (where we looped until we had
51 static int send_batch_count
= 64;
52 module_param(send_batch_count
, int, 0444);
53 MODULE_PARM_DESC(send_batch_count
, " batch factor when working the send queue");
56 * Reset the send state. Caller must hold c_send_lock when calling here.
58 void rds_send_reset(struct rds_connection
*conn
)
60 struct rds_message
*rm
, *tmp
;
63 if (conn
->c_xmit_rm
) {
64 /* Tell the user the RDMA op is no longer mapped by the
65 * transport. This isn't entirely true (it's flushed out
66 * independently) but as the connection is down, there's
67 * no ongoing RDMA to/from that memory */
68 rds_message_unmapped(conn
->c_xmit_rm
);
69 rds_message_put(conn
->c_xmit_rm
);
70 conn
->c_xmit_rm
= NULL
;
73 conn
->c_xmit_hdr_off
= 0;
74 conn
->c_xmit_data_off
= 0;
75 conn
->c_xmit_rdma_sent
= 0;
77 conn
->c_map_queued
= 0;
79 conn
->c_unacked_packets
= rds_sysctl_max_unacked_packets
;
80 conn
->c_unacked_bytes
= rds_sysctl_max_unacked_bytes
;
82 /* Mark messages as retransmissions, and move them to the send q */
83 spin_lock_irqsave(&conn
->c_lock
, flags
);
84 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
85 set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
86 set_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
);
88 list_splice_init(&conn
->c_retrans
, &conn
->c_send_queue
);
89 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
93 * We're making the concious trade-off here to only send one message
94 * down the connection at a time.
96 * - tx queueing is a simple fifo list
97 * - reassembly is optional and easily done by transports per conn
98 * - no per flow rx lookup at all, straight to the socket
99 * - less per-frag memory and wire overhead
101 * - queued acks can be delayed behind large messages
103 * - small message latency is higher behind queued large messages
104 * - large message latency isn't starved by intervening small sends
106 int rds_send_xmit(struct rds_connection
*conn
)
108 struct rds_message
*rm
;
111 unsigned int send_quota
= send_batch_count
;
112 struct scatterlist
*sg
;
115 LIST_HEAD(to_be_dropped
);
118 * sendmsg calls here after having queued its message on the send
119 * queue. We only have one task feeding the connection at a time. If
120 * another thread is already feeding the queue then we back off. This
121 * avoids blocking the caller and trading per-connection data between
122 * caches per message.
124 * The sem holder will issue a retry if they notice that someone queued
125 * a message after they stopped walking the send queue but before they
128 if (!mutex_trylock(&conn
->c_send_lock
)) {
129 rds_stats_inc(s_send_sem_contention
);
134 if (conn
->c_trans
->xmit_prepare
)
135 conn
->c_trans
->xmit_prepare(conn
);
138 * spin trying to push headers and data down the connection until
139 * the connection doens't make forward progress.
141 while (--send_quota
) {
143 * See if need to send a congestion map update if we're
144 * between sending messages. The send_sem protects our sole
145 * use of c_map_offset and _bytes.
146 * Note this is used only by transports that define a special
147 * xmit_cong_map function. For all others, we create allocate
148 * a cong_map message and treat it just like any other send.
150 if (conn
->c_map_bytes
) {
151 ret
= conn
->c_trans
->xmit_cong_map(conn
, conn
->c_lcong
,
156 conn
->c_map_offset
+= ret
;
157 conn
->c_map_bytes
-= ret
;
158 if (conn
->c_map_bytes
)
162 /* If we're done sending the current message, clear the
163 * offset and S/G temporaries.
165 rm
= conn
->c_xmit_rm
;
167 conn
->c_xmit_hdr_off
== sizeof(struct rds_header
) &&
168 conn
->c_xmit_sg
== rm
->m_nents
) {
169 conn
->c_xmit_rm
= NULL
;
171 conn
->c_xmit_hdr_off
= 0;
172 conn
->c_xmit_data_off
= 0;
173 conn
->c_xmit_rdma_sent
= 0;
175 /* Release the reference to the previous message. */
180 /* If we're asked to send a cong map update, do so.
182 if (rm
== NULL
&& test_and_clear_bit(0, &conn
->c_map_queued
)) {
183 if (conn
->c_trans
->xmit_cong_map
!= NULL
) {
184 conn
->c_map_offset
= 0;
185 conn
->c_map_bytes
= sizeof(struct rds_header
) +
190 rm
= rds_cong_update_alloc(conn
);
196 conn
->c_xmit_rm
= rm
;
200 * Grab the next message from the send queue, if there is one.
202 * c_xmit_rm holds a ref while we're sending this message down
203 * the connction. We can use this ref while holding the
204 * send_sem.. rds_send_reset() is serialized with it.
209 spin_lock_irqsave(&conn
->c_lock
, flags
);
211 if (!list_empty(&conn
->c_send_queue
)) {
212 rm
= list_entry(conn
->c_send_queue
.next
,
215 rds_message_addref(rm
);
218 * Move the message from the send queue to the retransmit
221 list_move_tail(&rm
->m_conn_item
, &conn
->c_retrans
);
224 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
231 /* Unfortunately, the way Infiniband deals with
232 * RDMA to a bad MR key is by moving the entire
233 * queue pair to error state. We cold possibly
234 * recover from that, but right now we drop the
236 * Therefore, we never retransmit messages with RDMA ops.
239 && test_bit(RDS_MSG_RETRANSMITTED
, &rm
->m_flags
)) {
240 spin_lock_irqsave(&conn
->c_lock
, flags
);
241 if (test_and_clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
))
242 list_move(&rm
->m_conn_item
, &to_be_dropped
);
243 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
248 /* Require an ACK every once in a while */
249 len
= ntohl(rm
->m_inc
.i_hdr
.h_len
);
250 if (conn
->c_unacked_packets
== 0
251 || conn
->c_unacked_bytes
< len
) {
252 __set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
254 conn
->c_unacked_packets
= rds_sysctl_max_unacked_packets
;
255 conn
->c_unacked_bytes
= rds_sysctl_max_unacked_bytes
;
256 rds_stats_inc(s_send_ack_required
);
258 conn
->c_unacked_bytes
-= len
;
259 conn
->c_unacked_packets
--;
262 conn
->c_xmit_rm
= rm
;
266 * Try and send an rdma message. Let's see if we can
267 * keep this simple and require that the transport either
268 * send the whole rdma or none of it.
270 if (rm
->m_rdma_op
&& !conn
->c_xmit_rdma_sent
) {
271 ret
= conn
->c_trans
->xmit_rdma(conn
, rm
->m_rdma_op
);
274 conn
->c_xmit_rdma_sent
= 1;
275 /* The transport owns the mapped memory for now.
276 * You can't unmap it while it's on the send queue */
277 set_bit(RDS_MSG_MAPPED
, &rm
->m_flags
);
280 if (conn
->c_xmit_hdr_off
< sizeof(struct rds_header
) ||
281 conn
->c_xmit_sg
< rm
->m_nents
) {
282 ret
= conn
->c_trans
->xmit(conn
, rm
,
283 conn
->c_xmit_hdr_off
,
285 conn
->c_xmit_data_off
);
289 if (conn
->c_xmit_hdr_off
< sizeof(struct rds_header
)) {
290 tmp
= min_t(int, ret
,
291 sizeof(struct rds_header
) -
292 conn
->c_xmit_hdr_off
);
293 conn
->c_xmit_hdr_off
+= tmp
;
297 sg
= &rm
->m_sg
[conn
->c_xmit_sg
];
299 tmp
= min_t(int, ret
, sg
->length
-
300 conn
->c_xmit_data_off
);
301 conn
->c_xmit_data_off
+= tmp
;
303 if (conn
->c_xmit_data_off
== sg
->length
) {
304 conn
->c_xmit_data_off
= 0;
308 conn
->c_xmit_sg
== rm
->m_nents
);
314 /* Nuke any messages we decided not to retransmit. */
315 if (!list_empty(&to_be_dropped
))
316 rds_send_remove_from_sock(&to_be_dropped
, RDS_RDMA_DROPPED
);
318 if (conn
->c_trans
->xmit_complete
)
319 conn
->c_trans
->xmit_complete(conn
);
322 * We might be racing with another sender who queued a message but
323 * backed off on noticing that we held the c_send_lock. If we check
324 * for queued messages after dropping the sem then either we'll
325 * see the queued message or the queuer will get the sem. If we
326 * notice the queued message then we trigger an immediate retry.
328 * We need to be careful only to do this when we stopped processing
329 * the send queue because it was empty. It's the only way we
330 * stop processing the loop when the transport hasn't taken
331 * responsibility for forward progress.
333 mutex_unlock(&conn
->c_send_lock
);
335 if (conn
->c_map_bytes
|| (send_quota
== 0 && !was_empty
)) {
336 /* We exhausted the send quota, but there's work left to
337 * do. Return and (re-)schedule the send worker.
342 if (ret
== 0 && was_empty
) {
343 /* A simple bit test would be way faster than taking the
345 spin_lock_irqsave(&conn
->c_lock
, flags
);
346 if (!list_empty(&conn
->c_send_queue
)) {
347 rds_stats_inc(s_send_sem_queue_raced
);
350 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
356 static void rds_send_sndbuf_remove(struct rds_sock
*rs
, struct rds_message
*rm
)
358 u32 len
= be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
);
360 assert_spin_locked(&rs
->rs_lock
);
362 BUG_ON(rs
->rs_snd_bytes
< len
);
363 rs
->rs_snd_bytes
-= len
;
365 if (rs
->rs_snd_bytes
== 0)
366 rds_stats_inc(s_send_queue_empty
);
369 static inline int rds_send_is_acked(struct rds_message
*rm
, u64 ack
,
370 is_acked_func is_acked
)
373 return is_acked(rm
, ack
);
374 return be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
) <= ack
;
378 * Returns true if there are no messages on the send and retransmit queues
379 * which have a sequence number greater than or equal to the given sequence
382 int rds_send_acked_before(struct rds_connection
*conn
, u64 seq
)
384 struct rds_message
*rm
, *tmp
;
387 spin_lock(&conn
->c_lock
);
389 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
390 if (be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
) < seq
)
395 list_for_each_entry_safe(rm
, tmp
, &conn
->c_send_queue
, m_conn_item
) {
396 if (be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
) < seq
)
401 spin_unlock(&conn
->c_lock
);
407 * This is pretty similar to what happens below in the ACK
408 * handling code - except that we call here as soon as we get
409 * the IB send completion on the RDMA op and the accompanying
412 void rds_rdma_send_complete(struct rds_message
*rm
, int status
)
414 struct rds_sock
*rs
= NULL
;
415 struct rds_rdma_op
*ro
;
416 struct rds_notifier
*notifier
;
418 spin_lock(&rm
->m_rs_lock
);
421 if (test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
)
422 && ro
&& ro
->r_notify
&& ro
->r_notifier
) {
423 notifier
= ro
->r_notifier
;
425 sock_hold(rds_rs_to_sk(rs
));
427 notifier
->n_status
= status
;
428 spin_lock(&rs
->rs_lock
);
429 list_add_tail(¬ifier
->n_list
, &rs
->rs_notify_queue
);
430 spin_unlock(&rs
->rs_lock
);
432 ro
->r_notifier
= NULL
;
435 spin_unlock(&rm
->m_rs_lock
);
438 rds_wake_sk_sleep(rs
);
439 sock_put(rds_rs_to_sk(rs
));
442 EXPORT_SYMBOL_GPL(rds_rdma_send_complete
);
445 * This is the same as rds_rdma_send_complete except we
446 * don't do any locking - we have all the ingredients (message,
447 * socket, socket lock) and can just move the notifier.
450 __rds_rdma_send_complete(struct rds_sock
*rs
, struct rds_message
*rm
, int status
)
452 struct rds_rdma_op
*ro
;
455 if (ro
&& ro
->r_notify
&& ro
->r_notifier
) {
456 ro
->r_notifier
->n_status
= status
;
457 list_add_tail(&ro
->r_notifier
->n_list
, &rs
->rs_notify_queue
);
458 ro
->r_notifier
= NULL
;
461 /* No need to wake the app - caller does this */
465 * This is called from the IB send completion when we detect
466 * a RDMA operation that failed with remote access error.
467 * So speed is not an issue here.
469 struct rds_message
*rds_send_get_message(struct rds_connection
*conn
,
470 struct rds_rdma_op
*op
)
472 struct rds_message
*rm
, *tmp
, *found
= NULL
;
475 spin_lock_irqsave(&conn
->c_lock
, flags
);
477 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
478 if (rm
->m_rdma_op
== op
) {
479 atomic_inc(&rm
->m_refcount
);
485 list_for_each_entry_safe(rm
, tmp
, &conn
->c_send_queue
, m_conn_item
) {
486 if (rm
->m_rdma_op
== op
) {
487 atomic_inc(&rm
->m_refcount
);
494 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
498 EXPORT_SYMBOL_GPL(rds_send_get_message
);
501 * This removes messages from the socket's list if they're on it. The list
502 * argument must be private to the caller, we must be able to modify it
503 * without locks. The messages must have a reference held for their
504 * position on the list. This function will drop that reference after
505 * removing the messages from the 'messages' list regardless of if it found
506 * the messages on the socket list or not.
508 void rds_send_remove_from_sock(struct list_head
*messages
, int status
)
510 unsigned long flags
= 0; /* silence gcc :P */
511 struct rds_sock
*rs
= NULL
;
512 struct rds_message
*rm
;
514 local_irq_save(flags
);
515 while (!list_empty(messages
)) {
516 rm
= list_entry(messages
->next
, struct rds_message
,
518 list_del_init(&rm
->m_conn_item
);
521 * If we see this flag cleared then we're *sure* that someone
522 * else beat us to removing it from the sock. If we race
523 * with their flag update we'll get the lock and then really
524 * see that the flag has been cleared.
526 * The message spinlock makes sure nobody clears rm->m_rs
527 * while we're messing with it. It does not prevent the
528 * message from being removed from the socket, though.
530 spin_lock(&rm
->m_rs_lock
);
531 if (!test_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
))
532 goto unlock_and_drop
;
534 if (rs
!= rm
->m_rs
) {
536 spin_unlock(&rs
->rs_lock
);
537 rds_wake_sk_sleep(rs
);
538 sock_put(rds_rs_to_sk(rs
));
541 spin_lock(&rs
->rs_lock
);
542 sock_hold(rds_rs_to_sk(rs
));
545 if (test_and_clear_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
)) {
546 struct rds_rdma_op
*ro
= rm
->m_rdma_op
;
547 struct rds_notifier
*notifier
;
549 list_del_init(&rm
->m_sock_item
);
550 rds_send_sndbuf_remove(rs
, rm
);
552 if (ro
&& ro
->r_notifier
553 && (status
|| ro
->r_notify
)) {
554 notifier
= ro
->r_notifier
;
555 list_add_tail(¬ifier
->n_list
,
556 &rs
->rs_notify_queue
);
557 if (!notifier
->n_status
)
558 notifier
->n_status
= status
;
559 rm
->m_rdma_op
->r_notifier
= NULL
;
566 spin_unlock(&rm
->m_rs_lock
);
571 spin_unlock(&rs
->rs_lock
);
572 rds_wake_sk_sleep(rs
);
573 sock_put(rds_rs_to_sk(rs
));
575 local_irq_restore(flags
);
579 * Transports call here when they've determined that the receiver queued
580 * messages up to, and including, the given sequence number. Messages are
581 * moved to the retrans queue when rds_send_xmit picks them off the send
582 * queue. This means that in the TCP case, the message may not have been
583 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
584 * checks the RDS_MSG_HAS_ACK_SEQ bit.
586 * XXX It's not clear to me how this is safely serialized with socket
587 * destruction. Maybe it should bail if it sees SOCK_DEAD.
589 void rds_send_drop_acked(struct rds_connection
*conn
, u64 ack
,
590 is_acked_func is_acked
)
592 struct rds_message
*rm
, *tmp
;
596 spin_lock_irqsave(&conn
->c_lock
, flags
);
598 list_for_each_entry_safe(rm
, tmp
, &conn
->c_retrans
, m_conn_item
) {
599 if (!rds_send_is_acked(rm
, ack
, is_acked
))
602 list_move(&rm
->m_conn_item
, &list
);
603 clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
606 /* order flag updates with spin locks */
607 if (!list_empty(&list
))
608 smp_mb__after_clear_bit();
610 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
612 /* now remove the messages from the sock list as needed */
613 rds_send_remove_from_sock(&list
, RDS_RDMA_SUCCESS
);
615 EXPORT_SYMBOL_GPL(rds_send_drop_acked
);
617 void rds_send_drop_to(struct rds_sock
*rs
, struct sockaddr_in
*dest
)
619 struct rds_message
*rm
, *tmp
;
620 struct rds_connection
*conn
;
621 unsigned long flags
, flags2
;
625 /* get all the messages we're dropping under the rs lock */
626 spin_lock_irqsave(&rs
->rs_lock
, flags
);
628 list_for_each_entry_safe(rm
, tmp
, &rs
->rs_send_queue
, m_sock_item
) {
629 if (dest
&& (dest
->sin_addr
.s_addr
!= rm
->m_daddr
||
630 dest
->sin_port
!= rm
->m_inc
.i_hdr
.h_dport
))
634 list_move(&rm
->m_sock_item
, &list
);
635 rds_send_sndbuf_remove(rs
, rm
);
636 clear_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
);
638 /* If this is a RDMA operation, notify the app. */
639 __rds_rdma_send_complete(rs
, rm
, RDS_RDMA_CANCELED
);
642 /* order flag updates with the rs lock */
644 smp_mb__after_clear_bit();
646 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
649 rds_wake_sk_sleep(rs
);
653 /* now remove the messages from the conn list as needed */
654 list_for_each_entry(rm
, &list
, m_sock_item
) {
655 /* We do this here rather than in the loop above, so that
656 * we don't have to nest m_rs_lock under rs->rs_lock */
657 spin_lock_irqsave(&rm
->m_rs_lock
, flags2
);
659 spin_unlock_irqrestore(&rm
->m_rs_lock
, flags2
);
662 * If we see this flag cleared then we're *sure* that someone
663 * else beat us to removing it from the conn. If we race
664 * with their flag update we'll get the lock and then really
665 * see that the flag has been cleared.
667 if (!test_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
))
670 if (conn
!= rm
->m_inc
.i_conn
) {
672 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
673 conn
= rm
->m_inc
.i_conn
;
674 spin_lock_irqsave(&conn
->c_lock
, flags
);
677 if (test_and_clear_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
)) {
678 list_del_init(&rm
->m_conn_item
);
684 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
686 while (!list_empty(&list
)) {
687 rm
= list_entry(list
.next
, struct rds_message
, m_sock_item
);
688 list_del_init(&rm
->m_sock_item
);
690 rds_message_wait(rm
);
696 * we only want this to fire once so we use the callers 'queued'. It's
697 * possible that another thread can race with us and remove the
698 * message from the flow with RDS_CANCEL_SENT_TO.
700 static int rds_send_queue_rm(struct rds_sock
*rs
, struct rds_connection
*conn
,
701 struct rds_message
*rm
, __be16 sport
,
702 __be16 dport
, int *queued
)
710 len
= be32_to_cpu(rm
->m_inc
.i_hdr
.h_len
);
712 /* this is the only place which holds both the socket's rs_lock
713 * and the connection's c_lock */
714 spin_lock_irqsave(&rs
->rs_lock
, flags
);
717 * If there is a little space in sndbuf, we don't queue anything,
718 * and userspace gets -EAGAIN. But poll() indicates there's send
719 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
720 * freed up by incoming acks. So we check the *old* value of
721 * rs_snd_bytes here to allow the last msg to exceed the buffer,
722 * and poll() now knows no more data can be sent.
724 if (rs
->rs_snd_bytes
< rds_sk_sndbuf(rs
)) {
725 rs
->rs_snd_bytes
+= len
;
727 /* let recv side know we are close to send space exhaustion.
728 * This is probably not the optimal way to do it, as this
729 * means we set the flag on *all* messages as soon as our
730 * throughput hits a certain threshold.
732 if (rs
->rs_snd_bytes
>= rds_sk_sndbuf(rs
) / 2)
733 __set_bit(RDS_MSG_ACK_REQUIRED
, &rm
->m_flags
);
735 list_add_tail(&rm
->m_sock_item
, &rs
->rs_send_queue
);
736 set_bit(RDS_MSG_ON_SOCK
, &rm
->m_flags
);
737 rds_message_addref(rm
);
740 /* The code ordering is a little weird, but we're
741 trying to minimize the time we hold c_lock */
742 rds_message_populate_header(&rm
->m_inc
.i_hdr
, sport
, dport
, 0);
743 rm
->m_inc
.i_conn
= conn
;
744 rds_message_addref(rm
);
746 spin_lock(&conn
->c_lock
);
747 rm
->m_inc
.i_hdr
.h_sequence
= cpu_to_be64(conn
->c_next_tx_seq
++);
748 list_add_tail(&rm
->m_conn_item
, &conn
->c_send_queue
);
749 set_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
750 spin_unlock(&conn
->c_lock
);
752 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
753 rm
, len
, rs
, rs
->rs_snd_bytes
,
754 (unsigned long long)be64_to_cpu(rm
->m_inc
.i_hdr
.h_sequence
));
759 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
764 static int rds_cmsg_send(struct rds_sock
*rs
, struct rds_message
*rm
,
765 struct msghdr
*msg
, int *allocated_mr
)
767 struct cmsghdr
*cmsg
;
770 for (cmsg
= CMSG_FIRSTHDR(msg
); cmsg
; cmsg
= CMSG_NXTHDR(msg
, cmsg
)) {
771 if (!CMSG_OK(msg
, cmsg
))
774 if (cmsg
->cmsg_level
!= SOL_RDS
)
777 /* As a side effect, RDMA_DEST and RDMA_MAP will set
778 * rm->m_rdma_cookie and rm->m_rdma_mr.
780 switch (cmsg
->cmsg_type
) {
781 case RDS_CMSG_RDMA_ARGS
:
782 ret
= rds_cmsg_rdma_args(rs
, rm
, cmsg
);
785 case RDS_CMSG_RDMA_DEST
:
786 ret
= rds_cmsg_rdma_dest(rs
, rm
, cmsg
);
789 case RDS_CMSG_RDMA_MAP
:
790 ret
= rds_cmsg_rdma_map(rs
, rm
, cmsg
);
806 int rds_sendmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*msg
,
809 struct sock
*sk
= sock
->sk
;
810 struct rds_sock
*rs
= rds_sk_to_rs(sk
);
811 struct sockaddr_in
*usin
= (struct sockaddr_in
*)msg
->msg_name
;
814 struct rds_message
*rm
= NULL
;
815 struct rds_connection
*conn
;
817 int queued
= 0, allocated_mr
= 0;
818 int nonblock
= msg
->msg_flags
& MSG_DONTWAIT
;
819 long timeo
= sock_rcvtimeo(sk
, nonblock
);
821 /* Mirror Linux UDP mirror of BSD error message compatibility */
822 /* XXX: Perhaps MSG_MORE someday */
823 if (msg
->msg_flags
& ~(MSG_DONTWAIT
| MSG_CMSG_COMPAT
)) {
824 printk(KERN_INFO
"msg_flags 0x%08X\n", msg
->msg_flags
);
829 if (msg
->msg_namelen
) {
830 /* XXX fail non-unicast destination IPs? */
831 if (msg
->msg_namelen
< sizeof(*usin
) || usin
->sin_family
!= AF_INET
) {
835 daddr
= usin
->sin_addr
.s_addr
;
836 dport
= usin
->sin_port
;
838 /* We only care about consistency with ->connect() */
840 daddr
= rs
->rs_conn_addr
;
841 dport
= rs
->rs_conn_port
;
845 /* racing with another thread binding seems ok here */
846 if (daddr
== 0 || rs
->rs_bound_addr
== 0) {
847 ret
= -ENOTCONN
; /* XXX not a great errno */
851 rm
= rds_message_copy_from_user(msg
->msg_iov
, payload_len
);
860 /* rds_conn_create has a spinlock that runs with IRQ off.
861 * Caching the conn in the socket helps a lot. */
862 if (rs
->rs_conn
&& rs
->rs_conn
->c_faddr
== daddr
)
865 conn
= rds_conn_create_outgoing(rs
->rs_bound_addr
, daddr
,
867 sock
->sk
->sk_allocation
);
875 /* Parse any control messages the user may have included. */
876 ret
= rds_cmsg_send(rs
, rm
, msg
, &allocated_mr
);
880 if ((rm
->m_rdma_cookie
|| rm
->m_rdma_op
)
881 && conn
->c_trans
->xmit_rdma
== NULL
) {
882 if (printk_ratelimit())
883 printk(KERN_NOTICE
"rdma_op %p conn xmit_rdma %p\n",
884 rm
->m_rdma_op
, conn
->c_trans
->xmit_rdma
);
889 /* If the connection is down, trigger a connect. We may
890 * have scheduled a delayed reconnect however - in this case
891 * we should not interfere.
893 if (rds_conn_state(conn
) == RDS_CONN_DOWN
894 && !test_and_set_bit(RDS_RECONNECT_PENDING
, &conn
->c_flags
))
895 queue_delayed_work(rds_wq
, &conn
->c_conn_w
, 0);
897 ret
= rds_cong_wait(conn
->c_fcong
, dport
, nonblock
, rs
);
901 while (!rds_send_queue_rm(rs
, conn
, rm
, rs
->rs_bound_port
,
903 rds_stats_inc(s_send_queue_full
);
904 /* XXX make sure this is reasonable */
905 if (payload_len
> rds_sk_sndbuf(rs
)) {
914 timeo
= wait_event_interruptible_timeout(*sk
->sk_sleep
,
915 rds_send_queue_rm(rs
, conn
, rm
,
920 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued
, timeo
);
921 if (timeo
> 0 || timeo
== MAX_SCHEDULE_TIMEOUT
)
931 * By now we've committed to the send. We reuse rds_send_worker()
932 * to retry sends in the rds thread if the transport asks us to.
934 rds_stats_inc(s_send_queued
);
936 if (!test_bit(RDS_LL_SEND_FULL
, &conn
->c_flags
))
937 rds_send_worker(&conn
->c_send_w
.work
);
943 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
944 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
945 * or in any other way, we need to destroy the MR again */
947 rds_rdma_unuse(rs
, rds_rdma_cookie_key(rm
->m_rdma_cookie
), 1);
955 * Reply to a ping packet.
958 rds_send_pong(struct rds_connection
*conn
, __be16 dport
)
960 struct rds_message
*rm
;
964 rm
= rds_message_alloc(0, GFP_ATOMIC
);
970 rm
->m_daddr
= conn
->c_faddr
;
972 /* If the connection is down, trigger a connect. We may
973 * have scheduled a delayed reconnect however - in this case
974 * we should not interfere.
976 if (rds_conn_state(conn
) == RDS_CONN_DOWN
977 && !test_and_set_bit(RDS_RECONNECT_PENDING
, &conn
->c_flags
))
978 queue_delayed_work(rds_wq
, &conn
->c_conn_w
, 0);
980 ret
= rds_cong_wait(conn
->c_fcong
, dport
, 1, NULL
);
984 spin_lock_irqsave(&conn
->c_lock
, flags
);
985 list_add_tail(&rm
->m_conn_item
, &conn
->c_send_queue
);
986 set_bit(RDS_MSG_ON_CONN
, &rm
->m_flags
);
987 rds_message_addref(rm
);
988 rm
->m_inc
.i_conn
= conn
;
990 rds_message_populate_header(&rm
->m_inc
.i_hdr
, 0, dport
,
991 conn
->c_next_tx_seq
);
992 conn
->c_next_tx_seq
++;
993 spin_unlock_irqrestore(&conn
->c_lock
, flags
);
995 rds_stats_inc(s_send_queued
);
996 rds_stats_inc(s_send_pong
);
998 queue_delayed_work(rds_wq
, &conn
->c_send_w
, 0);
1004 rds_message_put(rm
);