3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
131 #define FORCED_DEBUG 1
135 #define FORCED_DEBUG 0
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
141 #ifndef cache_line_size
142 #define cache_line_size() L1_CACHE_BYTES
145 #ifndef ARCH_KMALLOC_MINALIGN
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
154 #define ARCH_KMALLOC_MINALIGN 0
157 #ifndef ARCH_SLAB_MINALIGN
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
165 #define ARCH_SLAB_MINALIGN 0
168 #ifndef ARCH_KMALLOC_FLAGS
169 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172 /* Legal flag mask for kmem_cache_create(). */
174 # define CREATE_MASK (SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
181 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
190 * Bufctl's are used for linking objs within a slab
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 typedef unsigned int kmem_bufctl_t
;
207 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
209 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 struct list_head list
;
221 unsigned long colouroff
;
222 void *s_mem
; /* including colour offset */
223 unsigned int inuse
; /* num of objs active in slab */
225 unsigned short nodeid
;
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
242 * We assume struct slab_rcu can overlay struct slab when destroying.
245 struct rcu_head head
;
246 struct kmem_cache
*cachep
;
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
258 * The limit is stored in the per-cpu structure to reduce the data cache
265 unsigned int batchcount
;
266 unsigned int touched
;
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
272 * [0] is for gcc 2.95. It should really be [].
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
280 #define BOOT_CPUCACHE_ENTRIES 1
281 struct arraycache_init
{
282 struct array_cache cache
;
283 void *entries
[BOOT_CPUCACHE_ENTRIES
];
287 * The slab lists for all objects.
290 struct list_head slabs_partial
; /* partial list first, better asm code */
291 struct list_head slabs_full
;
292 struct list_head slabs_free
;
293 unsigned long free_objects
;
294 unsigned int free_limit
;
295 unsigned int colour_next
; /* Per-node cache coloring */
296 spinlock_t list_lock
;
297 struct array_cache
*shared
; /* shared per node */
298 struct array_cache
**alien
; /* on other nodes */
299 unsigned long next_reap
; /* updated without locking */
300 int free_touched
; /* updated without locking */
304 * Need this for bootstrapping a per node allocator.
306 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
308 #define CACHE_CACHE 0
310 #define SIZE_L3 (1 + MAX_NUMNODES)
312 static int drain_freelist(struct kmem_cache
*cache
,
313 struct kmem_list3
*l3
, int tofree
);
314 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
316 static int enable_cpucache(struct kmem_cache
*cachep
);
317 static void cache_reap(struct work_struct
*unused
);
320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
323 static __always_inline
int index_of(const size_t size
)
325 extern void __bad_size(void);
327 if (__builtin_constant_p(size
)) {
335 #include "linux/kmalloc_sizes.h"
343 static int slab_early_init
= 1;
345 #define INDEX_AC index_of(sizeof(struct arraycache_init))
346 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
348 static void kmem_list3_init(struct kmem_list3
*parent
)
350 INIT_LIST_HEAD(&parent
->slabs_full
);
351 INIT_LIST_HEAD(&parent
->slabs_partial
);
352 INIT_LIST_HEAD(&parent
->slabs_free
);
353 parent
->shared
= NULL
;
354 parent
->alien
= NULL
;
355 parent
->colour_next
= 0;
356 spin_lock_init(&parent
->list_lock
);
357 parent
->free_objects
= 0;
358 parent
->free_touched
= 0;
361 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
367 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
381 /* 1) per-cpu data, touched during every alloc/free */
382 struct array_cache
*array
[NR_CPUS
];
383 /* 2) Cache tunables. Protected by cache_chain_mutex */
384 unsigned int batchcount
;
388 unsigned int buffer_size
;
389 u32 reciprocal_buffer_size
;
390 /* 3) touched by every alloc & free from the backend */
392 unsigned int flags
; /* constant flags */
393 unsigned int num
; /* # of objs per slab */
395 /* 4) cache_grow/shrink */
396 /* order of pgs per slab (2^n) */
397 unsigned int gfporder
;
399 /* force GFP flags, e.g. GFP_DMA */
402 size_t colour
; /* cache colouring range */
403 unsigned int colour_off
; /* colour offset */
404 struct kmem_cache
*slabp_cache
;
405 unsigned int slab_size
;
406 unsigned int dflags
; /* dynamic flags */
408 /* constructor func */
409 void (*ctor
) (void *, struct kmem_cache
*, unsigned long);
411 /* de-constructor func */
412 void (*dtor
) (void *, struct kmem_cache
*, unsigned long);
414 /* 5) cache creation/removal */
416 struct list_head next
;
420 unsigned long num_active
;
421 unsigned long num_allocations
;
422 unsigned long high_mark
;
424 unsigned long reaped
;
425 unsigned long errors
;
426 unsigned long max_freeable
;
427 unsigned long node_allocs
;
428 unsigned long node_frees
;
429 unsigned long node_overflow
;
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
446 * We put nodelists[] at the end of kmem_cache, because we want to size
447 * this array to nr_node_ids slots instead of MAX_NUMNODES
448 * (see kmem_cache_init())
449 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
450 * is statically defined, so we reserve the max number of nodes.
452 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
454 * Do not add fields after nodelists[]
458 #define CFLGS_OFF_SLAB (0x80000000UL)
459 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
461 #define BATCHREFILL_LIMIT 16
463 * Optimization question: fewer reaps means less probability for unnessary
464 * cpucache drain/refill cycles.
466 * OTOH the cpuarrays can contain lots of objects,
467 * which could lock up otherwise freeable slabs.
469 #define REAPTIMEOUT_CPUC (2*HZ)
470 #define REAPTIMEOUT_LIST3 (4*HZ)
473 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
474 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
475 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
476 #define STATS_INC_GROWN(x) ((x)->grown++)
477 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
478 #define STATS_SET_HIGH(x) \
480 if ((x)->num_active > (x)->high_mark) \
481 (x)->high_mark = (x)->num_active; \
483 #define STATS_INC_ERR(x) ((x)->errors++)
484 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
485 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
486 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
487 #define STATS_SET_FREEABLE(x, i) \
489 if ((x)->max_freeable < i) \
490 (x)->max_freeable = i; \
492 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
493 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
494 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
495 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
497 #define STATS_INC_ACTIVE(x) do { } while (0)
498 #define STATS_DEC_ACTIVE(x) do { } while (0)
499 #define STATS_INC_ALLOCED(x) do { } while (0)
500 #define STATS_INC_GROWN(x) do { } while (0)
501 #define STATS_ADD_REAPED(x,y) do { } while (0)
502 #define STATS_SET_HIGH(x) do { } while (0)
503 #define STATS_INC_ERR(x) do { } while (0)
504 #define STATS_INC_NODEALLOCS(x) do { } while (0)
505 #define STATS_INC_NODEFREES(x) do { } while (0)
506 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
507 #define STATS_SET_FREEABLE(x, i) do { } while (0)
508 #define STATS_INC_ALLOCHIT(x) do { } while (0)
509 #define STATS_INC_ALLOCMISS(x) do { } while (0)
510 #define STATS_INC_FREEHIT(x) do { } while (0)
511 #define STATS_INC_FREEMISS(x) do { } while (0)
517 * memory layout of objects:
519 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
520 * the end of an object is aligned with the end of the real
521 * allocation. Catches writes behind the end of the allocation.
522 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
524 * cachep->obj_offset: The real object.
525 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
526 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
527 * [BYTES_PER_WORD long]
529 static int obj_offset(struct kmem_cache
*cachep
)
531 return cachep
->obj_offset
;
534 static int obj_size(struct kmem_cache
*cachep
)
536 return cachep
->obj_size
;
539 static unsigned long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
541 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
542 return (unsigned long*) (objp
+obj_offset(cachep
)-BYTES_PER_WORD
);
545 static unsigned long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
547 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
548 if (cachep
->flags
& SLAB_STORE_USER
)
549 return (unsigned long *)(objp
+ cachep
->buffer_size
-
551 return (unsigned long *)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
554 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
556 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
557 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
562 #define obj_offset(x) 0
563 #define obj_size(cachep) (cachep->buffer_size)
564 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
565 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
566 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
571 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
574 #if defined(CONFIG_LARGE_ALLOCS)
575 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
576 #define MAX_GFP_ORDER 13 /* up to 32Mb */
577 #elif defined(CONFIG_MMU)
578 #define MAX_OBJ_ORDER 5 /* 32 pages */
579 #define MAX_GFP_ORDER 5 /* 32 pages */
581 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
582 #define MAX_GFP_ORDER 8 /* up to 1Mb */
586 * Do not go above this order unless 0 objects fit into the slab.
588 #define BREAK_GFP_ORDER_HI 1
589 #define BREAK_GFP_ORDER_LO 0
590 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
593 * Functions for storing/retrieving the cachep and or slab from the page
594 * allocator. These are used to find the slab an obj belongs to. With kfree(),
595 * these are used to find the cache which an obj belongs to.
597 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
599 page
->lru
.next
= (struct list_head
*)cache
;
602 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
604 page
= compound_head(page
);
605 BUG_ON(!PageSlab(page
));
606 return (struct kmem_cache
*)page
->lru
.next
;
609 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
611 page
->lru
.prev
= (struct list_head
*)slab
;
614 static inline struct slab
*page_get_slab(struct page
*page
)
616 BUG_ON(!PageSlab(page
));
617 return (struct slab
*)page
->lru
.prev
;
620 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
622 struct page
*page
= virt_to_head_page(obj
);
623 return page_get_cache(page
);
626 static inline struct slab
*virt_to_slab(const void *obj
)
628 struct page
*page
= virt_to_head_page(obj
);
629 return page_get_slab(page
);
632 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
635 return slab
->s_mem
+ cache
->buffer_size
* idx
;
639 * We want to avoid an expensive divide : (offset / cache->buffer_size)
640 * Using the fact that buffer_size is a constant for a particular cache,
641 * we can replace (offset / cache->buffer_size) by
642 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
644 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
645 const struct slab
*slab
, void *obj
)
647 u32 offset
= (obj
- slab
->s_mem
);
648 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
652 * These are the default caches for kmalloc. Custom caches can have other sizes.
654 struct cache_sizes malloc_sizes
[] = {
655 #define CACHE(x) { .cs_size = (x) },
656 #include <linux/kmalloc_sizes.h>
660 EXPORT_SYMBOL(malloc_sizes
);
662 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
668 static struct cache_names __initdata cache_names
[] = {
669 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
670 #include <linux/kmalloc_sizes.h>
675 static struct arraycache_init initarray_cache __initdata
=
676 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
677 static struct arraycache_init initarray_generic
=
678 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
680 /* internal cache of cache description objs */
681 static struct kmem_cache cache_cache
= {
683 .limit
= BOOT_CPUCACHE_ENTRIES
,
685 .buffer_size
= sizeof(struct kmem_cache
),
686 .name
= "kmem_cache",
689 #define BAD_ALIEN_MAGIC 0x01020304ul
691 #ifdef CONFIG_LOCKDEP
694 * Slab sometimes uses the kmalloc slabs to store the slab headers
695 * for other slabs "off slab".
696 * The locking for this is tricky in that it nests within the locks
697 * of all other slabs in a few places; to deal with this special
698 * locking we put on-slab caches into a separate lock-class.
700 * We set lock class for alien array caches which are up during init.
701 * The lock annotation will be lost if all cpus of a node goes down and
702 * then comes back up during hotplug
704 static struct lock_class_key on_slab_l3_key
;
705 static struct lock_class_key on_slab_alc_key
;
707 static inline void init_lock_keys(void)
711 struct cache_sizes
*s
= malloc_sizes
;
713 while (s
->cs_size
!= ULONG_MAX
) {
715 struct array_cache
**alc
;
717 struct kmem_list3
*l3
= s
->cs_cachep
->nodelists
[q
];
718 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
720 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
723 * FIXME: This check for BAD_ALIEN_MAGIC
724 * should go away when common slab code is taught to
725 * work even without alien caches.
726 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
727 * for alloc_alien_cache,
729 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
733 lockdep_set_class(&alc
[r
]->lock
,
741 static inline void init_lock_keys(void)
747 * 1. Guard access to the cache-chain.
748 * 2. Protect sanity of cpu_online_map against cpu hotplug events
750 static DEFINE_MUTEX(cache_chain_mutex
);
751 static struct list_head cache_chain
;
754 * chicken and egg problem: delay the per-cpu array allocation
755 * until the general caches are up.
765 * used by boot code to determine if it can use slab based allocator
767 int slab_is_available(void)
769 return g_cpucache_up
== FULL
;
772 static DEFINE_PER_CPU(struct delayed_work
, reap_work
);
774 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
776 return cachep
->array
[smp_processor_id()];
779 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
782 struct cache_sizes
*csizep
= malloc_sizes
;
785 /* This happens if someone tries to call
786 * kmem_cache_create(), or __kmalloc(), before
787 * the generic caches are initialized.
789 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
791 while (size
> csizep
->cs_size
)
795 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
796 * has cs_{dma,}cachep==NULL. Thus no special case
797 * for large kmalloc calls required.
799 #ifdef CONFIG_ZONE_DMA
800 if (unlikely(gfpflags
& GFP_DMA
))
801 return csizep
->cs_dmacachep
;
803 return csizep
->cs_cachep
;
806 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
808 return __find_general_cachep(size
, gfpflags
);
811 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
813 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
817 * Calculate the number of objects and left-over bytes for a given buffer size.
819 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
820 size_t align
, int flags
, size_t *left_over
,
825 size_t slab_size
= PAGE_SIZE
<< gfporder
;
828 * The slab management structure can be either off the slab or
829 * on it. For the latter case, the memory allocated for a
833 * - One kmem_bufctl_t for each object
834 * - Padding to respect alignment of @align
835 * - @buffer_size bytes for each object
837 * If the slab management structure is off the slab, then the
838 * alignment will already be calculated into the size. Because
839 * the slabs are all pages aligned, the objects will be at the
840 * correct alignment when allocated.
842 if (flags
& CFLGS_OFF_SLAB
) {
844 nr_objs
= slab_size
/ buffer_size
;
846 if (nr_objs
> SLAB_LIMIT
)
847 nr_objs
= SLAB_LIMIT
;
850 * Ignore padding for the initial guess. The padding
851 * is at most @align-1 bytes, and @buffer_size is at
852 * least @align. In the worst case, this result will
853 * be one greater than the number of objects that fit
854 * into the memory allocation when taking the padding
857 nr_objs
= (slab_size
- sizeof(struct slab
)) /
858 (buffer_size
+ sizeof(kmem_bufctl_t
));
861 * This calculated number will be either the right
862 * amount, or one greater than what we want.
864 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
868 if (nr_objs
> SLAB_LIMIT
)
869 nr_objs
= SLAB_LIMIT
;
871 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
874 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
877 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
879 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
882 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
883 function
, cachep
->name
, msg
);
888 * By default on NUMA we use alien caches to stage the freeing of
889 * objects allocated from other nodes. This causes massive memory
890 * inefficiencies when using fake NUMA setup to split memory into a
891 * large number of small nodes, so it can be disabled on the command
895 static int use_alien_caches __read_mostly
= 1;
896 static int __init
noaliencache_setup(char *s
)
898 use_alien_caches
= 0;
901 __setup("noaliencache", noaliencache_setup
);
905 * Special reaping functions for NUMA systems called from cache_reap().
906 * These take care of doing round robin flushing of alien caches (containing
907 * objects freed on different nodes from which they were allocated) and the
908 * flushing of remote pcps by calling drain_node_pages.
910 static DEFINE_PER_CPU(unsigned long, reap_node
);
912 static void init_reap_node(int cpu
)
916 node
= next_node(cpu_to_node(cpu
), node_online_map
);
917 if (node
== MAX_NUMNODES
)
918 node
= first_node(node_online_map
);
920 per_cpu(reap_node
, cpu
) = node
;
923 static void next_reap_node(void)
925 int node
= __get_cpu_var(reap_node
);
928 * Also drain per cpu pages on remote zones
930 if (node
!= numa_node_id())
931 drain_node_pages(node
);
933 node
= next_node(node
, node_online_map
);
934 if (unlikely(node
>= MAX_NUMNODES
))
935 node
= first_node(node_online_map
);
936 __get_cpu_var(reap_node
) = node
;
940 #define init_reap_node(cpu) do { } while (0)
941 #define next_reap_node(void) do { } while (0)
945 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
946 * via the workqueue/eventd.
947 * Add the CPU number into the expiration time to minimize the possibility of
948 * the CPUs getting into lockstep and contending for the global cache chain
951 static void __devinit
start_cpu_timer(int cpu
)
953 struct delayed_work
*reap_work
= &per_cpu(reap_work
, cpu
);
956 * When this gets called from do_initcalls via cpucache_init(),
957 * init_workqueues() has already run, so keventd will be setup
960 if (keventd_up() && reap_work
->work
.func
== NULL
) {
962 INIT_DELAYED_WORK(reap_work
, cache_reap
);
963 schedule_delayed_work_on(cpu
, reap_work
,
964 __round_jiffies_relative(HZ
, cpu
));
968 static struct array_cache
*alloc_arraycache(int node
, int entries
,
971 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
972 struct array_cache
*nc
= NULL
;
974 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
978 nc
->batchcount
= batchcount
;
980 spin_lock_init(&nc
->lock
);
986 * Transfer objects in one arraycache to another.
987 * Locking must be handled by the caller.
989 * Return the number of entries transferred.
991 static int transfer_objects(struct array_cache
*to
,
992 struct array_cache
*from
, unsigned int max
)
994 /* Figure out how many entries to transfer */
995 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
1000 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
1001 sizeof(void *) *nr
);
1011 #define drain_alien_cache(cachep, alien) do { } while (0)
1012 #define reap_alien(cachep, l3) do { } while (0)
1014 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
1016 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1019 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1023 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1028 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1034 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1035 gfp_t flags
, int nodeid
)
1040 #else /* CONFIG_NUMA */
1042 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1043 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1045 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
1047 struct array_cache
**ac_ptr
;
1048 int memsize
= sizeof(void *) * nr_node_ids
;
1053 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1056 if (i
== node
|| !node_online(i
)) {
1060 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
1062 for (i
--; i
<= 0; i
--)
1072 static void free_alien_cache(struct array_cache
**ac_ptr
)
1083 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1084 struct array_cache
*ac
, int node
)
1086 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1089 spin_lock(&rl3
->list_lock
);
1091 * Stuff objects into the remote nodes shared array first.
1092 * That way we could avoid the overhead of putting the objects
1093 * into the free lists and getting them back later.
1096 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1098 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1100 spin_unlock(&rl3
->list_lock
);
1105 * Called from cache_reap() to regularly drain alien caches round robin.
1107 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1109 int node
= __get_cpu_var(reap_node
);
1112 struct array_cache
*ac
= l3
->alien
[node
];
1114 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1115 __drain_alien_cache(cachep
, ac
, node
);
1116 spin_unlock_irq(&ac
->lock
);
1121 static void drain_alien_cache(struct kmem_cache
*cachep
,
1122 struct array_cache
**alien
)
1125 struct array_cache
*ac
;
1126 unsigned long flags
;
1128 for_each_online_node(i
) {
1131 spin_lock_irqsave(&ac
->lock
, flags
);
1132 __drain_alien_cache(cachep
, ac
, i
);
1133 spin_unlock_irqrestore(&ac
->lock
, flags
);
1138 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1140 struct slab
*slabp
= virt_to_slab(objp
);
1141 int nodeid
= slabp
->nodeid
;
1142 struct kmem_list3
*l3
;
1143 struct array_cache
*alien
= NULL
;
1146 node
= numa_node_id();
1149 * Make sure we are not freeing a object from another node to the array
1150 * cache on this cpu.
1152 if (likely(slabp
->nodeid
== node
))
1155 l3
= cachep
->nodelists
[node
];
1156 STATS_INC_NODEFREES(cachep
);
1157 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1158 alien
= l3
->alien
[nodeid
];
1159 spin_lock(&alien
->lock
);
1160 if (unlikely(alien
->avail
== alien
->limit
)) {
1161 STATS_INC_ACOVERFLOW(cachep
);
1162 __drain_alien_cache(cachep
, alien
, nodeid
);
1164 alien
->entry
[alien
->avail
++] = objp
;
1165 spin_unlock(&alien
->lock
);
1167 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1168 free_block(cachep
, &objp
, 1, nodeid
);
1169 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1175 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1176 unsigned long action
, void *hcpu
)
1178 long cpu
= (long)hcpu
;
1179 struct kmem_cache
*cachep
;
1180 struct kmem_list3
*l3
= NULL
;
1181 int node
= cpu_to_node(cpu
);
1182 int memsize
= sizeof(struct kmem_list3
);
1185 case CPU_UP_PREPARE
:
1186 mutex_lock(&cache_chain_mutex
);
1188 * We need to do this right in the beginning since
1189 * alloc_arraycache's are going to use this list.
1190 * kmalloc_node allows us to add the slab to the right
1191 * kmem_list3 and not this cpu's kmem_list3
1194 list_for_each_entry(cachep
, &cache_chain
, next
) {
1196 * Set up the size64 kmemlist for cpu before we can
1197 * begin anything. Make sure some other cpu on this
1198 * node has not already allocated this
1200 if (!cachep
->nodelists
[node
]) {
1201 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1204 kmem_list3_init(l3
);
1205 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1206 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1209 * The l3s don't come and go as CPUs come and
1210 * go. cache_chain_mutex is sufficient
1213 cachep
->nodelists
[node
] = l3
;
1216 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1217 cachep
->nodelists
[node
]->free_limit
=
1218 (1 + nr_cpus_node(node
)) *
1219 cachep
->batchcount
+ cachep
->num
;
1220 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1224 * Now we can go ahead with allocating the shared arrays and
1227 list_for_each_entry(cachep
, &cache_chain
, next
) {
1228 struct array_cache
*nc
;
1229 struct array_cache
*shared
= NULL
;
1230 struct array_cache
**alien
= NULL
;
1232 nc
= alloc_arraycache(node
, cachep
->limit
,
1233 cachep
->batchcount
);
1236 if (cachep
->shared
) {
1237 shared
= alloc_arraycache(node
,
1238 cachep
->shared
* cachep
->batchcount
,
1243 if (use_alien_caches
) {
1244 alien
= alloc_alien_cache(node
, cachep
->limit
);
1248 cachep
->array
[cpu
] = nc
;
1249 l3
= cachep
->nodelists
[node
];
1252 spin_lock_irq(&l3
->list_lock
);
1255 * We are serialised from CPU_DEAD or
1256 * CPU_UP_CANCELLED by the cpucontrol lock
1258 l3
->shared
= shared
;
1267 spin_unlock_irq(&l3
->list_lock
);
1269 free_alien_cache(alien
);
1273 mutex_unlock(&cache_chain_mutex
);
1274 start_cpu_timer(cpu
);
1276 #ifdef CONFIG_HOTPLUG_CPU
1277 case CPU_DOWN_PREPARE
:
1278 mutex_lock(&cache_chain_mutex
);
1280 case CPU_DOWN_FAILED
:
1281 mutex_unlock(&cache_chain_mutex
);
1285 * Even if all the cpus of a node are down, we don't free the
1286 * kmem_list3 of any cache. This to avoid a race between
1287 * cpu_down, and a kmalloc allocation from another cpu for
1288 * memory from the node of the cpu going down. The list3
1289 * structure is usually allocated from kmem_cache_create() and
1290 * gets destroyed at kmem_cache_destroy().
1294 case CPU_UP_CANCELED
:
1295 list_for_each_entry(cachep
, &cache_chain
, next
) {
1296 struct array_cache
*nc
;
1297 struct array_cache
*shared
;
1298 struct array_cache
**alien
;
1301 mask
= node_to_cpumask(node
);
1302 /* cpu is dead; no one can alloc from it. */
1303 nc
= cachep
->array
[cpu
];
1304 cachep
->array
[cpu
] = NULL
;
1305 l3
= cachep
->nodelists
[node
];
1308 goto free_array_cache
;
1310 spin_lock_irq(&l3
->list_lock
);
1312 /* Free limit for this kmem_list3 */
1313 l3
->free_limit
-= cachep
->batchcount
;
1315 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1317 if (!cpus_empty(mask
)) {
1318 spin_unlock_irq(&l3
->list_lock
);
1319 goto free_array_cache
;
1322 shared
= l3
->shared
;
1324 free_block(cachep
, shared
->entry
,
1325 shared
->avail
, node
);
1332 spin_unlock_irq(&l3
->list_lock
);
1336 drain_alien_cache(cachep
, alien
);
1337 free_alien_cache(alien
);
1343 * In the previous loop, all the objects were freed to
1344 * the respective cache's slabs, now we can go ahead and
1345 * shrink each nodelist to its limit.
1347 list_for_each_entry(cachep
, &cache_chain
, next
) {
1348 l3
= cachep
->nodelists
[node
];
1351 drain_freelist(cachep
, l3
, l3
->free_objects
);
1353 mutex_unlock(&cache_chain_mutex
);
1361 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1362 &cpuup_callback
, NULL
, 0
1366 * swap the static kmem_list3 with kmalloced memory
1368 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1371 struct kmem_list3
*ptr
;
1373 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1376 local_irq_disable();
1377 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1379 * Do not assume that spinlocks can be initialized via memcpy:
1381 spin_lock_init(&ptr
->list_lock
);
1383 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1384 cachep
->nodelists
[nodeid
] = ptr
;
1389 * Initialisation. Called after the page allocator have been initialised and
1390 * before smp_init().
1392 void __init
kmem_cache_init(void)
1395 struct cache_sizes
*sizes
;
1396 struct cache_names
*names
;
1401 if (num_possible_nodes() == 1)
1402 use_alien_caches
= 0;
1404 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1405 kmem_list3_init(&initkmem_list3
[i
]);
1406 if (i
< MAX_NUMNODES
)
1407 cache_cache
.nodelists
[i
] = NULL
;
1411 * Fragmentation resistance on low memory - only use bigger
1412 * page orders on machines with more than 32MB of memory.
1414 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1415 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1417 /* Bootstrap is tricky, because several objects are allocated
1418 * from caches that do not exist yet:
1419 * 1) initialize the cache_cache cache: it contains the struct
1420 * kmem_cache structures of all caches, except cache_cache itself:
1421 * cache_cache is statically allocated.
1422 * Initially an __init data area is used for the head array and the
1423 * kmem_list3 structures, it's replaced with a kmalloc allocated
1424 * array at the end of the bootstrap.
1425 * 2) Create the first kmalloc cache.
1426 * The struct kmem_cache for the new cache is allocated normally.
1427 * An __init data area is used for the head array.
1428 * 3) Create the remaining kmalloc caches, with minimally sized
1430 * 4) Replace the __init data head arrays for cache_cache and the first
1431 * kmalloc cache with kmalloc allocated arrays.
1432 * 5) Replace the __init data for kmem_list3 for cache_cache and
1433 * the other cache's with kmalloc allocated memory.
1434 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1437 node
= numa_node_id();
1439 /* 1) create the cache_cache */
1440 INIT_LIST_HEAD(&cache_chain
);
1441 list_add(&cache_cache
.next
, &cache_chain
);
1442 cache_cache
.colour_off
= cache_line_size();
1443 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1444 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
];
1447 * struct kmem_cache size depends on nr_node_ids, which
1448 * can be less than MAX_NUMNODES.
1450 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, nodelists
) +
1451 nr_node_ids
* sizeof(struct kmem_list3
*);
1453 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1455 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1457 cache_cache
.reciprocal_buffer_size
=
1458 reciprocal_value(cache_cache
.buffer_size
);
1460 for (order
= 0; order
< MAX_ORDER
; order
++) {
1461 cache_estimate(order
, cache_cache
.buffer_size
,
1462 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1463 if (cache_cache
.num
)
1466 BUG_ON(!cache_cache
.num
);
1467 cache_cache
.gfporder
= order
;
1468 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1469 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1470 sizeof(struct slab
), cache_line_size());
1472 /* 2+3) create the kmalloc caches */
1473 sizes
= malloc_sizes
;
1474 names
= cache_names
;
1477 * Initialize the caches that provide memory for the array cache and the
1478 * kmem_list3 structures first. Without this, further allocations will
1482 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1483 sizes
[INDEX_AC
].cs_size
,
1484 ARCH_KMALLOC_MINALIGN
,
1485 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1488 if (INDEX_AC
!= INDEX_L3
) {
1489 sizes
[INDEX_L3
].cs_cachep
=
1490 kmem_cache_create(names
[INDEX_L3
].name
,
1491 sizes
[INDEX_L3
].cs_size
,
1492 ARCH_KMALLOC_MINALIGN
,
1493 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1497 slab_early_init
= 0;
1499 while (sizes
->cs_size
!= ULONG_MAX
) {
1501 * For performance, all the general caches are L1 aligned.
1502 * This should be particularly beneficial on SMP boxes, as it
1503 * eliminates "false sharing".
1504 * Note for systems short on memory removing the alignment will
1505 * allow tighter packing of the smaller caches.
1507 if (!sizes
->cs_cachep
) {
1508 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1510 ARCH_KMALLOC_MINALIGN
,
1511 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1514 #ifdef CONFIG_ZONE_DMA
1515 sizes
->cs_dmacachep
= kmem_cache_create(
1518 ARCH_KMALLOC_MINALIGN
,
1519 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1526 /* 4) Replace the bootstrap head arrays */
1528 struct array_cache
*ptr
;
1530 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1532 local_irq_disable();
1533 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1534 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1535 sizeof(struct arraycache_init
));
1537 * Do not assume that spinlocks can be initialized via memcpy:
1539 spin_lock_init(&ptr
->lock
);
1541 cache_cache
.array
[smp_processor_id()] = ptr
;
1544 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1546 local_irq_disable();
1547 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1548 != &initarray_generic
.cache
);
1549 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1550 sizeof(struct arraycache_init
));
1552 * Do not assume that spinlocks can be initialized via memcpy:
1554 spin_lock_init(&ptr
->lock
);
1556 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1560 /* 5) Replace the bootstrap kmem_list3's */
1564 /* Replace the static kmem_list3 structures for the boot cpu */
1565 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
], node
);
1567 for_each_online_node(nid
) {
1568 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1569 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1571 if (INDEX_AC
!= INDEX_L3
) {
1572 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1573 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1578 /* 6) resize the head arrays to their final sizes */
1580 struct kmem_cache
*cachep
;
1581 mutex_lock(&cache_chain_mutex
);
1582 list_for_each_entry(cachep
, &cache_chain
, next
)
1583 if (enable_cpucache(cachep
))
1585 mutex_unlock(&cache_chain_mutex
);
1588 /* Annotate slab for lockdep -- annotate the malloc caches */
1593 g_cpucache_up
= FULL
;
1596 * Register a cpu startup notifier callback that initializes
1597 * cpu_cache_get for all new cpus
1599 register_cpu_notifier(&cpucache_notifier
);
1602 * The reap timers are started later, with a module init call: That part
1603 * of the kernel is not yet operational.
1607 static int __init
cpucache_init(void)
1612 * Register the timers that return unneeded pages to the page allocator
1614 for_each_online_cpu(cpu
)
1615 start_cpu_timer(cpu
);
1618 __initcall(cpucache_init
);
1621 * Interface to system's page allocator. No need to hold the cache-lock.
1623 * If we requested dmaable memory, we will get it. Even if we
1624 * did not request dmaable memory, we might get it, but that
1625 * would be relatively rare and ignorable.
1627 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1635 * Nommu uses slab's for process anonymous memory allocations, and thus
1636 * requires __GFP_COMP to properly refcount higher order allocations
1638 flags
|= __GFP_COMP
;
1641 flags
|= cachep
->gfpflags
;
1643 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1647 nr_pages
= (1 << cachep
->gfporder
);
1648 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1649 add_zone_page_state(page_zone(page
),
1650 NR_SLAB_RECLAIMABLE
, nr_pages
);
1652 add_zone_page_state(page_zone(page
),
1653 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1654 for (i
= 0; i
< nr_pages
; i
++)
1655 __SetPageSlab(page
+ i
);
1656 return page_address(page
);
1660 * Interface to system's page release.
1662 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1664 unsigned long i
= (1 << cachep
->gfporder
);
1665 struct page
*page
= virt_to_page(addr
);
1666 const unsigned long nr_freed
= i
;
1668 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1669 sub_zone_page_state(page_zone(page
),
1670 NR_SLAB_RECLAIMABLE
, nr_freed
);
1672 sub_zone_page_state(page_zone(page
),
1673 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1675 BUG_ON(!PageSlab(page
));
1676 __ClearPageSlab(page
);
1679 if (current
->reclaim_state
)
1680 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1681 free_pages((unsigned long)addr
, cachep
->gfporder
);
1684 static void kmem_rcu_free(struct rcu_head
*head
)
1686 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1687 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1689 kmem_freepages(cachep
, slab_rcu
->addr
);
1690 if (OFF_SLAB(cachep
))
1691 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1696 #ifdef CONFIG_DEBUG_PAGEALLOC
1697 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1698 unsigned long caller
)
1700 int size
= obj_size(cachep
);
1702 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1704 if (size
< 5 * sizeof(unsigned long))
1707 *addr
++ = 0x12345678;
1709 *addr
++ = smp_processor_id();
1710 size
-= 3 * sizeof(unsigned long);
1712 unsigned long *sptr
= &caller
;
1713 unsigned long svalue
;
1715 while (!kstack_end(sptr
)) {
1717 if (kernel_text_address(svalue
)) {
1719 size
-= sizeof(unsigned long);
1720 if (size
<= sizeof(unsigned long))
1726 *addr
++ = 0x87654321;
1730 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1732 int size
= obj_size(cachep
);
1733 addr
= &((char *)addr
)[obj_offset(cachep
)];
1735 memset(addr
, val
, size
);
1736 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1739 static void dump_line(char *data
, int offset
, int limit
)
1742 unsigned char error
= 0;
1745 printk(KERN_ERR
"%03x:", offset
);
1746 for (i
= 0; i
< limit
; i
++) {
1747 if (data
[offset
+ i
] != POISON_FREE
) {
1748 error
= data
[offset
+ i
];
1751 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1755 if (bad_count
== 1) {
1756 error
^= POISON_FREE
;
1757 if (!(error
& (error
- 1))) {
1758 printk(KERN_ERR
"Single bit error detected. Probably "
1761 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1764 printk(KERN_ERR
"Run a memory test tool.\n");
1773 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1778 if (cachep
->flags
& SLAB_RED_ZONE
) {
1779 printk(KERN_ERR
"Redzone: 0x%lx/0x%lx.\n",
1780 *dbg_redzone1(cachep
, objp
),
1781 *dbg_redzone2(cachep
, objp
));
1784 if (cachep
->flags
& SLAB_STORE_USER
) {
1785 printk(KERN_ERR
"Last user: [<%p>]",
1786 *dbg_userword(cachep
, objp
));
1787 print_symbol("(%s)",
1788 (unsigned long)*dbg_userword(cachep
, objp
));
1791 realobj
= (char *)objp
+ obj_offset(cachep
);
1792 size
= obj_size(cachep
);
1793 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1796 if (i
+ limit
> size
)
1798 dump_line(realobj
, i
, limit
);
1802 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1808 realobj
= (char *)objp
+ obj_offset(cachep
);
1809 size
= obj_size(cachep
);
1811 for (i
= 0; i
< size
; i
++) {
1812 char exp
= POISON_FREE
;
1815 if (realobj
[i
] != exp
) {
1821 "Slab corruption: %s start=%p, len=%d\n",
1822 cachep
->name
, realobj
, size
);
1823 print_objinfo(cachep
, objp
, 0);
1825 /* Hexdump the affected line */
1828 if (i
+ limit
> size
)
1830 dump_line(realobj
, i
, limit
);
1833 /* Limit to 5 lines */
1839 /* Print some data about the neighboring objects, if they
1842 struct slab
*slabp
= virt_to_slab(objp
);
1845 objnr
= obj_to_index(cachep
, slabp
, objp
);
1847 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1848 realobj
= (char *)objp
+ obj_offset(cachep
);
1849 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1851 print_objinfo(cachep
, objp
, 2);
1853 if (objnr
+ 1 < cachep
->num
) {
1854 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1855 realobj
= (char *)objp
+ obj_offset(cachep
);
1856 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1858 print_objinfo(cachep
, objp
, 2);
1866 * slab_destroy_objs - destroy a slab and its objects
1867 * @cachep: cache pointer being destroyed
1868 * @slabp: slab pointer being destroyed
1870 * Call the registered destructor for each object in a slab that is being
1873 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1876 for (i
= 0; i
< cachep
->num
; i
++) {
1877 void *objp
= index_to_obj(cachep
, slabp
, i
);
1879 if (cachep
->flags
& SLAB_POISON
) {
1880 #ifdef CONFIG_DEBUG_PAGEALLOC
1881 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1883 kernel_map_pages(virt_to_page(objp
),
1884 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1886 check_poison_obj(cachep
, objp
);
1888 check_poison_obj(cachep
, objp
);
1891 if (cachep
->flags
& SLAB_RED_ZONE
) {
1892 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1893 slab_error(cachep
, "start of a freed object "
1895 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1896 slab_error(cachep
, "end of a freed object "
1899 if (cachep
->dtor
&& !(cachep
->flags
& SLAB_POISON
))
1900 (cachep
->dtor
) (objp
+ obj_offset(cachep
), cachep
, 0);
1904 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1908 for (i
= 0; i
< cachep
->num
; i
++) {
1909 void *objp
= index_to_obj(cachep
, slabp
, i
);
1910 (cachep
->dtor
) (objp
, cachep
, 0);
1917 * slab_destroy - destroy and release all objects in a slab
1918 * @cachep: cache pointer being destroyed
1919 * @slabp: slab pointer being destroyed
1921 * Destroy all the objs in a slab, and release the mem back to the system.
1922 * Before calling the slab must have been unlinked from the cache. The
1923 * cache-lock is not held/needed.
1925 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1927 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1929 slab_destroy_objs(cachep
, slabp
);
1930 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1931 struct slab_rcu
*slab_rcu
;
1933 slab_rcu
= (struct slab_rcu
*)slabp
;
1934 slab_rcu
->cachep
= cachep
;
1935 slab_rcu
->addr
= addr
;
1936 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1938 kmem_freepages(cachep
, addr
);
1939 if (OFF_SLAB(cachep
))
1940 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1945 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1946 * size of kmem_list3.
1948 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1952 for_each_online_node(node
) {
1953 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1954 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1956 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1960 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1963 struct kmem_list3
*l3
;
1965 for_each_online_cpu(i
)
1966 kfree(cachep
->array
[i
]);
1968 /* NUMA: free the list3 structures */
1969 for_each_online_node(i
) {
1970 l3
= cachep
->nodelists
[i
];
1973 free_alien_cache(l3
->alien
);
1977 kmem_cache_free(&cache_cache
, cachep
);
1982 * calculate_slab_order - calculate size (page order) of slabs
1983 * @cachep: pointer to the cache that is being created
1984 * @size: size of objects to be created in this cache.
1985 * @align: required alignment for the objects.
1986 * @flags: slab allocation flags
1988 * Also calculates the number of objects per slab.
1990 * This could be made much more intelligent. For now, try to avoid using
1991 * high order pages for slabs. When the gfp() functions are more friendly
1992 * towards high-order requests, this should be changed.
1994 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1995 size_t size
, size_t align
, unsigned long flags
)
1997 unsigned long offslab_limit
;
1998 size_t left_over
= 0;
2001 for (gfporder
= 0; gfporder
<= MAX_GFP_ORDER
; gfporder
++) {
2005 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2009 if (flags
& CFLGS_OFF_SLAB
) {
2011 * Max number of objs-per-slab for caches which
2012 * use off-slab slabs. Needed to avoid a possible
2013 * looping condition in cache_grow().
2015 offslab_limit
= size
- sizeof(struct slab
);
2016 offslab_limit
/= sizeof(kmem_bufctl_t
);
2018 if (num
> offslab_limit
)
2022 /* Found something acceptable - save it away */
2024 cachep
->gfporder
= gfporder
;
2025 left_over
= remainder
;
2028 * A VFS-reclaimable slab tends to have most allocations
2029 * as GFP_NOFS and we really don't want to have to be allocating
2030 * higher-order pages when we are unable to shrink dcache.
2032 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2036 * Large number of objects is good, but very large slabs are
2037 * currently bad for the gfp()s.
2039 if (gfporder
>= slab_break_gfp_order
)
2043 * Acceptable internal fragmentation?
2045 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2051 static int setup_cpu_cache(struct kmem_cache
*cachep
)
2053 if (g_cpucache_up
== FULL
)
2054 return enable_cpucache(cachep
);
2056 if (g_cpucache_up
== NONE
) {
2058 * Note: the first kmem_cache_create must create the cache
2059 * that's used by kmalloc(24), otherwise the creation of
2060 * further caches will BUG().
2062 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2065 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2066 * the first cache, then we need to set up all its list3s,
2067 * otherwise the creation of further caches will BUG().
2069 set_up_list3s(cachep
, SIZE_AC
);
2070 if (INDEX_AC
== INDEX_L3
)
2071 g_cpucache_up
= PARTIAL_L3
;
2073 g_cpucache_up
= PARTIAL_AC
;
2075 cachep
->array
[smp_processor_id()] =
2076 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
2078 if (g_cpucache_up
== PARTIAL_AC
) {
2079 set_up_list3s(cachep
, SIZE_L3
);
2080 g_cpucache_up
= PARTIAL_L3
;
2083 for_each_online_node(node
) {
2084 cachep
->nodelists
[node
] =
2085 kmalloc_node(sizeof(struct kmem_list3
),
2087 BUG_ON(!cachep
->nodelists
[node
]);
2088 kmem_list3_init(cachep
->nodelists
[node
]);
2092 cachep
->nodelists
[numa_node_id()]->next_reap
=
2093 jiffies
+ REAPTIMEOUT_LIST3
+
2094 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2096 cpu_cache_get(cachep
)->avail
= 0;
2097 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2098 cpu_cache_get(cachep
)->batchcount
= 1;
2099 cpu_cache_get(cachep
)->touched
= 0;
2100 cachep
->batchcount
= 1;
2101 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2106 * kmem_cache_create - Create a cache.
2107 * @name: A string which is used in /proc/slabinfo to identify this cache.
2108 * @size: The size of objects to be created in this cache.
2109 * @align: The required alignment for the objects.
2110 * @flags: SLAB flags
2111 * @ctor: A constructor for the objects.
2112 * @dtor: A destructor for the objects.
2114 * Returns a ptr to the cache on success, NULL on failure.
2115 * Cannot be called within a int, but can be interrupted.
2116 * The @ctor is run when new pages are allocated by the cache
2117 * and the @dtor is run before the pages are handed back.
2119 * @name must be valid until the cache is destroyed. This implies that
2120 * the module calling this has to destroy the cache before getting unloaded.
2124 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2125 * to catch references to uninitialised memory.
2127 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2128 * for buffer overruns.
2130 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2131 * cacheline. This can be beneficial if you're counting cycles as closely
2135 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2136 unsigned long flags
,
2137 void (*ctor
)(void*, struct kmem_cache
*, unsigned long),
2138 void (*dtor
)(void*, struct kmem_cache
*, unsigned long))
2140 size_t left_over
, slab_size
, ralign
;
2141 struct kmem_cache
*cachep
= NULL
, *pc
;
2144 * Sanity checks... these are all serious usage bugs.
2146 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2147 (size
> (1 << MAX_OBJ_ORDER
) * PAGE_SIZE
) || (dtor
&& !ctor
)) {
2148 printk(KERN_ERR
"%s: Early error in slab %s\n", __FUNCTION__
,
2154 * We use cache_chain_mutex to ensure a consistent view of
2155 * cpu_online_map as well. Please see cpuup_callback
2157 mutex_lock(&cache_chain_mutex
);
2159 list_for_each_entry(pc
, &cache_chain
, next
) {
2164 * This happens when the module gets unloaded and doesn't
2165 * destroy its slab cache and no-one else reuses the vmalloc
2166 * area of the module. Print a warning.
2168 res
= probe_kernel_address(pc
->name
, tmp
);
2171 "SLAB: cache with size %d has lost its name\n",
2176 if (!strcmp(pc
->name
, name
)) {
2178 "kmem_cache_create: duplicate cache %s\n", name
);
2185 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2188 * Enable redzoning and last user accounting, except for caches with
2189 * large objects, if the increased size would increase the object size
2190 * above the next power of two: caches with object sizes just above a
2191 * power of two have a significant amount of internal fragmentation.
2193 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + 3 * BYTES_PER_WORD
))
2194 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2195 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2196 flags
|= SLAB_POISON
;
2198 if (flags
& SLAB_DESTROY_BY_RCU
)
2199 BUG_ON(flags
& SLAB_POISON
);
2201 if (flags
& SLAB_DESTROY_BY_RCU
)
2205 * Always checks flags, a caller might be expecting debug support which
2208 BUG_ON(flags
& ~CREATE_MASK
);
2211 * Check that size is in terms of words. This is needed to avoid
2212 * unaligned accesses for some archs when redzoning is used, and makes
2213 * sure any on-slab bufctl's are also correctly aligned.
2215 if (size
& (BYTES_PER_WORD
- 1)) {
2216 size
+= (BYTES_PER_WORD
- 1);
2217 size
&= ~(BYTES_PER_WORD
- 1);
2220 /* calculate the final buffer alignment: */
2222 /* 1) arch recommendation: can be overridden for debug */
2223 if (flags
& SLAB_HWCACHE_ALIGN
) {
2225 * Default alignment: as specified by the arch code. Except if
2226 * an object is really small, then squeeze multiple objects into
2229 ralign
= cache_line_size();
2230 while (size
<= ralign
/ 2)
2233 ralign
= BYTES_PER_WORD
;
2237 * Redzoning and user store require word alignment. Note this will be
2238 * overridden by architecture or caller mandated alignment if either
2239 * is greater than BYTES_PER_WORD.
2241 if (flags
& SLAB_RED_ZONE
|| flags
& SLAB_STORE_USER
)
2242 ralign
= BYTES_PER_WORD
;
2244 /* 2) arch mandated alignment */
2245 if (ralign
< ARCH_SLAB_MINALIGN
) {
2246 ralign
= ARCH_SLAB_MINALIGN
;
2248 /* 3) caller mandated alignment */
2249 if (ralign
< align
) {
2252 /* disable debug if necessary */
2253 if (ralign
> BYTES_PER_WORD
)
2254 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2260 /* Get cache's description obj. */
2261 cachep
= kmem_cache_zalloc(&cache_cache
, GFP_KERNEL
);
2266 cachep
->obj_size
= size
;
2269 * Both debugging options require word-alignment which is calculated
2272 if (flags
& SLAB_RED_ZONE
) {
2273 /* add space for red zone words */
2274 cachep
->obj_offset
+= BYTES_PER_WORD
;
2275 size
+= 2 * BYTES_PER_WORD
;
2277 if (flags
& SLAB_STORE_USER
) {
2278 /* user store requires one word storage behind the end of
2281 size
+= BYTES_PER_WORD
;
2283 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2284 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2285 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2286 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2293 * Determine if the slab management is 'on' or 'off' slab.
2294 * (bootstrapping cannot cope with offslab caches so don't do
2297 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2299 * Size is large, assume best to place the slab management obj
2300 * off-slab (should allow better packing of objs).
2302 flags
|= CFLGS_OFF_SLAB
;
2304 size
= ALIGN(size
, align
);
2306 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2310 "kmem_cache_create: couldn't create cache %s.\n", name
);
2311 kmem_cache_free(&cache_cache
, cachep
);
2315 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2316 + sizeof(struct slab
), align
);
2319 * If the slab has been placed off-slab, and we have enough space then
2320 * move it on-slab. This is at the expense of any extra colouring.
2322 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2323 flags
&= ~CFLGS_OFF_SLAB
;
2324 left_over
-= slab_size
;
2327 if (flags
& CFLGS_OFF_SLAB
) {
2328 /* really off slab. No need for manual alignment */
2330 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2333 cachep
->colour_off
= cache_line_size();
2334 /* Offset must be a multiple of the alignment. */
2335 if (cachep
->colour_off
< align
)
2336 cachep
->colour_off
= align
;
2337 cachep
->colour
= left_over
/ cachep
->colour_off
;
2338 cachep
->slab_size
= slab_size
;
2339 cachep
->flags
= flags
;
2340 cachep
->gfpflags
= 0;
2341 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2342 cachep
->gfpflags
|= GFP_DMA
;
2343 cachep
->buffer_size
= size
;
2344 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2346 if (flags
& CFLGS_OFF_SLAB
) {
2347 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2349 * This is a possibility for one of the malloc_sizes caches.
2350 * But since we go off slab only for object size greater than
2351 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2352 * this should not happen at all.
2353 * But leave a BUG_ON for some lucky dude.
2355 BUG_ON(!cachep
->slabp_cache
);
2357 cachep
->ctor
= ctor
;
2358 cachep
->dtor
= dtor
;
2359 cachep
->name
= name
;
2361 if (setup_cpu_cache(cachep
)) {
2362 __kmem_cache_destroy(cachep
);
2367 /* cache setup completed, link it into the list */
2368 list_add(&cachep
->next
, &cache_chain
);
2370 if (!cachep
&& (flags
& SLAB_PANIC
))
2371 panic("kmem_cache_create(): failed to create slab `%s'\n",
2373 mutex_unlock(&cache_chain_mutex
);
2376 EXPORT_SYMBOL(kmem_cache_create
);
2379 static void check_irq_off(void)
2381 BUG_ON(!irqs_disabled());
2384 static void check_irq_on(void)
2386 BUG_ON(irqs_disabled());
2389 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2393 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2397 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2401 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2406 #define check_irq_off() do { } while(0)
2407 #define check_irq_on() do { } while(0)
2408 #define check_spinlock_acquired(x) do { } while(0)
2409 #define check_spinlock_acquired_node(x, y) do { } while(0)
2412 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2413 struct array_cache
*ac
,
2414 int force
, int node
);
2416 static void do_drain(void *arg
)
2418 struct kmem_cache
*cachep
= arg
;
2419 struct array_cache
*ac
;
2420 int node
= numa_node_id();
2423 ac
= cpu_cache_get(cachep
);
2424 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2425 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2426 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2430 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2432 struct kmem_list3
*l3
;
2435 on_each_cpu(do_drain
, cachep
, 1, 1);
2437 for_each_online_node(node
) {
2438 l3
= cachep
->nodelists
[node
];
2439 if (l3
&& l3
->alien
)
2440 drain_alien_cache(cachep
, l3
->alien
);
2443 for_each_online_node(node
) {
2444 l3
= cachep
->nodelists
[node
];
2446 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2451 * Remove slabs from the list of free slabs.
2452 * Specify the number of slabs to drain in tofree.
2454 * Returns the actual number of slabs released.
2456 static int drain_freelist(struct kmem_cache
*cache
,
2457 struct kmem_list3
*l3
, int tofree
)
2459 struct list_head
*p
;
2464 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2466 spin_lock_irq(&l3
->list_lock
);
2467 p
= l3
->slabs_free
.prev
;
2468 if (p
== &l3
->slabs_free
) {
2469 spin_unlock_irq(&l3
->list_lock
);
2473 slabp
= list_entry(p
, struct slab
, list
);
2475 BUG_ON(slabp
->inuse
);
2477 list_del(&slabp
->list
);
2479 * Safe to drop the lock. The slab is no longer linked
2482 l3
->free_objects
-= cache
->num
;
2483 spin_unlock_irq(&l3
->list_lock
);
2484 slab_destroy(cache
, slabp
);
2491 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2492 static int __cache_shrink(struct kmem_cache
*cachep
)
2495 struct kmem_list3
*l3
;
2497 drain_cpu_caches(cachep
);
2500 for_each_online_node(i
) {
2501 l3
= cachep
->nodelists
[i
];
2505 drain_freelist(cachep
, l3
, l3
->free_objects
);
2507 ret
+= !list_empty(&l3
->slabs_full
) ||
2508 !list_empty(&l3
->slabs_partial
);
2510 return (ret
? 1 : 0);
2514 * kmem_cache_shrink - Shrink a cache.
2515 * @cachep: The cache to shrink.
2517 * Releases as many slabs as possible for a cache.
2518 * To help debugging, a zero exit status indicates all slabs were released.
2520 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2523 BUG_ON(!cachep
|| in_interrupt());
2525 mutex_lock(&cache_chain_mutex
);
2526 ret
= __cache_shrink(cachep
);
2527 mutex_unlock(&cache_chain_mutex
);
2530 EXPORT_SYMBOL(kmem_cache_shrink
);
2533 * kmem_cache_destroy - delete a cache
2534 * @cachep: the cache to destroy
2536 * Remove a &struct kmem_cache object from the slab cache.
2538 * It is expected this function will be called by a module when it is
2539 * unloaded. This will remove the cache completely, and avoid a duplicate
2540 * cache being allocated each time a module is loaded and unloaded, if the
2541 * module doesn't have persistent in-kernel storage across loads and unloads.
2543 * The cache must be empty before calling this function.
2545 * The caller must guarantee that noone will allocate memory from the cache
2546 * during the kmem_cache_destroy().
2548 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2550 BUG_ON(!cachep
|| in_interrupt());
2552 /* Find the cache in the chain of caches. */
2553 mutex_lock(&cache_chain_mutex
);
2555 * the chain is never empty, cache_cache is never destroyed
2557 list_del(&cachep
->next
);
2558 if (__cache_shrink(cachep
)) {
2559 slab_error(cachep
, "Can't free all objects");
2560 list_add(&cachep
->next
, &cache_chain
);
2561 mutex_unlock(&cache_chain_mutex
);
2565 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2568 __kmem_cache_destroy(cachep
);
2569 mutex_unlock(&cache_chain_mutex
);
2571 EXPORT_SYMBOL(kmem_cache_destroy
);
2574 * Get the memory for a slab management obj.
2575 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2576 * always come from malloc_sizes caches. The slab descriptor cannot
2577 * come from the same cache which is getting created because,
2578 * when we are searching for an appropriate cache for these
2579 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2580 * If we are creating a malloc_sizes cache here it would not be visible to
2581 * kmem_find_general_cachep till the initialization is complete.
2582 * Hence we cannot have slabp_cache same as the original cache.
2584 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2585 int colour_off
, gfp_t local_flags
,
2590 if (OFF_SLAB(cachep
)) {
2591 /* Slab management obj is off-slab. */
2592 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2593 local_flags
& ~GFP_THISNODE
, nodeid
);
2597 slabp
= objp
+ colour_off
;
2598 colour_off
+= cachep
->slab_size
;
2601 slabp
->colouroff
= colour_off
;
2602 slabp
->s_mem
= objp
+ colour_off
;
2603 slabp
->nodeid
= nodeid
;
2607 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2609 return (kmem_bufctl_t
*) (slabp
+ 1);
2612 static void cache_init_objs(struct kmem_cache
*cachep
,
2613 struct slab
*slabp
, unsigned long ctor_flags
)
2617 for (i
= 0; i
< cachep
->num
; i
++) {
2618 void *objp
= index_to_obj(cachep
, slabp
, i
);
2620 /* need to poison the objs? */
2621 if (cachep
->flags
& SLAB_POISON
)
2622 poison_obj(cachep
, objp
, POISON_FREE
);
2623 if (cachep
->flags
& SLAB_STORE_USER
)
2624 *dbg_userword(cachep
, objp
) = NULL
;
2626 if (cachep
->flags
& SLAB_RED_ZONE
) {
2627 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2628 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2631 * Constructors are not allowed to allocate memory from the same
2632 * cache which they are a constructor for. Otherwise, deadlock.
2633 * They must also be threaded.
2635 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2636 cachep
->ctor(objp
+ obj_offset(cachep
), cachep
,
2639 if (cachep
->flags
& SLAB_RED_ZONE
) {
2640 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2641 slab_error(cachep
, "constructor overwrote the"
2642 " end of an object");
2643 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2644 slab_error(cachep
, "constructor overwrote the"
2645 " start of an object");
2647 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2648 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2649 kernel_map_pages(virt_to_page(objp
),
2650 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2653 cachep
->ctor(objp
, cachep
, ctor_flags
);
2655 slab_bufctl(slabp
)[i
] = i
+ 1;
2657 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2661 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2663 if (CONFIG_ZONE_DMA_FLAG
) {
2664 if (flags
& GFP_DMA
)
2665 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2667 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2671 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2674 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2678 next
= slab_bufctl(slabp
)[slabp
->free
];
2680 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2681 WARN_ON(slabp
->nodeid
!= nodeid
);
2688 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2689 void *objp
, int nodeid
)
2691 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2694 /* Verify that the slab belongs to the intended node */
2695 WARN_ON(slabp
->nodeid
!= nodeid
);
2697 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2698 printk(KERN_ERR
"slab: double free detected in cache "
2699 "'%s', objp %p\n", cachep
->name
, objp
);
2703 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2704 slabp
->free
= objnr
;
2709 * Map pages beginning at addr to the given cache and slab. This is required
2710 * for the slab allocator to be able to lookup the cache and slab of a
2711 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2713 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2719 page
= virt_to_page(addr
);
2722 if (likely(!PageCompound(page
)))
2723 nr_pages
<<= cache
->gfporder
;
2726 page_set_cache(page
, cache
);
2727 page_set_slab(page
, slab
);
2729 } while (--nr_pages
);
2733 * Grow (by 1) the number of slabs within a cache. This is called by
2734 * kmem_cache_alloc() when there are no active objs left in a cache.
2736 static int cache_grow(struct kmem_cache
*cachep
,
2737 gfp_t flags
, int nodeid
, void *objp
)
2742 unsigned long ctor_flags
;
2743 struct kmem_list3
*l3
;
2746 * Be lazy and only check for valid flags here, keeping it out of the
2747 * critical path in kmem_cache_alloc().
2749 BUG_ON(flags
& ~(GFP_DMA
| GFP_LEVEL_MASK
));
2751 ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2752 local_flags
= (flags
& GFP_LEVEL_MASK
);
2753 /* Take the l3 list lock to change the colour_next on this node */
2755 l3
= cachep
->nodelists
[nodeid
];
2756 spin_lock(&l3
->list_lock
);
2758 /* Get colour for the slab, and cal the next value. */
2759 offset
= l3
->colour_next
;
2761 if (l3
->colour_next
>= cachep
->colour
)
2762 l3
->colour_next
= 0;
2763 spin_unlock(&l3
->list_lock
);
2765 offset
*= cachep
->colour_off
;
2767 if (local_flags
& __GFP_WAIT
)
2771 * The test for missing atomic flag is performed here, rather than
2772 * the more obvious place, simply to reduce the critical path length
2773 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2774 * will eventually be caught here (where it matters).
2776 kmem_flagcheck(cachep
, flags
);
2779 * Get mem for the objs. Attempt to allocate a physical page from
2783 objp
= kmem_getpages(cachep
, flags
, nodeid
);
2787 /* Get slab management. */
2788 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2789 local_flags
& ~GFP_THISNODE
, nodeid
);
2793 slabp
->nodeid
= nodeid
;
2794 slab_map_pages(cachep
, slabp
, objp
);
2796 cache_init_objs(cachep
, slabp
, ctor_flags
);
2798 if (local_flags
& __GFP_WAIT
)
2799 local_irq_disable();
2801 spin_lock(&l3
->list_lock
);
2803 /* Make slab active. */
2804 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2805 STATS_INC_GROWN(cachep
);
2806 l3
->free_objects
+= cachep
->num
;
2807 spin_unlock(&l3
->list_lock
);
2810 kmem_freepages(cachep
, objp
);
2812 if (local_flags
& __GFP_WAIT
)
2813 local_irq_disable();
2820 * Perform extra freeing checks:
2821 * - detect bad pointers.
2822 * - POISON/RED_ZONE checking
2823 * - destructor calls, for caches with POISON+dtor
2825 static void kfree_debugcheck(const void *objp
)
2827 if (!virt_addr_valid(objp
)) {
2828 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2829 (unsigned long)objp
);
2834 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2836 unsigned long redzone1
, redzone2
;
2838 redzone1
= *dbg_redzone1(cache
, obj
);
2839 redzone2
= *dbg_redzone2(cache
, obj
);
2844 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2847 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2848 slab_error(cache
, "double free detected");
2850 slab_error(cache
, "memory outside object was overwritten");
2852 printk(KERN_ERR
"%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2853 obj
, redzone1
, redzone2
);
2856 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2863 objp
-= obj_offset(cachep
);
2864 kfree_debugcheck(objp
);
2865 page
= virt_to_head_page(objp
);
2867 slabp
= page_get_slab(page
);
2869 if (cachep
->flags
& SLAB_RED_ZONE
) {
2870 verify_redzone_free(cachep
, objp
);
2871 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2872 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2874 if (cachep
->flags
& SLAB_STORE_USER
)
2875 *dbg_userword(cachep
, objp
) = caller
;
2877 objnr
= obj_to_index(cachep
, slabp
, objp
);
2879 BUG_ON(objnr
>= cachep
->num
);
2880 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2882 if (cachep
->flags
& SLAB_POISON
&& cachep
->dtor
) {
2883 /* we want to cache poison the object,
2884 * call the destruction callback
2886 cachep
->dtor(objp
+ obj_offset(cachep
), cachep
, 0);
2888 #ifdef CONFIG_DEBUG_SLAB_LEAK
2889 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2891 if (cachep
->flags
& SLAB_POISON
) {
2892 #ifdef CONFIG_DEBUG_PAGEALLOC
2893 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2894 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2895 kernel_map_pages(virt_to_page(objp
),
2896 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2898 poison_obj(cachep
, objp
, POISON_FREE
);
2901 poison_obj(cachep
, objp
, POISON_FREE
);
2907 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2912 /* Check slab's freelist to see if this obj is there. */
2913 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2915 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2918 if (entries
!= cachep
->num
- slabp
->inuse
) {
2920 printk(KERN_ERR
"slab: Internal list corruption detected in "
2921 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2922 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2924 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2927 printk("\n%03x:", i
);
2928 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2935 #define kfree_debugcheck(x) do { } while(0)
2936 #define cache_free_debugcheck(x,objp,z) (objp)
2937 #define check_slabp(x,y) do { } while(0)
2940 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2943 struct kmem_list3
*l3
;
2944 struct array_cache
*ac
;
2947 node
= numa_node_id();
2950 ac
= cpu_cache_get(cachep
);
2952 batchcount
= ac
->batchcount
;
2953 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2955 * If there was little recent activity on this cache, then
2956 * perform only a partial refill. Otherwise we could generate
2959 batchcount
= BATCHREFILL_LIMIT
;
2961 l3
= cachep
->nodelists
[node
];
2963 BUG_ON(ac
->avail
> 0 || !l3
);
2964 spin_lock(&l3
->list_lock
);
2966 /* See if we can refill from the shared array */
2967 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
2970 while (batchcount
> 0) {
2971 struct list_head
*entry
;
2973 /* Get slab alloc is to come from. */
2974 entry
= l3
->slabs_partial
.next
;
2975 if (entry
== &l3
->slabs_partial
) {
2976 l3
->free_touched
= 1;
2977 entry
= l3
->slabs_free
.next
;
2978 if (entry
== &l3
->slabs_free
)
2982 slabp
= list_entry(entry
, struct slab
, list
);
2983 check_slabp(cachep
, slabp
);
2984 check_spinlock_acquired(cachep
);
2987 * The slab was either on partial or free list so
2988 * there must be at least one object available for
2991 BUG_ON(slabp
->inuse
< 0 || slabp
->inuse
>= cachep
->num
);
2993 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2994 STATS_INC_ALLOCED(cachep
);
2995 STATS_INC_ACTIVE(cachep
);
2996 STATS_SET_HIGH(cachep
);
2998 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
3001 check_slabp(cachep
, slabp
);
3003 /* move slabp to correct slabp list: */
3004 list_del(&slabp
->list
);
3005 if (slabp
->free
== BUFCTL_END
)
3006 list_add(&slabp
->list
, &l3
->slabs_full
);
3008 list_add(&slabp
->list
, &l3
->slabs_partial
);
3012 l3
->free_objects
-= ac
->avail
;
3014 spin_unlock(&l3
->list_lock
);
3016 if (unlikely(!ac
->avail
)) {
3018 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3020 /* cache_grow can reenable interrupts, then ac could change. */
3021 ac
= cpu_cache_get(cachep
);
3022 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3025 if (!ac
->avail
) /* objects refilled by interrupt? */
3029 return ac
->entry
[--ac
->avail
];
3032 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3035 might_sleep_if(flags
& __GFP_WAIT
);
3037 kmem_flagcheck(cachep
, flags
);
3042 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3043 gfp_t flags
, void *objp
, void *caller
)
3047 if (cachep
->flags
& SLAB_POISON
) {
3048 #ifdef CONFIG_DEBUG_PAGEALLOC
3049 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3050 kernel_map_pages(virt_to_page(objp
),
3051 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3053 check_poison_obj(cachep
, objp
);
3055 check_poison_obj(cachep
, objp
);
3057 poison_obj(cachep
, objp
, POISON_INUSE
);
3059 if (cachep
->flags
& SLAB_STORE_USER
)
3060 *dbg_userword(cachep
, objp
) = caller
;
3062 if (cachep
->flags
& SLAB_RED_ZONE
) {
3063 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3064 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3065 slab_error(cachep
, "double free, or memory outside"
3066 " object was overwritten");
3068 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3069 objp
, *dbg_redzone1(cachep
, objp
),
3070 *dbg_redzone2(cachep
, objp
));
3072 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3073 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3075 #ifdef CONFIG_DEBUG_SLAB_LEAK
3080 slabp
= page_get_slab(virt_to_head_page(objp
));
3081 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3082 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3085 objp
+= obj_offset(cachep
);
3086 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3087 cachep
->ctor(objp
, cachep
, SLAB_CTOR_CONSTRUCTOR
);
3088 #if ARCH_SLAB_MINALIGN
3089 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3090 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3091 objp
, ARCH_SLAB_MINALIGN
);
3097 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3100 #ifdef CONFIG_FAILSLAB
3102 static struct failslab_attr
{
3104 struct fault_attr attr
;
3106 u32 ignore_gfp_wait
;
3107 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3108 struct dentry
*ignore_gfp_wait_file
;
3112 .attr
= FAULT_ATTR_INITIALIZER
,
3113 .ignore_gfp_wait
= 1,
3116 static int __init
setup_failslab(char *str
)
3118 return setup_fault_attr(&failslab
.attr
, str
);
3120 __setup("failslab=", setup_failslab
);
3122 static int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3124 if (cachep
== &cache_cache
)
3126 if (flags
& __GFP_NOFAIL
)
3128 if (failslab
.ignore_gfp_wait
&& (flags
& __GFP_WAIT
))
3131 return should_fail(&failslab
.attr
, obj_size(cachep
));
3134 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3136 static int __init
failslab_debugfs(void)
3138 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
3142 err
= init_fault_attr_dentries(&failslab
.attr
, "failslab");
3145 dir
= failslab
.attr
.dentries
.dir
;
3147 failslab
.ignore_gfp_wait_file
=
3148 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3149 &failslab
.ignore_gfp_wait
);
3151 if (!failslab
.ignore_gfp_wait_file
) {
3153 debugfs_remove(failslab
.ignore_gfp_wait_file
);
3154 cleanup_fault_attr_dentries(&failslab
.attr
);
3160 late_initcall(failslab_debugfs
);
3162 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3164 #else /* CONFIG_FAILSLAB */
3166 static inline int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3171 #endif /* CONFIG_FAILSLAB */
3173 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3176 struct array_cache
*ac
;
3180 ac
= cpu_cache_get(cachep
);
3181 if (likely(ac
->avail
)) {
3182 STATS_INC_ALLOCHIT(cachep
);
3184 objp
= ac
->entry
[--ac
->avail
];
3186 STATS_INC_ALLOCMISS(cachep
);
3187 objp
= cache_alloc_refill(cachep
, flags
);
3194 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3196 * If we are in_interrupt, then process context, including cpusets and
3197 * mempolicy, may not apply and should not be used for allocation policy.
3199 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3201 int nid_alloc
, nid_here
;
3203 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3205 nid_alloc
= nid_here
= numa_node_id();
3206 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3207 nid_alloc
= cpuset_mem_spread_node();
3208 else if (current
->mempolicy
)
3209 nid_alloc
= slab_node(current
->mempolicy
);
3210 if (nid_alloc
!= nid_here
)
3211 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3216 * Fallback function if there was no memory available and no objects on a
3217 * certain node and fall back is permitted. First we scan all the
3218 * available nodelists for available objects. If that fails then we
3219 * perform an allocation without specifying a node. This allows the page
3220 * allocator to do its reclaim / fallback magic. We then insert the
3221 * slab into the proper nodelist and then allocate from it.
3223 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3225 struct zonelist
*zonelist
;
3231 if (flags
& __GFP_THISNODE
)
3234 zonelist
= &NODE_DATA(slab_node(current
->mempolicy
))
3235 ->node_zonelists
[gfp_zone(flags
)];
3236 local_flags
= (flags
& GFP_LEVEL_MASK
);
3240 * Look through allowed nodes for objects available
3241 * from existing per node queues.
3243 for (z
= zonelist
->zones
; *z
&& !obj
; z
++) {
3244 nid
= zone_to_nid(*z
);
3246 if (cpuset_zone_allowed_hardwall(*z
, flags
) &&
3247 cache
->nodelists
[nid
] &&
3248 cache
->nodelists
[nid
]->free_objects
)
3249 obj
= ____cache_alloc_node(cache
,
3250 flags
| GFP_THISNODE
, nid
);
3255 * This allocation will be performed within the constraints
3256 * of the current cpuset / memory policy requirements.
3257 * We may trigger various forms of reclaim on the allowed
3258 * set and go into memory reserves if necessary.
3260 if (local_flags
& __GFP_WAIT
)
3262 kmem_flagcheck(cache
, flags
);
3263 obj
= kmem_getpages(cache
, flags
, -1);
3264 if (local_flags
& __GFP_WAIT
)
3265 local_irq_disable();
3268 * Insert into the appropriate per node queues
3270 nid
= page_to_nid(virt_to_page(obj
));
3271 if (cache_grow(cache
, flags
, nid
, obj
)) {
3272 obj
= ____cache_alloc_node(cache
,
3273 flags
| GFP_THISNODE
, nid
);
3276 * Another processor may allocate the
3277 * objects in the slab since we are
3278 * not holding any locks.
3282 /* cache_grow already freed obj */
3291 * A interface to enable slab creation on nodeid
3293 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3296 struct list_head
*entry
;
3298 struct kmem_list3
*l3
;
3302 l3
= cachep
->nodelists
[nodeid
];
3307 spin_lock(&l3
->list_lock
);
3308 entry
= l3
->slabs_partial
.next
;
3309 if (entry
== &l3
->slabs_partial
) {
3310 l3
->free_touched
= 1;
3311 entry
= l3
->slabs_free
.next
;
3312 if (entry
== &l3
->slabs_free
)
3316 slabp
= list_entry(entry
, struct slab
, list
);
3317 check_spinlock_acquired_node(cachep
, nodeid
);
3318 check_slabp(cachep
, slabp
);
3320 STATS_INC_NODEALLOCS(cachep
);
3321 STATS_INC_ACTIVE(cachep
);
3322 STATS_SET_HIGH(cachep
);
3324 BUG_ON(slabp
->inuse
== cachep
->num
);
3326 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3327 check_slabp(cachep
, slabp
);
3329 /* move slabp to correct slabp list: */
3330 list_del(&slabp
->list
);
3332 if (slabp
->free
== BUFCTL_END
)
3333 list_add(&slabp
->list
, &l3
->slabs_full
);
3335 list_add(&slabp
->list
, &l3
->slabs_partial
);
3337 spin_unlock(&l3
->list_lock
);
3341 spin_unlock(&l3
->list_lock
);
3342 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3346 return fallback_alloc(cachep
, flags
);
3353 * kmem_cache_alloc_node - Allocate an object on the specified node
3354 * @cachep: The cache to allocate from.
3355 * @flags: See kmalloc().
3356 * @nodeid: node number of the target node.
3357 * @caller: return address of caller, used for debug information
3359 * Identical to kmem_cache_alloc but it will allocate memory on the given
3360 * node, which can improve the performance for cpu bound structures.
3362 * Fallback to other node is possible if __GFP_THISNODE is not set.
3364 static __always_inline
void *
3365 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3368 unsigned long save_flags
;
3371 if (should_failslab(cachep
, flags
))
3374 cache_alloc_debugcheck_before(cachep
, flags
);
3375 local_irq_save(save_flags
);
3377 if (unlikely(nodeid
== -1))
3378 nodeid
= numa_node_id();
3380 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3381 /* Node not bootstrapped yet */
3382 ptr
= fallback_alloc(cachep
, flags
);
3386 if (nodeid
== numa_node_id()) {
3388 * Use the locally cached objects if possible.
3389 * However ____cache_alloc does not allow fallback
3390 * to other nodes. It may fail while we still have
3391 * objects on other nodes available.
3393 ptr
= ____cache_alloc(cachep
, flags
);
3397 /* ___cache_alloc_node can fall back to other nodes */
3398 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3400 local_irq_restore(save_flags
);
3401 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3406 static __always_inline
void *
3407 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3411 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3412 objp
= alternate_node_alloc(cache
, flags
);
3416 objp
= ____cache_alloc(cache
, flags
);
3419 * We may just have run out of memory on the local node.
3420 * ____cache_alloc_node() knows how to locate memory on other nodes
3423 objp
= ____cache_alloc_node(cache
, flags
, numa_node_id());
3430 static __always_inline
void *
3431 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3433 return ____cache_alloc(cachep
, flags
);
3436 #endif /* CONFIG_NUMA */
3438 static __always_inline
void *
3439 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3441 unsigned long save_flags
;
3444 if (should_failslab(cachep
, flags
))
3447 cache_alloc_debugcheck_before(cachep
, flags
);
3448 local_irq_save(save_flags
);
3449 objp
= __do_cache_alloc(cachep
, flags
);
3450 local_irq_restore(save_flags
);
3451 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3458 * Caller needs to acquire correct kmem_list's list_lock
3460 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3464 struct kmem_list3
*l3
;
3466 for (i
= 0; i
< nr_objects
; i
++) {
3467 void *objp
= objpp
[i
];
3470 slabp
= virt_to_slab(objp
);
3471 l3
= cachep
->nodelists
[node
];
3472 list_del(&slabp
->list
);
3473 check_spinlock_acquired_node(cachep
, node
);
3474 check_slabp(cachep
, slabp
);
3475 slab_put_obj(cachep
, slabp
, objp
, node
);
3476 STATS_DEC_ACTIVE(cachep
);
3478 check_slabp(cachep
, slabp
);
3480 /* fixup slab chains */
3481 if (slabp
->inuse
== 0) {
3482 if (l3
->free_objects
> l3
->free_limit
) {
3483 l3
->free_objects
-= cachep
->num
;
3484 /* No need to drop any previously held
3485 * lock here, even if we have a off-slab slab
3486 * descriptor it is guaranteed to come from
3487 * a different cache, refer to comments before
3490 slab_destroy(cachep
, slabp
);
3492 list_add(&slabp
->list
, &l3
->slabs_free
);
3495 /* Unconditionally move a slab to the end of the
3496 * partial list on free - maximum time for the
3497 * other objects to be freed, too.
3499 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3504 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3507 struct kmem_list3
*l3
;
3508 int node
= numa_node_id();
3510 batchcount
= ac
->batchcount
;
3512 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3515 l3
= cachep
->nodelists
[node
];
3516 spin_lock(&l3
->list_lock
);
3518 struct array_cache
*shared_array
= l3
->shared
;
3519 int max
= shared_array
->limit
- shared_array
->avail
;
3521 if (batchcount
> max
)
3523 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3524 ac
->entry
, sizeof(void *) * batchcount
);
3525 shared_array
->avail
+= batchcount
;
3530 free_block(cachep
, ac
->entry
, batchcount
, node
);
3535 struct list_head
*p
;
3537 p
= l3
->slabs_free
.next
;
3538 while (p
!= &(l3
->slabs_free
)) {
3541 slabp
= list_entry(p
, struct slab
, list
);
3542 BUG_ON(slabp
->inuse
);
3547 STATS_SET_FREEABLE(cachep
, i
);
3550 spin_unlock(&l3
->list_lock
);
3551 ac
->avail
-= batchcount
;
3552 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3556 * Release an obj back to its cache. If the obj has a constructed state, it must
3557 * be in this state _before_ it is released. Called with disabled ints.
3559 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3561 struct array_cache
*ac
= cpu_cache_get(cachep
);
3564 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3566 if (use_alien_caches
&& cache_free_alien(cachep
, objp
))
3569 if (likely(ac
->avail
< ac
->limit
)) {
3570 STATS_INC_FREEHIT(cachep
);
3571 ac
->entry
[ac
->avail
++] = objp
;
3574 STATS_INC_FREEMISS(cachep
);
3575 cache_flusharray(cachep
, ac
);
3576 ac
->entry
[ac
->avail
++] = objp
;
3581 * kmem_cache_alloc - Allocate an object
3582 * @cachep: The cache to allocate from.
3583 * @flags: See kmalloc().
3585 * Allocate an object from this cache. The flags are only relevant
3586 * if the cache has no available objects.
3588 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3590 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3592 EXPORT_SYMBOL(kmem_cache_alloc
);
3595 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3596 * @cache: The cache to allocate from.
3597 * @flags: See kmalloc().
3599 * Allocate an object from this cache and set the allocated memory to zero.
3600 * The flags are only relevant if the cache has no available objects.
3602 void *kmem_cache_zalloc(struct kmem_cache
*cache
, gfp_t flags
)
3604 void *ret
= __cache_alloc(cache
, flags
, __builtin_return_address(0));
3606 memset(ret
, 0, obj_size(cache
));
3609 EXPORT_SYMBOL(kmem_cache_zalloc
);
3612 * kmem_ptr_validate - check if an untrusted pointer might
3614 * @cachep: the cache we're checking against
3615 * @ptr: pointer to validate
3617 * This verifies that the untrusted pointer looks sane:
3618 * it is _not_ a guarantee that the pointer is actually
3619 * part of the slab cache in question, but it at least
3620 * validates that the pointer can be dereferenced and
3621 * looks half-way sane.
3623 * Currently only used for dentry validation.
3625 int kmem_ptr_validate(struct kmem_cache
*cachep
, const void *ptr
)
3627 unsigned long addr
= (unsigned long)ptr
;
3628 unsigned long min_addr
= PAGE_OFFSET
;
3629 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3630 unsigned long size
= cachep
->buffer_size
;
3633 if (unlikely(addr
< min_addr
))
3635 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3637 if (unlikely(addr
& align_mask
))
3639 if (unlikely(!kern_addr_valid(addr
)))
3641 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3643 page
= virt_to_page(ptr
);
3644 if (unlikely(!PageSlab(page
)))
3646 if (unlikely(page_get_cache(page
) != cachep
))
3654 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3656 return __cache_alloc_node(cachep
, flags
, nodeid
,
3657 __builtin_return_address(0));
3659 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3661 static __always_inline
void *
3662 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3664 struct kmem_cache
*cachep
;
3666 cachep
= kmem_find_general_cachep(size
, flags
);
3667 if (unlikely(cachep
== NULL
))
3669 return kmem_cache_alloc_node(cachep
, flags
, node
);
3672 #ifdef CONFIG_DEBUG_SLAB
3673 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3675 return __do_kmalloc_node(size
, flags
, node
,
3676 __builtin_return_address(0));
3678 EXPORT_SYMBOL(__kmalloc_node
);
3680 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3681 int node
, void *caller
)
3683 return __do_kmalloc_node(size
, flags
, node
, caller
);
3685 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3687 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3689 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3691 EXPORT_SYMBOL(__kmalloc_node
);
3692 #endif /* CONFIG_DEBUG_SLAB */
3693 #endif /* CONFIG_NUMA */
3696 * __do_kmalloc - allocate memory
3697 * @size: how many bytes of memory are required.
3698 * @flags: the type of memory to allocate (see kmalloc).
3699 * @caller: function caller for debug tracking of the caller
3701 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3704 struct kmem_cache
*cachep
;
3706 /* If you want to save a few bytes .text space: replace
3708 * Then kmalloc uses the uninlined functions instead of the inline
3711 cachep
= __find_general_cachep(size
, flags
);
3712 if (unlikely(cachep
== NULL
))
3714 return __cache_alloc(cachep
, flags
, caller
);
3718 #ifdef CONFIG_DEBUG_SLAB
3719 void *__kmalloc(size_t size
, gfp_t flags
)
3721 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3723 EXPORT_SYMBOL(__kmalloc
);
3725 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, void *caller
)
3727 return __do_kmalloc(size
, flags
, caller
);
3729 EXPORT_SYMBOL(__kmalloc_track_caller
);
3732 void *__kmalloc(size_t size
, gfp_t flags
)
3734 return __do_kmalloc(size
, flags
, NULL
);
3736 EXPORT_SYMBOL(__kmalloc
);
3740 * krealloc - reallocate memory. The contents will remain unchanged.
3742 * @p: object to reallocate memory for.
3743 * @new_size: how many bytes of memory are required.
3744 * @flags: the type of memory to allocate.
3746 * The contents of the object pointed to are preserved up to the
3747 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3748 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3749 * %NULL pointer, the object pointed to is freed.
3751 void *krealloc(const void *p
, size_t new_size
, gfp_t flags
)
3753 struct kmem_cache
*cache
, *new_cache
;
3757 return kmalloc_track_caller(new_size
, flags
);
3759 if (unlikely(!new_size
)) {
3764 cache
= virt_to_cache(p
);
3765 new_cache
= __find_general_cachep(new_size
, flags
);
3768 * If new size fits in the current cache, bail out.
3770 if (likely(cache
== new_cache
))
3774 * We are on the slow-path here so do not use __cache_alloc
3775 * because it bloats kernel text.
3777 ret
= kmalloc_track_caller(new_size
, flags
);
3779 memcpy(ret
, p
, min(new_size
, ksize(p
)));
3784 EXPORT_SYMBOL(krealloc
);
3787 * kmem_cache_free - Deallocate an object
3788 * @cachep: The cache the allocation was from.
3789 * @objp: The previously allocated object.
3791 * Free an object which was previously allocated from this
3794 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3796 unsigned long flags
;
3798 BUG_ON(virt_to_cache(objp
) != cachep
);
3800 local_irq_save(flags
);
3801 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3802 __cache_free(cachep
, objp
);
3803 local_irq_restore(flags
);
3805 EXPORT_SYMBOL(kmem_cache_free
);
3808 * kfree - free previously allocated memory
3809 * @objp: pointer returned by kmalloc.
3811 * If @objp is NULL, no operation is performed.
3813 * Don't free memory not originally allocated by kmalloc()
3814 * or you will run into trouble.
3816 void kfree(const void *objp
)
3818 struct kmem_cache
*c
;
3819 unsigned long flags
;
3821 if (unlikely(!objp
))
3823 local_irq_save(flags
);
3824 kfree_debugcheck(objp
);
3825 c
= virt_to_cache(objp
);
3826 debug_check_no_locks_freed(objp
, obj_size(c
));
3827 __cache_free(c
, (void *)objp
);
3828 local_irq_restore(flags
);
3830 EXPORT_SYMBOL(kfree
);
3832 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3834 return obj_size(cachep
);
3836 EXPORT_SYMBOL(kmem_cache_size
);
3838 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3840 return cachep
->name
;
3842 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3845 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3847 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3850 struct kmem_list3
*l3
;
3851 struct array_cache
*new_shared
;
3852 struct array_cache
**new_alien
= NULL
;
3854 for_each_online_node(node
) {
3856 if (use_alien_caches
) {
3857 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3863 if (cachep
->shared
) {
3864 new_shared
= alloc_arraycache(node
,
3865 cachep
->shared
*cachep
->batchcount
,
3868 free_alien_cache(new_alien
);
3873 l3
= cachep
->nodelists
[node
];
3875 struct array_cache
*shared
= l3
->shared
;
3877 spin_lock_irq(&l3
->list_lock
);
3880 free_block(cachep
, shared
->entry
,
3881 shared
->avail
, node
);
3883 l3
->shared
= new_shared
;
3885 l3
->alien
= new_alien
;
3888 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3889 cachep
->batchcount
+ cachep
->num
;
3890 spin_unlock_irq(&l3
->list_lock
);
3892 free_alien_cache(new_alien
);
3895 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3897 free_alien_cache(new_alien
);
3902 kmem_list3_init(l3
);
3903 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3904 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3905 l3
->shared
= new_shared
;
3906 l3
->alien
= new_alien
;
3907 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3908 cachep
->batchcount
+ cachep
->num
;
3909 cachep
->nodelists
[node
] = l3
;
3914 if (!cachep
->next
.next
) {
3915 /* Cache is not active yet. Roll back what we did */
3918 if (cachep
->nodelists
[node
]) {
3919 l3
= cachep
->nodelists
[node
];
3922 free_alien_cache(l3
->alien
);
3924 cachep
->nodelists
[node
] = NULL
;
3932 struct ccupdate_struct
{
3933 struct kmem_cache
*cachep
;
3934 struct array_cache
*new[NR_CPUS
];
3937 static void do_ccupdate_local(void *info
)
3939 struct ccupdate_struct
*new = info
;
3940 struct array_cache
*old
;
3943 old
= cpu_cache_get(new->cachep
);
3945 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3946 new->new[smp_processor_id()] = old
;
3949 /* Always called with the cache_chain_mutex held */
3950 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3951 int batchcount
, int shared
)
3953 struct ccupdate_struct
*new;
3956 new = kzalloc(sizeof(*new), GFP_KERNEL
);
3960 for_each_online_cpu(i
) {
3961 new->new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3964 for (i
--; i
>= 0; i
--)
3970 new->cachep
= cachep
;
3972 on_each_cpu(do_ccupdate_local
, (void *)new, 1, 1);
3975 cachep
->batchcount
= batchcount
;
3976 cachep
->limit
= limit
;
3977 cachep
->shared
= shared
;
3979 for_each_online_cpu(i
) {
3980 struct array_cache
*ccold
= new->new[i
];
3983 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3984 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3985 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3989 return alloc_kmemlist(cachep
);
3992 /* Called with cache_chain_mutex held always */
3993 static int enable_cpucache(struct kmem_cache
*cachep
)
3999 * The head array serves three purposes:
4000 * - create a LIFO ordering, i.e. return objects that are cache-warm
4001 * - reduce the number of spinlock operations.
4002 * - reduce the number of linked list operations on the slab and
4003 * bufctl chains: array operations are cheaper.
4004 * The numbers are guessed, we should auto-tune as described by
4007 if (cachep
->buffer_size
> 131072)
4009 else if (cachep
->buffer_size
> PAGE_SIZE
)
4011 else if (cachep
->buffer_size
> 1024)
4013 else if (cachep
->buffer_size
> 256)
4019 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4020 * allocation behaviour: Most allocs on one cpu, most free operations
4021 * on another cpu. For these cases, an efficient object passing between
4022 * cpus is necessary. This is provided by a shared array. The array
4023 * replaces Bonwick's magazine layer.
4024 * On uniprocessor, it's functionally equivalent (but less efficient)
4025 * to a larger limit. Thus disabled by default.
4028 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4033 * With debugging enabled, large batchcount lead to excessively long
4034 * periods with disabled local interrupts. Limit the batchcount
4039 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
4041 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4042 cachep
->name
, -err
);
4047 * Drain an array if it contains any elements taking the l3 lock only if
4048 * necessary. Note that the l3 listlock also protects the array_cache
4049 * if drain_array() is used on the shared array.
4051 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4052 struct array_cache
*ac
, int force
, int node
)
4056 if (!ac
|| !ac
->avail
)
4058 if (ac
->touched
&& !force
) {
4061 spin_lock_irq(&l3
->list_lock
);
4063 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4064 if (tofree
> ac
->avail
)
4065 tofree
= (ac
->avail
+ 1) / 2;
4066 free_block(cachep
, ac
->entry
, tofree
, node
);
4067 ac
->avail
-= tofree
;
4068 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4069 sizeof(void *) * ac
->avail
);
4071 spin_unlock_irq(&l3
->list_lock
);
4076 * cache_reap - Reclaim memory from caches.
4077 * @w: work descriptor
4079 * Called from workqueue/eventd every few seconds.
4081 * - clear the per-cpu caches for this CPU.
4082 * - return freeable pages to the main free memory pool.
4084 * If we cannot acquire the cache chain mutex then just give up - we'll try
4085 * again on the next iteration.
4087 static void cache_reap(struct work_struct
*w
)
4089 struct kmem_cache
*searchp
;
4090 struct kmem_list3
*l3
;
4091 int node
= numa_node_id();
4092 struct delayed_work
*work
=
4093 container_of(w
, struct delayed_work
, work
);
4095 if (!mutex_trylock(&cache_chain_mutex
))
4096 /* Give up. Setup the next iteration. */
4099 list_for_each_entry(searchp
, &cache_chain
, next
) {
4103 * We only take the l3 lock if absolutely necessary and we
4104 * have established with reasonable certainty that
4105 * we can do some work if the lock was obtained.
4107 l3
= searchp
->nodelists
[node
];
4109 reap_alien(searchp
, l3
);
4111 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4114 * These are racy checks but it does not matter
4115 * if we skip one check or scan twice.
4117 if (time_after(l3
->next_reap
, jiffies
))
4120 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4122 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4124 if (l3
->free_touched
)
4125 l3
->free_touched
= 0;
4129 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4130 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4131 STATS_ADD_REAPED(searchp
, freed
);
4137 mutex_unlock(&cache_chain_mutex
);
4139 refresh_cpu_vm_stats(smp_processor_id());
4141 /* Set up the next iteration */
4142 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4145 #ifdef CONFIG_PROC_FS
4147 static void print_slabinfo_header(struct seq_file
*m
)
4150 * Output format version, so at least we can change it
4151 * without _too_ many complaints.
4154 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4156 seq_puts(m
, "slabinfo - version: 2.1\n");
4158 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4159 "<objperslab> <pagesperslab>");
4160 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4161 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4163 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4164 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4165 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4170 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4173 struct list_head
*p
;
4175 mutex_lock(&cache_chain_mutex
);
4177 print_slabinfo_header(m
);
4178 p
= cache_chain
.next
;
4181 if (p
== &cache_chain
)
4184 return list_entry(p
, struct kmem_cache
, next
);
4187 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4189 struct kmem_cache
*cachep
= p
;
4191 return cachep
->next
.next
== &cache_chain
?
4192 NULL
: list_entry(cachep
->next
.next
, struct kmem_cache
, next
);
4195 static void s_stop(struct seq_file
*m
, void *p
)
4197 mutex_unlock(&cache_chain_mutex
);
4200 static int s_show(struct seq_file
*m
, void *p
)
4202 struct kmem_cache
*cachep
= p
;
4204 unsigned long active_objs
;
4205 unsigned long num_objs
;
4206 unsigned long active_slabs
= 0;
4207 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4211 struct kmem_list3
*l3
;
4215 for_each_online_node(node
) {
4216 l3
= cachep
->nodelists
[node
];
4221 spin_lock_irq(&l3
->list_lock
);
4223 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4224 if (slabp
->inuse
!= cachep
->num
&& !error
)
4225 error
= "slabs_full accounting error";
4226 active_objs
+= cachep
->num
;
4229 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4230 if (slabp
->inuse
== cachep
->num
&& !error
)
4231 error
= "slabs_partial inuse accounting error";
4232 if (!slabp
->inuse
&& !error
)
4233 error
= "slabs_partial/inuse accounting error";
4234 active_objs
+= slabp
->inuse
;
4237 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4238 if (slabp
->inuse
&& !error
)
4239 error
= "slabs_free/inuse accounting error";
4242 free_objects
+= l3
->free_objects
;
4244 shared_avail
+= l3
->shared
->avail
;
4246 spin_unlock_irq(&l3
->list_lock
);
4248 num_slabs
+= active_slabs
;
4249 num_objs
= num_slabs
* cachep
->num
;
4250 if (num_objs
- active_objs
!= free_objects
&& !error
)
4251 error
= "free_objects accounting error";
4253 name
= cachep
->name
;
4255 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4257 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4258 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4259 cachep
->num
, (1 << cachep
->gfporder
));
4260 seq_printf(m
, " : tunables %4u %4u %4u",
4261 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4262 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4263 active_slabs
, num_slabs
, shared_avail
);
4266 unsigned long high
= cachep
->high_mark
;
4267 unsigned long allocs
= cachep
->num_allocations
;
4268 unsigned long grown
= cachep
->grown
;
4269 unsigned long reaped
= cachep
->reaped
;
4270 unsigned long errors
= cachep
->errors
;
4271 unsigned long max_freeable
= cachep
->max_freeable
;
4272 unsigned long node_allocs
= cachep
->node_allocs
;
4273 unsigned long node_frees
= cachep
->node_frees
;
4274 unsigned long overflows
= cachep
->node_overflow
;
4276 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
4277 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
4278 reaped
, errors
, max_freeable
, node_allocs
,
4279 node_frees
, overflows
);
4283 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4284 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4285 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4286 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4288 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4289 allochit
, allocmiss
, freehit
, freemiss
);
4297 * slabinfo_op - iterator that generates /proc/slabinfo
4306 * num-pages-per-slab
4307 * + further values on SMP and with statistics enabled
4310 const struct seq_operations slabinfo_op
= {
4317 #define MAX_SLABINFO_WRITE 128
4319 * slabinfo_write - Tuning for the slab allocator
4321 * @buffer: user buffer
4322 * @count: data length
4325 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4326 size_t count
, loff_t
*ppos
)
4328 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4329 int limit
, batchcount
, shared
, res
;
4330 struct kmem_cache
*cachep
;
4332 if (count
> MAX_SLABINFO_WRITE
)
4334 if (copy_from_user(&kbuf
, buffer
, count
))
4336 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4338 tmp
= strchr(kbuf
, ' ');
4343 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4346 /* Find the cache in the chain of caches. */
4347 mutex_lock(&cache_chain_mutex
);
4349 list_for_each_entry(cachep
, &cache_chain
, next
) {
4350 if (!strcmp(cachep
->name
, kbuf
)) {
4351 if (limit
< 1 || batchcount
< 1 ||
4352 batchcount
> limit
|| shared
< 0) {
4355 res
= do_tune_cpucache(cachep
, limit
,
4356 batchcount
, shared
);
4361 mutex_unlock(&cache_chain_mutex
);
4367 #ifdef CONFIG_DEBUG_SLAB_LEAK
4369 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4372 struct list_head
*p
;
4374 mutex_lock(&cache_chain_mutex
);
4375 p
= cache_chain
.next
;
4378 if (p
== &cache_chain
)
4381 return list_entry(p
, struct kmem_cache
, next
);
4384 static inline int add_caller(unsigned long *n
, unsigned long v
)
4394 unsigned long *q
= p
+ 2 * i
;
4408 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4414 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4420 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4421 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4423 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4428 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4430 #ifdef CONFIG_KALLSYMS
4433 unsigned long offset
, size
;
4434 char namebuf
[KSYM_NAME_LEN
+1];
4436 name
= kallsyms_lookup(address
, &size
, &offset
, &modname
, namebuf
);
4439 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4441 seq_printf(m
, " [%s]", modname
);
4445 seq_printf(m
, "%p", (void *)address
);
4448 static int leaks_show(struct seq_file
*m
, void *p
)
4450 struct kmem_cache
*cachep
= p
;
4452 struct kmem_list3
*l3
;
4454 unsigned long *n
= m
->private;
4458 if (!(cachep
->flags
& SLAB_STORE_USER
))
4460 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4463 /* OK, we can do it */
4467 for_each_online_node(node
) {
4468 l3
= cachep
->nodelists
[node
];
4473 spin_lock_irq(&l3
->list_lock
);
4475 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4476 handle_slab(n
, cachep
, slabp
);
4477 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4478 handle_slab(n
, cachep
, slabp
);
4479 spin_unlock_irq(&l3
->list_lock
);
4481 name
= cachep
->name
;
4483 /* Increase the buffer size */
4484 mutex_unlock(&cache_chain_mutex
);
4485 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4487 /* Too bad, we are really out */
4489 mutex_lock(&cache_chain_mutex
);
4492 *(unsigned long *)m
->private = n
[0] * 2;
4494 mutex_lock(&cache_chain_mutex
);
4495 /* Now make sure this entry will be retried */
4499 for (i
= 0; i
< n
[1]; i
++) {
4500 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4501 show_symbol(m
, n
[2*i
+2]);
4508 const struct seq_operations slabstats_op
= {
4509 .start
= leaks_start
,
4518 * ksize - get the actual amount of memory allocated for a given object
4519 * @objp: Pointer to the object
4521 * kmalloc may internally round up allocations and return more memory
4522 * than requested. ksize() can be used to determine the actual amount of
4523 * memory allocated. The caller may use this additional memory, even though
4524 * a smaller amount of memory was initially specified with the kmalloc call.
4525 * The caller must guarantee that objp points to a valid object previously
4526 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4527 * must not be freed during the duration of the call.
4529 size_t ksize(const void *objp
)
4531 if (unlikely(objp
== NULL
))
4534 return obj_size(virt_to_cache(objp
));