4 * Incoming and outgoing message routing for an IPMI interface.
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/spinlock.h>
39 #include <linux/mutex.h>
40 #include <linux/slab.h>
41 #include <linux/ipmi.h>
42 #include <linux/ipmi_smi.h>
43 #include <linux/notifier.h>
44 #include <linux/init.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
48 #define PFX "IPMI message handler: "
50 #define IPMI_DRIVER_VERSION "39.2"
52 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void);
53 static int ipmi_init_msghandler(void);
55 static int initialized
;
58 static struct proc_dir_entry
*proc_ipmi_root
;
59 #endif /* CONFIG_PROC_FS */
61 /* Remain in auto-maintenance mode for this amount of time (in ms). */
62 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
64 #define MAX_EVENTS_IN_QUEUE 25
67 * Don't let a message sit in a queue forever, always time it with at lest
68 * the max message timer. This is in milliseconds.
70 #define MAX_MSG_TIMEOUT 60000
73 * The main "user" data structure.
76 struct list_head link
;
78 /* Set to "0" when the user is destroyed. */
83 /* The upper layer that handles receive messages. */
84 struct ipmi_user_hndl
*handler
;
87 /* The interface this user is bound to. */
90 /* Does this interface receive IPMI events? */
95 struct list_head link
;
103 * This is used to form a linked lised during mass deletion.
104 * Since this is in an RCU list, we cannot use the link above
105 * or change any data until the RCU period completes. So we
106 * use this next variable during mass deletion so we can have
107 * a list and don't have to wait and restart the search on
108 * every individual deletion of a command.
110 struct cmd_rcvr
*next
;
114 unsigned int inuse
: 1;
115 unsigned int broadcast
: 1;
117 unsigned long timeout
;
118 unsigned long orig_timeout
;
119 unsigned int retries_left
;
122 * To verify on an incoming send message response that this is
123 * the message that the response is for, we keep a sequence id
124 * and increment it every time we send a message.
129 * This is held so we can properly respond to the message on a
130 * timeout, and it is used to hold the temporary data for
131 * retransmission, too.
133 struct ipmi_recv_msg
*recv_msg
;
137 * Store the information in a msgid (long) to allow us to find a
138 * sequence table entry from the msgid.
140 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
142 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
144 seq = ((msgid >> 26) & 0x3f); \
145 seqid = (msgid & 0x3fffff); \
148 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
150 struct ipmi_channel
{
151 unsigned char medium
;
152 unsigned char protocol
;
155 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
156 * but may be changed by the user.
158 unsigned char address
;
161 * My LUN. This should generally stay the SMS LUN, but just in
167 #ifdef CONFIG_PROC_FS
168 struct ipmi_proc_entry
{
170 struct ipmi_proc_entry
*next
;
175 struct platform_device
*dev
;
176 struct ipmi_device_id id
;
177 unsigned char guid
[16];
180 struct kref refcount
;
182 /* bmc device attributes */
183 struct device_attribute device_id_attr
;
184 struct device_attribute provides_dev_sdrs_attr
;
185 struct device_attribute revision_attr
;
186 struct device_attribute firmware_rev_attr
;
187 struct device_attribute version_attr
;
188 struct device_attribute add_dev_support_attr
;
189 struct device_attribute manufacturer_id_attr
;
190 struct device_attribute product_id_attr
;
191 struct device_attribute guid_attr
;
192 struct device_attribute aux_firmware_rev_attr
;
196 * Various statistics for IPMI, these index stats[] in the ipmi_smi
199 enum ipmi_stat_indexes
{
200 /* Commands we got from the user that were invalid. */
201 IPMI_STAT_sent_invalid_commands
= 0,
203 /* Commands we sent to the MC. */
204 IPMI_STAT_sent_local_commands
,
206 /* Responses from the MC that were delivered to a user. */
207 IPMI_STAT_handled_local_responses
,
209 /* Responses from the MC that were not delivered to a user. */
210 IPMI_STAT_unhandled_local_responses
,
212 /* Commands we sent out to the IPMB bus. */
213 IPMI_STAT_sent_ipmb_commands
,
215 /* Commands sent on the IPMB that had errors on the SEND CMD */
216 IPMI_STAT_sent_ipmb_command_errs
,
218 /* Each retransmit increments this count. */
219 IPMI_STAT_retransmitted_ipmb_commands
,
222 * When a message times out (runs out of retransmits) this is
225 IPMI_STAT_timed_out_ipmb_commands
,
228 * This is like above, but for broadcasts. Broadcasts are
229 * *not* included in the above count (they are expected to
232 IPMI_STAT_timed_out_ipmb_broadcasts
,
234 /* Responses I have sent to the IPMB bus. */
235 IPMI_STAT_sent_ipmb_responses
,
237 /* The response was delivered to the user. */
238 IPMI_STAT_handled_ipmb_responses
,
240 /* The response had invalid data in it. */
241 IPMI_STAT_invalid_ipmb_responses
,
243 /* The response didn't have anyone waiting for it. */
244 IPMI_STAT_unhandled_ipmb_responses
,
246 /* Commands we sent out to the IPMB bus. */
247 IPMI_STAT_sent_lan_commands
,
249 /* Commands sent on the IPMB that had errors on the SEND CMD */
250 IPMI_STAT_sent_lan_command_errs
,
252 /* Each retransmit increments this count. */
253 IPMI_STAT_retransmitted_lan_commands
,
256 * When a message times out (runs out of retransmits) this is
259 IPMI_STAT_timed_out_lan_commands
,
261 /* Responses I have sent to the IPMB bus. */
262 IPMI_STAT_sent_lan_responses
,
264 /* The response was delivered to the user. */
265 IPMI_STAT_handled_lan_responses
,
267 /* The response had invalid data in it. */
268 IPMI_STAT_invalid_lan_responses
,
270 /* The response didn't have anyone waiting for it. */
271 IPMI_STAT_unhandled_lan_responses
,
273 /* The command was delivered to the user. */
274 IPMI_STAT_handled_commands
,
276 /* The command had invalid data in it. */
277 IPMI_STAT_invalid_commands
,
279 /* The command didn't have anyone waiting for it. */
280 IPMI_STAT_unhandled_commands
,
282 /* Invalid data in an event. */
283 IPMI_STAT_invalid_events
,
285 /* Events that were received with the proper format. */
289 /* This *must* remain last, add new values above this. */
294 #define IPMI_IPMB_NUM_SEQ 64
295 #define IPMI_MAX_CHANNELS 16
297 /* What interface number are we? */
300 struct kref refcount
;
302 /* Used for a list of interfaces. */
303 struct list_head link
;
306 * The list of upper layers that are using me. seq_lock
309 struct list_head users
;
311 /* Information to supply to users. */
312 unsigned char ipmi_version_major
;
313 unsigned char ipmi_version_minor
;
315 /* Used for wake ups at startup. */
316 wait_queue_head_t waitq
;
318 struct bmc_device
*bmc
;
323 * This is the lower-layer's sender routine. Note that you
324 * must either be holding the ipmi_interfaces_mutex or be in
325 * an umpreemptible region to use this. You must fetch the
326 * value into a local variable and make sure it is not NULL.
328 struct ipmi_smi_handlers
*handlers
;
331 #ifdef CONFIG_PROC_FS
332 /* A list of proc entries for this interface. */
333 struct mutex proc_entry_lock
;
334 struct ipmi_proc_entry
*proc_entries
;
337 /* Driver-model device for the system interface. */
338 struct device
*si_dev
;
341 * A table of sequence numbers for this interface. We use the
342 * sequence numbers for IPMB messages that go out of the
343 * interface to match them up with their responses. A routine
344 * is called periodically to time the items in this list.
347 struct seq_table seq_table
[IPMI_IPMB_NUM_SEQ
];
351 * Messages that were delayed for some reason (out of memory,
352 * for instance), will go in here to be processed later in a
353 * periodic timer interrupt.
355 spinlock_t waiting_msgs_lock
;
356 struct list_head waiting_msgs
;
359 * The list of command receivers that are registered for commands
362 struct mutex cmd_rcvrs_mutex
;
363 struct list_head cmd_rcvrs
;
366 * Events that were queues because no one was there to receive
369 spinlock_t events_lock
; /* For dealing with event stuff. */
370 struct list_head waiting_events
;
371 unsigned int waiting_events_count
; /* How many events in queue? */
372 char delivering_events
;
373 char event_msg_printed
;
376 * The event receiver for my BMC, only really used at panic
377 * shutdown as a place to store this.
379 unsigned char event_receiver
;
380 unsigned char event_receiver_lun
;
381 unsigned char local_sel_device
;
382 unsigned char local_event_generator
;
384 /* For handling of maintenance mode. */
385 int maintenance_mode
;
386 int maintenance_mode_enable
;
387 int auto_maintenance_timeout
;
388 spinlock_t maintenance_mode_lock
; /* Used in a timer... */
391 * A cheap hack, if this is non-null and a message to an
392 * interface comes in with a NULL user, call this routine with
393 * it. Note that the message will still be freed by the
394 * caller. This only works on the system interface.
396 void (*null_user_handler
)(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
);
399 * When we are scanning the channels for an SMI, this will
400 * tell which channel we are scanning.
404 /* Channel information */
405 struct ipmi_channel channels
[IPMI_MAX_CHANNELS
];
408 struct proc_dir_entry
*proc_dir
;
409 char proc_dir_name
[10];
411 atomic_t stats
[IPMI_NUM_STATS
];
414 * run_to_completion duplicate of smb_info, smi_info
415 * and ipmi_serial_info structures. Used to decrease numbers of
416 * parameters passed by "low" level IPMI code.
418 int run_to_completion
;
420 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
423 * The driver model view of the IPMI messaging driver.
425 static struct device_driver ipmidriver
= {
427 .bus
= &platform_bus_type
429 static DEFINE_MUTEX(ipmidriver_mutex
);
431 static LIST_HEAD(ipmi_interfaces
);
432 static DEFINE_MUTEX(ipmi_interfaces_mutex
);
435 * List of watchers that want to know when smi's are added and deleted.
437 static LIST_HEAD(smi_watchers
);
438 static DEFINE_MUTEX(smi_watchers_mutex
);
441 #define ipmi_inc_stat(intf, stat) \
442 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
443 #define ipmi_get_stat(intf, stat) \
444 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
447 static void free_recv_msg_list(struct list_head
*q
)
449 struct ipmi_recv_msg
*msg
, *msg2
;
451 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
452 list_del(&msg
->link
);
453 ipmi_free_recv_msg(msg
);
457 static void free_smi_msg_list(struct list_head
*q
)
459 struct ipmi_smi_msg
*msg
, *msg2
;
461 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
462 list_del(&msg
->link
);
463 ipmi_free_smi_msg(msg
);
467 static void clean_up_interface_data(ipmi_smi_t intf
)
470 struct cmd_rcvr
*rcvr
, *rcvr2
;
471 struct list_head list
;
473 free_smi_msg_list(&intf
->waiting_msgs
);
474 free_recv_msg_list(&intf
->waiting_events
);
477 * Wholesale remove all the entries from the list in the
478 * interface and wait for RCU to know that none are in use.
480 mutex_lock(&intf
->cmd_rcvrs_mutex
);
481 INIT_LIST_HEAD(&list
);
482 list_splice_init_rcu(&intf
->cmd_rcvrs
, &list
, synchronize_rcu
);
483 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
485 list_for_each_entry_safe(rcvr
, rcvr2
, &list
, link
)
488 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
489 if ((intf
->seq_table
[i
].inuse
)
490 && (intf
->seq_table
[i
].recv_msg
))
491 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
495 static void intf_free(struct kref
*ref
)
497 ipmi_smi_t intf
= container_of(ref
, struct ipmi_smi
, refcount
);
499 clean_up_interface_data(intf
);
503 struct watcher_entry
{
506 struct list_head link
;
509 int ipmi_smi_watcher_register(struct ipmi_smi_watcher
*watcher
)
512 LIST_HEAD(to_deliver
);
513 struct watcher_entry
*e
, *e2
;
515 mutex_lock(&smi_watchers_mutex
);
517 mutex_lock(&ipmi_interfaces_mutex
);
519 /* Build a list of things to deliver. */
520 list_for_each_entry(intf
, &ipmi_interfaces
, link
) {
521 if (intf
->intf_num
== -1)
523 e
= kmalloc(sizeof(*e
), GFP_KERNEL
);
526 kref_get(&intf
->refcount
);
528 e
->intf_num
= intf
->intf_num
;
529 list_add_tail(&e
->link
, &to_deliver
);
532 /* We will succeed, so add it to the list. */
533 list_add(&watcher
->link
, &smi_watchers
);
535 mutex_unlock(&ipmi_interfaces_mutex
);
537 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
539 watcher
->new_smi(e
->intf_num
, e
->intf
->si_dev
);
540 kref_put(&e
->intf
->refcount
, intf_free
);
544 mutex_unlock(&smi_watchers_mutex
);
549 mutex_unlock(&ipmi_interfaces_mutex
);
550 mutex_unlock(&smi_watchers_mutex
);
551 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
553 kref_put(&e
->intf
->refcount
, intf_free
);
558 EXPORT_SYMBOL(ipmi_smi_watcher_register
);
560 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher
*watcher
)
562 mutex_lock(&smi_watchers_mutex
);
563 list_del(&(watcher
->link
));
564 mutex_unlock(&smi_watchers_mutex
);
567 EXPORT_SYMBOL(ipmi_smi_watcher_unregister
);
570 * Must be called with smi_watchers_mutex held.
573 call_smi_watchers(int i
, struct device
*dev
)
575 struct ipmi_smi_watcher
*w
;
577 list_for_each_entry(w
, &smi_watchers
, link
) {
578 if (try_module_get(w
->owner
)) {
580 module_put(w
->owner
);
586 ipmi_addr_equal(struct ipmi_addr
*addr1
, struct ipmi_addr
*addr2
)
588 if (addr1
->addr_type
!= addr2
->addr_type
)
591 if (addr1
->channel
!= addr2
->channel
)
594 if (addr1
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
595 struct ipmi_system_interface_addr
*smi_addr1
596 = (struct ipmi_system_interface_addr
*) addr1
;
597 struct ipmi_system_interface_addr
*smi_addr2
598 = (struct ipmi_system_interface_addr
*) addr2
;
599 return (smi_addr1
->lun
== smi_addr2
->lun
);
602 if ((addr1
->addr_type
== IPMI_IPMB_ADDR_TYPE
)
603 || (addr1
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
)) {
604 struct ipmi_ipmb_addr
*ipmb_addr1
605 = (struct ipmi_ipmb_addr
*) addr1
;
606 struct ipmi_ipmb_addr
*ipmb_addr2
607 = (struct ipmi_ipmb_addr
*) addr2
;
609 return ((ipmb_addr1
->slave_addr
== ipmb_addr2
->slave_addr
)
610 && (ipmb_addr1
->lun
== ipmb_addr2
->lun
));
613 if (addr1
->addr_type
== IPMI_LAN_ADDR_TYPE
) {
614 struct ipmi_lan_addr
*lan_addr1
615 = (struct ipmi_lan_addr
*) addr1
;
616 struct ipmi_lan_addr
*lan_addr2
617 = (struct ipmi_lan_addr
*) addr2
;
619 return ((lan_addr1
->remote_SWID
== lan_addr2
->remote_SWID
)
620 && (lan_addr1
->local_SWID
== lan_addr2
->local_SWID
)
621 && (lan_addr1
->session_handle
622 == lan_addr2
->session_handle
)
623 && (lan_addr1
->lun
== lan_addr2
->lun
));
629 int ipmi_validate_addr(struct ipmi_addr
*addr
, int len
)
631 if (len
< sizeof(struct ipmi_system_interface_addr
))
634 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
635 if (addr
->channel
!= IPMI_BMC_CHANNEL
)
640 if ((addr
->channel
== IPMI_BMC_CHANNEL
)
641 || (addr
->channel
>= IPMI_MAX_CHANNELS
)
642 || (addr
->channel
< 0))
645 if ((addr
->addr_type
== IPMI_IPMB_ADDR_TYPE
)
646 || (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
)) {
647 if (len
< sizeof(struct ipmi_ipmb_addr
))
652 if (addr
->addr_type
== IPMI_LAN_ADDR_TYPE
) {
653 if (len
< sizeof(struct ipmi_lan_addr
))
660 EXPORT_SYMBOL(ipmi_validate_addr
);
662 unsigned int ipmi_addr_length(int addr_type
)
664 if (addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
665 return sizeof(struct ipmi_system_interface_addr
);
667 if ((addr_type
== IPMI_IPMB_ADDR_TYPE
)
668 || (addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
))
669 return sizeof(struct ipmi_ipmb_addr
);
671 if (addr_type
== IPMI_LAN_ADDR_TYPE
)
672 return sizeof(struct ipmi_lan_addr
);
676 EXPORT_SYMBOL(ipmi_addr_length
);
678 static void deliver_response(struct ipmi_recv_msg
*msg
)
681 ipmi_smi_t intf
= msg
->user_msg_data
;
683 /* Special handling for NULL users. */
684 if (intf
->null_user_handler
) {
685 intf
->null_user_handler(intf
, msg
);
686 ipmi_inc_stat(intf
, handled_local_responses
);
688 /* No handler, so give up. */
689 ipmi_inc_stat(intf
, unhandled_local_responses
);
691 ipmi_free_recv_msg(msg
);
693 ipmi_user_t user
= msg
->user
;
694 user
->handler
->ipmi_recv_hndl(msg
, user
->handler_data
);
699 deliver_err_response(struct ipmi_recv_msg
*msg
, int err
)
701 msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
702 msg
->msg_data
[0] = err
;
703 msg
->msg
.netfn
|= 1; /* Convert to a response. */
704 msg
->msg
.data_len
= 1;
705 msg
->msg
.data
= msg
->msg_data
;
706 deliver_response(msg
);
710 * Find the next sequence number not being used and add the given
711 * message with the given timeout to the sequence table. This must be
712 * called with the interface's seq_lock held.
714 static int intf_next_seq(ipmi_smi_t intf
,
715 struct ipmi_recv_msg
*recv_msg
,
716 unsigned long timeout
,
725 for (i
= intf
->curr_seq
; (i
+1)%IPMI_IPMB_NUM_SEQ
!= intf
->curr_seq
;
726 i
= (i
+1)%IPMI_IPMB_NUM_SEQ
) {
727 if (!intf
->seq_table
[i
].inuse
)
731 if (!intf
->seq_table
[i
].inuse
) {
732 intf
->seq_table
[i
].recv_msg
= recv_msg
;
735 * Start with the maximum timeout, when the send response
736 * comes in we will start the real timer.
738 intf
->seq_table
[i
].timeout
= MAX_MSG_TIMEOUT
;
739 intf
->seq_table
[i
].orig_timeout
= timeout
;
740 intf
->seq_table
[i
].retries_left
= retries
;
741 intf
->seq_table
[i
].broadcast
= broadcast
;
742 intf
->seq_table
[i
].inuse
= 1;
743 intf
->seq_table
[i
].seqid
= NEXT_SEQID(intf
->seq_table
[i
].seqid
);
745 *seqid
= intf
->seq_table
[i
].seqid
;
746 intf
->curr_seq
= (i
+1)%IPMI_IPMB_NUM_SEQ
;
755 * Return the receive message for the given sequence number and
756 * release the sequence number so it can be reused. Some other data
757 * is passed in to be sure the message matches up correctly (to help
758 * guard against message coming in after their timeout and the
759 * sequence number being reused).
761 static int intf_find_seq(ipmi_smi_t intf
,
766 struct ipmi_addr
*addr
,
767 struct ipmi_recv_msg
**recv_msg
)
772 if (seq
>= IPMI_IPMB_NUM_SEQ
)
775 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
776 if (intf
->seq_table
[seq
].inuse
) {
777 struct ipmi_recv_msg
*msg
= intf
->seq_table
[seq
].recv_msg
;
779 if ((msg
->addr
.channel
== channel
) && (msg
->msg
.cmd
== cmd
)
780 && (msg
->msg
.netfn
== netfn
)
781 && (ipmi_addr_equal(addr
, &(msg
->addr
)))) {
783 intf
->seq_table
[seq
].inuse
= 0;
787 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
793 /* Start the timer for a specific sequence table entry. */
794 static int intf_start_seq_timer(ipmi_smi_t intf
,
803 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
805 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
807 * We do this verification because the user can be deleted
808 * while a message is outstanding.
810 if ((intf
->seq_table
[seq
].inuse
)
811 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
812 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
813 ent
->timeout
= ent
->orig_timeout
;
816 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
821 /* Got an error for the send message for a specific sequence number. */
822 static int intf_err_seq(ipmi_smi_t intf
,
830 struct ipmi_recv_msg
*msg
= NULL
;
833 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
835 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
837 * We do this verification because the user can be deleted
838 * while a message is outstanding.
840 if ((intf
->seq_table
[seq
].inuse
)
841 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
842 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
848 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
851 deliver_err_response(msg
, err
);
857 int ipmi_create_user(unsigned int if_num
,
858 struct ipmi_user_hndl
*handler
,
863 ipmi_user_t new_user
;
868 * There is no module usecount here, because it's not
869 * required. Since this can only be used by and called from
870 * other modules, they will implicitly use this module, and
871 * thus this can't be removed unless the other modules are
879 * Make sure the driver is actually initialized, this handles
880 * problems with initialization order.
883 rv
= ipmi_init_msghandler();
888 * The init code doesn't return an error if it was turned
889 * off, but it won't initialize. Check that.
895 new_user
= kmalloc(sizeof(*new_user
), GFP_KERNEL
);
899 mutex_lock(&ipmi_interfaces_mutex
);
900 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
901 if (intf
->intf_num
== if_num
)
904 /* Not found, return an error */
909 /* Note that each existing user holds a refcount to the interface. */
910 kref_get(&intf
->refcount
);
912 kref_init(&new_user
->refcount
);
913 new_user
->handler
= handler
;
914 new_user
->handler_data
= handler_data
;
915 new_user
->intf
= intf
;
916 new_user
->gets_events
= 0;
918 if (!try_module_get(intf
->handlers
->owner
)) {
923 if (intf
->handlers
->inc_usecount
) {
924 rv
= intf
->handlers
->inc_usecount(intf
->send_info
);
926 module_put(intf
->handlers
->owner
);
932 * Hold the lock so intf->handlers is guaranteed to be good
935 mutex_unlock(&ipmi_interfaces_mutex
);
938 spin_lock_irqsave(&intf
->seq_lock
, flags
);
939 list_add_rcu(&new_user
->link
, &intf
->users
);
940 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
945 kref_put(&intf
->refcount
, intf_free
);
947 mutex_unlock(&ipmi_interfaces_mutex
);
951 EXPORT_SYMBOL(ipmi_create_user
);
953 static void free_user(struct kref
*ref
)
955 ipmi_user_t user
= container_of(ref
, struct ipmi_user
, refcount
);
959 int ipmi_destroy_user(ipmi_user_t user
)
961 ipmi_smi_t intf
= user
->intf
;
964 struct cmd_rcvr
*rcvr
;
965 struct cmd_rcvr
*rcvrs
= NULL
;
969 /* Remove the user from the interface's sequence table. */
970 spin_lock_irqsave(&intf
->seq_lock
, flags
);
971 list_del_rcu(&user
->link
);
973 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
974 if (intf
->seq_table
[i
].inuse
975 && (intf
->seq_table
[i
].recv_msg
->user
== user
)) {
976 intf
->seq_table
[i
].inuse
= 0;
977 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
980 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
983 * Remove the user from the command receiver's table. First
984 * we build a list of everything (not using the standard link,
985 * since other things may be using it till we do
986 * synchronize_rcu()) then free everything in that list.
988 mutex_lock(&intf
->cmd_rcvrs_mutex
);
989 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
990 if (rcvr
->user
== user
) {
991 list_del_rcu(&rcvr
->link
);
996 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1004 mutex_lock(&ipmi_interfaces_mutex
);
1005 if (intf
->handlers
) {
1006 module_put(intf
->handlers
->owner
);
1007 if (intf
->handlers
->dec_usecount
)
1008 intf
->handlers
->dec_usecount(intf
->send_info
);
1010 mutex_unlock(&ipmi_interfaces_mutex
);
1012 kref_put(&intf
->refcount
, intf_free
);
1014 kref_put(&user
->refcount
, free_user
);
1018 EXPORT_SYMBOL(ipmi_destroy_user
);
1020 void ipmi_get_version(ipmi_user_t user
,
1021 unsigned char *major
,
1022 unsigned char *minor
)
1024 *major
= user
->intf
->ipmi_version_major
;
1025 *minor
= user
->intf
->ipmi_version_minor
;
1027 EXPORT_SYMBOL(ipmi_get_version
);
1029 int ipmi_set_my_address(ipmi_user_t user
,
1030 unsigned int channel
,
1031 unsigned char address
)
1033 if (channel
>= IPMI_MAX_CHANNELS
)
1035 user
->intf
->channels
[channel
].address
= address
;
1038 EXPORT_SYMBOL(ipmi_set_my_address
);
1040 int ipmi_get_my_address(ipmi_user_t user
,
1041 unsigned int channel
,
1042 unsigned char *address
)
1044 if (channel
>= IPMI_MAX_CHANNELS
)
1046 *address
= user
->intf
->channels
[channel
].address
;
1049 EXPORT_SYMBOL(ipmi_get_my_address
);
1051 int ipmi_set_my_LUN(ipmi_user_t user
,
1052 unsigned int channel
,
1055 if (channel
>= IPMI_MAX_CHANNELS
)
1057 user
->intf
->channels
[channel
].lun
= LUN
& 0x3;
1060 EXPORT_SYMBOL(ipmi_set_my_LUN
);
1062 int ipmi_get_my_LUN(ipmi_user_t user
,
1063 unsigned int channel
,
1064 unsigned char *address
)
1066 if (channel
>= IPMI_MAX_CHANNELS
)
1068 *address
= user
->intf
->channels
[channel
].lun
;
1071 EXPORT_SYMBOL(ipmi_get_my_LUN
);
1073 int ipmi_get_maintenance_mode(ipmi_user_t user
)
1076 unsigned long flags
;
1078 spin_lock_irqsave(&user
->intf
->maintenance_mode_lock
, flags
);
1079 mode
= user
->intf
->maintenance_mode
;
1080 spin_unlock_irqrestore(&user
->intf
->maintenance_mode_lock
, flags
);
1084 EXPORT_SYMBOL(ipmi_get_maintenance_mode
);
1086 static void maintenance_mode_update(ipmi_smi_t intf
)
1088 if (intf
->handlers
->set_maintenance_mode
)
1089 intf
->handlers
->set_maintenance_mode(
1090 intf
->send_info
, intf
->maintenance_mode_enable
);
1093 int ipmi_set_maintenance_mode(ipmi_user_t user
, int mode
)
1096 unsigned long flags
;
1097 ipmi_smi_t intf
= user
->intf
;
1099 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1100 if (intf
->maintenance_mode
!= mode
) {
1102 case IPMI_MAINTENANCE_MODE_AUTO
:
1103 intf
->maintenance_mode
= mode
;
1104 intf
->maintenance_mode_enable
1105 = (intf
->auto_maintenance_timeout
> 0);
1108 case IPMI_MAINTENANCE_MODE_OFF
:
1109 intf
->maintenance_mode
= mode
;
1110 intf
->maintenance_mode_enable
= 0;
1113 case IPMI_MAINTENANCE_MODE_ON
:
1114 intf
->maintenance_mode
= mode
;
1115 intf
->maintenance_mode_enable
= 1;
1123 maintenance_mode_update(intf
);
1126 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
, flags
);
1130 EXPORT_SYMBOL(ipmi_set_maintenance_mode
);
1132 int ipmi_set_gets_events(ipmi_user_t user
, int val
)
1134 unsigned long flags
;
1135 ipmi_smi_t intf
= user
->intf
;
1136 struct ipmi_recv_msg
*msg
, *msg2
;
1137 struct list_head msgs
;
1139 INIT_LIST_HEAD(&msgs
);
1141 spin_lock_irqsave(&intf
->events_lock
, flags
);
1142 user
->gets_events
= val
;
1144 if (intf
->delivering_events
)
1146 * Another thread is delivering events for this, so
1147 * let it handle any new events.
1151 /* Deliver any queued events. */
1152 while (user
->gets_events
&& !list_empty(&intf
->waiting_events
)) {
1153 list_for_each_entry_safe(msg
, msg2
, &intf
->waiting_events
, link
)
1154 list_move_tail(&msg
->link
, &msgs
);
1155 intf
->waiting_events_count
= 0;
1156 if (intf
->event_msg_printed
) {
1157 printk(KERN_WARNING PFX
"Event queue no longer"
1159 intf
->event_msg_printed
= 0;
1162 intf
->delivering_events
= 1;
1163 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1165 list_for_each_entry_safe(msg
, msg2
, &msgs
, link
) {
1167 kref_get(&user
->refcount
);
1168 deliver_response(msg
);
1171 spin_lock_irqsave(&intf
->events_lock
, flags
);
1172 intf
->delivering_events
= 0;
1176 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1180 EXPORT_SYMBOL(ipmi_set_gets_events
);
1182 static struct cmd_rcvr
*find_cmd_rcvr(ipmi_smi_t intf
,
1183 unsigned char netfn
,
1187 struct cmd_rcvr
*rcvr
;
1189 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1190 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1191 && (rcvr
->chans
& (1 << chan
)))
1197 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf
,
1198 unsigned char netfn
,
1202 struct cmd_rcvr
*rcvr
;
1204 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1205 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1206 && (rcvr
->chans
& chans
))
1212 int ipmi_register_for_cmd(ipmi_user_t user
,
1213 unsigned char netfn
,
1217 ipmi_smi_t intf
= user
->intf
;
1218 struct cmd_rcvr
*rcvr
;
1222 rcvr
= kmalloc(sizeof(*rcvr
), GFP_KERNEL
);
1226 rcvr
->netfn
= netfn
;
1227 rcvr
->chans
= chans
;
1230 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1231 /* Make sure the command/netfn is not already registered. */
1232 if (!is_cmd_rcvr_exclusive(intf
, netfn
, cmd
, chans
)) {
1237 list_add_rcu(&rcvr
->link
, &intf
->cmd_rcvrs
);
1240 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1246 EXPORT_SYMBOL(ipmi_register_for_cmd
);
1248 int ipmi_unregister_for_cmd(ipmi_user_t user
,
1249 unsigned char netfn
,
1253 ipmi_smi_t intf
= user
->intf
;
1254 struct cmd_rcvr
*rcvr
;
1255 struct cmd_rcvr
*rcvrs
= NULL
;
1256 int i
, rv
= -ENOENT
;
1258 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1259 for (i
= 0; i
< IPMI_NUM_CHANNELS
; i
++) {
1260 if (((1 << i
) & chans
) == 0)
1262 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, i
);
1265 if (rcvr
->user
== user
) {
1267 rcvr
->chans
&= ~chans
;
1268 if (rcvr
->chans
== 0) {
1269 list_del_rcu(&rcvr
->link
);
1275 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1284 EXPORT_SYMBOL(ipmi_unregister_for_cmd
);
1286 static unsigned char
1287 ipmb_checksum(unsigned char *data
, int size
)
1289 unsigned char csum
= 0;
1291 for (; size
> 0; size
--, data
++)
1297 static inline void format_ipmb_msg(struct ipmi_smi_msg
*smi_msg
,
1298 struct kernel_ipmi_msg
*msg
,
1299 struct ipmi_ipmb_addr
*ipmb_addr
,
1301 unsigned char ipmb_seq
,
1303 unsigned char source_address
,
1304 unsigned char source_lun
)
1308 /* Format the IPMB header data. */
1309 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1310 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1311 smi_msg
->data
[2] = ipmb_addr
->channel
;
1313 smi_msg
->data
[3] = 0;
1314 smi_msg
->data
[i
+3] = ipmb_addr
->slave_addr
;
1315 smi_msg
->data
[i
+4] = (msg
->netfn
<< 2) | (ipmb_addr
->lun
& 0x3);
1316 smi_msg
->data
[i
+5] = ipmb_checksum(&(smi_msg
->data
[i
+3]), 2);
1317 smi_msg
->data
[i
+6] = source_address
;
1318 smi_msg
->data
[i
+7] = (ipmb_seq
<< 2) | source_lun
;
1319 smi_msg
->data
[i
+8] = msg
->cmd
;
1321 /* Now tack on the data to the message. */
1322 if (msg
->data_len
> 0)
1323 memcpy(&(smi_msg
->data
[i
+9]), msg
->data
,
1325 smi_msg
->data_size
= msg
->data_len
+ 9;
1327 /* Now calculate the checksum and tack it on. */
1328 smi_msg
->data
[i
+smi_msg
->data_size
]
1329 = ipmb_checksum(&(smi_msg
->data
[i
+6]),
1330 smi_msg
->data_size
-6);
1333 * Add on the checksum size and the offset from the
1336 smi_msg
->data_size
+= 1 + i
;
1338 smi_msg
->msgid
= msgid
;
1341 static inline void format_lan_msg(struct ipmi_smi_msg
*smi_msg
,
1342 struct kernel_ipmi_msg
*msg
,
1343 struct ipmi_lan_addr
*lan_addr
,
1345 unsigned char ipmb_seq
,
1346 unsigned char source_lun
)
1348 /* Format the IPMB header data. */
1349 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1350 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1351 smi_msg
->data
[2] = lan_addr
->channel
;
1352 smi_msg
->data
[3] = lan_addr
->session_handle
;
1353 smi_msg
->data
[4] = lan_addr
->remote_SWID
;
1354 smi_msg
->data
[5] = (msg
->netfn
<< 2) | (lan_addr
->lun
& 0x3);
1355 smi_msg
->data
[6] = ipmb_checksum(&(smi_msg
->data
[4]), 2);
1356 smi_msg
->data
[7] = lan_addr
->local_SWID
;
1357 smi_msg
->data
[8] = (ipmb_seq
<< 2) | source_lun
;
1358 smi_msg
->data
[9] = msg
->cmd
;
1360 /* Now tack on the data to the message. */
1361 if (msg
->data_len
> 0)
1362 memcpy(&(smi_msg
->data
[10]), msg
->data
,
1364 smi_msg
->data_size
= msg
->data_len
+ 10;
1366 /* Now calculate the checksum and tack it on. */
1367 smi_msg
->data
[smi_msg
->data_size
]
1368 = ipmb_checksum(&(smi_msg
->data
[7]),
1369 smi_msg
->data_size
-7);
1372 * Add on the checksum size and the offset from the
1375 smi_msg
->data_size
+= 1;
1377 smi_msg
->msgid
= msgid
;
1381 * Separate from ipmi_request so that the user does not have to be
1382 * supplied in certain circumstances (mainly at panic time). If
1383 * messages are supplied, they will be freed, even if an error
1386 static int i_ipmi_request(ipmi_user_t user
,
1388 struct ipmi_addr
*addr
,
1390 struct kernel_ipmi_msg
*msg
,
1391 void *user_msg_data
,
1393 struct ipmi_recv_msg
*supplied_recv
,
1395 unsigned char source_address
,
1396 unsigned char source_lun
,
1398 unsigned int retry_time_ms
)
1401 struct ipmi_smi_msg
*smi_msg
;
1402 struct ipmi_recv_msg
*recv_msg
;
1403 unsigned long flags
;
1404 struct ipmi_smi_handlers
*handlers
;
1408 recv_msg
= supplied_recv
;
1410 recv_msg
= ipmi_alloc_recv_msg();
1411 if (recv_msg
== NULL
)
1414 recv_msg
->user_msg_data
= user_msg_data
;
1417 smi_msg
= (struct ipmi_smi_msg
*) supplied_smi
;
1419 smi_msg
= ipmi_alloc_smi_msg();
1420 if (smi_msg
== NULL
) {
1421 ipmi_free_recv_msg(recv_msg
);
1427 handlers
= intf
->handlers
;
1433 recv_msg
->user
= user
;
1435 kref_get(&user
->refcount
);
1436 recv_msg
->msgid
= msgid
;
1438 * Store the message to send in the receive message so timeout
1439 * responses can get the proper response data.
1441 recv_msg
->msg
= *msg
;
1443 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
1444 struct ipmi_system_interface_addr
*smi_addr
;
1446 if (msg
->netfn
& 1) {
1447 /* Responses are not allowed to the SMI. */
1452 smi_addr
= (struct ipmi_system_interface_addr
*) addr
;
1453 if (smi_addr
->lun
> 3) {
1454 ipmi_inc_stat(intf
, sent_invalid_commands
);
1459 memcpy(&recv_msg
->addr
, smi_addr
, sizeof(*smi_addr
));
1461 if ((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1462 && ((msg
->cmd
== IPMI_SEND_MSG_CMD
)
1463 || (msg
->cmd
== IPMI_GET_MSG_CMD
)
1464 || (msg
->cmd
== IPMI_READ_EVENT_MSG_BUFFER_CMD
))) {
1466 * We don't let the user do these, since we manage
1467 * the sequence numbers.
1469 ipmi_inc_stat(intf
, sent_invalid_commands
);
1474 if (((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1475 && ((msg
->cmd
== IPMI_COLD_RESET_CMD
)
1476 || (msg
->cmd
== IPMI_WARM_RESET_CMD
)))
1477 || (msg
->netfn
== IPMI_NETFN_FIRMWARE_REQUEST
)) {
1478 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1479 intf
->auto_maintenance_timeout
1480 = IPMI_MAINTENANCE_MODE_TIMEOUT
;
1481 if (!intf
->maintenance_mode
1482 && !intf
->maintenance_mode_enable
) {
1483 intf
->maintenance_mode_enable
= 1;
1484 maintenance_mode_update(intf
);
1486 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
1490 if ((msg
->data_len
+ 2) > IPMI_MAX_MSG_LENGTH
) {
1491 ipmi_inc_stat(intf
, sent_invalid_commands
);
1496 smi_msg
->data
[0] = (msg
->netfn
<< 2) | (smi_addr
->lun
& 0x3);
1497 smi_msg
->data
[1] = msg
->cmd
;
1498 smi_msg
->msgid
= msgid
;
1499 smi_msg
->user_data
= recv_msg
;
1500 if (msg
->data_len
> 0)
1501 memcpy(&(smi_msg
->data
[2]), msg
->data
, msg
->data_len
);
1502 smi_msg
->data_size
= msg
->data_len
+ 2;
1503 ipmi_inc_stat(intf
, sent_local_commands
);
1504 } else if ((addr
->addr_type
== IPMI_IPMB_ADDR_TYPE
)
1505 || (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
)) {
1506 struct ipmi_ipmb_addr
*ipmb_addr
;
1507 unsigned char ipmb_seq
;
1511 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1512 ipmi_inc_stat(intf
, sent_invalid_commands
);
1517 if (intf
->channels
[addr
->channel
].medium
1518 != IPMI_CHANNEL_MEDIUM_IPMB
) {
1519 ipmi_inc_stat(intf
, sent_invalid_commands
);
1525 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
)
1526 retries
= 0; /* Don't retry broadcasts. */
1530 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
) {
1532 * Broadcasts add a zero at the beginning of the
1533 * message, but otherwise is the same as an IPMB
1536 addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
1541 /* Default to 1 second retries. */
1542 if (retry_time_ms
== 0)
1543 retry_time_ms
= 1000;
1546 * 9 for the header and 1 for the checksum, plus
1547 * possibly one for the broadcast.
1549 if ((msg
->data_len
+ 10 + broadcast
) > IPMI_MAX_MSG_LENGTH
) {
1550 ipmi_inc_stat(intf
, sent_invalid_commands
);
1555 ipmb_addr
= (struct ipmi_ipmb_addr
*) addr
;
1556 if (ipmb_addr
->lun
> 3) {
1557 ipmi_inc_stat(intf
, sent_invalid_commands
);
1562 memcpy(&recv_msg
->addr
, ipmb_addr
, sizeof(*ipmb_addr
));
1564 if (recv_msg
->msg
.netfn
& 0x1) {
1566 * It's a response, so use the user's sequence
1569 ipmi_inc_stat(intf
, sent_ipmb_responses
);
1570 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
, msgid
,
1572 source_address
, source_lun
);
1575 * Save the receive message so we can use it
1576 * to deliver the response.
1578 smi_msg
->user_data
= recv_msg
;
1580 /* It's a command, so get a sequence for it. */
1582 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1584 ipmi_inc_stat(intf
, sent_ipmb_commands
);
1587 * Create a sequence number with a 1 second
1588 * timeout and 4 retries.
1590 rv
= intf_next_seq(intf
,
1599 * We have used up all the sequence numbers,
1600 * probably, so abort.
1602 spin_unlock_irqrestore(&(intf
->seq_lock
),
1608 * Store the sequence number in the message,
1609 * so that when the send message response
1610 * comes back we can start the timer.
1612 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
,
1613 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1614 ipmb_seq
, broadcast
,
1615 source_address
, source_lun
);
1618 * Copy the message into the recv message data, so we
1619 * can retransmit it later if necessary.
1621 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1622 smi_msg
->data_size
);
1623 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1624 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1627 * We don't unlock until here, because we need
1628 * to copy the completed message into the
1629 * recv_msg before we release the lock.
1630 * Otherwise, race conditions may bite us. I
1631 * know that's pretty paranoid, but I prefer
1634 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1636 } else if (addr
->addr_type
== IPMI_LAN_ADDR_TYPE
) {
1637 struct ipmi_lan_addr
*lan_addr
;
1638 unsigned char ipmb_seq
;
1641 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1642 ipmi_inc_stat(intf
, sent_invalid_commands
);
1647 if ((intf
->channels
[addr
->channel
].medium
1648 != IPMI_CHANNEL_MEDIUM_8023LAN
)
1649 && (intf
->channels
[addr
->channel
].medium
1650 != IPMI_CHANNEL_MEDIUM_ASYNC
)) {
1651 ipmi_inc_stat(intf
, sent_invalid_commands
);
1658 /* Default to 1 second retries. */
1659 if (retry_time_ms
== 0)
1660 retry_time_ms
= 1000;
1662 /* 11 for the header and 1 for the checksum. */
1663 if ((msg
->data_len
+ 12) > IPMI_MAX_MSG_LENGTH
) {
1664 ipmi_inc_stat(intf
, sent_invalid_commands
);
1669 lan_addr
= (struct ipmi_lan_addr
*) addr
;
1670 if (lan_addr
->lun
> 3) {
1671 ipmi_inc_stat(intf
, sent_invalid_commands
);
1676 memcpy(&recv_msg
->addr
, lan_addr
, sizeof(*lan_addr
));
1678 if (recv_msg
->msg
.netfn
& 0x1) {
1680 * It's a response, so use the user's sequence
1683 ipmi_inc_stat(intf
, sent_lan_responses
);
1684 format_lan_msg(smi_msg
, msg
, lan_addr
, msgid
,
1688 * Save the receive message so we can use it
1689 * to deliver the response.
1691 smi_msg
->user_data
= recv_msg
;
1693 /* It's a command, so get a sequence for it. */
1695 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1697 ipmi_inc_stat(intf
, sent_lan_commands
);
1700 * Create a sequence number with a 1 second
1701 * timeout and 4 retries.
1703 rv
= intf_next_seq(intf
,
1712 * We have used up all the sequence numbers,
1713 * probably, so abort.
1715 spin_unlock_irqrestore(&(intf
->seq_lock
),
1721 * Store the sequence number in the message,
1722 * so that when the send message response
1723 * comes back we can start the timer.
1725 format_lan_msg(smi_msg
, msg
, lan_addr
,
1726 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1727 ipmb_seq
, source_lun
);
1730 * Copy the message into the recv message data, so we
1731 * can retransmit it later if necessary.
1733 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1734 smi_msg
->data_size
);
1735 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1736 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1739 * We don't unlock until here, because we need
1740 * to copy the completed message into the
1741 * recv_msg before we release the lock.
1742 * Otherwise, race conditions may bite us. I
1743 * know that's pretty paranoid, but I prefer
1746 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1749 /* Unknown address type. */
1750 ipmi_inc_stat(intf
, sent_invalid_commands
);
1758 for (m
= 0; m
< smi_msg
->data_size
; m
++)
1759 printk(" %2.2x", smi_msg
->data
[m
]);
1764 handlers
->sender(intf
->send_info
, smi_msg
, priority
);
1771 ipmi_free_smi_msg(smi_msg
);
1772 ipmi_free_recv_msg(recv_msg
);
1776 static int check_addr(ipmi_smi_t intf
,
1777 struct ipmi_addr
*addr
,
1778 unsigned char *saddr
,
1781 if (addr
->channel
>= IPMI_MAX_CHANNELS
)
1783 *lun
= intf
->channels
[addr
->channel
].lun
;
1784 *saddr
= intf
->channels
[addr
->channel
].address
;
1788 int ipmi_request_settime(ipmi_user_t user
,
1789 struct ipmi_addr
*addr
,
1791 struct kernel_ipmi_msg
*msg
,
1792 void *user_msg_data
,
1795 unsigned int retry_time_ms
)
1797 unsigned char saddr
, lun
;
1802 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
1805 return i_ipmi_request(user
,
1818 EXPORT_SYMBOL(ipmi_request_settime
);
1820 int ipmi_request_supply_msgs(ipmi_user_t user
,
1821 struct ipmi_addr
*addr
,
1823 struct kernel_ipmi_msg
*msg
,
1824 void *user_msg_data
,
1826 struct ipmi_recv_msg
*supplied_recv
,
1829 unsigned char saddr
, lun
;
1834 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
1837 return i_ipmi_request(user
,
1850 EXPORT_SYMBOL(ipmi_request_supply_msgs
);
1852 #ifdef CONFIG_PROC_FS
1853 static int ipmb_file_read_proc(char *page
, char **start
, off_t off
,
1854 int count
, int *eof
, void *data
)
1856 char *out
= (char *) page
;
1857 ipmi_smi_t intf
= data
;
1861 for (i
= 0; i
< IPMI_MAX_CHANNELS
; i
++)
1862 rv
+= sprintf(out
+rv
, "%x ", intf
->channels
[i
].address
);
1863 out
[rv
-1] = '\n'; /* Replace the final space with a newline */
1869 static int version_file_read_proc(char *page
, char **start
, off_t off
,
1870 int count
, int *eof
, void *data
)
1872 char *out
= (char *) page
;
1873 ipmi_smi_t intf
= data
;
1875 return sprintf(out
, "%u.%u\n",
1876 ipmi_version_major(&intf
->bmc
->id
),
1877 ipmi_version_minor(&intf
->bmc
->id
));
1880 static int stat_file_read_proc(char *page
, char **start
, off_t off
,
1881 int count
, int *eof
, void *data
)
1883 char *out
= (char *) page
;
1884 ipmi_smi_t intf
= data
;
1886 out
+= sprintf(out
, "sent_invalid_commands: %u\n",
1887 ipmi_get_stat(intf
, sent_invalid_commands
));
1888 out
+= sprintf(out
, "sent_local_commands: %u\n",
1889 ipmi_get_stat(intf
, sent_local_commands
));
1890 out
+= sprintf(out
, "handled_local_responses: %u\n",
1891 ipmi_get_stat(intf
, handled_local_responses
));
1892 out
+= sprintf(out
, "unhandled_local_responses: %u\n",
1893 ipmi_get_stat(intf
, unhandled_local_responses
));
1894 out
+= sprintf(out
, "sent_ipmb_commands: %u\n",
1895 ipmi_get_stat(intf
, sent_ipmb_commands
));
1896 out
+= sprintf(out
, "sent_ipmb_command_errs: %u\n",
1897 ipmi_get_stat(intf
, sent_ipmb_command_errs
));
1898 out
+= sprintf(out
, "retransmitted_ipmb_commands: %u\n",
1899 ipmi_get_stat(intf
, retransmitted_ipmb_commands
));
1900 out
+= sprintf(out
, "timed_out_ipmb_commands: %u\n",
1901 ipmi_get_stat(intf
, timed_out_ipmb_commands
));
1902 out
+= sprintf(out
, "timed_out_ipmb_broadcasts: %u\n",
1903 ipmi_get_stat(intf
, timed_out_ipmb_broadcasts
));
1904 out
+= sprintf(out
, "sent_ipmb_responses: %u\n",
1905 ipmi_get_stat(intf
, sent_ipmb_responses
));
1906 out
+= sprintf(out
, "handled_ipmb_responses: %u\n",
1907 ipmi_get_stat(intf
, handled_ipmb_responses
));
1908 out
+= sprintf(out
, "invalid_ipmb_responses: %u\n",
1909 ipmi_get_stat(intf
, invalid_ipmb_responses
));
1910 out
+= sprintf(out
, "unhandled_ipmb_responses: %u\n",
1911 ipmi_get_stat(intf
, unhandled_ipmb_responses
));
1912 out
+= sprintf(out
, "sent_lan_commands: %u\n",
1913 ipmi_get_stat(intf
, sent_lan_commands
));
1914 out
+= sprintf(out
, "sent_lan_command_errs: %u\n",
1915 ipmi_get_stat(intf
, sent_lan_command_errs
));
1916 out
+= sprintf(out
, "retransmitted_lan_commands: %u\n",
1917 ipmi_get_stat(intf
, retransmitted_lan_commands
));
1918 out
+= sprintf(out
, "timed_out_lan_commands: %u\n",
1919 ipmi_get_stat(intf
, timed_out_lan_commands
));
1920 out
+= sprintf(out
, "sent_lan_responses: %u\n",
1921 ipmi_get_stat(intf
, sent_lan_responses
));
1922 out
+= sprintf(out
, "handled_lan_responses: %u\n",
1923 ipmi_get_stat(intf
, handled_lan_responses
));
1924 out
+= sprintf(out
, "invalid_lan_responses: %u\n",
1925 ipmi_get_stat(intf
, invalid_lan_responses
));
1926 out
+= sprintf(out
, "unhandled_lan_responses: %u\n",
1927 ipmi_get_stat(intf
, unhandled_lan_responses
));
1928 out
+= sprintf(out
, "handled_commands: %u\n",
1929 ipmi_get_stat(intf
, handled_commands
));
1930 out
+= sprintf(out
, "invalid_commands: %u\n",
1931 ipmi_get_stat(intf
, invalid_commands
));
1932 out
+= sprintf(out
, "unhandled_commands: %u\n",
1933 ipmi_get_stat(intf
, unhandled_commands
));
1934 out
+= sprintf(out
, "invalid_events: %u\n",
1935 ipmi_get_stat(intf
, invalid_events
));
1936 out
+= sprintf(out
, "events: %u\n",
1937 ipmi_get_stat(intf
, events
));
1939 return (out
- ((char *) page
));
1941 #endif /* CONFIG_PROC_FS */
1943 int ipmi_smi_add_proc_entry(ipmi_smi_t smi
, char *name
,
1944 read_proc_t
*read_proc
,
1945 void *data
, struct module
*owner
)
1948 #ifdef CONFIG_PROC_FS
1949 struct proc_dir_entry
*file
;
1950 struct ipmi_proc_entry
*entry
;
1952 /* Create a list element. */
1953 entry
= kmalloc(sizeof(*entry
), GFP_KERNEL
);
1956 entry
->name
= kmalloc(strlen(name
)+1, GFP_KERNEL
);
1961 strcpy(entry
->name
, name
);
1963 file
= create_proc_entry(name
, 0, smi
->proc_dir
);
1970 file
->read_proc
= read_proc
;
1971 file
->owner
= owner
;
1973 mutex_lock(&smi
->proc_entry_lock
);
1974 /* Stick it on the list. */
1975 entry
->next
= smi
->proc_entries
;
1976 smi
->proc_entries
= entry
;
1977 mutex_unlock(&smi
->proc_entry_lock
);
1979 #endif /* CONFIG_PROC_FS */
1983 EXPORT_SYMBOL(ipmi_smi_add_proc_entry
);
1985 static int add_proc_entries(ipmi_smi_t smi
, int num
)
1989 #ifdef CONFIG_PROC_FS
1990 sprintf(smi
->proc_dir_name
, "%d", num
);
1991 smi
->proc_dir
= proc_mkdir(smi
->proc_dir_name
, proc_ipmi_root
);
1995 smi
->proc_dir
->owner
= THIS_MODULE
;
1998 rv
= ipmi_smi_add_proc_entry(smi
, "stats",
1999 stat_file_read_proc
,
2003 rv
= ipmi_smi_add_proc_entry(smi
, "ipmb",
2004 ipmb_file_read_proc
,
2008 rv
= ipmi_smi_add_proc_entry(smi
, "version",
2009 version_file_read_proc
,
2011 #endif /* CONFIG_PROC_FS */
2016 static void remove_proc_entries(ipmi_smi_t smi
)
2018 #ifdef CONFIG_PROC_FS
2019 struct ipmi_proc_entry
*entry
;
2021 mutex_lock(&smi
->proc_entry_lock
);
2022 while (smi
->proc_entries
) {
2023 entry
= smi
->proc_entries
;
2024 smi
->proc_entries
= entry
->next
;
2026 remove_proc_entry(entry
->name
, smi
->proc_dir
);
2030 mutex_unlock(&smi
->proc_entry_lock
);
2031 remove_proc_entry(smi
->proc_dir_name
, proc_ipmi_root
);
2032 #endif /* CONFIG_PROC_FS */
2035 static int __find_bmc_guid(struct device
*dev
, void *data
)
2037 unsigned char *id
= data
;
2038 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2039 return memcmp(bmc
->guid
, id
, 16) == 0;
2042 static struct bmc_device
*ipmi_find_bmc_guid(struct device_driver
*drv
,
2043 unsigned char *guid
)
2047 dev
= driver_find_device(drv
, NULL
, guid
, __find_bmc_guid
);
2049 return dev_get_drvdata(dev
);
2054 struct prod_dev_id
{
2055 unsigned int product_id
;
2056 unsigned char device_id
;
2059 static int __find_bmc_prod_dev_id(struct device
*dev
, void *data
)
2061 struct prod_dev_id
*id
= data
;
2062 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2064 return (bmc
->id
.product_id
== id
->product_id
2065 && bmc
->id
.device_id
== id
->device_id
);
2068 static struct bmc_device
*ipmi_find_bmc_prod_dev_id(
2069 struct device_driver
*drv
,
2070 unsigned int product_id
, unsigned char device_id
)
2072 struct prod_dev_id id
= {
2073 .product_id
= product_id
,
2074 .device_id
= device_id
,
2078 dev
= driver_find_device(drv
, NULL
, &id
, __find_bmc_prod_dev_id
);
2080 return dev_get_drvdata(dev
);
2085 static ssize_t
device_id_show(struct device
*dev
,
2086 struct device_attribute
*attr
,
2089 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2091 return snprintf(buf
, 10, "%u\n", bmc
->id
.device_id
);
2094 static ssize_t
provides_dev_sdrs_show(struct device
*dev
,
2095 struct device_attribute
*attr
,
2098 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2100 return snprintf(buf
, 10, "%u\n",
2101 (bmc
->id
.device_revision
& 0x80) >> 7);
2104 static ssize_t
revision_show(struct device
*dev
, struct device_attribute
*attr
,
2107 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2109 return snprintf(buf
, 20, "%u\n",
2110 bmc
->id
.device_revision
& 0x0F);
2113 static ssize_t
firmware_rev_show(struct device
*dev
,
2114 struct device_attribute
*attr
,
2117 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2119 return snprintf(buf
, 20, "%u.%x\n", bmc
->id
.firmware_revision_1
,
2120 bmc
->id
.firmware_revision_2
);
2123 static ssize_t
ipmi_version_show(struct device
*dev
,
2124 struct device_attribute
*attr
,
2127 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2129 return snprintf(buf
, 20, "%u.%u\n",
2130 ipmi_version_major(&bmc
->id
),
2131 ipmi_version_minor(&bmc
->id
));
2134 static ssize_t
add_dev_support_show(struct device
*dev
,
2135 struct device_attribute
*attr
,
2138 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2140 return snprintf(buf
, 10, "0x%02x\n",
2141 bmc
->id
.additional_device_support
);
2144 static ssize_t
manufacturer_id_show(struct device
*dev
,
2145 struct device_attribute
*attr
,
2148 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2150 return snprintf(buf
, 20, "0x%6.6x\n", bmc
->id
.manufacturer_id
);
2153 static ssize_t
product_id_show(struct device
*dev
,
2154 struct device_attribute
*attr
,
2157 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2159 return snprintf(buf
, 10, "0x%4.4x\n", bmc
->id
.product_id
);
2162 static ssize_t
aux_firmware_rev_show(struct device
*dev
,
2163 struct device_attribute
*attr
,
2166 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2168 return snprintf(buf
, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2169 bmc
->id
.aux_firmware_revision
[3],
2170 bmc
->id
.aux_firmware_revision
[2],
2171 bmc
->id
.aux_firmware_revision
[1],
2172 bmc
->id
.aux_firmware_revision
[0]);
2175 static ssize_t
guid_show(struct device
*dev
, struct device_attribute
*attr
,
2178 struct bmc_device
*bmc
= dev_get_drvdata(dev
);
2180 return snprintf(buf
, 100, "%Lx%Lx\n",
2181 (long long) bmc
->guid
[0],
2182 (long long) bmc
->guid
[8]);
2185 static void remove_files(struct bmc_device
*bmc
)
2190 device_remove_file(&bmc
->dev
->dev
,
2191 &bmc
->device_id_attr
);
2192 device_remove_file(&bmc
->dev
->dev
,
2193 &bmc
->provides_dev_sdrs_attr
);
2194 device_remove_file(&bmc
->dev
->dev
,
2195 &bmc
->revision_attr
);
2196 device_remove_file(&bmc
->dev
->dev
,
2197 &bmc
->firmware_rev_attr
);
2198 device_remove_file(&bmc
->dev
->dev
,
2199 &bmc
->version_attr
);
2200 device_remove_file(&bmc
->dev
->dev
,
2201 &bmc
->add_dev_support_attr
);
2202 device_remove_file(&bmc
->dev
->dev
,
2203 &bmc
->manufacturer_id_attr
);
2204 device_remove_file(&bmc
->dev
->dev
,
2205 &bmc
->product_id_attr
);
2207 if (bmc
->id
.aux_firmware_revision_set
)
2208 device_remove_file(&bmc
->dev
->dev
,
2209 &bmc
->aux_firmware_rev_attr
);
2211 device_remove_file(&bmc
->dev
->dev
,
2216 cleanup_bmc_device(struct kref
*ref
)
2218 struct bmc_device
*bmc
;
2220 bmc
= container_of(ref
, struct bmc_device
, refcount
);
2223 platform_device_unregister(bmc
->dev
);
2227 static void ipmi_bmc_unregister(ipmi_smi_t intf
)
2229 struct bmc_device
*bmc
= intf
->bmc
;
2231 if (intf
->sysfs_name
) {
2232 sysfs_remove_link(&intf
->si_dev
->kobj
, intf
->sysfs_name
);
2233 kfree(intf
->sysfs_name
);
2234 intf
->sysfs_name
= NULL
;
2236 if (intf
->my_dev_name
) {
2237 sysfs_remove_link(&bmc
->dev
->dev
.kobj
, intf
->my_dev_name
);
2238 kfree(intf
->my_dev_name
);
2239 intf
->my_dev_name
= NULL
;
2242 mutex_lock(&ipmidriver_mutex
);
2243 kref_put(&bmc
->refcount
, cleanup_bmc_device
);
2245 mutex_unlock(&ipmidriver_mutex
);
2248 static int create_files(struct bmc_device
*bmc
)
2252 bmc
->device_id_attr
.attr
.name
= "device_id";
2253 bmc
->device_id_attr
.attr
.mode
= S_IRUGO
;
2254 bmc
->device_id_attr
.show
= device_id_show
;
2256 bmc
->provides_dev_sdrs_attr
.attr
.name
= "provides_device_sdrs";
2257 bmc
->provides_dev_sdrs_attr
.attr
.mode
= S_IRUGO
;
2258 bmc
->provides_dev_sdrs_attr
.show
= provides_dev_sdrs_show
;
2260 bmc
->revision_attr
.attr
.name
= "revision";
2261 bmc
->revision_attr
.attr
.mode
= S_IRUGO
;
2262 bmc
->revision_attr
.show
= revision_show
;
2264 bmc
->firmware_rev_attr
.attr
.name
= "firmware_revision";
2265 bmc
->firmware_rev_attr
.attr
.mode
= S_IRUGO
;
2266 bmc
->firmware_rev_attr
.show
= firmware_rev_show
;
2268 bmc
->version_attr
.attr
.name
= "ipmi_version";
2269 bmc
->version_attr
.attr
.mode
= S_IRUGO
;
2270 bmc
->version_attr
.show
= ipmi_version_show
;
2272 bmc
->add_dev_support_attr
.attr
.name
= "additional_device_support";
2273 bmc
->add_dev_support_attr
.attr
.mode
= S_IRUGO
;
2274 bmc
->add_dev_support_attr
.show
= add_dev_support_show
;
2276 bmc
->manufacturer_id_attr
.attr
.name
= "manufacturer_id";
2277 bmc
->manufacturer_id_attr
.attr
.mode
= S_IRUGO
;
2278 bmc
->manufacturer_id_attr
.show
= manufacturer_id_show
;
2280 bmc
->product_id_attr
.attr
.name
= "product_id";
2281 bmc
->product_id_attr
.attr
.mode
= S_IRUGO
;
2282 bmc
->product_id_attr
.show
= product_id_show
;
2284 bmc
->guid_attr
.attr
.name
= "guid";
2285 bmc
->guid_attr
.attr
.mode
= S_IRUGO
;
2286 bmc
->guid_attr
.show
= guid_show
;
2288 bmc
->aux_firmware_rev_attr
.attr
.name
= "aux_firmware_revision";
2289 bmc
->aux_firmware_rev_attr
.attr
.mode
= S_IRUGO
;
2290 bmc
->aux_firmware_rev_attr
.show
= aux_firmware_rev_show
;
2292 err
= device_create_file(&bmc
->dev
->dev
,
2293 &bmc
->device_id_attr
);
2296 err
= device_create_file(&bmc
->dev
->dev
,
2297 &bmc
->provides_dev_sdrs_attr
);
2300 err
= device_create_file(&bmc
->dev
->dev
,
2301 &bmc
->revision_attr
);
2304 err
= device_create_file(&bmc
->dev
->dev
,
2305 &bmc
->firmware_rev_attr
);
2308 err
= device_create_file(&bmc
->dev
->dev
,
2309 &bmc
->version_attr
);
2312 err
= device_create_file(&bmc
->dev
->dev
,
2313 &bmc
->add_dev_support_attr
);
2316 err
= device_create_file(&bmc
->dev
->dev
,
2317 &bmc
->manufacturer_id_attr
);
2320 err
= device_create_file(&bmc
->dev
->dev
,
2321 &bmc
->product_id_attr
);
2324 if (bmc
->id
.aux_firmware_revision_set
) {
2325 err
= device_create_file(&bmc
->dev
->dev
,
2326 &bmc
->aux_firmware_rev_attr
);
2330 if (bmc
->guid_set
) {
2331 err
= device_create_file(&bmc
->dev
->dev
,
2340 if (bmc
->id
.aux_firmware_revision_set
)
2341 device_remove_file(&bmc
->dev
->dev
,
2342 &bmc
->aux_firmware_rev_attr
);
2344 device_remove_file(&bmc
->dev
->dev
,
2345 &bmc
->product_id_attr
);
2347 device_remove_file(&bmc
->dev
->dev
,
2348 &bmc
->manufacturer_id_attr
);
2350 device_remove_file(&bmc
->dev
->dev
,
2351 &bmc
->add_dev_support_attr
);
2353 device_remove_file(&bmc
->dev
->dev
,
2354 &bmc
->version_attr
);
2356 device_remove_file(&bmc
->dev
->dev
,
2357 &bmc
->firmware_rev_attr
);
2359 device_remove_file(&bmc
->dev
->dev
,
2360 &bmc
->revision_attr
);
2362 device_remove_file(&bmc
->dev
->dev
,
2363 &bmc
->provides_dev_sdrs_attr
);
2365 device_remove_file(&bmc
->dev
->dev
,
2366 &bmc
->device_id_attr
);
2371 static int ipmi_bmc_register(ipmi_smi_t intf
, int ifnum
,
2372 const char *sysfs_name
)
2375 struct bmc_device
*bmc
= intf
->bmc
;
2376 struct bmc_device
*old_bmc
;
2380 mutex_lock(&ipmidriver_mutex
);
2383 * Try to find if there is an bmc_device struct
2384 * representing the interfaced BMC already
2387 old_bmc
= ipmi_find_bmc_guid(&ipmidriver
, bmc
->guid
);
2389 old_bmc
= ipmi_find_bmc_prod_dev_id(&ipmidriver
,
2394 * If there is already an bmc_device, free the new one,
2395 * otherwise register the new BMC device
2399 intf
->bmc
= old_bmc
;
2402 kref_get(&bmc
->refcount
);
2403 mutex_unlock(&ipmidriver_mutex
);
2406 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2407 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2408 bmc
->id
.manufacturer_id
,
2413 unsigned char orig_dev_id
= bmc
->id
.device_id
;
2414 int warn_printed
= 0;
2416 snprintf(name
, sizeof(name
),
2417 "ipmi_bmc.%4.4x", bmc
->id
.product_id
);
2419 while (ipmi_find_bmc_prod_dev_id(&ipmidriver
,
2421 bmc
->id
.device_id
)) {
2422 if (!warn_printed
) {
2423 printk(KERN_WARNING PFX
2424 "This machine has two different BMCs"
2425 " with the same product id and device"
2426 " id. This is an error in the"
2427 " firmware, but incrementing the"
2428 " device id to work around the problem."
2429 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2430 bmc
->id
.product_id
, bmc
->id
.device_id
);
2433 bmc
->id
.device_id
++; /* Wraps at 255 */
2434 if (bmc
->id
.device_id
== orig_dev_id
) {
2436 "Out of device ids!\n");
2441 bmc
->dev
= platform_device_alloc(name
, bmc
->id
.device_id
);
2443 mutex_unlock(&ipmidriver_mutex
);
2446 " Unable to allocate platform device\n");
2449 bmc
->dev
->dev
.driver
= &ipmidriver
;
2450 dev_set_drvdata(&bmc
->dev
->dev
, bmc
);
2451 kref_init(&bmc
->refcount
);
2453 rv
= platform_device_add(bmc
->dev
);
2454 mutex_unlock(&ipmidriver_mutex
);
2456 platform_device_put(bmc
->dev
);
2460 " Unable to register bmc device: %d\n",
2463 * Don't go to out_err, you can only do that if
2464 * the device is registered already.
2469 rv
= create_files(bmc
);
2471 mutex_lock(&ipmidriver_mutex
);
2472 platform_device_unregister(bmc
->dev
);
2473 mutex_unlock(&ipmidriver_mutex
);
2479 "ipmi: Found new BMC (man_id: 0x%6.6x, "
2480 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2481 bmc
->id
.manufacturer_id
,
2487 * create symlink from system interface device to bmc device
2490 intf
->sysfs_name
= kstrdup(sysfs_name
, GFP_KERNEL
);
2491 if (!intf
->sysfs_name
) {
2494 "ipmi_msghandler: allocate link to BMC: %d\n",
2499 rv
= sysfs_create_link(&intf
->si_dev
->kobj
,
2500 &bmc
->dev
->dev
.kobj
, intf
->sysfs_name
);
2502 kfree(intf
->sysfs_name
);
2503 intf
->sysfs_name
= NULL
;
2505 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2510 size
= snprintf(dummy
, 0, "ipmi%d", ifnum
);
2511 intf
->my_dev_name
= kmalloc(size
+1, GFP_KERNEL
);
2512 if (!intf
->my_dev_name
) {
2513 kfree(intf
->sysfs_name
);
2514 intf
->sysfs_name
= NULL
;
2517 "ipmi_msghandler: allocate link from BMC: %d\n",
2521 snprintf(intf
->my_dev_name
, size
+1, "ipmi%d", ifnum
);
2523 rv
= sysfs_create_link(&bmc
->dev
->dev
.kobj
, &intf
->si_dev
->kobj
,
2526 kfree(intf
->sysfs_name
);
2527 intf
->sysfs_name
= NULL
;
2528 kfree(intf
->my_dev_name
);
2529 intf
->my_dev_name
= NULL
;
2532 " Unable to create symlink to bmc: %d\n",
2540 ipmi_bmc_unregister(intf
);
2545 send_guid_cmd(ipmi_smi_t intf
, int chan
)
2547 struct kernel_ipmi_msg msg
;
2548 struct ipmi_system_interface_addr si
;
2550 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2551 si
.channel
= IPMI_BMC_CHANNEL
;
2554 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2555 msg
.cmd
= IPMI_GET_DEVICE_GUID_CMD
;
2558 return i_ipmi_request(NULL
,
2560 (struct ipmi_addr
*) &si
,
2567 intf
->channels
[0].address
,
2568 intf
->channels
[0].lun
,
2573 guid_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2575 if ((msg
->addr
.addr_type
!= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2576 || (msg
->msg
.netfn
!= IPMI_NETFN_APP_RESPONSE
)
2577 || (msg
->msg
.cmd
!= IPMI_GET_DEVICE_GUID_CMD
))
2581 if (msg
->msg
.data
[0] != 0) {
2582 /* Error from getting the GUID, the BMC doesn't have one. */
2583 intf
->bmc
->guid_set
= 0;
2587 if (msg
->msg
.data_len
< 17) {
2588 intf
->bmc
->guid_set
= 0;
2589 printk(KERN_WARNING PFX
2590 "guid_handler: The GUID response from the BMC was too"
2591 " short, it was %d but should have been 17. Assuming"
2592 " GUID is not available.\n",
2597 memcpy(intf
->bmc
->guid
, msg
->msg
.data
, 16);
2598 intf
->bmc
->guid_set
= 1;
2600 wake_up(&intf
->waitq
);
2604 get_guid(ipmi_smi_t intf
)
2608 intf
->bmc
->guid_set
= 0x2;
2609 intf
->null_user_handler
= guid_handler
;
2610 rv
= send_guid_cmd(intf
, 0);
2612 /* Send failed, no GUID available. */
2613 intf
->bmc
->guid_set
= 0;
2614 wait_event(intf
->waitq
, intf
->bmc
->guid_set
!= 2);
2615 intf
->null_user_handler
= NULL
;
2619 send_channel_info_cmd(ipmi_smi_t intf
, int chan
)
2621 struct kernel_ipmi_msg msg
;
2622 unsigned char data
[1];
2623 struct ipmi_system_interface_addr si
;
2625 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2626 si
.channel
= IPMI_BMC_CHANNEL
;
2629 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2630 msg
.cmd
= IPMI_GET_CHANNEL_INFO_CMD
;
2634 return i_ipmi_request(NULL
,
2636 (struct ipmi_addr
*) &si
,
2643 intf
->channels
[0].address
,
2644 intf
->channels
[0].lun
,
2649 channel_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2654 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2655 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
2656 && (msg
->msg
.cmd
== IPMI_GET_CHANNEL_INFO_CMD
)) {
2657 /* It's the one we want */
2658 if (msg
->msg
.data
[0] != 0) {
2659 /* Got an error from the channel, just go on. */
2661 if (msg
->msg
.data
[0] == IPMI_INVALID_COMMAND_ERR
) {
2663 * If the MC does not support this
2664 * command, that is legal. We just
2665 * assume it has one IPMB at channel
2668 intf
->channels
[0].medium
2669 = IPMI_CHANNEL_MEDIUM_IPMB
;
2670 intf
->channels
[0].protocol
2671 = IPMI_CHANNEL_PROTOCOL_IPMB
;
2674 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2675 wake_up(&intf
->waitq
);
2680 if (msg
->msg
.data_len
< 4) {
2681 /* Message not big enough, just go on. */
2684 chan
= intf
->curr_channel
;
2685 intf
->channels
[chan
].medium
= msg
->msg
.data
[2] & 0x7f;
2686 intf
->channels
[chan
].protocol
= msg
->msg
.data
[3] & 0x1f;
2689 intf
->curr_channel
++;
2690 if (intf
->curr_channel
>= IPMI_MAX_CHANNELS
)
2691 wake_up(&intf
->waitq
);
2693 rv
= send_channel_info_cmd(intf
, intf
->curr_channel
);
2696 /* Got an error somehow, just give up. */
2697 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2698 wake_up(&intf
->waitq
);
2700 printk(KERN_WARNING PFX
2701 "Error sending channel information: %d\n",
2709 void ipmi_poll_interface(ipmi_user_t user
)
2711 ipmi_smi_t intf
= user
->intf
;
2713 if (intf
->handlers
->poll
)
2714 intf
->handlers
->poll(intf
->send_info
);
2716 EXPORT_SYMBOL(ipmi_poll_interface
);
2718 int ipmi_register_smi(struct ipmi_smi_handlers
*handlers
,
2720 struct ipmi_device_id
*device_id
,
2721 struct device
*si_dev
,
2722 const char *sysfs_name
,
2723 unsigned char slave_addr
)
2729 struct list_head
*link
;
2732 * Make sure the driver is actually initialized, this handles
2733 * problems with initialization order.
2736 rv
= ipmi_init_msghandler();
2740 * The init code doesn't return an error if it was turned
2741 * off, but it won't initialize. Check that.
2747 intf
= kzalloc(sizeof(*intf
), GFP_KERNEL
);
2751 intf
->ipmi_version_major
= ipmi_version_major(device_id
);
2752 intf
->ipmi_version_minor
= ipmi_version_minor(device_id
);
2754 intf
->bmc
= kzalloc(sizeof(*intf
->bmc
), GFP_KERNEL
);
2759 intf
->intf_num
= -1; /* Mark it invalid for now. */
2760 kref_init(&intf
->refcount
);
2761 intf
->bmc
->id
= *device_id
;
2762 intf
->si_dev
= si_dev
;
2763 for (j
= 0; j
< IPMI_MAX_CHANNELS
; j
++) {
2764 intf
->channels
[j
].address
= IPMI_BMC_SLAVE_ADDR
;
2765 intf
->channels
[j
].lun
= 2;
2767 if (slave_addr
!= 0)
2768 intf
->channels
[0].address
= slave_addr
;
2769 INIT_LIST_HEAD(&intf
->users
);
2770 intf
->handlers
= handlers
;
2771 intf
->send_info
= send_info
;
2772 spin_lock_init(&intf
->seq_lock
);
2773 for (j
= 0; j
< IPMI_IPMB_NUM_SEQ
; j
++) {
2774 intf
->seq_table
[j
].inuse
= 0;
2775 intf
->seq_table
[j
].seqid
= 0;
2778 #ifdef CONFIG_PROC_FS
2779 mutex_init(&intf
->proc_entry_lock
);
2781 spin_lock_init(&intf
->waiting_msgs_lock
);
2782 INIT_LIST_HEAD(&intf
->waiting_msgs
);
2783 spin_lock_init(&intf
->events_lock
);
2784 INIT_LIST_HEAD(&intf
->waiting_events
);
2785 intf
->waiting_events_count
= 0;
2786 mutex_init(&intf
->cmd_rcvrs_mutex
);
2787 spin_lock_init(&intf
->maintenance_mode_lock
);
2788 INIT_LIST_HEAD(&intf
->cmd_rcvrs
);
2789 init_waitqueue_head(&intf
->waitq
);
2790 for (i
= 0; i
< IPMI_NUM_STATS
; i
++)
2791 atomic_set(&intf
->stats
[i
], 0);
2793 intf
->proc_dir
= NULL
;
2795 mutex_lock(&smi_watchers_mutex
);
2796 mutex_lock(&ipmi_interfaces_mutex
);
2797 /* Look for a hole in the numbers. */
2799 link
= &ipmi_interfaces
;
2800 list_for_each_entry_rcu(tintf
, &ipmi_interfaces
, link
) {
2801 if (tintf
->intf_num
!= i
) {
2802 link
= &tintf
->link
;
2807 /* Add the new interface in numeric order. */
2809 list_add_rcu(&intf
->link
, &ipmi_interfaces
);
2811 list_add_tail_rcu(&intf
->link
, link
);
2813 rv
= handlers
->start_processing(send_info
, intf
);
2819 if ((intf
->ipmi_version_major
> 1)
2820 || ((intf
->ipmi_version_major
== 1)
2821 && (intf
->ipmi_version_minor
>= 5))) {
2823 * Start scanning the channels to see what is
2826 intf
->null_user_handler
= channel_handler
;
2827 intf
->curr_channel
= 0;
2828 rv
= send_channel_info_cmd(intf
, 0);
2832 /* Wait for the channel info to be read. */
2833 wait_event(intf
->waitq
,
2834 intf
->curr_channel
>= IPMI_MAX_CHANNELS
);
2835 intf
->null_user_handler
= NULL
;
2837 /* Assume a single IPMB channel at zero. */
2838 intf
->channels
[0].medium
= IPMI_CHANNEL_MEDIUM_IPMB
;
2839 intf
->channels
[0].protocol
= IPMI_CHANNEL_PROTOCOL_IPMB
;
2843 rv
= add_proc_entries(intf
, i
);
2845 rv
= ipmi_bmc_register(intf
, i
, sysfs_name
);
2850 remove_proc_entries(intf
);
2851 intf
->handlers
= NULL
;
2852 list_del_rcu(&intf
->link
);
2853 mutex_unlock(&ipmi_interfaces_mutex
);
2854 mutex_unlock(&smi_watchers_mutex
);
2856 kref_put(&intf
->refcount
, intf_free
);
2859 * Keep memory order straight for RCU readers. Make
2860 * sure everything else is committed to memory before
2861 * setting intf_num to mark the interface valid.
2865 mutex_unlock(&ipmi_interfaces_mutex
);
2866 /* After this point the interface is legal to use. */
2867 call_smi_watchers(i
, intf
->si_dev
);
2868 mutex_unlock(&smi_watchers_mutex
);
2873 EXPORT_SYMBOL(ipmi_register_smi
);
2875 static void cleanup_smi_msgs(ipmi_smi_t intf
)
2878 struct seq_table
*ent
;
2880 /* No need for locks, the interface is down. */
2881 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
2882 ent
= &(intf
->seq_table
[i
]);
2885 deliver_err_response(ent
->recv_msg
, IPMI_ERR_UNSPECIFIED
);
2889 int ipmi_unregister_smi(ipmi_smi_t intf
)
2891 struct ipmi_smi_watcher
*w
;
2892 int intf_num
= intf
->intf_num
;
2894 ipmi_bmc_unregister(intf
);
2896 mutex_lock(&smi_watchers_mutex
);
2897 mutex_lock(&ipmi_interfaces_mutex
);
2898 intf
->intf_num
= -1;
2899 intf
->handlers
= NULL
;
2900 list_del_rcu(&intf
->link
);
2901 mutex_unlock(&ipmi_interfaces_mutex
);
2904 cleanup_smi_msgs(intf
);
2906 remove_proc_entries(intf
);
2909 * Call all the watcher interfaces to tell them that
2910 * an interface is gone.
2912 list_for_each_entry(w
, &smi_watchers
, link
)
2913 w
->smi_gone(intf_num
);
2914 mutex_unlock(&smi_watchers_mutex
);
2916 kref_put(&intf
->refcount
, intf_free
);
2919 EXPORT_SYMBOL(ipmi_unregister_smi
);
2921 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf
,
2922 struct ipmi_smi_msg
*msg
)
2924 struct ipmi_ipmb_addr ipmb_addr
;
2925 struct ipmi_recv_msg
*recv_msg
;
2928 * This is 11, not 10, because the response must contain a
2931 if (msg
->rsp_size
< 11) {
2932 /* Message not big enough, just ignore it. */
2933 ipmi_inc_stat(intf
, invalid_ipmb_responses
);
2937 if (msg
->rsp
[2] != 0) {
2938 /* An error getting the response, just ignore it. */
2942 ipmb_addr
.addr_type
= IPMI_IPMB_ADDR_TYPE
;
2943 ipmb_addr
.slave_addr
= msg
->rsp
[6];
2944 ipmb_addr
.channel
= msg
->rsp
[3] & 0x0f;
2945 ipmb_addr
.lun
= msg
->rsp
[7] & 3;
2948 * It's a response from a remote entity. Look up the sequence
2949 * number and handle the response.
2951 if (intf_find_seq(intf
,
2955 (msg
->rsp
[4] >> 2) & (~1),
2956 (struct ipmi_addr
*) &(ipmb_addr
),
2959 * We were unable to find the sequence number,
2960 * so just nuke the message.
2962 ipmi_inc_stat(intf
, unhandled_ipmb_responses
);
2966 memcpy(recv_msg
->msg_data
,
2970 * The other fields matched, so no need to set them, except
2971 * for netfn, which needs to be the response that was
2972 * returned, not the request value.
2974 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
2975 recv_msg
->msg
.data
= recv_msg
->msg_data
;
2976 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
2977 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
2978 ipmi_inc_stat(intf
, handled_ipmb_responses
);
2979 deliver_response(recv_msg
);
2984 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf
,
2985 struct ipmi_smi_msg
*msg
)
2987 struct cmd_rcvr
*rcvr
;
2989 unsigned char netfn
;
2992 ipmi_user_t user
= NULL
;
2993 struct ipmi_ipmb_addr
*ipmb_addr
;
2994 struct ipmi_recv_msg
*recv_msg
;
2995 struct ipmi_smi_handlers
*handlers
;
2997 if (msg
->rsp_size
< 10) {
2998 /* Message not big enough, just ignore it. */
2999 ipmi_inc_stat(intf
, invalid_commands
);
3003 if (msg
->rsp
[2] != 0) {
3004 /* An error getting the response, just ignore it. */
3008 netfn
= msg
->rsp
[4] >> 2;
3010 chan
= msg
->rsp
[3] & 0xf;
3013 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3016 kref_get(&user
->refcount
);
3022 /* We didn't find a user, deliver an error response. */
3023 ipmi_inc_stat(intf
, unhandled_commands
);
3025 msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
3026 msg
->data
[1] = IPMI_SEND_MSG_CMD
;
3027 msg
->data
[2] = msg
->rsp
[3];
3028 msg
->data
[3] = msg
->rsp
[6];
3029 msg
->data
[4] = ((netfn
+ 1) << 2) | (msg
->rsp
[7] & 0x3);
3030 msg
->data
[5] = ipmb_checksum(&(msg
->data
[3]), 2);
3031 msg
->data
[6] = intf
->channels
[msg
->rsp
[3] & 0xf].address
;
3033 msg
->data
[7] = (msg
->rsp
[7] & 0xfc) | (msg
->rsp
[4] & 0x3);
3034 msg
->data
[8] = msg
->rsp
[8]; /* cmd */
3035 msg
->data
[9] = IPMI_INVALID_CMD_COMPLETION_CODE
;
3036 msg
->data
[10] = ipmb_checksum(&(msg
->data
[6]), 4);
3037 msg
->data_size
= 11;
3042 printk("Invalid command:");
3043 for (m
= 0; m
< msg
->data_size
; m
++)
3044 printk(" %2.2x", msg
->data
[m
]);
3049 handlers
= intf
->handlers
;
3051 handlers
->sender(intf
->send_info
, msg
, 0);
3053 * We used the message, so return the value
3054 * that causes it to not be freed or
3061 /* Deliver the message to the user. */
3062 ipmi_inc_stat(intf
, handled_commands
);
3064 recv_msg
= ipmi_alloc_recv_msg();
3067 * We couldn't allocate memory for the
3068 * message, so requeue it for handling
3072 kref_put(&user
->refcount
, free_user
);
3074 /* Extract the source address from the data. */
3075 ipmb_addr
= (struct ipmi_ipmb_addr
*) &recv_msg
->addr
;
3076 ipmb_addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
3077 ipmb_addr
->slave_addr
= msg
->rsp
[6];
3078 ipmb_addr
->lun
= msg
->rsp
[7] & 3;
3079 ipmb_addr
->channel
= msg
->rsp
[3] & 0xf;
3082 * Extract the rest of the message information
3083 * from the IPMB header.
3085 recv_msg
->user
= user
;
3086 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3087 recv_msg
->msgid
= msg
->rsp
[7] >> 2;
3088 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
3089 recv_msg
->msg
.cmd
= msg
->rsp
[8];
3090 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3093 * We chop off 10, not 9 bytes because the checksum
3094 * at the end also needs to be removed.
3096 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
3097 memcpy(recv_msg
->msg_data
,
3099 msg
->rsp_size
- 10);
3100 deliver_response(recv_msg
);
3107 static int handle_lan_get_msg_rsp(ipmi_smi_t intf
,
3108 struct ipmi_smi_msg
*msg
)
3110 struct ipmi_lan_addr lan_addr
;
3111 struct ipmi_recv_msg
*recv_msg
;
3115 * This is 13, not 12, because the response must contain a
3118 if (msg
->rsp_size
< 13) {
3119 /* Message not big enough, just ignore it. */
3120 ipmi_inc_stat(intf
, invalid_lan_responses
);
3124 if (msg
->rsp
[2] != 0) {
3125 /* An error getting the response, just ignore it. */
3129 lan_addr
.addr_type
= IPMI_LAN_ADDR_TYPE
;
3130 lan_addr
.session_handle
= msg
->rsp
[4];
3131 lan_addr
.remote_SWID
= msg
->rsp
[8];
3132 lan_addr
.local_SWID
= msg
->rsp
[5];
3133 lan_addr
.channel
= msg
->rsp
[3] & 0x0f;
3134 lan_addr
.privilege
= msg
->rsp
[3] >> 4;
3135 lan_addr
.lun
= msg
->rsp
[9] & 3;
3138 * It's a response from a remote entity. Look up the sequence
3139 * number and handle the response.
3141 if (intf_find_seq(intf
,
3145 (msg
->rsp
[6] >> 2) & (~1),
3146 (struct ipmi_addr
*) &(lan_addr
),
3149 * We were unable to find the sequence number,
3150 * so just nuke the message.
3152 ipmi_inc_stat(intf
, unhandled_lan_responses
);
3156 memcpy(recv_msg
->msg_data
,
3158 msg
->rsp_size
- 11);
3160 * The other fields matched, so no need to set them, except
3161 * for netfn, which needs to be the response that was
3162 * returned, not the request value.
3164 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3165 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3166 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3167 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3168 ipmi_inc_stat(intf
, handled_lan_responses
);
3169 deliver_response(recv_msg
);
3174 static int handle_lan_get_msg_cmd(ipmi_smi_t intf
,
3175 struct ipmi_smi_msg
*msg
)
3177 struct cmd_rcvr
*rcvr
;
3179 unsigned char netfn
;
3182 ipmi_user_t user
= NULL
;
3183 struct ipmi_lan_addr
*lan_addr
;
3184 struct ipmi_recv_msg
*recv_msg
;
3186 if (msg
->rsp_size
< 12) {
3187 /* Message not big enough, just ignore it. */
3188 ipmi_inc_stat(intf
, invalid_commands
);
3192 if (msg
->rsp
[2] != 0) {
3193 /* An error getting the response, just ignore it. */
3197 netfn
= msg
->rsp
[6] >> 2;
3199 chan
= msg
->rsp
[3] & 0xf;
3202 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3205 kref_get(&user
->refcount
);
3211 /* We didn't find a user, just give up. */
3212 ipmi_inc_stat(intf
, unhandled_commands
);
3215 * Don't do anything with these messages, just allow
3220 /* Deliver the message to the user. */
3221 ipmi_inc_stat(intf
, handled_commands
);
3223 recv_msg
= ipmi_alloc_recv_msg();
3226 * We couldn't allocate memory for the
3227 * message, so requeue it for handling later.
3230 kref_put(&user
->refcount
, free_user
);
3232 /* Extract the source address from the data. */
3233 lan_addr
= (struct ipmi_lan_addr
*) &recv_msg
->addr
;
3234 lan_addr
->addr_type
= IPMI_LAN_ADDR_TYPE
;
3235 lan_addr
->session_handle
= msg
->rsp
[4];
3236 lan_addr
->remote_SWID
= msg
->rsp
[8];
3237 lan_addr
->local_SWID
= msg
->rsp
[5];
3238 lan_addr
->lun
= msg
->rsp
[9] & 3;
3239 lan_addr
->channel
= msg
->rsp
[3] & 0xf;
3240 lan_addr
->privilege
= msg
->rsp
[3] >> 4;
3243 * Extract the rest of the message information
3244 * from the IPMB header.
3246 recv_msg
->user
= user
;
3247 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3248 recv_msg
->msgid
= msg
->rsp
[9] >> 2;
3249 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3250 recv_msg
->msg
.cmd
= msg
->rsp
[10];
3251 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3254 * We chop off 12, not 11 bytes because the checksum
3255 * at the end also needs to be removed.
3257 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3258 memcpy(recv_msg
->msg_data
,
3260 msg
->rsp_size
- 12);
3261 deliver_response(recv_msg
);
3268 static void copy_event_into_recv_msg(struct ipmi_recv_msg
*recv_msg
,
3269 struct ipmi_smi_msg
*msg
)
3271 struct ipmi_system_interface_addr
*smi_addr
;
3273 recv_msg
->msgid
= 0;
3274 smi_addr
= (struct ipmi_system_interface_addr
*) &(recv_msg
->addr
);
3275 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3276 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3277 smi_addr
->lun
= msg
->rsp
[0] & 3;
3278 recv_msg
->recv_type
= IPMI_ASYNC_EVENT_RECV_TYPE
;
3279 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3280 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3281 memcpy(recv_msg
->msg_data
, &(msg
->rsp
[3]), msg
->rsp_size
- 3);
3282 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3283 recv_msg
->msg
.data_len
= msg
->rsp_size
- 3;
3286 static int handle_read_event_rsp(ipmi_smi_t intf
,
3287 struct ipmi_smi_msg
*msg
)
3289 struct ipmi_recv_msg
*recv_msg
, *recv_msg2
;
3290 struct list_head msgs
;
3293 int deliver_count
= 0;
3294 unsigned long flags
;
3296 if (msg
->rsp_size
< 19) {
3297 /* Message is too small to be an IPMB event. */
3298 ipmi_inc_stat(intf
, invalid_events
);
3302 if (msg
->rsp
[2] != 0) {
3303 /* An error getting the event, just ignore it. */
3307 INIT_LIST_HEAD(&msgs
);
3309 spin_lock_irqsave(&intf
->events_lock
, flags
);
3311 ipmi_inc_stat(intf
, events
);
3314 * Allocate and fill in one message for every user that is
3318 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3319 if (!user
->gets_events
)
3322 recv_msg
= ipmi_alloc_recv_msg();
3325 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
,
3327 list_del(&recv_msg
->link
);
3328 ipmi_free_recv_msg(recv_msg
);
3331 * We couldn't allocate memory for the
3332 * message, so requeue it for handling
3341 copy_event_into_recv_msg(recv_msg
, msg
);
3342 recv_msg
->user
= user
;
3343 kref_get(&user
->refcount
);
3344 list_add_tail(&(recv_msg
->link
), &msgs
);
3348 if (deliver_count
) {
3349 /* Now deliver all the messages. */
3350 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
, link
) {
3351 list_del(&recv_msg
->link
);
3352 deliver_response(recv_msg
);
3354 } else if (intf
->waiting_events_count
< MAX_EVENTS_IN_QUEUE
) {
3356 * No one to receive the message, put it in queue if there's
3357 * not already too many things in the queue.
3359 recv_msg
= ipmi_alloc_recv_msg();
3362 * We couldn't allocate memory for the
3363 * message, so requeue it for handling
3370 copy_event_into_recv_msg(recv_msg
, msg
);
3371 list_add_tail(&(recv_msg
->link
), &(intf
->waiting_events
));
3372 intf
->waiting_events_count
++;
3373 } else if (!intf
->event_msg_printed
) {
3375 * There's too many things in the queue, discard this
3378 printk(KERN_WARNING PFX
"Event queue full, discarding"
3379 " incoming events\n");
3380 intf
->event_msg_printed
= 1;
3384 spin_unlock_irqrestore(&(intf
->events_lock
), flags
);
3389 static int handle_bmc_rsp(ipmi_smi_t intf
,
3390 struct ipmi_smi_msg
*msg
)
3392 struct ipmi_recv_msg
*recv_msg
;
3393 struct ipmi_user
*user
;
3395 recv_msg
= (struct ipmi_recv_msg
*) msg
->user_data
;
3396 if (recv_msg
== NULL
) {
3398 "IPMI message received with no owner. This\n"
3399 "could be because of a malformed message, or\n"
3400 "because of a hardware error. Contact your\n"
3401 "hardware vender for assistance\n");
3405 user
= recv_msg
->user
;
3406 /* Make sure the user still exists. */
3407 if (user
&& !user
->valid
) {
3408 /* The user for the message went away, so give up. */
3409 ipmi_inc_stat(intf
, unhandled_local_responses
);
3410 ipmi_free_recv_msg(recv_msg
);
3412 struct ipmi_system_interface_addr
*smi_addr
;
3414 ipmi_inc_stat(intf
, handled_local_responses
);
3415 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3416 recv_msg
->msgid
= msg
->msgid
;
3417 smi_addr
= ((struct ipmi_system_interface_addr
*)
3419 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3420 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3421 smi_addr
->lun
= msg
->rsp
[0] & 3;
3422 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3423 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3424 memcpy(recv_msg
->msg_data
,
3427 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3428 recv_msg
->msg
.data_len
= msg
->rsp_size
- 2;
3429 deliver_response(recv_msg
);
3436 * Handle a new message. Return 1 if the message should be requeued,
3437 * 0 if the message should be freed, or -1 if the message should not
3438 * be freed or requeued.
3440 static int handle_new_recv_msg(ipmi_smi_t intf
,
3441 struct ipmi_smi_msg
*msg
)
3449 for (m
= 0; m
< msg
->rsp_size
; m
++)
3450 printk(" %2.2x", msg
->rsp
[m
]);
3453 if (msg
->rsp_size
< 2) {
3454 /* Message is too small to be correct. */
3455 printk(KERN_WARNING PFX
"BMC returned to small a message"
3456 " for netfn %x cmd %x, got %d bytes\n",
3457 (msg
->data
[0] >> 2) | 1, msg
->data
[1], msg
->rsp_size
);
3459 /* Generate an error response for the message. */
3460 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
3461 msg
->rsp
[1] = msg
->data
[1];
3462 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
3464 } else if (((msg
->rsp
[0] >> 2) != ((msg
->data
[0] >> 2) | 1))
3465 || (msg
->rsp
[1] != msg
->data
[1])) {
3467 * The NetFN and Command in the response is not even
3468 * marginally correct.
3470 printk(KERN_WARNING PFX
"BMC returned incorrect response,"
3471 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3472 (msg
->data
[0] >> 2) | 1, msg
->data
[1],
3473 msg
->rsp
[0] >> 2, msg
->rsp
[1]);
3475 /* Generate an error response for the message. */
3476 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
3477 msg
->rsp
[1] = msg
->data
[1];
3478 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
3482 if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3483 && (msg
->rsp
[1] == IPMI_SEND_MSG_CMD
)
3484 && (msg
->user_data
!= NULL
)) {
3486 * It's a response to a response we sent. For this we
3487 * deliver a send message response to the user.
3489 struct ipmi_recv_msg
*recv_msg
= msg
->user_data
;
3492 if (msg
->rsp_size
< 2)
3493 /* Message is too small to be correct. */
3496 chan
= msg
->data
[2] & 0x0f;
3497 if (chan
>= IPMI_MAX_CHANNELS
)
3498 /* Invalid channel number */
3504 /* Make sure the user still exists. */
3505 if (!recv_msg
->user
|| !recv_msg
->user
->valid
)
3508 recv_msg
->recv_type
= IPMI_RESPONSE_RESPONSE_TYPE
;
3509 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3510 recv_msg
->msg
.data_len
= 1;
3511 recv_msg
->msg_data
[0] = msg
->rsp
[2];
3512 deliver_response(recv_msg
);
3513 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3514 && (msg
->rsp
[1] == IPMI_GET_MSG_CMD
)) {
3515 /* It's from the receive queue. */
3516 chan
= msg
->rsp
[3] & 0xf;
3517 if (chan
>= IPMI_MAX_CHANNELS
) {
3518 /* Invalid channel number */
3523 switch (intf
->channels
[chan
].medium
) {
3524 case IPMI_CHANNEL_MEDIUM_IPMB
:
3525 if (msg
->rsp
[4] & 0x04) {
3527 * It's a response, so find the
3528 * requesting message and send it up.
3530 requeue
= handle_ipmb_get_msg_rsp(intf
, msg
);
3533 * It's a command to the SMS from some other
3534 * entity. Handle that.
3536 requeue
= handle_ipmb_get_msg_cmd(intf
, msg
);
3540 case IPMI_CHANNEL_MEDIUM_8023LAN
:
3541 case IPMI_CHANNEL_MEDIUM_ASYNC
:
3542 if (msg
->rsp
[6] & 0x04) {
3544 * It's a response, so find the
3545 * requesting message and send it up.
3547 requeue
= handle_lan_get_msg_rsp(intf
, msg
);
3550 * It's a command to the SMS from some other
3551 * entity. Handle that.
3553 requeue
= handle_lan_get_msg_cmd(intf
, msg
);
3559 * We don't handle the channel type, so just
3565 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3566 && (msg
->rsp
[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD
)) {
3567 /* It's an asyncronous event. */
3568 requeue
= handle_read_event_rsp(intf
, msg
);
3570 /* It's a response from the local BMC. */
3571 requeue
= handle_bmc_rsp(intf
, msg
);
3578 /* Handle a new message from the lower layer. */
3579 void ipmi_smi_msg_received(ipmi_smi_t intf
,
3580 struct ipmi_smi_msg
*msg
)
3582 unsigned long flags
= 0; /* keep us warning-free. */
3584 int run_to_completion
;
3587 if ((msg
->data_size
>= 2)
3588 && (msg
->data
[0] == (IPMI_NETFN_APP_REQUEST
<< 2))
3589 && (msg
->data
[1] == IPMI_SEND_MSG_CMD
)
3590 && (msg
->user_data
== NULL
)) {
3592 * This is the local response to a command send, start
3593 * the timer for these. The user_data will not be
3594 * NULL if this is a response send, and we will let
3595 * response sends just go through.
3599 * Check for errors, if we get certain errors (ones
3600 * that mean basically we can try again later), we
3601 * ignore them and start the timer. Otherwise we
3602 * report the error immediately.
3604 if ((msg
->rsp_size
>= 3) && (msg
->rsp
[2] != 0)
3605 && (msg
->rsp
[2] != IPMI_NODE_BUSY_ERR
)
3606 && (msg
->rsp
[2] != IPMI_LOST_ARBITRATION_ERR
)
3607 && (msg
->rsp
[2] != IPMI_BUS_ERR
)
3608 && (msg
->rsp
[2] != IPMI_NAK_ON_WRITE_ERR
)) {
3609 int chan
= msg
->rsp
[3] & 0xf;
3611 /* Got an error sending the message, handle it. */
3612 if (chan
>= IPMI_MAX_CHANNELS
)
3613 ; /* This shouldn't happen */
3614 else if ((intf
->channels
[chan
].medium
3615 == IPMI_CHANNEL_MEDIUM_8023LAN
)
3616 || (intf
->channels
[chan
].medium
3617 == IPMI_CHANNEL_MEDIUM_ASYNC
))
3618 ipmi_inc_stat(intf
, sent_lan_command_errs
);
3620 ipmi_inc_stat(intf
, sent_ipmb_command_errs
);
3621 intf_err_seq(intf
, msg
->msgid
, msg
->rsp
[2]);
3623 /* The message was sent, start the timer. */
3624 intf_start_seq_timer(intf
, msg
->msgid
);
3626 ipmi_free_smi_msg(msg
);
3631 * To preserve message order, if the list is not empty, we
3632 * tack this message onto the end of the list.
3634 run_to_completion
= intf
->run_to_completion
;
3635 if (!run_to_completion
)
3636 spin_lock_irqsave(&intf
->waiting_msgs_lock
, flags
);
3637 if (!list_empty(&intf
->waiting_msgs
)) {
3638 list_add_tail(&msg
->link
, &intf
->waiting_msgs
);
3639 if (!run_to_completion
)
3640 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3643 if (!run_to_completion
)
3644 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3646 rv
= handle_new_recv_msg(intf
, msg
);
3649 * Could not handle the message now, just add it to a
3650 * list to handle later.
3652 run_to_completion
= intf
->run_to_completion
;
3653 if (!run_to_completion
)
3654 spin_lock_irqsave(&intf
->waiting_msgs_lock
, flags
);
3655 list_add_tail(&msg
->link
, &intf
->waiting_msgs
);
3656 if (!run_to_completion
)
3657 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3658 } else if (rv
== 0) {
3659 ipmi_free_smi_msg(msg
);
3665 EXPORT_SYMBOL(ipmi_smi_msg_received
);
3667 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf
)
3672 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3673 if (!user
->handler
->ipmi_watchdog_pretimeout
)
3676 user
->handler
->ipmi_watchdog_pretimeout(user
->handler_data
);
3680 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout
);
3682 static struct ipmi_smi_msg
*
3683 smi_from_recv_msg(ipmi_smi_t intf
, struct ipmi_recv_msg
*recv_msg
,
3684 unsigned char seq
, long seqid
)
3686 struct ipmi_smi_msg
*smi_msg
= ipmi_alloc_smi_msg();
3689 * If we can't allocate the message, then just return, we
3690 * get 4 retries, so this should be ok.
3694 memcpy(smi_msg
->data
, recv_msg
->msg
.data
, recv_msg
->msg
.data_len
);
3695 smi_msg
->data_size
= recv_msg
->msg
.data_len
;
3696 smi_msg
->msgid
= STORE_SEQ_IN_MSGID(seq
, seqid
);
3702 for (m
= 0; m
< smi_msg
->data_size
; m
++)
3703 printk(" %2.2x", smi_msg
->data
[m
]);
3710 static void check_msg_timeout(ipmi_smi_t intf
, struct seq_table
*ent
,
3711 struct list_head
*timeouts
, long timeout_period
,
3712 int slot
, unsigned long *flags
)
3714 struct ipmi_recv_msg
*msg
;
3715 struct ipmi_smi_handlers
*handlers
;
3717 if (intf
->intf_num
== -1)
3723 ent
->timeout
-= timeout_period
;
3724 if (ent
->timeout
> 0)
3727 if (ent
->retries_left
== 0) {
3728 /* The message has used all its retries. */
3730 msg
= ent
->recv_msg
;
3731 list_add_tail(&msg
->link
, timeouts
);
3733 ipmi_inc_stat(intf
, timed_out_ipmb_broadcasts
);
3734 else if (ent
->recv_msg
->addr
.addr_type
== IPMI_LAN_ADDR_TYPE
)
3735 ipmi_inc_stat(intf
, timed_out_lan_commands
);
3737 ipmi_inc_stat(intf
, timed_out_ipmb_commands
);
3739 struct ipmi_smi_msg
*smi_msg
;
3740 /* More retries, send again. */
3743 * Start with the max timer, set to normal timer after
3744 * the message is sent.
3746 ent
->timeout
= MAX_MSG_TIMEOUT
;
3747 ent
->retries_left
--;
3748 if (ent
->recv_msg
->addr
.addr_type
== IPMI_LAN_ADDR_TYPE
)
3749 ipmi_inc_stat(intf
, retransmitted_lan_commands
);
3751 ipmi_inc_stat(intf
, retransmitted_ipmb_commands
);
3753 smi_msg
= smi_from_recv_msg(intf
, ent
->recv_msg
, slot
,
3758 spin_unlock_irqrestore(&intf
->seq_lock
, *flags
);
3761 * Send the new message. We send with a zero
3762 * priority. It timed out, I doubt time is that
3763 * critical now, and high priority messages are really
3764 * only for messages to the local MC, which don't get
3767 handlers
= intf
->handlers
;
3769 intf
->handlers
->sender(intf
->send_info
,
3772 ipmi_free_smi_msg(smi_msg
);
3774 spin_lock_irqsave(&intf
->seq_lock
, *flags
);
3778 static void ipmi_timeout_handler(long timeout_period
)
3781 struct list_head timeouts
;
3782 struct ipmi_recv_msg
*msg
, *msg2
;
3783 struct ipmi_smi_msg
*smi_msg
, *smi_msg2
;
3784 unsigned long flags
;
3788 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
3789 /* See if any waiting messages need to be processed. */
3790 spin_lock_irqsave(&intf
->waiting_msgs_lock
, flags
);
3791 list_for_each_entry_safe(smi_msg
, smi_msg2
,
3792 &intf
->waiting_msgs
, link
) {
3793 if (!handle_new_recv_msg(intf
, smi_msg
)) {
3794 list_del(&smi_msg
->link
);
3795 ipmi_free_smi_msg(smi_msg
);
3798 * To preserve message order, quit if we
3799 * can't handle a message.
3804 spin_unlock_irqrestore(&intf
->waiting_msgs_lock
, flags
);
3807 * Go through the seq table and find any messages that
3808 * have timed out, putting them in the timeouts
3811 INIT_LIST_HEAD(&timeouts
);
3812 spin_lock_irqsave(&intf
->seq_lock
, flags
);
3813 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++)
3814 check_msg_timeout(intf
, &(intf
->seq_table
[i
]),
3815 &timeouts
, timeout_period
, i
,
3817 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
3819 list_for_each_entry_safe(msg
, msg2
, &timeouts
, link
)
3820 deliver_err_response(msg
, IPMI_TIMEOUT_COMPLETION_CODE
);
3823 * Maintenance mode handling. Check the timeout
3824 * optimistically before we claim the lock. It may
3825 * mean a timeout gets missed occasionally, but that
3826 * only means the timeout gets extended by one period
3827 * in that case. No big deal, and it avoids the lock
3830 if (intf
->auto_maintenance_timeout
> 0) {
3831 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
3832 if (intf
->auto_maintenance_timeout
> 0) {
3833 intf
->auto_maintenance_timeout
3835 if (!intf
->maintenance_mode
3836 && (intf
->auto_maintenance_timeout
<= 0)) {
3837 intf
->maintenance_mode_enable
= 0;
3838 maintenance_mode_update(intf
);
3841 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
3848 static void ipmi_request_event(void)
3851 struct ipmi_smi_handlers
*handlers
;
3855 * Called from the timer, no need to check if handlers is
3858 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
3859 /* No event requests when in maintenance mode. */
3860 if (intf
->maintenance_mode_enable
)
3863 handlers
= intf
->handlers
;
3865 handlers
->request_events(intf
->send_info
);
3870 static struct timer_list ipmi_timer
;
3872 /* Call every ~100 ms. */
3873 #define IPMI_TIMEOUT_TIME 100
3875 /* How many jiffies does it take to get to the timeout time. */
3876 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
3879 * Request events from the queue every second (this is the number of
3880 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
3881 * future, IPMI will add a way to know immediately if an event is in
3882 * the queue and this silliness can go away.
3884 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
3886 static atomic_t stop_operation
;
3887 static unsigned int ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
3889 static void ipmi_timeout(unsigned long data
)
3891 if (atomic_read(&stop_operation
))
3895 if (ticks_to_req_ev
== 0) {
3896 ipmi_request_event();
3897 ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
3900 ipmi_timeout_handler(IPMI_TIMEOUT_TIME
);
3902 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
3906 static atomic_t smi_msg_inuse_count
= ATOMIC_INIT(0);
3907 static atomic_t recv_msg_inuse_count
= ATOMIC_INIT(0);
3909 /* FIXME - convert these to slabs. */
3910 static void free_smi_msg(struct ipmi_smi_msg
*msg
)
3912 atomic_dec(&smi_msg_inuse_count
);
3916 struct ipmi_smi_msg
*ipmi_alloc_smi_msg(void)
3918 struct ipmi_smi_msg
*rv
;
3919 rv
= kmalloc(sizeof(struct ipmi_smi_msg
), GFP_ATOMIC
);
3921 rv
->done
= free_smi_msg
;
3922 rv
->user_data
= NULL
;
3923 atomic_inc(&smi_msg_inuse_count
);
3927 EXPORT_SYMBOL(ipmi_alloc_smi_msg
);
3929 static void free_recv_msg(struct ipmi_recv_msg
*msg
)
3931 atomic_dec(&recv_msg_inuse_count
);
3935 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void)
3937 struct ipmi_recv_msg
*rv
;
3939 rv
= kmalloc(sizeof(struct ipmi_recv_msg
), GFP_ATOMIC
);
3942 rv
->done
= free_recv_msg
;
3943 atomic_inc(&recv_msg_inuse_count
);
3948 void ipmi_free_recv_msg(struct ipmi_recv_msg
*msg
)
3951 kref_put(&msg
->user
->refcount
, free_user
);
3954 EXPORT_SYMBOL(ipmi_free_recv_msg
);
3956 #ifdef CONFIG_IPMI_PANIC_EVENT
3958 static void dummy_smi_done_handler(struct ipmi_smi_msg
*msg
)
3962 static void dummy_recv_done_handler(struct ipmi_recv_msg
*msg
)
3966 #ifdef CONFIG_IPMI_PANIC_STRING
3967 static void event_receiver_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
3969 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
3970 && (msg
->msg
.netfn
== IPMI_NETFN_SENSOR_EVENT_RESPONSE
)
3971 && (msg
->msg
.cmd
== IPMI_GET_EVENT_RECEIVER_CMD
)
3972 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
3973 /* A get event receiver command, save it. */
3974 intf
->event_receiver
= msg
->msg
.data
[1];
3975 intf
->event_receiver_lun
= msg
->msg
.data
[2] & 0x3;
3979 static void device_id_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
3981 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
3982 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
3983 && (msg
->msg
.cmd
== IPMI_GET_DEVICE_ID_CMD
)
3984 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
3986 * A get device id command, save if we are an event
3987 * receiver or generator.
3989 intf
->local_sel_device
= (msg
->msg
.data
[6] >> 2) & 1;
3990 intf
->local_event_generator
= (msg
->msg
.data
[6] >> 5) & 1;
3995 static void send_panic_events(char *str
)
3997 struct kernel_ipmi_msg msg
;
3999 unsigned char data
[16];
4000 struct ipmi_system_interface_addr
*si
;
4001 struct ipmi_addr addr
;
4002 struct ipmi_smi_msg smi_msg
;
4003 struct ipmi_recv_msg recv_msg
;
4005 si
= (struct ipmi_system_interface_addr
*) &addr
;
4006 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4007 si
->channel
= IPMI_BMC_CHANNEL
;
4010 /* Fill in an event telling that we have failed. */
4011 msg
.netfn
= 0x04; /* Sensor or Event. */
4012 msg
.cmd
= 2; /* Platform event command. */
4015 data
[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4016 data
[1] = 0x03; /* This is for IPMI 1.0. */
4017 data
[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4018 data
[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4019 data
[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4022 * Put a few breadcrumbs in. Hopefully later we can add more things
4023 * to make the panic events more useful.
4031 smi_msg
.done
= dummy_smi_done_handler
;
4032 recv_msg
.done
= dummy_recv_done_handler
;
4034 /* For every registered interface, send the event. */
4035 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4036 if (!intf
->handlers
)
4037 /* Interface is not ready. */
4040 intf
->run_to_completion
= 1;
4041 /* Send the event announcing the panic. */
4042 intf
->handlers
->set_run_to_completion(intf
->send_info
, 1);
4043 i_ipmi_request(NULL
,
4052 intf
->channels
[0].address
,
4053 intf
->channels
[0].lun
,
4054 0, 1); /* Don't retry, and don't wait. */
4057 #ifdef CONFIG_IPMI_PANIC_STRING
4059 * On every interface, dump a bunch of OEM event holding the
4065 /* For every registered interface, send the event. */
4066 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4068 struct ipmi_ipmb_addr
*ipmb
;
4071 if (intf
->intf_num
== -1)
4072 /* Interface was not ready yet. */
4076 * intf_num is used as an marker to tell if the
4077 * interface is valid. Thus we need a read barrier to
4078 * make sure data fetched before checking intf_num
4084 * First job here is to figure out where to send the
4085 * OEM events. There's no way in IPMI to send OEM
4086 * events using an event send command, so we have to
4087 * find the SEL to put them in and stick them in
4091 /* Get capabilities from the get device id. */
4092 intf
->local_sel_device
= 0;
4093 intf
->local_event_generator
= 0;
4094 intf
->event_receiver
= 0;
4096 /* Request the device info from the local MC. */
4097 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
4098 msg
.cmd
= IPMI_GET_DEVICE_ID_CMD
;
4101 intf
->null_user_handler
= device_id_fetcher
;
4102 i_ipmi_request(NULL
,
4111 intf
->channels
[0].address
,
4112 intf
->channels
[0].lun
,
4113 0, 1); /* Don't retry, and don't wait. */
4115 if (intf
->local_event_generator
) {
4116 /* Request the event receiver from the local MC. */
4117 msg
.netfn
= IPMI_NETFN_SENSOR_EVENT_REQUEST
;
4118 msg
.cmd
= IPMI_GET_EVENT_RECEIVER_CMD
;
4121 intf
->null_user_handler
= event_receiver_fetcher
;
4122 i_ipmi_request(NULL
,
4131 intf
->channels
[0].address
,
4132 intf
->channels
[0].lun
,
4133 0, 1); /* no retry, and no wait. */
4135 intf
->null_user_handler
= NULL
;
4138 * Validate the event receiver. The low bit must not
4139 * be 1 (it must be a valid IPMB address), it cannot
4140 * be zero, and it must not be my address.
4142 if (((intf
->event_receiver
& 1) == 0)
4143 && (intf
->event_receiver
!= 0)
4144 && (intf
->event_receiver
!= intf
->channels
[0].address
)) {
4146 * The event receiver is valid, send an IPMB
4149 ipmb
= (struct ipmi_ipmb_addr
*) &addr
;
4150 ipmb
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
4151 ipmb
->channel
= 0; /* FIXME - is this right? */
4152 ipmb
->lun
= intf
->event_receiver_lun
;
4153 ipmb
->slave_addr
= intf
->event_receiver
;
4154 } else if (intf
->local_sel_device
) {
4156 * The event receiver was not valid (or was
4157 * me), but I am an SEL device, just dump it
4160 si
= (struct ipmi_system_interface_addr
*) &addr
;
4161 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4162 si
->channel
= IPMI_BMC_CHANNEL
;
4165 continue; /* No where to send the event. */
4167 msg
.netfn
= IPMI_NETFN_STORAGE_REQUEST
; /* Storage. */
4168 msg
.cmd
= IPMI_ADD_SEL_ENTRY_CMD
;
4174 int size
= strlen(p
);
4180 data
[2] = 0xf0; /* OEM event without timestamp. */
4181 data
[3] = intf
->channels
[0].address
;
4182 data
[4] = j
++; /* sequence # */
4184 * Always give 11 bytes, so strncpy will fill
4185 * it with zeroes for me.
4187 strncpy(data
+5, p
, 11);
4190 i_ipmi_request(NULL
,
4199 intf
->channels
[0].address
,
4200 intf
->channels
[0].lun
,
4201 0, 1); /* no retry, and no wait. */
4204 #endif /* CONFIG_IPMI_PANIC_STRING */
4206 #endif /* CONFIG_IPMI_PANIC_EVENT */
4208 static int has_panicked
;
4210 static int panic_event(struct notifier_block
*this,
4211 unsigned long event
,
4220 /* For every registered interface, set it to run to completion. */
4221 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4222 if (!intf
->handlers
)
4223 /* Interface is not ready. */
4226 intf
->run_to_completion
= 1;
4227 intf
->handlers
->set_run_to_completion(intf
->send_info
, 1);
4230 #ifdef CONFIG_IPMI_PANIC_EVENT
4231 send_panic_events(ptr
);
4237 static struct notifier_block panic_block
= {
4238 .notifier_call
= panic_event
,
4240 .priority
= 200 /* priority: INT_MAX >= x >= 0 */
4243 static int ipmi_init_msghandler(void)
4250 rv
= driver_register(&ipmidriver
);
4252 printk(KERN_ERR PFX
"Could not register IPMI driver\n");
4256 printk(KERN_INFO
"ipmi message handler version "
4257 IPMI_DRIVER_VERSION
"\n");
4259 #ifdef CONFIG_PROC_FS
4260 proc_ipmi_root
= proc_mkdir("ipmi", NULL
);
4261 if (!proc_ipmi_root
) {
4262 printk(KERN_ERR PFX
"Unable to create IPMI proc dir");
4266 proc_ipmi_root
->owner
= THIS_MODULE
;
4267 #endif /* CONFIG_PROC_FS */
4269 setup_timer(&ipmi_timer
, ipmi_timeout
, 0);
4270 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4272 atomic_notifier_chain_register(&panic_notifier_list
, &panic_block
);
4279 static __init
int ipmi_init_msghandler_mod(void)
4281 ipmi_init_msghandler();
4285 static __exit
void cleanup_ipmi(void)
4292 atomic_notifier_chain_unregister(&panic_notifier_list
, &panic_block
);
4295 * This can't be called if any interfaces exist, so no worry
4296 * about shutting down the interfaces.
4300 * Tell the timer to stop, then wait for it to stop. This
4301 * avoids problems with race conditions removing the timer
4304 atomic_inc(&stop_operation
);
4305 del_timer_sync(&ipmi_timer
);
4307 #ifdef CONFIG_PROC_FS
4308 remove_proc_entry(proc_ipmi_root
->name
, NULL
);
4309 #endif /* CONFIG_PROC_FS */
4311 driver_unregister(&ipmidriver
);
4315 /* Check for buffer leaks. */
4316 count
= atomic_read(&smi_msg_inuse_count
);
4318 printk(KERN_WARNING PFX
"SMI message count %d at exit\n",
4320 count
= atomic_read(&recv_msg_inuse_count
);
4322 printk(KERN_WARNING PFX
"recv message count %d at exit\n",
4325 module_exit(cleanup_ipmi
);
4327 module_init(ipmi_init_msghandler_mod
);
4328 MODULE_LICENSE("GPL");
4329 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4330 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4332 MODULE_VERSION(IPMI_DRIVER_VERSION
);