2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
21 * linux-arm-kernel@lists.arm.linux.org.uk
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/string.h>
31 #include <linux/interrupt.h>
32 #include <linux/slab.h>
34 #include <linux/delay.h>
35 #include <linux/init.h>
36 #include <linux/ioport.h>
37 #include <linux/cpufreq.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/clk.h>
41 #include <linux/err.h>
42 #include <linux/completion.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
46 #include <asm/hardware.h>
49 #include <asm/div64.h>
50 #include <asm/arch/pxa-regs.h>
51 #include <asm/arch/pxa2xx-gpio.h>
52 #include <asm/arch/bitfield.h>
53 #include <asm/arch/pxafb.h>
56 * Complain if VAR is out of range.
62 /* Bits which should not be set in machine configuration structures */
63 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
64 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
65 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
67 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
68 LCCR3_PCD | LCCR3_BPP)
70 static void (*pxafb_backlight_power
)(int);
71 static void (*pxafb_lcd_power
)(int, struct fb_var_screeninfo
*);
73 static int pxafb_activate_var(struct fb_var_screeninfo
*var
,
75 static void set_ctrlr_state(struct pxafb_info
*fbi
, u_int state
);
77 static inline unsigned long
78 lcd_readl(struct pxafb_info
*fbi
, unsigned int off
)
80 return __raw_readl(fbi
->mmio_base
+ off
);
84 lcd_writel(struct pxafb_info
*fbi
, unsigned int off
, unsigned long val
)
86 __raw_writel(val
, fbi
->mmio_base
+ off
);
89 static inline void pxafb_schedule_work(struct pxafb_info
*fbi
, u_int state
)
93 local_irq_save(flags
);
95 * We need to handle two requests being made at the same time.
96 * There are two important cases:
97 * 1. When we are changing VT (C_REENABLE) while unblanking
98 * (C_ENABLE) We must perform the unblanking, which will
99 * do our REENABLE for us.
100 * 2. When we are blanking, but immediately unblank before
101 * we have blanked. We do the "REENABLE" thing here as
102 * well, just to be sure.
104 if (fbi
->task_state
== C_ENABLE
&& state
== C_REENABLE
)
106 if (fbi
->task_state
== C_DISABLE
&& state
== C_ENABLE
)
109 if (state
!= (u_int
)-1) {
110 fbi
->task_state
= state
;
111 schedule_work(&fbi
->task
);
113 local_irq_restore(flags
);
116 static inline u_int
chan_to_field(u_int chan
, struct fb_bitfield
*bf
)
119 chan
>>= 16 - bf
->length
;
120 return chan
<< bf
->offset
;
124 pxafb_setpalettereg(u_int regno
, u_int red
, u_int green
, u_int blue
,
125 u_int trans
, struct fb_info
*info
)
127 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
130 if (regno
>= fbi
->palette_size
)
133 if (fbi
->fb
.var
.grayscale
) {
134 fbi
->palette_cpu
[regno
] = ((blue
>> 8) & 0x00ff);
138 switch (fbi
->lccr4
& LCCR4_PAL_FOR_MASK
) {
139 case LCCR4_PAL_FOR_0
:
140 val
= ((red
>> 0) & 0xf800);
141 val
|= ((green
>> 5) & 0x07e0);
142 val
|= ((blue
>> 11) & 0x001f);
143 fbi
->palette_cpu
[regno
] = val
;
145 case LCCR4_PAL_FOR_1
:
146 val
= ((red
<< 8) & 0x00f80000);
147 val
|= ((green
>> 0) & 0x0000fc00);
148 val
|= ((blue
>> 8) & 0x000000f8);
149 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
151 case LCCR4_PAL_FOR_2
:
152 val
= ((red
<< 8) & 0x00fc0000);
153 val
|= ((green
>> 0) & 0x0000fc00);
154 val
|= ((blue
>> 8) & 0x000000fc);
155 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
163 pxafb_setcolreg(u_int regno
, u_int red
, u_int green
, u_int blue
,
164 u_int trans
, struct fb_info
*info
)
166 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
171 * If inverse mode was selected, invert all the colours
172 * rather than the register number. The register number
173 * is what you poke into the framebuffer to produce the
174 * colour you requested.
176 if (fbi
->cmap_inverse
) {
178 green
= 0xffff - green
;
179 blue
= 0xffff - blue
;
183 * If greyscale is true, then we convert the RGB value
184 * to greyscale no matter what visual we are using.
186 if (fbi
->fb
.var
.grayscale
)
187 red
= green
= blue
= (19595 * red
+ 38470 * green
+
190 switch (fbi
->fb
.fix
.visual
) {
191 case FB_VISUAL_TRUECOLOR
:
193 * 16-bit True Colour. We encode the RGB value
194 * according to the RGB bitfield information.
197 u32
*pal
= fbi
->fb
.pseudo_palette
;
199 val
= chan_to_field(red
, &fbi
->fb
.var
.red
);
200 val
|= chan_to_field(green
, &fbi
->fb
.var
.green
);
201 val
|= chan_to_field(blue
, &fbi
->fb
.var
.blue
);
208 case FB_VISUAL_STATIC_PSEUDOCOLOR
:
209 case FB_VISUAL_PSEUDOCOLOR
:
210 ret
= pxafb_setpalettereg(regno
, red
, green
, blue
, trans
, info
);
218 * pxafb_bpp_to_lccr3():
219 * Convert a bits per pixel value to the correct bit pattern for LCCR3
221 static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo
*var
)
224 switch (var
->bits_per_pixel
) {
225 case 1: ret
= LCCR3_1BPP
; break;
226 case 2: ret
= LCCR3_2BPP
; break;
227 case 4: ret
= LCCR3_4BPP
; break;
228 case 8: ret
= LCCR3_8BPP
; break;
229 case 16: ret
= LCCR3_16BPP
; break;
234 #ifdef CONFIG_CPU_FREQ
236 * pxafb_display_dma_period()
237 * Calculate the minimum period (in picoseconds) between two DMA
238 * requests for the LCD controller. If we hit this, it means we're
239 * doing nothing but LCD DMA.
241 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo
*var
)
244 * Period = pixclock * bits_per_byte * bytes_per_transfer
245 * / memory_bits_per_pixel;
247 return var
->pixclock
* 8 * 16 / var
->bits_per_pixel
;
252 * Select the smallest mode that allows the desired resolution to be
253 * displayed. If desired parameters can be rounded up.
255 static struct pxafb_mode_info
*pxafb_getmode(struct pxafb_mach_info
*mach
,
256 struct fb_var_screeninfo
*var
)
258 struct pxafb_mode_info
*mode
= NULL
;
259 struct pxafb_mode_info
*modelist
= mach
->modes
;
260 unsigned int best_x
= 0xffffffff, best_y
= 0xffffffff;
263 for (i
= 0; i
< mach
->num_modes
; i
++) {
264 if (modelist
[i
].xres
>= var
->xres
&&
265 modelist
[i
].yres
>= var
->yres
&&
266 modelist
[i
].xres
< best_x
&&
267 modelist
[i
].yres
< best_y
&&
268 modelist
[i
].bpp
>= var
->bits_per_pixel
) {
269 best_x
= modelist
[i
].xres
;
270 best_y
= modelist
[i
].yres
;
278 static void pxafb_setmode(struct fb_var_screeninfo
*var
,
279 struct pxafb_mode_info
*mode
)
281 var
->xres
= mode
->xres
;
282 var
->yres
= mode
->yres
;
283 var
->bits_per_pixel
= mode
->bpp
;
284 var
->pixclock
= mode
->pixclock
;
285 var
->hsync_len
= mode
->hsync_len
;
286 var
->left_margin
= mode
->left_margin
;
287 var
->right_margin
= mode
->right_margin
;
288 var
->vsync_len
= mode
->vsync_len
;
289 var
->upper_margin
= mode
->upper_margin
;
290 var
->lower_margin
= mode
->lower_margin
;
291 var
->sync
= mode
->sync
;
292 var
->grayscale
= mode
->cmap_greyscale
;
293 var
->xres_virtual
= var
->xres
;
294 var
->yres_virtual
= var
->yres
;
299 * Get the video params out of 'var'. If a value doesn't fit, round it up,
300 * if it's too big, return -EINVAL.
302 * Round up in the following order: bits_per_pixel, xres,
303 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
304 * bitfields, horizontal timing, vertical timing.
306 static int pxafb_check_var(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
308 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
309 struct pxafb_mach_info
*inf
= fbi
->dev
->platform_data
;
311 if (var
->xres
< MIN_XRES
)
312 var
->xres
= MIN_XRES
;
313 if (var
->yres
< MIN_YRES
)
314 var
->yres
= MIN_YRES
;
316 if (inf
->fixed_modes
) {
317 struct pxafb_mode_info
*mode
;
319 mode
= pxafb_getmode(inf
, var
);
322 pxafb_setmode(var
, mode
);
324 if (var
->xres
> inf
->modes
->xres
)
326 if (var
->yres
> inf
->modes
->yres
)
328 if (var
->bits_per_pixel
> inf
->modes
->bpp
)
333 max(var
->xres_virtual
, var
->xres
);
335 max(var
->yres_virtual
, var
->yres
);
338 * Setup the RGB parameters for this display.
340 * The pixel packing format is described on page 7-11 of the
341 * PXA2XX Developer's Manual.
343 if (var
->bits_per_pixel
== 16) {
344 var
->red
.offset
= 11; var
->red
.length
= 5;
345 var
->green
.offset
= 5; var
->green
.length
= 6;
346 var
->blue
.offset
= 0; var
->blue
.length
= 5;
347 var
->transp
.offset
= var
->transp
.length
= 0;
349 var
->red
.offset
= var
->green
.offset
= 0;
350 var
->blue
.offset
= var
->transp
.offset
= 0;
352 var
->green
.length
= 8;
353 var
->blue
.length
= 8;
354 var
->transp
.length
= 0;
357 #ifdef CONFIG_CPU_FREQ
358 pr_debug("pxafb: dma period = %d ps\n",
359 pxafb_display_dma_period(var
));
365 static inline void pxafb_set_truecolor(u_int is_true_color
)
367 /* do your machine-specific setup if needed */
372 * Set the user defined part of the display for the specified console
374 static int pxafb_set_par(struct fb_info
*info
)
376 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
377 struct fb_var_screeninfo
*var
= &info
->var
;
379 if (var
->bits_per_pixel
== 16)
380 fbi
->fb
.fix
.visual
= FB_VISUAL_TRUECOLOR
;
381 else if (!fbi
->cmap_static
)
382 fbi
->fb
.fix
.visual
= FB_VISUAL_PSEUDOCOLOR
;
385 * Some people have weird ideas about wanting static
386 * pseudocolor maps. I suspect their user space
387 * applications are broken.
389 fbi
->fb
.fix
.visual
= FB_VISUAL_STATIC_PSEUDOCOLOR
;
392 fbi
->fb
.fix
.line_length
= var
->xres_virtual
*
393 var
->bits_per_pixel
/ 8;
394 if (var
->bits_per_pixel
== 16)
395 fbi
->palette_size
= 0;
397 fbi
->palette_size
= var
->bits_per_pixel
== 1 ?
398 4 : 1 << var
->bits_per_pixel
;
400 fbi
->palette_cpu
= (u16
*)&fbi
->dma_buff
->palette
[0];
403 * Set (any) board control register to handle new color depth
405 pxafb_set_truecolor(fbi
->fb
.fix
.visual
== FB_VISUAL_TRUECOLOR
);
407 if (fbi
->fb
.var
.bits_per_pixel
== 16)
408 fb_dealloc_cmap(&fbi
->fb
.cmap
);
410 fb_alloc_cmap(&fbi
->fb
.cmap
, 1<<fbi
->fb
.var
.bits_per_pixel
, 0);
412 pxafb_activate_var(var
, fbi
);
419 * Blank the display by setting all palette values to zero. Note, the
420 * 16 bpp mode does not really use the palette, so this will not
421 * blank the display in all modes.
423 static int pxafb_blank(int blank
, struct fb_info
*info
)
425 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
429 case FB_BLANK_POWERDOWN
:
430 case FB_BLANK_VSYNC_SUSPEND
:
431 case FB_BLANK_HSYNC_SUSPEND
:
432 case FB_BLANK_NORMAL
:
433 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
434 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
435 for (i
= 0; i
< fbi
->palette_size
; i
++)
436 pxafb_setpalettereg(i
, 0, 0, 0, 0, info
);
438 pxafb_schedule_work(fbi
, C_DISABLE
);
439 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
442 case FB_BLANK_UNBLANK
:
443 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
444 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
445 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
446 fb_set_cmap(&fbi
->fb
.cmap
, info
);
447 pxafb_schedule_work(fbi
, C_ENABLE
);
452 static int pxafb_mmap(struct fb_info
*info
,
453 struct vm_area_struct
*vma
)
455 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
456 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
458 if (off
< info
->fix
.smem_len
) {
459 vma
->vm_pgoff
+= fbi
->video_offset
/ PAGE_SIZE
;
460 return dma_mmap_writecombine(fbi
->dev
, vma
, fbi
->map_cpu
,
461 fbi
->map_dma
, fbi
->map_size
);
466 static struct fb_ops pxafb_ops
= {
467 .owner
= THIS_MODULE
,
468 .fb_check_var
= pxafb_check_var
,
469 .fb_set_par
= pxafb_set_par
,
470 .fb_setcolreg
= pxafb_setcolreg
,
471 .fb_fillrect
= cfb_fillrect
,
472 .fb_copyarea
= cfb_copyarea
,
473 .fb_imageblit
= cfb_imageblit
,
474 .fb_blank
= pxafb_blank
,
475 .fb_mmap
= pxafb_mmap
,
479 * Calculate the PCD value from the clock rate (in picoseconds).
480 * We take account of the PPCR clock setting.
481 * From PXA Developer's Manual:
492 * LCLK = LCD/Memory Clock
495 * PixelClock here is in Hz while the pixclock argument given is the
496 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
498 * The function get_lclk_frequency_10khz returns LCLK in units of
499 * 10khz. Calling the result of this function lclk gives us the
502 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
503 * -------------------------------------- - 1
506 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
508 static inline unsigned int get_pcd(struct pxafb_info
*fbi
,
509 unsigned int pixclock
)
511 unsigned long long pcd
;
513 /* FIXME: Need to take into account Double Pixel Clock mode
514 * (DPC) bit? or perhaps set it based on the various clock
516 pcd
= (unsigned long long)(clk_get_rate(fbi
->clk
) / 10000);
518 do_div(pcd
, 100000000 * 2);
519 /* no need for this, since we should subtract 1 anyway. they cancel */
520 /* pcd += 1; */ /* make up for integer math truncations */
521 return (unsigned int)pcd
;
525 * Some touchscreens need hsync information from the video driver to
526 * function correctly. We export it here. Note that 'hsync_time' and
527 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
528 * of the hsync period in seconds.
530 static inline void set_hsync_time(struct pxafb_info
*fbi
, unsigned int pcd
)
534 if ((pcd
== 0) || (fbi
->fb
.var
.hsync_len
== 0)) {
539 htime
= clk_get_rate(fbi
->clk
) / (pcd
* fbi
->fb
.var
.hsync_len
);
541 fbi
->hsync_time
= htime
;
544 unsigned long pxafb_get_hsync_time(struct device
*dev
)
546 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
548 /* If display is blanked/suspended, hsync isn't active */
549 if (!fbi
|| (fbi
->state
!= C_ENABLE
))
552 return fbi
->hsync_time
;
554 EXPORT_SYMBOL(pxafb_get_hsync_time
);
556 static int setup_frame_dma(struct pxafb_info
*fbi
, int dma
, int pal
,
557 unsigned int offset
, size_t size
)
559 struct pxafb_dma_descriptor
*dma_desc
, *pal_desc
;
560 unsigned int dma_desc_off
, pal_desc_off
;
562 if (dma
< 0 || dma
>= DMA_MAX
)
565 dma_desc
= &fbi
->dma_buff
->dma_desc
[dma
];
566 dma_desc_off
= offsetof(struct pxafb_dma_buff
, dma_desc
[dma
]);
568 dma_desc
->fsadr
= fbi
->screen_dma
+ offset
;
570 dma_desc
->ldcmd
= size
;
572 if (pal
< 0 || pal
>= PAL_MAX
) {
573 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
574 fbi
->fdadr
[dma
] = fbi
->dma_buff_phys
+ dma_desc_off
;
576 pal_desc
= &fbi
->dma_buff
->pal_desc
[pal
];
577 pal_desc_off
= offsetof(struct pxafb_dma_buff
, pal_desc
[pal
]);
579 pal_desc
->fsadr
= fbi
->dma_buff_phys
+ pal
* PALETTE_SIZE
;
582 if ((fbi
->lccr4
& LCCR4_PAL_FOR_MASK
) == LCCR4_PAL_FOR_0
)
583 pal_desc
->ldcmd
= fbi
->palette_size
* sizeof(u16
);
585 pal_desc
->ldcmd
= fbi
->palette_size
* sizeof(u32
);
587 pal_desc
->ldcmd
|= LDCMD_PAL
;
589 /* flip back and forth between palette and frame buffer */
590 pal_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
591 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ pal_desc_off
;
592 fbi
->fdadr
[dma
] = fbi
->dma_buff_phys
+ dma_desc_off
;
598 #ifdef CONFIG_FB_PXA_SMARTPANEL
599 static int setup_smart_dma(struct pxafb_info
*fbi
)
601 struct pxafb_dma_descriptor
*dma_desc
;
602 unsigned long dma_desc_off
, cmd_buff_off
;
604 dma_desc
= &fbi
->dma_buff
->dma_desc
[DMA_CMD
];
605 dma_desc_off
= offsetof(struct pxafb_dma_buff
, dma_desc
[DMA_CMD
]);
606 cmd_buff_off
= offsetof(struct pxafb_dma_buff
, cmd_buff
);
608 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
609 dma_desc
->fsadr
= fbi
->dma_buff_phys
+ cmd_buff_off
;
611 dma_desc
->ldcmd
= fbi
->n_smart_cmds
* sizeof(uint16_t);
613 fbi
->fdadr
[DMA_CMD
] = dma_desc
->fdadr
;
617 int pxafb_smart_flush(struct fb_info
*info
)
619 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
623 /* disable controller until all registers are set up */
624 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
626 /* 1. make it an even number of commands to align on 32-bit boundary
627 * 2. add the interrupt command to the end of the chain so we can
628 * keep track of the end of the transfer
631 while (fbi
->n_smart_cmds
& 1)
632 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_NOOP
;
634 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_INTERRUPT
;
635 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_WAIT_FOR_VSYNC
;
636 setup_smart_dma(fbi
);
638 /* continue to execute next command */
639 prsr
= lcd_readl(fbi
, PRSR
) | PRSR_ST_OK
| PRSR_CON_NT
;
640 lcd_writel(fbi
, PRSR
, prsr
);
642 /* stop the processor in case it executed "wait for sync" cmd */
643 lcd_writel(fbi
, CMDCR
, 0x0001);
645 /* don't send interrupts for fifo underruns on channel 6 */
646 lcd_writel(fbi
, LCCR5
, LCCR5_IUM(6));
648 lcd_writel(fbi
, LCCR1
, fbi
->reg_lccr1
);
649 lcd_writel(fbi
, LCCR2
, fbi
->reg_lccr2
);
650 lcd_writel(fbi
, LCCR3
, fbi
->reg_lccr3
);
651 lcd_writel(fbi
, FDADR0
, fbi
->fdadr
[0]);
652 lcd_writel(fbi
, FDADR6
, fbi
->fdadr
[6]);
655 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
| LCCR0_ENB
);
657 if (wait_for_completion_timeout(&fbi
->command_done
, HZ
/2) == 0) {
658 pr_warning("%s: timeout waiting for command done\n",
664 prsr
= lcd_readl(fbi
, PRSR
) & ~(PRSR_ST_OK
| PRSR_CON_NT
);
665 lcd_writel(fbi
, PRSR
, prsr
);
666 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
667 lcd_writel(fbi
, FDADR6
, 0);
668 fbi
->n_smart_cmds
= 0;
672 int pxafb_smart_queue(struct fb_info
*info
, uint16_t *cmds
, int n_cmds
)
675 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
677 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
678 for (i
= 0; i
< n_cmds
; i
++) {
679 if (fbi
->n_smart_cmds
== CMD_BUFF_SIZE
- 8)
680 pxafb_smart_flush(info
);
682 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = *cmds
++;
688 static unsigned int __smart_timing(unsigned time_ns
, unsigned long lcd_clk
)
690 unsigned int t
= (time_ns
* (lcd_clk
/ 1000000) / 1000);
691 return (t
== 0) ? 1 : t
;
694 static void setup_smart_timing(struct pxafb_info
*fbi
,
695 struct fb_var_screeninfo
*var
)
697 struct pxafb_mach_info
*inf
= fbi
->dev
->platform_data
;
698 struct pxafb_mode_info
*mode
= &inf
->modes
[0];
699 unsigned long lclk
= clk_get_rate(fbi
->clk
);
700 unsigned t1
, t2
, t3
, t4
;
702 t1
= max(mode
->a0csrd_set_hld
, mode
->a0cswr_set_hld
);
703 t2
= max(mode
->rd_pulse_width
, mode
->wr_pulse_width
);
704 t3
= mode
->op_hold_time
;
705 t4
= mode
->cmd_inh_time
;
708 LCCR1_DisWdth(var
->xres
) |
709 LCCR1_BegLnDel(__smart_timing(t1
, lclk
)) |
710 LCCR1_EndLnDel(__smart_timing(t2
, lclk
)) |
711 LCCR1_HorSnchWdth(__smart_timing(t3
, lclk
));
713 fbi
->reg_lccr2
= LCCR2_DisHght(var
->yres
);
714 fbi
->reg_lccr3
= LCCR3_PixClkDiv(__smart_timing(t4
, lclk
));
716 /* FIXME: make this configurable */
720 static int pxafb_smart_thread(void *arg
)
722 struct pxafb_info
*fbi
= arg
;
723 struct pxafb_mach_info
*inf
= fbi
->dev
->platform_data
;
725 if (!fbi
|| !inf
->smart_update
) {
726 pr_err("%s: not properly initialized, thread terminated\n",
731 pr_debug("%s(): task starting\n", __func__
);
734 while (!kthread_should_stop()) {
739 if (fbi
->state
== C_ENABLE
) {
740 inf
->smart_update(&fbi
->fb
);
741 complete(&fbi
->refresh_done
);
744 set_current_state(TASK_INTERRUPTIBLE
);
745 schedule_timeout(30 * HZ
/ 1000);
748 pr_debug("%s(): task ending\n", __func__
);
752 static int pxafb_smart_init(struct pxafb_info
*fbi
)
754 fbi
->smart_thread
= kthread_run(pxafb_smart_thread
, fbi
,
756 if (IS_ERR(fbi
->smart_thread
)) {
757 printk(KERN_ERR
"%s: unable to create kernel thread\n",
759 return PTR_ERR(fbi
->smart_thread
);
764 int pxafb_smart_queue(struct fb_info
*info
, uint16_t *cmds
, int n_cmds
)
769 int pxafb_smart_flush(struct fb_info
*info
)
773 #endif /* CONFIG_FB_SMART_PANEL */
775 static void setup_parallel_timing(struct pxafb_info
*fbi
,
776 struct fb_var_screeninfo
*var
)
778 unsigned int lines_per_panel
, pcd
= get_pcd(fbi
, var
->pixclock
);
781 LCCR1_DisWdth(var
->xres
) +
782 LCCR1_HorSnchWdth(var
->hsync_len
) +
783 LCCR1_BegLnDel(var
->left_margin
) +
784 LCCR1_EndLnDel(var
->right_margin
);
787 * If we have a dual scan LCD, we need to halve
788 * the YRES parameter.
790 lines_per_panel
= var
->yres
;
791 if ((fbi
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
)
792 lines_per_panel
/= 2;
795 LCCR2_DisHght(lines_per_panel
) +
796 LCCR2_VrtSnchWdth(var
->vsync_len
) +
797 LCCR2_BegFrmDel(var
->upper_margin
) +
798 LCCR2_EndFrmDel(var
->lower_margin
);
800 fbi
->reg_lccr3
= fbi
->lccr3
|
801 (var
->sync
& FB_SYNC_HOR_HIGH_ACT
?
802 LCCR3_HorSnchH
: LCCR3_HorSnchL
) |
803 (var
->sync
& FB_SYNC_VERT_HIGH_ACT
?
804 LCCR3_VrtSnchH
: LCCR3_VrtSnchL
);
807 fbi
->reg_lccr3
|= LCCR3_PixClkDiv(pcd
);
808 set_hsync_time(fbi
, pcd
);
813 * pxafb_activate_var():
814 * Configures LCD Controller based on entries in var parameter.
815 * Settings are only written to the controller if changes were made.
817 static int pxafb_activate_var(struct fb_var_screeninfo
*var
,
818 struct pxafb_info
*fbi
)
824 if (!(fbi
->lccr0
& LCCR0_LCDT
)) {
825 if (var
->xres
< 16 || var
->xres
> 1024)
826 printk(KERN_ERR
"%s: invalid xres %d\n",
827 fbi
->fb
.fix
.id
, var
->xres
);
828 switch (var
->bits_per_pixel
) {
836 printk(KERN_ERR
"%s: invalid bit depth %d\n",
837 fbi
->fb
.fix
.id
, var
->bits_per_pixel
);
841 if (var
->hsync_len
< 1 || var
->hsync_len
> 64)
842 printk(KERN_ERR
"%s: invalid hsync_len %d\n",
843 fbi
->fb
.fix
.id
, var
->hsync_len
);
844 if (var
->left_margin
< 1 || var
->left_margin
> 255)
845 printk(KERN_ERR
"%s: invalid left_margin %d\n",
846 fbi
->fb
.fix
.id
, var
->left_margin
);
847 if (var
->right_margin
< 1 || var
->right_margin
> 255)
848 printk(KERN_ERR
"%s: invalid right_margin %d\n",
849 fbi
->fb
.fix
.id
, var
->right_margin
);
850 if (var
->yres
< 1 || var
->yres
> 1024)
851 printk(KERN_ERR
"%s: invalid yres %d\n",
852 fbi
->fb
.fix
.id
, var
->yres
);
853 if (var
->vsync_len
< 1 || var
->vsync_len
> 64)
854 printk(KERN_ERR
"%s: invalid vsync_len %d\n",
855 fbi
->fb
.fix
.id
, var
->vsync_len
);
856 if (var
->upper_margin
< 0 || var
->upper_margin
> 255)
857 printk(KERN_ERR
"%s: invalid upper_margin %d\n",
858 fbi
->fb
.fix
.id
, var
->upper_margin
);
859 if (var
->lower_margin
< 0 || var
->lower_margin
> 255)
860 printk(KERN_ERR
"%s: invalid lower_margin %d\n",
861 fbi
->fb
.fix
.id
, var
->lower_margin
);
864 /* Update shadow copy atomically */
865 local_irq_save(flags
);
867 #ifdef CONFIG_FB_PXA_SMARTPANEL
868 if (fbi
->lccr0
& LCCR0_LCDT
)
869 setup_smart_timing(fbi
, var
);
872 setup_parallel_timing(fbi
, var
);
874 fbi
->reg_lccr0
= fbi
->lccr0
|
875 (LCCR0_LDM
| LCCR0_SFM
| LCCR0_IUM
| LCCR0_EFM
|
876 LCCR0_QDM
| LCCR0_BM
| LCCR0_OUM
);
878 fbi
->reg_lccr3
|= pxafb_bpp_to_lccr3(var
);
880 nbytes
= var
->yres
* fbi
->fb
.fix
.line_length
;
882 if ((fbi
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
) {
884 setup_frame_dma(fbi
, DMA_LOWER
, PAL_NONE
, nbytes
, nbytes
);
887 if ((var
->bits_per_pixel
>= 16) || (fbi
->lccr0
& LCCR0_LCDT
))
888 setup_frame_dma(fbi
, DMA_BASE
, PAL_NONE
, 0, nbytes
);
890 setup_frame_dma(fbi
, DMA_BASE
, PAL_BASE
, 0, nbytes
);
892 fbi
->reg_lccr4
= lcd_readl(fbi
, LCCR4
) & ~LCCR4_PAL_FOR_MASK
;
893 fbi
->reg_lccr4
|= (fbi
->lccr4
& LCCR4_PAL_FOR_MASK
);
894 local_irq_restore(flags
);
897 * Only update the registers if the controller is enabled
898 * and something has changed.
900 if ((lcd_readl(fbi
, LCCR0
) != fbi
->reg_lccr0
) ||
901 (lcd_readl(fbi
, LCCR1
) != fbi
->reg_lccr1
) ||
902 (lcd_readl(fbi
, LCCR2
) != fbi
->reg_lccr2
) ||
903 (lcd_readl(fbi
, LCCR3
) != fbi
->reg_lccr3
) ||
904 (lcd_readl(fbi
, FDADR0
) != fbi
->fdadr
[0]) ||
905 (lcd_readl(fbi
, FDADR1
) != fbi
->fdadr
[1]))
906 pxafb_schedule_work(fbi
, C_REENABLE
);
912 * NOTE! The following functions are purely helpers for set_ctrlr_state.
913 * Do not call them directly; set_ctrlr_state does the correct serialisation
914 * to ensure that things happen in the right way 100% of time time.
917 static inline void __pxafb_backlight_power(struct pxafb_info
*fbi
, int on
)
919 pr_debug("pxafb: backlight o%s\n", on
? "n" : "ff");
921 if (pxafb_backlight_power
)
922 pxafb_backlight_power(on
);
925 static inline void __pxafb_lcd_power(struct pxafb_info
*fbi
, int on
)
927 pr_debug("pxafb: LCD power o%s\n", on
? "n" : "ff");
930 pxafb_lcd_power(on
, &fbi
->fb
.var
);
933 static void pxafb_setup_gpio(struct pxafb_info
*fbi
)
936 unsigned int lccr0
= fbi
->lccr0
;
939 * setup is based on type of panel supported
942 /* 4 bit interface */
943 if ((lccr0
& LCCR0_CMS
) == LCCR0_Mono
&&
944 (lccr0
& LCCR0_SDS
) == LCCR0_Sngl
&&
945 (lccr0
& LCCR0_DPD
) == LCCR0_4PixMono
)
948 /* 8 bit interface */
949 else if (((lccr0
& LCCR0_CMS
) == LCCR0_Mono
&&
950 ((lccr0
& LCCR0_SDS
) == LCCR0_Dual
||
951 (lccr0
& LCCR0_DPD
) == LCCR0_8PixMono
)) ||
952 ((lccr0
& LCCR0_CMS
) == LCCR0_Color
&&
953 (lccr0
& LCCR0_PAS
) == LCCR0_Pas
&&
954 (lccr0
& LCCR0_SDS
) == LCCR0_Sngl
))
957 /* 16 bit interface */
958 else if ((lccr0
& LCCR0_CMS
) == LCCR0_Color
&&
959 ((lccr0
& LCCR0_SDS
) == LCCR0_Dual
||
960 (lccr0
& LCCR0_PAS
) == LCCR0_Act
))
964 printk(KERN_ERR
"pxafb_setup_gpio: unable to determine "
969 for (gpio
= 58; ldd_bits
; gpio
++, ldd_bits
--)
970 pxa_gpio_mode(gpio
| GPIO_ALT_FN_2_OUT
);
971 pxa_gpio_mode(GPIO74_LCD_FCLK_MD
);
972 pxa_gpio_mode(GPIO75_LCD_LCLK_MD
);
973 pxa_gpio_mode(GPIO76_LCD_PCLK_MD
);
974 pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD
);
977 static void pxafb_enable_controller(struct pxafb_info
*fbi
)
979 pr_debug("pxafb: Enabling LCD controller\n");
980 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi
->fdadr
[0]);
981 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi
->fdadr
[1]);
982 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi
->reg_lccr0
);
983 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi
->reg_lccr1
);
984 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi
->reg_lccr2
);
985 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi
->reg_lccr3
);
987 /* enable LCD controller clock */
988 clk_enable(fbi
->clk
);
990 if (fbi
->lccr0
& LCCR0_LCDT
)
993 /* Sequence from 11.7.10 */
994 lcd_writel(fbi
, LCCR3
, fbi
->reg_lccr3
);
995 lcd_writel(fbi
, LCCR2
, fbi
->reg_lccr2
);
996 lcd_writel(fbi
, LCCR1
, fbi
->reg_lccr1
);
997 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
999 lcd_writel(fbi
, FDADR0
, fbi
->fdadr
[0]);
1000 lcd_writel(fbi
, FDADR1
, fbi
->fdadr
[1]);
1001 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
| LCCR0_ENB
);
1004 static void pxafb_disable_controller(struct pxafb_info
*fbi
)
1008 #ifdef CONFIG_FB_PXA_SMARTPANEL
1009 if (fbi
->lccr0
& LCCR0_LCDT
) {
1010 wait_for_completion_timeout(&fbi
->refresh_done
,
1016 /* Clear LCD Status Register */
1017 lcd_writel(fbi
, LCSR
, 0xffffffff);
1019 lccr0
= lcd_readl(fbi
, LCCR0
) & ~LCCR0_LDM
;
1020 lcd_writel(fbi
, LCCR0
, lccr0
);
1021 lcd_writel(fbi
, LCCR0
, lccr0
| LCCR0_DIS
);
1023 wait_for_completion_timeout(&fbi
->disable_done
, 200 * HZ
/ 1000);
1025 /* disable LCD controller clock */
1026 clk_disable(fbi
->clk
);
1030 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1032 static irqreturn_t
pxafb_handle_irq(int irq
, void *dev_id
)
1034 struct pxafb_info
*fbi
= dev_id
;
1035 unsigned int lccr0
, lcsr
= lcd_readl(fbi
, LCSR
);
1037 if (lcsr
& LCSR_LDD
) {
1038 lccr0
= lcd_readl(fbi
, LCCR0
);
1039 lcd_writel(fbi
, LCCR0
, lccr0
| LCCR0_LDM
);
1040 complete(&fbi
->disable_done
);
1043 #ifdef CONFIG_FB_PXA_SMARTPANEL
1044 if (lcsr
& LCSR_CMD_INT
)
1045 complete(&fbi
->command_done
);
1048 lcd_writel(fbi
, LCSR
, lcsr
);
1053 * This function must be called from task context only, since it will
1054 * sleep when disabling the LCD controller, or if we get two contending
1055 * processes trying to alter state.
1057 static void set_ctrlr_state(struct pxafb_info
*fbi
, u_int state
)
1061 down(&fbi
->ctrlr_sem
);
1063 old_state
= fbi
->state
;
1066 * Hack around fbcon initialisation.
1068 if (old_state
== C_STARTUP
&& state
== C_REENABLE
)
1072 case C_DISABLE_CLKCHANGE
:
1074 * Disable controller for clock change. If the
1075 * controller is already disabled, then do nothing.
1077 if (old_state
!= C_DISABLE
&& old_state
!= C_DISABLE_PM
) {
1079 /* TODO __pxafb_lcd_power(fbi, 0); */
1080 pxafb_disable_controller(fbi
);
1087 * Disable controller
1089 if (old_state
!= C_DISABLE
) {
1091 __pxafb_backlight_power(fbi
, 0);
1092 __pxafb_lcd_power(fbi
, 0);
1093 if (old_state
!= C_DISABLE_CLKCHANGE
)
1094 pxafb_disable_controller(fbi
);
1098 case C_ENABLE_CLKCHANGE
:
1100 * Enable the controller after clock change. Only
1101 * do this if we were disabled for the clock change.
1103 if (old_state
== C_DISABLE_CLKCHANGE
) {
1104 fbi
->state
= C_ENABLE
;
1105 pxafb_enable_controller(fbi
);
1106 /* TODO __pxafb_lcd_power(fbi, 1); */
1112 * Re-enable the controller only if it was already
1113 * enabled. This is so we reprogram the control
1116 if (old_state
== C_ENABLE
) {
1117 __pxafb_lcd_power(fbi
, 0);
1118 pxafb_disable_controller(fbi
);
1119 pxafb_setup_gpio(fbi
);
1120 pxafb_enable_controller(fbi
);
1121 __pxafb_lcd_power(fbi
, 1);
1127 * Re-enable the controller after PM. This is not
1128 * perfect - think about the case where we were doing
1129 * a clock change, and we suspended half-way through.
1131 if (old_state
!= C_DISABLE_PM
)
1137 * Power up the LCD screen, enable controller, and
1138 * turn on the backlight.
1140 if (old_state
!= C_ENABLE
) {
1141 fbi
->state
= C_ENABLE
;
1142 pxafb_setup_gpio(fbi
);
1143 pxafb_enable_controller(fbi
);
1144 __pxafb_lcd_power(fbi
, 1);
1145 __pxafb_backlight_power(fbi
, 1);
1149 up(&fbi
->ctrlr_sem
);
1153 * Our LCD controller task (which is called when we blank or unblank)
1156 static void pxafb_task(struct work_struct
*work
)
1158 struct pxafb_info
*fbi
=
1159 container_of(work
, struct pxafb_info
, task
);
1160 u_int state
= xchg(&fbi
->task_state
, -1);
1162 set_ctrlr_state(fbi
, state
);
1165 #ifdef CONFIG_CPU_FREQ
1167 * CPU clock speed change handler. We need to adjust the LCD timing
1168 * parameters when the CPU clock is adjusted by the power management
1171 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1174 pxafb_freq_transition(struct notifier_block
*nb
, unsigned long val
, void *data
)
1176 struct pxafb_info
*fbi
= TO_INF(nb
, freq_transition
);
1177 /* TODO struct cpufreq_freqs *f = data; */
1181 case CPUFREQ_PRECHANGE
:
1182 set_ctrlr_state(fbi
, C_DISABLE_CLKCHANGE
);
1185 case CPUFREQ_POSTCHANGE
:
1186 pcd
= get_pcd(fbi
, fbi
->fb
.var
.pixclock
);
1187 set_hsync_time(fbi
, pcd
);
1188 fbi
->reg_lccr3
= (fbi
->reg_lccr3
& ~0xff) |
1189 LCCR3_PixClkDiv(pcd
);
1190 set_ctrlr_state(fbi
, C_ENABLE_CLKCHANGE
);
1197 pxafb_freq_policy(struct notifier_block
*nb
, unsigned long val
, void *data
)
1199 struct pxafb_info
*fbi
= TO_INF(nb
, freq_policy
);
1200 struct fb_var_screeninfo
*var
= &fbi
->fb
.var
;
1201 struct cpufreq_policy
*policy
= data
;
1204 case CPUFREQ_ADJUST
:
1205 case CPUFREQ_INCOMPATIBLE
:
1206 pr_debug("min dma period: %d ps, "
1207 "new clock %d kHz\n", pxafb_display_dma_period(var
),
1209 /* TODO: fill in min/max values */
1218 * Power management hooks. Note that we won't be called from IRQ context,
1219 * unlike the blank functions above, so we may sleep.
1221 static int pxafb_suspend(struct platform_device
*dev
, pm_message_t state
)
1223 struct pxafb_info
*fbi
= platform_get_drvdata(dev
);
1225 set_ctrlr_state(fbi
, C_DISABLE_PM
);
1229 static int pxafb_resume(struct platform_device
*dev
)
1231 struct pxafb_info
*fbi
= platform_get_drvdata(dev
);
1233 set_ctrlr_state(fbi
, C_ENABLE_PM
);
1237 #define pxafb_suspend NULL
1238 #define pxafb_resume NULL
1242 * pxafb_map_video_memory():
1243 * Allocates the DRAM memory for the frame buffer. This buffer is
1244 * remapped into a non-cached, non-buffered, memory region to
1245 * allow palette and pixel writes to occur without flushing the
1246 * cache. Once this area is remapped, all virtual memory
1247 * access to the video memory should occur at the new region.
1249 static int __init
pxafb_map_video_memory(struct pxafb_info
*fbi
)
1252 * We reserve one page for the palette, plus the size
1253 * of the framebuffer.
1255 fbi
->video_offset
= PAGE_ALIGN(sizeof(struct pxafb_dma_buff
));
1256 fbi
->map_size
= PAGE_ALIGN(fbi
->fb
.fix
.smem_len
+ fbi
->video_offset
);
1257 fbi
->map_cpu
= dma_alloc_writecombine(fbi
->dev
, fbi
->map_size
,
1258 &fbi
->map_dma
, GFP_KERNEL
);
1261 /* prevent initial garbage on screen */
1262 memset(fbi
->map_cpu
, 0, fbi
->map_size
);
1263 fbi
->fb
.screen_base
= fbi
->map_cpu
+ fbi
->video_offset
;
1264 fbi
->screen_dma
= fbi
->map_dma
+ fbi
->video_offset
;
1267 * FIXME: this is actually the wrong thing to place in
1268 * smem_start. But fbdev suffers from the problem that
1269 * it needs an API which doesn't exist (in this case,
1270 * dma_writecombine_mmap)
1272 fbi
->fb
.fix
.smem_start
= fbi
->screen_dma
;
1273 fbi
->palette_size
= fbi
->fb
.var
.bits_per_pixel
== 8 ? 256 : 16;
1275 fbi
->dma_buff
= (void *) fbi
->map_cpu
;
1276 fbi
->dma_buff_phys
= fbi
->map_dma
;
1277 fbi
->palette_cpu
= (u16
*) fbi
->dma_buff
->palette
;
1279 pr_debug("pxafb: palette_mem_size = 0x%08lx\n", fbi
->palette_size
*sizeof(u16
));
1281 #ifdef CONFIG_FB_PXA_SMARTPANEL
1282 fbi
->smart_cmds
= (uint16_t *) fbi
->dma_buff
->cmd_buff
;
1283 fbi
->n_smart_cmds
= 0;
1287 return fbi
->map_cpu
? 0 : -ENOMEM
;
1290 static void pxafb_decode_mode_info(struct pxafb_info
*fbi
,
1291 struct pxafb_mode_info
*modes
,
1292 unsigned int num_modes
)
1294 unsigned int i
, smemlen
;
1296 pxafb_setmode(&fbi
->fb
.var
, &modes
[0]);
1298 for (i
= 0; i
< num_modes
; i
++) {
1299 smemlen
= modes
[i
].xres
* modes
[i
].yres
* modes
[i
].bpp
/ 8;
1300 if (smemlen
> fbi
->fb
.fix
.smem_len
)
1301 fbi
->fb
.fix
.smem_len
= smemlen
;
1305 static void pxafb_decode_mach_info(struct pxafb_info
*fbi
,
1306 struct pxafb_mach_info
*inf
)
1308 unsigned int lcd_conn
= inf
->lcd_conn
;
1310 fbi
->cmap_inverse
= inf
->cmap_inverse
;
1311 fbi
->cmap_static
= inf
->cmap_static
;
1313 switch (lcd_conn
& 0xf) {
1314 case LCD_TYPE_MONO_STN
:
1315 fbi
->lccr0
= LCCR0_CMS
;
1317 case LCD_TYPE_MONO_DSTN
:
1318 fbi
->lccr0
= LCCR0_CMS
| LCCR0_SDS
;
1320 case LCD_TYPE_COLOR_STN
:
1323 case LCD_TYPE_COLOR_DSTN
:
1324 fbi
->lccr0
= LCCR0_SDS
;
1326 case LCD_TYPE_COLOR_TFT
:
1327 fbi
->lccr0
= LCCR0_PAS
;
1329 case LCD_TYPE_SMART_PANEL
:
1330 fbi
->lccr0
= LCCR0_LCDT
| LCCR0_PAS
;
1333 /* fall back to backward compatibility way */
1334 fbi
->lccr0
= inf
->lccr0
;
1335 fbi
->lccr3
= inf
->lccr3
;
1336 fbi
->lccr4
= inf
->lccr4
;
1340 if (lcd_conn
== LCD_MONO_STN_8BPP
)
1341 fbi
->lccr0
|= LCCR0_DPD
;
1343 fbi
->lccr3
= LCCR3_Acb((inf
->lcd_conn
>> 10) & 0xff);
1344 fbi
->lccr3
|= (lcd_conn
& LCD_BIAS_ACTIVE_LOW
) ? LCCR3_OEP
: 0;
1345 fbi
->lccr3
|= (lcd_conn
& LCD_PCLK_EDGE_FALL
) ? LCCR3_PCP
: 0;
1348 pxafb_decode_mode_info(fbi
, inf
->modes
, inf
->num_modes
);
1351 static struct pxafb_info
* __init
pxafb_init_fbinfo(struct device
*dev
)
1353 struct pxafb_info
*fbi
;
1355 struct pxafb_mach_info
*inf
= dev
->platform_data
;
1357 /* Alloc the pxafb_info and pseudo_palette in one step */
1358 fbi
= kmalloc(sizeof(struct pxafb_info
) + sizeof(u32
) * 16, GFP_KERNEL
);
1362 memset(fbi
, 0, sizeof(struct pxafb_info
));
1365 fbi
->clk
= clk_get(dev
, "LCDCLK");
1366 if (IS_ERR(fbi
->clk
)) {
1371 strcpy(fbi
->fb
.fix
.id
, PXA_NAME
);
1373 fbi
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
1374 fbi
->fb
.fix
.type_aux
= 0;
1375 fbi
->fb
.fix
.xpanstep
= 0;
1376 fbi
->fb
.fix
.ypanstep
= 0;
1377 fbi
->fb
.fix
.ywrapstep
= 0;
1378 fbi
->fb
.fix
.accel
= FB_ACCEL_NONE
;
1380 fbi
->fb
.var
.nonstd
= 0;
1381 fbi
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
1382 fbi
->fb
.var
.height
= -1;
1383 fbi
->fb
.var
.width
= -1;
1384 fbi
->fb
.var
.accel_flags
= 0;
1385 fbi
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
1387 fbi
->fb
.fbops
= &pxafb_ops
;
1388 fbi
->fb
.flags
= FBINFO_DEFAULT
;
1392 addr
= addr
+ sizeof(struct pxafb_info
);
1393 fbi
->fb
.pseudo_palette
= addr
;
1395 fbi
->state
= C_STARTUP
;
1396 fbi
->task_state
= (u_char
)-1;
1398 pxafb_decode_mach_info(fbi
, inf
);
1400 init_waitqueue_head(&fbi
->ctrlr_wait
);
1401 INIT_WORK(&fbi
->task
, pxafb_task
);
1402 init_MUTEX(&fbi
->ctrlr_sem
);
1403 init_completion(&fbi
->disable_done
);
1404 #ifdef CONFIG_FB_PXA_SMARTPANEL
1405 init_completion(&fbi
->command_done
);
1406 init_completion(&fbi
->refresh_done
);
1412 #ifdef CONFIG_FB_PXA_PARAMETERS
1413 static int __init
parse_opt_mode(struct device
*dev
, const char *this_opt
)
1415 struct pxafb_mach_info
*inf
= dev
->platform_data
;
1417 const char *name
= this_opt
+5;
1418 unsigned int namelen
= strlen(name
);
1419 int res_specified
= 0, bpp_specified
= 0;
1420 unsigned int xres
= 0, yres
= 0, bpp
= 0;
1421 int yres_specified
= 0;
1423 for (i
= namelen
-1; i
>= 0; i
--) {
1427 if (!bpp_specified
&& !yres_specified
) {
1428 bpp
= simple_strtoul(&name
[i
+1], NULL
, 0);
1434 if (!yres_specified
) {
1435 yres
= simple_strtoul(&name
[i
+1], NULL
, 0);
1446 if (i
< 0 && yres_specified
) {
1447 xres
= simple_strtoul(name
, NULL
, 0);
1451 if (res_specified
) {
1452 dev_info(dev
, "overriding resolution: %dx%d\n", xres
, yres
);
1453 inf
->modes
[0].xres
= xres
; inf
->modes
[0].yres
= yres
;
1462 inf
->modes
[0].bpp
= bpp
;
1463 dev_info(dev
, "overriding bit depth: %d\n", bpp
);
1466 dev_err(dev
, "Depth %d is not valid\n", bpp
);
1472 static int __init
parse_opt(struct device
*dev
, char *this_opt
)
1474 struct pxafb_mach_info
*inf
= dev
->platform_data
;
1475 struct pxafb_mode_info
*mode
= &inf
->modes
[0];
1480 if (!strncmp(this_opt
, "mode:", 5)) {
1481 return parse_opt_mode(dev
, this_opt
);
1482 } else if (!strncmp(this_opt
, "pixclock:", 9)) {
1483 mode
->pixclock
= simple_strtoul(this_opt
+9, NULL
, 0);
1484 sprintf(s
, "pixclock: %ld\n", mode
->pixclock
);
1485 } else if (!strncmp(this_opt
, "left:", 5)) {
1486 mode
->left_margin
= simple_strtoul(this_opt
+5, NULL
, 0);
1487 sprintf(s
, "left: %u\n", mode
->left_margin
);
1488 } else if (!strncmp(this_opt
, "right:", 6)) {
1489 mode
->right_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1490 sprintf(s
, "right: %u\n", mode
->right_margin
);
1491 } else if (!strncmp(this_opt
, "upper:", 6)) {
1492 mode
->upper_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1493 sprintf(s
, "upper: %u\n", mode
->upper_margin
);
1494 } else if (!strncmp(this_opt
, "lower:", 6)) {
1495 mode
->lower_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1496 sprintf(s
, "lower: %u\n", mode
->lower_margin
);
1497 } else if (!strncmp(this_opt
, "hsynclen:", 9)) {
1498 mode
->hsync_len
= simple_strtoul(this_opt
+9, NULL
, 0);
1499 sprintf(s
, "hsynclen: %u\n", mode
->hsync_len
);
1500 } else if (!strncmp(this_opt
, "vsynclen:", 9)) {
1501 mode
->vsync_len
= simple_strtoul(this_opt
+9, NULL
, 0);
1502 sprintf(s
, "vsynclen: %u\n", mode
->vsync_len
);
1503 } else if (!strncmp(this_opt
, "hsync:", 6)) {
1504 if (simple_strtoul(this_opt
+6, NULL
, 0) == 0) {
1505 sprintf(s
, "hsync: Active Low\n");
1506 mode
->sync
&= ~FB_SYNC_HOR_HIGH_ACT
;
1508 sprintf(s
, "hsync: Active High\n");
1509 mode
->sync
|= FB_SYNC_HOR_HIGH_ACT
;
1511 } else if (!strncmp(this_opt
, "vsync:", 6)) {
1512 if (simple_strtoul(this_opt
+6, NULL
, 0) == 0) {
1513 sprintf(s
, "vsync: Active Low\n");
1514 mode
->sync
&= ~FB_SYNC_VERT_HIGH_ACT
;
1516 sprintf(s
, "vsync: Active High\n");
1517 mode
->sync
|= FB_SYNC_VERT_HIGH_ACT
;
1519 } else if (!strncmp(this_opt
, "dpc:", 4)) {
1520 if (simple_strtoul(this_opt
+4, NULL
, 0) == 0) {
1521 sprintf(s
, "double pixel clock: false\n");
1522 inf
->lccr3
&= ~LCCR3_DPC
;
1524 sprintf(s
, "double pixel clock: true\n");
1525 inf
->lccr3
|= LCCR3_DPC
;
1527 } else if (!strncmp(this_opt
, "outputen:", 9)) {
1528 if (simple_strtoul(this_opt
+9, NULL
, 0) == 0) {
1529 sprintf(s
, "output enable: active low\n");
1530 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_OEP
) | LCCR3_OutEnL
;
1532 sprintf(s
, "output enable: active high\n");
1533 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_OEP
) | LCCR3_OutEnH
;
1535 } else if (!strncmp(this_opt
, "pixclockpol:", 12)) {
1536 if (simple_strtoul(this_opt
+12, NULL
, 0) == 0) {
1537 sprintf(s
, "pixel clock polarity: falling edge\n");
1538 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_PCP
) | LCCR3_PixFlEdg
;
1540 sprintf(s
, "pixel clock polarity: rising edge\n");
1541 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_PCP
) | LCCR3_PixRsEdg
;
1543 } else if (!strncmp(this_opt
, "color", 5)) {
1544 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_CMS
) | LCCR0_Color
;
1545 } else if (!strncmp(this_opt
, "mono", 4)) {
1546 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_CMS
) | LCCR0_Mono
;
1547 } else if (!strncmp(this_opt
, "active", 6)) {
1548 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_PAS
) | LCCR0_Act
;
1549 } else if (!strncmp(this_opt
, "passive", 7)) {
1550 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_PAS
) | LCCR0_Pas
;
1551 } else if (!strncmp(this_opt
, "single", 6)) {
1552 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_SDS
) | LCCR0_Sngl
;
1553 } else if (!strncmp(this_opt
, "dual", 4)) {
1554 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_SDS
) | LCCR0_Dual
;
1555 } else if (!strncmp(this_opt
, "4pix", 4)) {
1556 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_DPD
) | LCCR0_4PixMono
;
1557 } else if (!strncmp(this_opt
, "8pix", 4)) {
1558 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_DPD
) | LCCR0_8PixMono
;
1560 dev_err(dev
, "unknown option: %s\n", this_opt
);
1565 dev_info(dev
, "override %s", s
);
1570 static int __init
pxafb_parse_options(struct device
*dev
, char *options
)
1575 if (!options
|| !*options
)
1578 dev_dbg(dev
, "options are \"%s\"\n", options
? options
: "null");
1580 /* could be made table driven or similar?... */
1581 while ((this_opt
= strsep(&options
, ",")) != NULL
) {
1582 ret
= parse_opt(dev
, this_opt
);
1589 static char g_options
[256] __devinitdata
= "";
1591 #ifndef CONFIG_MODULES
1592 static int __devinit
pxafb_setup_options(void)
1594 char *options
= NULL
;
1596 if (fb_get_options("pxafb", &options
))
1600 strlcpy(g_options
, options
, sizeof(g_options
));
1605 #define pxafb_setup_options() (0)
1607 module_param_string(options
, g_options
, sizeof(g_options
), 0);
1608 MODULE_PARM_DESC(options
, "LCD parameters (see Documentation/fb/pxafb.txt)");
1612 #define pxafb_parse_options(...) (0)
1613 #define pxafb_setup_options() (0)
1616 static int __init
pxafb_probe(struct platform_device
*dev
)
1618 struct pxafb_info
*fbi
;
1619 struct pxafb_mach_info
*inf
;
1623 dev_dbg(&dev
->dev
, "pxafb_probe\n");
1625 inf
= dev
->dev
.platform_data
;
1631 ret
= pxafb_parse_options(&dev
->dev
, g_options
);
1636 /* Check for various illegal bit-combinations. Currently only
1637 * a warning is given. */
1639 if (inf
->lccr0
& LCCR0_INVALID_CONFIG_MASK
)
1640 dev_warn(&dev
->dev
, "machine LCCR0 setting contains "
1641 "illegal bits: %08x\n",
1642 inf
->lccr0
& LCCR0_INVALID_CONFIG_MASK
);
1643 if (inf
->lccr3
& LCCR3_INVALID_CONFIG_MASK
)
1644 dev_warn(&dev
->dev
, "machine LCCR3 setting contains "
1645 "illegal bits: %08x\n",
1646 inf
->lccr3
& LCCR3_INVALID_CONFIG_MASK
);
1647 if (inf
->lccr0
& LCCR0_DPD
&&
1648 ((inf
->lccr0
& LCCR0_PAS
) != LCCR0_Pas
||
1649 (inf
->lccr0
& LCCR0_SDS
) != LCCR0_Sngl
||
1650 (inf
->lccr0
& LCCR0_CMS
) != LCCR0_Mono
))
1651 dev_warn(&dev
->dev
, "Double Pixel Data (DPD) mode is "
1652 "only valid in passive mono"
1653 " single panel mode\n");
1654 if ((inf
->lccr0
& LCCR0_PAS
) == LCCR0_Act
&&
1655 (inf
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
)
1656 dev_warn(&dev
->dev
, "Dual panel only valid in passive mode\n");
1657 if ((inf
->lccr0
& LCCR0_PAS
) == LCCR0_Pas
&&
1658 (inf
->modes
->upper_margin
|| inf
->modes
->lower_margin
))
1659 dev_warn(&dev
->dev
, "Upper and lower margins must be 0 in "
1663 dev_dbg(&dev
->dev
, "got a %dx%dx%d LCD\n",
1667 if (inf
->modes
->xres
== 0 ||
1668 inf
->modes
->yres
== 0 ||
1669 inf
->modes
->bpp
== 0) {
1670 dev_err(&dev
->dev
, "Invalid resolution or bit depth\n");
1674 pxafb_backlight_power
= inf
->pxafb_backlight_power
;
1675 pxafb_lcd_power
= inf
->pxafb_lcd_power
;
1676 fbi
= pxafb_init_fbinfo(&dev
->dev
);
1678 /* only reason for pxafb_init_fbinfo to fail is kmalloc */
1679 dev_err(&dev
->dev
, "Failed to initialize framebuffer device\n");
1684 r
= platform_get_resource(dev
, IORESOURCE_MEM
, 0);
1686 dev_err(&dev
->dev
, "no I/O memory resource defined\n");
1691 r
= request_mem_region(r
->start
, r
->end
- r
->start
+ 1, dev
->name
);
1693 dev_err(&dev
->dev
, "failed to request I/O memory\n");
1698 fbi
->mmio_base
= ioremap(r
->start
, r
->end
- r
->start
+ 1);
1699 if (fbi
->mmio_base
== NULL
) {
1700 dev_err(&dev
->dev
, "failed to map I/O memory\n");
1702 goto failed_free_res
;
1705 /* Initialize video memory */
1706 ret
= pxafb_map_video_memory(fbi
);
1708 dev_err(&dev
->dev
, "Failed to allocate video RAM: %d\n", ret
);
1710 goto failed_free_io
;
1713 irq
= platform_get_irq(dev
, 0);
1715 dev_err(&dev
->dev
, "no IRQ defined\n");
1717 goto failed_free_mem
;
1720 ret
= request_irq(irq
, pxafb_handle_irq
, IRQF_DISABLED
, "LCD", fbi
);
1722 dev_err(&dev
->dev
, "request_irq failed: %d\n", ret
);
1724 goto failed_free_mem
;
1727 #ifdef CONFIG_FB_PXA_SMARTPANEL
1728 ret
= pxafb_smart_init(fbi
);
1730 dev_err(&dev
->dev
, "failed to initialize smartpanel\n");
1731 goto failed_free_irq
;
1735 * This makes sure that our colour bitfield
1736 * descriptors are correctly initialised.
1738 pxafb_check_var(&fbi
->fb
.var
, &fbi
->fb
);
1739 pxafb_set_par(&fbi
->fb
);
1741 platform_set_drvdata(dev
, fbi
);
1743 ret
= register_framebuffer(&fbi
->fb
);
1746 "Failed to register framebuffer device: %d\n", ret
);
1747 goto failed_free_irq
;
1750 #ifdef CONFIG_CPU_FREQ
1751 fbi
->freq_transition
.notifier_call
= pxafb_freq_transition
;
1752 fbi
->freq_policy
.notifier_call
= pxafb_freq_policy
;
1753 cpufreq_register_notifier(&fbi
->freq_transition
,
1754 CPUFREQ_TRANSITION_NOTIFIER
);
1755 cpufreq_register_notifier(&fbi
->freq_policy
,
1756 CPUFREQ_POLICY_NOTIFIER
);
1760 * Ok, now enable the LCD controller
1762 set_ctrlr_state(fbi
, C_ENABLE
);
1769 release_mem_region(r
->start
, r
->end
- r
->start
+ 1);
1771 iounmap(fbi
->mmio_base
);
1773 dma_free_writecombine(&dev
->dev
, fbi
->map_size
,
1774 fbi
->map_cpu
, fbi
->map_dma
);
1776 platform_set_drvdata(dev
, NULL
);
1781 static struct platform_driver pxafb_driver
= {
1782 .probe
= pxafb_probe
,
1783 .suspend
= pxafb_suspend
,
1784 .resume
= pxafb_resume
,
1786 .name
= "pxa2xx-fb",
1790 static int __devinit
pxafb_init(void)
1792 if (pxafb_setup_options())
1795 return platform_driver_register(&pxafb_driver
);
1798 module_init(pxafb_init
);
1800 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
1801 MODULE_LICENSE("GPL");