2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 static kmem_zone_t
*xfs_buf_zone
;
38 STATIC
int xfsbufd(void *);
39 STATIC
int xfsbufd_wakeup(int, gfp_t
);
40 STATIC
void xfs_buf_delwri_queue(xfs_buf_t
*, int);
41 static struct shrinker xfs_buf_shake
= {
42 .shrink
= xfsbufd_wakeup
,
43 .seeks
= DEFAULT_SEEKS
,
46 static struct workqueue_struct
*xfslogd_workqueue
;
47 struct workqueue_struct
*xfsdatad_workqueue
;
57 ktrace_enter(xfs_buf_trace_buf
,
59 (void *)(unsigned long)bp
->b_flags
,
60 (void *)(unsigned long)bp
->b_hold
.counter
,
61 (void *)(unsigned long)bp
->b_sema
.count
.counter
,
64 (void *)(unsigned long)((bp
->b_file_offset
>>32) & 0xffffffff),
65 (void *)(unsigned long)(bp
->b_file_offset
& 0xffffffff),
66 (void *)(unsigned long)bp
->b_buffer_length
,
67 NULL
, NULL
, NULL
, NULL
, NULL
);
69 ktrace_t
*xfs_buf_trace_buf
;
70 #define XFS_BUF_TRACE_SIZE 4096
71 #define XB_TRACE(bp, id, data) \
72 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
74 #define XB_TRACE(bp, id, data) do { } while (0)
77 #ifdef XFS_BUF_LOCK_TRACKING
78 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
79 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
80 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
82 # define XB_SET_OWNER(bp) do { } while (0)
83 # define XB_CLEAR_OWNER(bp) do { } while (0)
84 # define XB_GET_OWNER(bp) do { } while (0)
87 #define xb_to_gfp(flags) \
88 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
91 #define xb_to_km(flags) \
92 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
94 #define xfs_buf_allocate(flags) \
95 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96 #define xfs_buf_deallocate(bp) \
97 kmem_zone_free(xfs_buf_zone, (bp));
100 * Page Region interfaces.
102 * For pages in filesystems where the blocksize is smaller than the
103 * pagesize, we use the page->private field (long) to hold a bitmap
104 * of uptodate regions within the page.
106 * Each such region is "bytes per page / bits per long" bytes long.
108 * NBPPR == number-of-bytes-per-page-region
109 * BTOPR == bytes-to-page-region (rounded up)
110 * BTOPRT == bytes-to-page-region-truncated (rounded down)
112 #if (BITS_PER_LONG == 32)
113 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
114 #elif (BITS_PER_LONG == 64)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
117 #error BITS_PER_LONG must be 32 or 64
119 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
120 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
131 first
= BTOPR(offset
);
132 final
= BTOPRT(offset
+ length
- 1);
133 first
= min(first
, final
);
136 mask
<<= BITS_PER_LONG
- (final
- first
);
137 mask
>>= BITS_PER_LONG
- (final
);
139 ASSERT(offset
+ length
<= PAGE_CACHE_SIZE
);
140 ASSERT((final
- first
) < BITS_PER_LONG
&& (final
- first
) >= 0);
151 set_page_private(page
,
152 page_private(page
) | page_region_mask(offset
, length
));
153 if (page_private(page
) == ~0UL)
154 SetPageUptodate(page
);
163 unsigned long mask
= page_region_mask(offset
, length
);
165 return (mask
&& (page_private(page
) & mask
) == mask
);
169 * Mapping of multi-page buffers into contiguous virtual space
172 typedef struct a_list
{
177 static a_list_t
*as_free_head
;
178 static int as_list_len
;
179 static DEFINE_SPINLOCK(as_lock
);
182 * Try to batch vunmaps because they are costly.
192 * Xen needs to be able to make sure it can get an exclusive
193 * RO mapping of pages it wants to turn into a pagetable. If
194 * a newly allocated page is also still being vmap()ed by xfs,
195 * it will cause pagetable construction to fail. This is a
196 * quick workaround to always eagerly unmap pages so that Xen
203 aentry
= kmalloc(sizeof(a_list_t
), GFP_NOWAIT
);
204 if (likely(aentry
)) {
206 aentry
->next
= as_free_head
;
207 aentry
->vm_addr
= addr
;
208 as_free_head
= aentry
;
210 spin_unlock(&as_lock
);
217 purge_addresses(void)
219 a_list_t
*aentry
, *old
;
221 if (as_free_head
== NULL
)
225 aentry
= as_free_head
;
228 spin_unlock(&as_lock
);
230 while ((old
= aentry
) != NULL
) {
231 vunmap(aentry
->vm_addr
);
232 aentry
= aentry
->next
;
238 * Internal xfs_buf_t object manipulation
244 xfs_buftarg_t
*target
,
245 xfs_off_t range_base
,
247 xfs_buf_flags_t flags
)
250 * We don't want certain flags to appear in b_flags.
252 flags
&= ~(XBF_LOCK
|XBF_MAPPED
|XBF_DONT_BLOCK
|XBF_READ_AHEAD
);
254 memset(bp
, 0, sizeof(xfs_buf_t
));
255 atomic_set(&bp
->b_hold
, 1);
256 init_MUTEX_LOCKED(&bp
->b_iodonesema
);
257 INIT_LIST_HEAD(&bp
->b_list
);
258 INIT_LIST_HEAD(&bp
->b_hash_list
);
259 init_MUTEX_LOCKED(&bp
->b_sema
); /* held, no waiters */
261 bp
->b_target
= target
;
262 bp
->b_file_offset
= range_base
;
264 * Set buffer_length and count_desired to the same value initially.
265 * I/O routines should use count_desired, which will be the same in
266 * most cases but may be reset (e.g. XFS recovery).
268 bp
->b_buffer_length
= bp
->b_count_desired
= range_length
;
270 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
271 atomic_set(&bp
->b_pin_count
, 0);
272 init_waitqueue_head(&bp
->b_waiters
);
274 XFS_STATS_INC(xb_create
);
275 XB_TRACE(bp
, "initialize", target
);
279 * Allocate a page array capable of holding a specified number
280 * of pages, and point the page buf at it.
286 xfs_buf_flags_t flags
)
288 /* Make sure that we have a page list */
289 if (bp
->b_pages
== NULL
) {
290 bp
->b_offset
= xfs_buf_poff(bp
->b_file_offset
);
291 bp
->b_page_count
= page_count
;
292 if (page_count
<= XB_PAGES
) {
293 bp
->b_pages
= bp
->b_page_array
;
295 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
296 page_count
, xb_to_km(flags
));
297 if (bp
->b_pages
== NULL
)
300 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
306 * Frees b_pages if it was allocated.
312 if (bp
->b_pages
!= bp
->b_page_array
) {
313 kmem_free(bp
->b_pages
,
314 bp
->b_page_count
* sizeof(struct page
*));
319 * Releases the specified buffer.
321 * The modification state of any associated pages is left unchanged.
322 * The buffer most not be on any hash - use xfs_buf_rele instead for
323 * hashed and refcounted buffers
329 XB_TRACE(bp
, "free", 0);
331 ASSERT(list_empty(&bp
->b_hash_list
));
333 if (bp
->b_flags
& (_XBF_PAGE_CACHE
|_XBF_PAGES
)) {
336 if ((bp
->b_flags
& XBF_MAPPED
) && (bp
->b_page_count
> 1))
337 free_address(bp
->b_addr
- bp
->b_offset
);
339 for (i
= 0; i
< bp
->b_page_count
; i
++) {
340 struct page
*page
= bp
->b_pages
[i
];
342 if (bp
->b_flags
& _XBF_PAGE_CACHE
)
343 ASSERT(!PagePrivate(page
));
344 page_cache_release(page
);
346 _xfs_buf_free_pages(bp
);
349 xfs_buf_deallocate(bp
);
353 * Finds all pages for buffer in question and builds it's page list.
356 _xfs_buf_lookup_pages(
360 struct address_space
*mapping
= bp
->b_target
->bt_mapping
;
361 size_t blocksize
= bp
->b_target
->bt_bsize
;
362 size_t size
= bp
->b_count_desired
;
363 size_t nbytes
, offset
;
364 gfp_t gfp_mask
= xb_to_gfp(flags
);
365 unsigned short page_count
, i
;
370 end
= bp
->b_file_offset
+ bp
->b_buffer_length
;
371 page_count
= xfs_buf_btoc(end
) - xfs_buf_btoct(bp
->b_file_offset
);
373 error
= _xfs_buf_get_pages(bp
, page_count
, flags
);
376 bp
->b_flags
|= _XBF_PAGE_CACHE
;
378 offset
= bp
->b_offset
;
379 first
= bp
->b_file_offset
>> PAGE_CACHE_SHIFT
;
381 for (i
= 0; i
< bp
->b_page_count
; i
++) {
386 page
= find_or_create_page(mapping
, first
+ i
, gfp_mask
);
387 if (unlikely(page
== NULL
)) {
388 if (flags
& XBF_READ_AHEAD
) {
389 bp
->b_page_count
= i
;
390 for (i
= 0; i
< bp
->b_page_count
; i
++)
391 unlock_page(bp
->b_pages
[i
]);
396 * This could deadlock.
398 * But until all the XFS lowlevel code is revamped to
399 * handle buffer allocation failures we can't do much.
401 if (!(++retries
% 100))
403 "XFS: possible memory allocation "
404 "deadlock in %s (mode:0x%x)\n",
407 XFS_STATS_INC(xb_page_retries
);
408 xfsbufd_wakeup(0, gfp_mask
);
409 congestion_wait(WRITE
, HZ
/50);
413 XFS_STATS_INC(xb_page_found
);
415 nbytes
= min_t(size_t, size
, PAGE_CACHE_SIZE
- offset
);
418 ASSERT(!PagePrivate(page
));
419 if (!PageUptodate(page
)) {
421 if (blocksize
>= PAGE_CACHE_SIZE
) {
422 if (flags
& XBF_READ
)
423 bp
->b_flags
|= _XBF_PAGE_LOCKED
;
424 } else if (!PagePrivate(page
)) {
425 if (test_page_region(page
, offset
, nbytes
))
430 bp
->b_pages
[i
] = page
;
434 if (!(bp
->b_flags
& _XBF_PAGE_LOCKED
)) {
435 for (i
= 0; i
< bp
->b_page_count
; i
++)
436 unlock_page(bp
->b_pages
[i
]);
439 if (page_count
== bp
->b_page_count
)
440 bp
->b_flags
|= XBF_DONE
;
442 XB_TRACE(bp
, "lookup_pages", (long)page_count
);
447 * Map buffer into kernel address-space if nessecary.
454 /* A single page buffer is always mappable */
455 if (bp
->b_page_count
== 1) {
456 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
457 bp
->b_flags
|= XBF_MAPPED
;
458 } else if (flags
& XBF_MAPPED
) {
459 if (as_list_len
> 64)
461 bp
->b_addr
= vmap(bp
->b_pages
, bp
->b_page_count
,
462 VM_MAP
, PAGE_KERNEL
);
463 if (unlikely(bp
->b_addr
== NULL
))
465 bp
->b_addr
+= bp
->b_offset
;
466 bp
->b_flags
|= XBF_MAPPED
;
473 * Finding and Reading Buffers
477 * Look up, and creates if absent, a lockable buffer for
478 * a given range of an inode. The buffer is returned
479 * locked. If other overlapping buffers exist, they are
480 * released before the new buffer is created and locked,
481 * which may imply that this call will block until those buffers
482 * are unlocked. No I/O is implied by this call.
486 xfs_buftarg_t
*btp
, /* block device target */
487 xfs_off_t ioff
, /* starting offset of range */
488 size_t isize
, /* length of range */
489 xfs_buf_flags_t flags
,
492 xfs_off_t range_base
;
497 range_base
= (ioff
<< BBSHIFT
);
498 range_length
= (isize
<< BBSHIFT
);
500 /* Check for IOs smaller than the sector size / not sector aligned */
501 ASSERT(!(range_length
< (1 << btp
->bt_sshift
)));
502 ASSERT(!(range_base
& (xfs_off_t
)btp
->bt_smask
));
504 hash
= &btp
->bt_hash
[hash_long((unsigned long)ioff
, btp
->bt_hashshift
)];
506 spin_lock(&hash
->bh_lock
);
508 list_for_each_entry_safe(bp
, n
, &hash
->bh_list
, b_hash_list
) {
509 ASSERT(btp
== bp
->b_target
);
510 if (bp
->b_file_offset
== range_base
&&
511 bp
->b_buffer_length
== range_length
) {
513 * If we look at something, bring it to the
514 * front of the list for next time.
516 atomic_inc(&bp
->b_hold
);
517 list_move(&bp
->b_hash_list
, &hash
->bh_list
);
524 _xfs_buf_initialize(new_bp
, btp
, range_base
,
525 range_length
, flags
);
526 new_bp
->b_hash
= hash
;
527 list_add(&new_bp
->b_hash_list
, &hash
->bh_list
);
529 XFS_STATS_INC(xb_miss_locked
);
532 spin_unlock(&hash
->bh_lock
);
536 spin_unlock(&hash
->bh_lock
);
538 /* Attempt to get the semaphore without sleeping,
539 * if this does not work then we need to drop the
540 * spinlock and do a hard attempt on the semaphore.
542 if (down_trylock(&bp
->b_sema
)) {
543 if (!(flags
& XBF_TRYLOCK
)) {
544 /* wait for buffer ownership */
545 XB_TRACE(bp
, "get_lock", 0);
547 XFS_STATS_INC(xb_get_locked_waited
);
549 /* We asked for a trylock and failed, no need
550 * to look at file offset and length here, we
551 * know that this buffer at least overlaps our
552 * buffer and is locked, therefore our buffer
553 * either does not exist, or is this buffer.
556 XFS_STATS_INC(xb_busy_locked
);
564 if (bp
->b_flags
& XBF_STALE
) {
565 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
566 bp
->b_flags
&= XBF_MAPPED
;
568 XB_TRACE(bp
, "got_lock", 0);
569 XFS_STATS_INC(xb_get_locked
);
574 * Assembles a buffer covering the specified range.
575 * Storage in memory for all portions of the buffer will be allocated,
576 * although backing storage may not be.
580 xfs_buftarg_t
*target
,/* target for buffer */
581 xfs_off_t ioff
, /* starting offset of range */
582 size_t isize
, /* length of range */
583 xfs_buf_flags_t flags
)
585 xfs_buf_t
*bp
, *new_bp
;
588 new_bp
= xfs_buf_allocate(flags
);
589 if (unlikely(!new_bp
))
592 bp
= _xfs_buf_find(target
, ioff
, isize
, flags
, new_bp
);
594 error
= _xfs_buf_lookup_pages(bp
, flags
);
598 xfs_buf_deallocate(new_bp
);
599 if (unlikely(bp
== NULL
))
603 for (i
= 0; i
< bp
->b_page_count
; i
++)
604 mark_page_accessed(bp
->b_pages
[i
]);
606 if (!(bp
->b_flags
& XBF_MAPPED
)) {
607 error
= _xfs_buf_map_pages(bp
, flags
);
608 if (unlikely(error
)) {
609 printk(KERN_WARNING
"%s: failed to map pages\n",
615 XFS_STATS_INC(xb_get
);
618 * Always fill in the block number now, the mapped cases can do
619 * their own overlay of this later.
622 bp
->b_count_desired
= bp
->b_buffer_length
;
624 XB_TRACE(bp
, "get", (unsigned long)flags
);
628 if (flags
& (XBF_LOCK
| XBF_TRYLOCK
))
636 xfs_buftarg_t
*target
,
639 xfs_buf_flags_t flags
)
645 bp
= xfs_buf_get_flags(target
, ioff
, isize
, flags
);
647 if (!XFS_BUF_ISDONE(bp
)) {
648 XB_TRACE(bp
, "read", (unsigned long)flags
);
649 XFS_STATS_INC(xb_get_read
);
650 xfs_buf_iostart(bp
, flags
);
651 } else if (flags
& XBF_ASYNC
) {
652 XB_TRACE(bp
, "read_async", (unsigned long)flags
);
654 * Read ahead call which is already satisfied,
659 XB_TRACE(bp
, "read_done", (unsigned long)flags
);
660 /* We do not want read in the flags */
661 bp
->b_flags
&= ~XBF_READ
;
668 if (flags
& (XBF_LOCK
| XBF_TRYLOCK
))
675 * If we are not low on memory then do the readahead in a deadlock
680 xfs_buftarg_t
*target
,
683 xfs_buf_flags_t flags
)
685 struct backing_dev_info
*bdi
;
687 bdi
= target
->bt_mapping
->backing_dev_info
;
688 if (bdi_read_congested(bdi
))
691 flags
|= (XBF_TRYLOCK
|XBF_ASYNC
|XBF_READ_AHEAD
);
692 xfs_buf_read_flags(target
, ioff
, isize
, flags
);
698 xfs_buftarg_t
*target
)
702 bp
= xfs_buf_allocate(0);
704 _xfs_buf_initialize(bp
, target
, 0, len
, 0);
708 static inline struct page
*
712 if ((!is_vmalloc_addr(addr
))) {
713 return virt_to_page(addr
);
715 return vmalloc_to_page(addr
);
720 xfs_buf_associate_memory(
727 unsigned long pageaddr
;
728 unsigned long offset
;
732 pageaddr
= (unsigned long)mem
& PAGE_CACHE_MASK
;
733 offset
= (unsigned long)mem
- pageaddr
;
734 buflen
= PAGE_CACHE_ALIGN(len
+ offset
);
735 page_count
= buflen
>> PAGE_CACHE_SHIFT
;
737 /* Free any previous set of page pointers */
739 _xfs_buf_free_pages(bp
);
744 rval
= _xfs_buf_get_pages(bp
, page_count
, 0);
748 bp
->b_offset
= offset
;
750 for (i
= 0; i
< bp
->b_page_count
; i
++) {
751 bp
->b_pages
[i
] = mem_to_page((void *)pageaddr
);
752 pageaddr
+= PAGE_CACHE_SIZE
;
755 bp
->b_count_desired
= len
;
756 bp
->b_buffer_length
= buflen
;
757 bp
->b_flags
|= XBF_MAPPED
;
758 bp
->b_flags
&= ~_XBF_PAGE_LOCKED
;
766 xfs_buftarg_t
*target
)
768 unsigned long page_count
= PAGE_ALIGN(len
) >> PAGE_SHIFT
;
772 bp
= xfs_buf_allocate(0);
773 if (unlikely(bp
== NULL
))
775 _xfs_buf_initialize(bp
, target
, 0, len
, 0);
777 error
= _xfs_buf_get_pages(bp
, page_count
, 0);
781 for (i
= 0; i
< page_count
; i
++) {
782 bp
->b_pages
[i
] = alloc_page(GFP_KERNEL
);
786 bp
->b_flags
|= _XBF_PAGES
;
788 error
= _xfs_buf_map_pages(bp
, XBF_MAPPED
);
789 if (unlikely(error
)) {
790 printk(KERN_WARNING
"%s: failed to map pages\n",
797 XB_TRACE(bp
, "no_daddr", len
);
802 __free_page(bp
->b_pages
[i
]);
803 _xfs_buf_free_pages(bp
);
805 xfs_buf_deallocate(bp
);
811 * Increment reference count on buffer, to hold the buffer concurrently
812 * with another thread which may release (free) the buffer asynchronously.
813 * Must hold the buffer already to call this function.
819 atomic_inc(&bp
->b_hold
);
820 XB_TRACE(bp
, "hold", 0);
824 * Releases a hold on the specified buffer. If the
825 * the hold count is 1, calls xfs_buf_free.
831 xfs_bufhash_t
*hash
= bp
->b_hash
;
833 XB_TRACE(bp
, "rele", bp
->b_relse
);
835 if (unlikely(!hash
)) {
836 ASSERT(!bp
->b_relse
);
837 if (atomic_dec_and_test(&bp
->b_hold
))
842 if (atomic_dec_and_lock(&bp
->b_hold
, &hash
->bh_lock
)) {
844 atomic_inc(&bp
->b_hold
);
845 spin_unlock(&hash
->bh_lock
);
846 (*(bp
->b_relse
)) (bp
);
847 } else if (bp
->b_flags
& XBF_FS_MANAGED
) {
848 spin_unlock(&hash
->bh_lock
);
850 ASSERT(!(bp
->b_flags
& (XBF_DELWRI
|_XBF_DELWRI_Q
)));
851 list_del_init(&bp
->b_hash_list
);
852 spin_unlock(&hash
->bh_lock
);
857 * Catch reference count leaks
859 ASSERT(atomic_read(&bp
->b_hold
) >= 0);
865 * Mutual exclusion on buffers. Locking model:
867 * Buffers associated with inodes for which buffer locking
868 * is not enabled are not protected by semaphores, and are
869 * assumed to be exclusively owned by the caller. There is a
870 * spinlock in the buffer, used by the caller when concurrent
871 * access is possible.
875 * Locks a buffer object, if it is not already locked.
876 * Note that this in no way locks the underlying pages, so it is only
877 * useful for synchronizing concurrent use of buffer objects, not for
878 * synchronizing independent access to the underlying pages.
886 locked
= down_trylock(&bp
->b_sema
) == 0;
890 XB_TRACE(bp
, "cond_lock", (long)locked
);
891 return locked
? 0 : -EBUSY
;
894 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
899 return bp
->b_sema
.count
;
904 * Locks a buffer object.
905 * Note that this in no way locks the underlying pages, so it is only
906 * useful for synchronizing concurrent use of buffer objects, not for
907 * synchronizing independent access to the underlying pages.
913 XB_TRACE(bp
, "lock", 0);
914 if (atomic_read(&bp
->b_io_remaining
))
915 blk_run_address_space(bp
->b_target
->bt_mapping
);
918 XB_TRACE(bp
, "locked", 0);
922 * Releases the lock on the buffer object.
923 * If the buffer is marked delwri but is not queued, do so before we
924 * unlock the buffer as we need to set flags correctly. We also need to
925 * take a reference for the delwri queue because the unlocker is going to
926 * drop their's and they don't know we just queued it.
932 if ((bp
->b_flags
& (XBF_DELWRI
|_XBF_DELWRI_Q
)) == XBF_DELWRI
) {
933 atomic_inc(&bp
->b_hold
);
934 bp
->b_flags
|= XBF_ASYNC
;
935 xfs_buf_delwri_queue(bp
, 0);
940 XB_TRACE(bp
, "unlock", 0);
945 * Pinning Buffer Storage in Memory
946 * Ensure that no attempt to force a buffer to disk will succeed.
952 atomic_inc(&bp
->b_pin_count
);
953 XB_TRACE(bp
, "pin", (long)bp
->b_pin_count
.counter
);
960 if (atomic_dec_and_test(&bp
->b_pin_count
))
961 wake_up_all(&bp
->b_waiters
);
962 XB_TRACE(bp
, "unpin", (long)bp
->b_pin_count
.counter
);
969 return atomic_read(&bp
->b_pin_count
);
976 DECLARE_WAITQUEUE (wait
, current
);
978 if (atomic_read(&bp
->b_pin_count
) == 0)
981 add_wait_queue(&bp
->b_waiters
, &wait
);
983 set_current_state(TASK_UNINTERRUPTIBLE
);
984 if (atomic_read(&bp
->b_pin_count
) == 0)
986 if (atomic_read(&bp
->b_io_remaining
))
987 blk_run_address_space(bp
->b_target
->bt_mapping
);
990 remove_wait_queue(&bp
->b_waiters
, &wait
);
991 set_current_state(TASK_RUNNING
);
995 * Buffer Utility Routines
1000 struct work_struct
*work
)
1003 container_of(work
, xfs_buf_t
, b_iodone_work
);
1006 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
1007 * ordered flag and reissue them. Because we can't tell the higher
1008 * layers directly that they should not issue ordered I/O anymore, they
1009 * need to check if the ordered flag was cleared during I/O completion.
1011 if ((bp
->b_error
== EOPNOTSUPP
) &&
1012 (bp
->b_flags
& (XBF_ORDERED
|XBF_ASYNC
)) == (XBF_ORDERED
|XBF_ASYNC
)) {
1013 XB_TRACE(bp
, "ordered_retry", bp
->b_iodone
);
1014 bp
->b_flags
&= ~XBF_ORDERED
;
1015 xfs_buf_iorequest(bp
);
1016 } else if (bp
->b_iodone
)
1017 (*(bp
->b_iodone
))(bp
);
1018 else if (bp
->b_flags
& XBF_ASYNC
)
1027 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
1028 if (bp
->b_error
== 0)
1029 bp
->b_flags
|= XBF_DONE
;
1031 XB_TRACE(bp
, "iodone", bp
->b_iodone
);
1033 if ((bp
->b_iodone
) || (bp
->b_flags
& XBF_ASYNC
)) {
1035 INIT_WORK(&bp
->b_iodone_work
, xfs_buf_iodone_work
);
1036 queue_work(xfslogd_workqueue
, &bp
->b_iodone_work
);
1038 xfs_buf_iodone_work(&bp
->b_iodone_work
);
1041 up(&bp
->b_iodonesema
);
1050 ASSERT(error
>= 0 && error
<= 0xffff);
1051 bp
->b_error
= (unsigned short)error
;
1052 XB_TRACE(bp
, "ioerror", (unsigned long)error
);
1056 * Initiate I/O on a buffer, based on the flags supplied.
1057 * The b_iodone routine in the buffer supplied will only be called
1058 * when all of the subsidiary I/O requests, if any, have been completed.
1063 xfs_buf_flags_t flags
)
1067 XB_TRACE(bp
, "iostart", (unsigned long)flags
);
1069 if (flags
& XBF_DELWRI
) {
1070 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_ASYNC
);
1071 bp
->b_flags
|= flags
& (XBF_DELWRI
| XBF_ASYNC
);
1072 xfs_buf_delwri_queue(bp
, 1);
1076 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_ASYNC
| XBF_DELWRI
| \
1077 XBF_READ_AHEAD
| _XBF_RUN_QUEUES
);
1078 bp
->b_flags
|= flags
& (XBF_READ
| XBF_WRITE
| XBF_ASYNC
| \
1079 XBF_READ_AHEAD
| _XBF_RUN_QUEUES
);
1081 BUG_ON(bp
->b_bn
== XFS_BUF_DADDR_NULL
);
1083 /* For writes allow an alternate strategy routine to precede
1084 * the actual I/O request (which may not be issued at all in
1085 * a shutdown situation, for example).
1087 status
= (flags
& XBF_WRITE
) ?
1088 xfs_buf_iostrategy(bp
) : xfs_buf_iorequest(bp
);
1090 /* Wait for I/O if we are not an async request.
1091 * Note: async I/O request completion will release the buffer,
1092 * and that can already be done by this point. So using the
1093 * buffer pointer from here on, after async I/O, is invalid.
1095 if (!status
&& !(flags
& XBF_ASYNC
))
1096 status
= xfs_buf_iowait(bp
);
1106 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1) {
1107 bp
->b_flags
&= ~_XBF_PAGE_LOCKED
;
1108 xfs_buf_ioend(bp
, schedule
);
1117 xfs_buf_t
*bp
= (xfs_buf_t
*)bio
->bi_private
;
1118 unsigned int blocksize
= bp
->b_target
->bt_bsize
;
1119 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1121 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1125 struct page
*page
= bvec
->bv_page
;
1127 ASSERT(!PagePrivate(page
));
1128 if (unlikely(bp
->b_error
)) {
1129 if (bp
->b_flags
& XBF_READ
)
1130 ClearPageUptodate(page
);
1131 } else if (blocksize
>= PAGE_CACHE_SIZE
) {
1132 SetPageUptodate(page
);
1133 } else if (!PagePrivate(page
) &&
1134 (bp
->b_flags
& _XBF_PAGE_CACHE
)) {
1135 set_page_region(page
, bvec
->bv_offset
, bvec
->bv_len
);
1138 if (--bvec
>= bio
->bi_io_vec
)
1139 prefetchw(&bvec
->bv_page
->flags
);
1141 if (bp
->b_flags
& _XBF_PAGE_LOCKED
)
1143 } while (bvec
>= bio
->bi_io_vec
);
1145 _xfs_buf_ioend(bp
, 1);
1153 int rw
, map_i
, total_nr_pages
, nr_pages
;
1155 int offset
= bp
->b_offset
;
1156 int size
= bp
->b_count_desired
;
1157 sector_t sector
= bp
->b_bn
;
1158 unsigned int blocksize
= bp
->b_target
->bt_bsize
;
1160 total_nr_pages
= bp
->b_page_count
;
1163 if (bp
->b_flags
& XBF_ORDERED
) {
1164 ASSERT(!(bp
->b_flags
& XBF_READ
));
1166 } else if (bp
->b_flags
& _XBF_RUN_QUEUES
) {
1167 ASSERT(!(bp
->b_flags
& XBF_READ_AHEAD
));
1168 bp
->b_flags
&= ~_XBF_RUN_QUEUES
;
1169 rw
= (bp
->b_flags
& XBF_WRITE
) ? WRITE_SYNC
: READ_SYNC
;
1171 rw
= (bp
->b_flags
& XBF_WRITE
) ? WRITE
:
1172 (bp
->b_flags
& XBF_READ_AHEAD
) ? READA
: READ
;
1175 /* Special code path for reading a sub page size buffer in --
1176 * we populate up the whole page, and hence the other metadata
1177 * in the same page. This optimization is only valid when the
1178 * filesystem block size is not smaller than the page size.
1180 if ((bp
->b_buffer_length
< PAGE_CACHE_SIZE
) &&
1181 ((bp
->b_flags
& (XBF_READ
|_XBF_PAGE_LOCKED
)) ==
1182 (XBF_READ
|_XBF_PAGE_LOCKED
)) &&
1183 (blocksize
>= PAGE_CACHE_SIZE
)) {
1184 bio
= bio_alloc(GFP_NOIO
, 1);
1186 bio
->bi_bdev
= bp
->b_target
->bt_bdev
;
1187 bio
->bi_sector
= sector
- (offset
>> BBSHIFT
);
1188 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1189 bio
->bi_private
= bp
;
1191 bio_add_page(bio
, bp
->b_pages
[0], PAGE_CACHE_SIZE
, 0);
1194 atomic_inc(&bp
->b_io_remaining
);
1200 atomic_inc(&bp
->b_io_remaining
);
1201 nr_pages
= BIO_MAX_SECTORS
>> (PAGE_SHIFT
- BBSHIFT
);
1202 if (nr_pages
> total_nr_pages
)
1203 nr_pages
= total_nr_pages
;
1205 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1206 bio
->bi_bdev
= bp
->b_target
->bt_bdev
;
1207 bio
->bi_sector
= sector
;
1208 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1209 bio
->bi_private
= bp
;
1211 for (; size
&& nr_pages
; nr_pages
--, map_i
++) {
1212 int rbytes
, nbytes
= PAGE_CACHE_SIZE
- offset
;
1217 rbytes
= bio_add_page(bio
, bp
->b_pages
[map_i
], nbytes
, offset
);
1218 if (rbytes
< nbytes
)
1222 sector
+= nbytes
>> BBSHIFT
;
1228 if (likely(bio
->bi_size
)) {
1229 submit_bio(rw
, bio
);
1234 xfs_buf_ioerror(bp
, EIO
);
1242 XB_TRACE(bp
, "iorequest", 0);
1244 if (bp
->b_flags
& XBF_DELWRI
) {
1245 xfs_buf_delwri_queue(bp
, 1);
1249 if (bp
->b_flags
& XBF_WRITE
) {
1250 xfs_buf_wait_unpin(bp
);
1255 /* Set the count to 1 initially, this will stop an I/O
1256 * completion callout which happens before we have started
1257 * all the I/O from calling xfs_buf_ioend too early.
1259 atomic_set(&bp
->b_io_remaining
, 1);
1260 _xfs_buf_ioapply(bp
);
1261 _xfs_buf_ioend(bp
, 0);
1268 * Waits for I/O to complete on the buffer supplied.
1269 * It returns immediately if no I/O is pending.
1270 * It returns the I/O error code, if any, or 0 if there was no error.
1276 XB_TRACE(bp
, "iowait", 0);
1277 if (atomic_read(&bp
->b_io_remaining
))
1278 blk_run_address_space(bp
->b_target
->bt_mapping
);
1279 down(&bp
->b_iodonesema
);
1280 XB_TRACE(bp
, "iowaited", (long)bp
->b_error
);
1291 if (bp
->b_flags
& XBF_MAPPED
)
1292 return XFS_BUF_PTR(bp
) + offset
;
1294 offset
+= bp
->b_offset
;
1295 page
= bp
->b_pages
[offset
>> PAGE_CACHE_SHIFT
];
1296 return (xfs_caddr_t
)page_address(page
) + (offset
& (PAGE_CACHE_SIZE
-1));
1300 * Move data into or out of a buffer.
1304 xfs_buf_t
*bp
, /* buffer to process */
1305 size_t boff
, /* starting buffer offset */
1306 size_t bsize
, /* length to copy */
1307 caddr_t data
, /* data address */
1308 xfs_buf_rw_t mode
) /* read/write/zero flag */
1310 size_t bend
, cpoff
, csize
;
1313 bend
= boff
+ bsize
;
1314 while (boff
< bend
) {
1315 page
= bp
->b_pages
[xfs_buf_btoct(boff
+ bp
->b_offset
)];
1316 cpoff
= xfs_buf_poff(boff
+ bp
->b_offset
);
1317 csize
= min_t(size_t,
1318 PAGE_CACHE_SIZE
-cpoff
, bp
->b_count_desired
-boff
);
1320 ASSERT(((csize
+ cpoff
) <= PAGE_CACHE_SIZE
));
1324 memset(page_address(page
) + cpoff
, 0, csize
);
1327 memcpy(data
, page_address(page
) + cpoff
, csize
);
1330 memcpy(page_address(page
) + cpoff
, data
, csize
);
1339 * Handling of buffer targets (buftargs).
1343 * Wait for any bufs with callbacks that have been submitted but
1344 * have not yet returned... walk the hash list for the target.
1351 xfs_bufhash_t
*hash
;
1354 for (i
= 0; i
< (1 << btp
->bt_hashshift
); i
++) {
1355 hash
= &btp
->bt_hash
[i
];
1357 spin_lock(&hash
->bh_lock
);
1358 list_for_each_entry_safe(bp
, n
, &hash
->bh_list
, b_hash_list
) {
1359 ASSERT(btp
== bp
->b_target
);
1360 if (!(bp
->b_flags
& XBF_FS_MANAGED
)) {
1361 spin_unlock(&hash
->bh_lock
);
1363 * Catch superblock reference count leaks
1366 BUG_ON(bp
->b_bn
== 0);
1371 spin_unlock(&hash
->bh_lock
);
1376 * Allocate buffer hash table for a given target.
1377 * For devices containing metadata (i.e. not the log/realtime devices)
1378 * we need to allocate a much larger hash table.
1387 btp
->bt_hashshift
= external
? 3 : 8; /* 8 or 256 buckets */
1388 btp
->bt_hashmask
= (1 << btp
->bt_hashshift
) - 1;
1389 btp
->bt_hash
= kmem_zalloc((1 << btp
->bt_hashshift
) *
1390 sizeof(xfs_bufhash_t
), KM_SLEEP
| KM_LARGE
);
1391 for (i
= 0; i
< (1 << btp
->bt_hashshift
); i
++) {
1392 spin_lock_init(&btp
->bt_hash
[i
].bh_lock
);
1393 INIT_LIST_HEAD(&btp
->bt_hash
[i
].bh_list
);
1401 kmem_free(btp
->bt_hash
, (1<<btp
->bt_hashshift
) * sizeof(xfs_bufhash_t
));
1402 btp
->bt_hash
= NULL
;
1406 * buftarg list for delwrite queue processing
1408 static LIST_HEAD(xfs_buftarg_list
);
1409 static DEFINE_SPINLOCK(xfs_buftarg_lock
);
1412 xfs_register_buftarg(
1415 spin_lock(&xfs_buftarg_lock
);
1416 list_add(&btp
->bt_list
, &xfs_buftarg_list
);
1417 spin_unlock(&xfs_buftarg_lock
);
1421 xfs_unregister_buftarg(
1424 spin_lock(&xfs_buftarg_lock
);
1425 list_del(&btp
->bt_list
);
1426 spin_unlock(&xfs_buftarg_lock
);
1434 xfs_flush_buftarg(btp
, 1);
1435 xfs_blkdev_issue_flush(btp
);
1437 xfs_blkdev_put(btp
->bt_bdev
);
1438 xfs_free_bufhash(btp
);
1439 iput(btp
->bt_mapping
->host
);
1441 /* Unregister the buftarg first so that we don't get a
1442 * wakeup finding a non-existent task
1444 xfs_unregister_buftarg(btp
);
1445 kthread_stop(btp
->bt_task
);
1447 kmem_free(btp
, sizeof(*btp
));
1451 xfs_setsize_buftarg_flags(
1453 unsigned int blocksize
,
1454 unsigned int sectorsize
,
1457 btp
->bt_bsize
= blocksize
;
1458 btp
->bt_sshift
= ffs(sectorsize
) - 1;
1459 btp
->bt_smask
= sectorsize
- 1;
1461 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1463 "XFS: Cannot set_blocksize to %u on device %s\n",
1464 sectorsize
, XFS_BUFTARG_NAME(btp
));
1469 (PAGE_CACHE_SIZE
/ BITS_PER_LONG
) > sectorsize
) {
1471 "XFS: %u byte sectors in use on device %s. "
1472 "This is suboptimal; %u or greater is ideal.\n",
1473 sectorsize
, XFS_BUFTARG_NAME(btp
),
1474 (unsigned int)PAGE_CACHE_SIZE
/ BITS_PER_LONG
);
1481 * When allocating the initial buffer target we have not yet
1482 * read in the superblock, so don't know what sized sectors
1483 * are being used is at this early stage. Play safe.
1486 xfs_setsize_buftarg_early(
1488 struct block_device
*bdev
)
1490 return xfs_setsize_buftarg_flags(btp
,
1491 PAGE_CACHE_SIZE
, bdev_hardsect_size(bdev
), 0);
1495 xfs_setsize_buftarg(
1497 unsigned int blocksize
,
1498 unsigned int sectorsize
)
1500 return xfs_setsize_buftarg_flags(btp
, blocksize
, sectorsize
, 1);
1504 xfs_mapping_buftarg(
1506 struct block_device
*bdev
)
1508 struct backing_dev_info
*bdi
;
1509 struct inode
*inode
;
1510 struct address_space
*mapping
;
1511 static const struct address_space_operations mapping_aops
= {
1512 .sync_page
= block_sync_page
,
1513 .migratepage
= fail_migrate_page
,
1516 inode
= new_inode(bdev
->bd_inode
->i_sb
);
1519 "XFS: Cannot allocate mapping inode for device %s\n",
1520 XFS_BUFTARG_NAME(btp
));
1523 inode
->i_mode
= S_IFBLK
;
1524 inode
->i_bdev
= bdev
;
1525 inode
->i_rdev
= bdev
->bd_dev
;
1526 bdi
= blk_get_backing_dev_info(bdev
);
1528 bdi
= &default_backing_dev_info
;
1529 mapping
= &inode
->i_data
;
1530 mapping
->a_ops
= &mapping_aops
;
1531 mapping
->backing_dev_info
= bdi
;
1532 mapping_set_gfp_mask(mapping
, GFP_NOFS
);
1533 btp
->bt_mapping
= mapping
;
1538 xfs_alloc_delwrite_queue(
1543 INIT_LIST_HEAD(&btp
->bt_list
);
1544 INIT_LIST_HEAD(&btp
->bt_delwrite_queue
);
1545 spin_lock_init(&btp
->bt_delwrite_lock
);
1547 btp
->bt_task
= kthread_run(xfsbufd
, btp
, "xfsbufd");
1548 if (IS_ERR(btp
->bt_task
)) {
1549 error
= PTR_ERR(btp
->bt_task
);
1552 xfs_register_buftarg(btp
);
1559 struct block_device
*bdev
,
1564 btp
= kmem_zalloc(sizeof(*btp
), KM_SLEEP
);
1566 btp
->bt_dev
= bdev
->bd_dev
;
1567 btp
->bt_bdev
= bdev
;
1568 if (xfs_setsize_buftarg_early(btp
, bdev
))
1570 if (xfs_mapping_buftarg(btp
, bdev
))
1572 if (xfs_alloc_delwrite_queue(btp
))
1574 xfs_alloc_bufhash(btp
, external
);
1578 kmem_free(btp
, sizeof(*btp
));
1584 * Delayed write buffer handling
1587 xfs_buf_delwri_queue(
1591 struct list_head
*dwq
= &bp
->b_target
->bt_delwrite_queue
;
1592 spinlock_t
*dwlk
= &bp
->b_target
->bt_delwrite_lock
;
1594 XB_TRACE(bp
, "delwri_q", (long)unlock
);
1595 ASSERT((bp
->b_flags
&(XBF_DELWRI
|XBF_ASYNC
)) == (XBF_DELWRI
|XBF_ASYNC
));
1598 /* If already in the queue, dequeue and place at tail */
1599 if (!list_empty(&bp
->b_list
)) {
1600 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
1602 atomic_dec(&bp
->b_hold
);
1603 list_del(&bp
->b_list
);
1606 bp
->b_flags
|= _XBF_DELWRI_Q
;
1607 list_add_tail(&bp
->b_list
, dwq
);
1608 bp
->b_queuetime
= jiffies
;
1616 xfs_buf_delwri_dequeue(
1619 spinlock_t
*dwlk
= &bp
->b_target
->bt_delwrite_lock
;
1623 if ((bp
->b_flags
& XBF_DELWRI
) && !list_empty(&bp
->b_list
)) {
1624 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
1625 list_del_init(&bp
->b_list
);
1628 bp
->b_flags
&= ~(XBF_DELWRI
|_XBF_DELWRI_Q
);
1634 XB_TRACE(bp
, "delwri_dq", (long)dequeued
);
1638 xfs_buf_runall_queues(
1639 struct workqueue_struct
*queue
)
1641 flush_workqueue(queue
);
1651 spin_lock(&xfs_buftarg_lock
);
1652 list_for_each_entry(btp
, &xfs_buftarg_list
, bt_list
) {
1653 if (test_bit(XBT_FORCE_SLEEP
, &btp
->bt_flags
))
1655 set_bit(XBT_FORCE_FLUSH
, &btp
->bt_flags
);
1656 wake_up_process(btp
->bt_task
);
1658 spin_unlock(&xfs_buftarg_lock
);
1663 * Move as many buffers as specified to the supplied list
1664 * idicating if we skipped any buffers to prevent deadlocks.
1667 xfs_buf_delwri_split(
1668 xfs_buftarg_t
*target
,
1669 struct list_head
*list
,
1673 struct list_head
*dwq
= &target
->bt_delwrite_queue
;
1674 spinlock_t
*dwlk
= &target
->bt_delwrite_lock
;
1678 force
= test_and_clear_bit(XBT_FORCE_FLUSH
, &target
->bt_flags
);
1679 INIT_LIST_HEAD(list
);
1681 list_for_each_entry_safe(bp
, n
, dwq
, b_list
) {
1682 XB_TRACE(bp
, "walkq1", (long)xfs_buf_ispin(bp
));
1683 ASSERT(bp
->b_flags
& XBF_DELWRI
);
1685 if (!xfs_buf_ispin(bp
) && !xfs_buf_cond_lock(bp
)) {
1687 time_before(jiffies
, bp
->b_queuetime
+ age
)) {
1692 bp
->b_flags
&= ~(XBF_DELWRI
|_XBF_DELWRI_Q
|
1694 bp
->b_flags
|= XBF_WRITE
;
1695 list_move_tail(&bp
->b_list
, list
);
1709 struct list_head tmp
;
1710 xfs_buftarg_t
*target
= (xfs_buftarg_t
*)data
;
1714 current
->flags
|= PF_MEMALLOC
;
1719 if (unlikely(freezing(current
))) {
1720 set_bit(XBT_FORCE_SLEEP
, &target
->bt_flags
);
1723 clear_bit(XBT_FORCE_SLEEP
, &target
->bt_flags
);
1726 schedule_timeout_interruptible(
1727 xfs_buf_timer_centisecs
* msecs_to_jiffies(10));
1729 xfs_buf_delwri_split(target
, &tmp
,
1730 xfs_buf_age_centisecs
* msecs_to_jiffies(10));
1733 while (!list_empty(&tmp
)) {
1734 bp
= list_entry(tmp
.next
, xfs_buf_t
, b_list
);
1735 ASSERT(target
== bp
->b_target
);
1737 list_del_init(&bp
->b_list
);
1738 xfs_buf_iostrategy(bp
);
1742 if (as_list_len
> 0)
1745 blk_run_address_space(target
->bt_mapping
);
1747 } while (!kthread_should_stop());
1753 * Go through all incore buffers, and release buffers if they belong to
1754 * the given device. This is used in filesystem error handling to
1755 * preserve the consistency of its metadata.
1759 xfs_buftarg_t
*target
,
1762 struct list_head tmp
;
1766 xfs_buf_runall_queues(xfsdatad_workqueue
);
1767 xfs_buf_runall_queues(xfslogd_workqueue
);
1769 set_bit(XBT_FORCE_FLUSH
, &target
->bt_flags
);
1770 pincount
= xfs_buf_delwri_split(target
, &tmp
, 0);
1773 * Dropped the delayed write list lock, now walk the temporary list
1775 list_for_each_entry_safe(bp
, n
, &tmp
, b_list
) {
1776 ASSERT(target
== bp
->b_target
);
1778 bp
->b_flags
&= ~XBF_ASYNC
;
1780 list_del_init(&bp
->b_list
);
1782 xfs_buf_iostrategy(bp
);
1786 blk_run_address_space(target
->bt_mapping
);
1789 * Remaining list items must be flushed before returning
1791 while (!list_empty(&tmp
)) {
1792 bp
= list_entry(tmp
.next
, xfs_buf_t
, b_list
);
1794 list_del_init(&bp
->b_list
);
1805 #ifdef XFS_BUF_TRACE
1806 xfs_buf_trace_buf
= ktrace_alloc(XFS_BUF_TRACE_SIZE
, KM_SLEEP
);
1809 xfs_buf_zone
= kmem_zone_init_flags(sizeof(xfs_buf_t
), "xfs_buf",
1810 KM_ZONE_HWALIGN
, NULL
);
1812 goto out_free_trace_buf
;
1814 xfslogd_workqueue
= create_workqueue("xfslogd");
1815 if (!xfslogd_workqueue
)
1816 goto out_free_buf_zone
;
1818 xfsdatad_workqueue
= create_workqueue("xfsdatad");
1819 if (!xfsdatad_workqueue
)
1820 goto out_destroy_xfslogd_workqueue
;
1822 register_shrinker(&xfs_buf_shake
);
1825 out_destroy_xfslogd_workqueue
:
1826 destroy_workqueue(xfslogd_workqueue
);
1828 kmem_zone_destroy(xfs_buf_zone
);
1830 #ifdef XFS_BUF_TRACE
1831 ktrace_free(xfs_buf_trace_buf
);
1837 xfs_buf_terminate(void)
1839 unregister_shrinker(&xfs_buf_shake
);
1840 destroy_workqueue(xfsdatad_workqueue
);
1841 destroy_workqueue(xfslogd_workqueue
);
1842 kmem_zone_destroy(xfs_buf_zone
);
1843 #ifdef XFS_BUF_TRACE
1844 ktrace_free(xfs_buf_trace_buf
);
1848 #ifdef CONFIG_KDB_MODULES
1850 xfs_get_buftarg_list(void)
1852 return &xfs_buftarg_list
;