2 * arch/v850/kernel/setup.c -- Arch-dependent initialization functions
4 * Copyright (C) 2001,02,03,05,06 NEC Electronics Corporation
5 * Copyright (C) 2001,02,03,05,06 Miles Bader <miles@gnu.org>
7 * This file is subject to the terms and conditions of the GNU General
8 * Public License. See the file COPYING in the main directory of this
9 * archive for more details.
11 * Written by Miles Bader <miles@gnu.org>
15 #include <linux/bootmem.h>
16 #include <linux/swap.h> /* we don't have swap, but for nr_free_pages */
17 #include <linux/irq.h>
18 #include <linux/reboot.h>
19 #include <linux/personality.h>
20 #include <linux/major.h>
21 #include <linux/root_dev.h>
22 #include <linux/mtd/mtd.h>
23 #include <linux/init.h>
26 #include <asm/setup.h>
30 /* These symbols are all defined in the linker map to delineate various
31 statically allocated regions of memory. */
33 extern char _intv_start
, _intv_end
;
34 /* `kram' is only used if the kernel uses part of normal user RAM. */
35 extern char _kram_start
__attribute__ ((__weak__
));
36 extern char _kram_end
__attribute__ ((__weak__
));
37 extern char _init_start
, _init_end
;
39 extern char _stext
, _etext
, _sdata
, _edata
, _sbss
, _ebss
;
40 /* Many platforms use an embedded root image. */
41 extern char _root_fs_image_start
__attribute__ ((__weak__
));
42 extern char _root_fs_image_end
__attribute__ ((__weak__
));
45 char __initdata command_line
[COMMAND_LINE_SIZE
];
47 /* Memory not used by the kernel. */
48 static unsigned long total_ram_pages
;
51 static unsigned long ram_start
= 0, ram_len
= 0;
54 #define ADDR_TO_PAGE_UP(x) ((((unsigned long)x) + PAGE_SIZE-1) >> PAGE_SHIFT)
55 #define ADDR_TO_PAGE(x) (((unsigned long)x) >> PAGE_SHIFT)
56 #define PAGE_TO_ADDR(x) (((unsigned long)x) << PAGE_SHIFT)
58 static void init_mem_alloc (unsigned long ram_start
, unsigned long ram_len
);
60 void set_mem_root (void *addr
, size_t len
, char *cmd_line
);
63 void __init
setup_arch (char **cmdline
)
65 /* Keep a copy of command line */
66 *cmdline
= command_line
;
67 memcpy (boot_command_line
, command_line
, COMMAND_LINE_SIZE
);
68 boot_command_line
[COMMAND_LINE_SIZE
- 1] = '\0';
72 init_mm
.start_code
= (unsigned long) &_stext
;
73 init_mm
.end_code
= (unsigned long) &_etext
;
74 init_mm
.end_data
= (unsigned long) &_edata
;
75 init_mm
.brk
= (unsigned long) &_kram_end
;
77 /* Find out what mem this machine has. */
78 mach_get_physical_ram (&ram_start
, &ram_len
);
79 /* ... and tell the kernel about it. */
80 init_mem_alloc (ram_start
, ram_len
);
82 printk (KERN_INFO
"CPU: %s\nPlatform: %s\n",
83 CPU_MODEL_LONG
, PLATFORM_LONG
);
85 /* do machine-specific setups. */
89 if (!ROOT_DEV
&& &_root_fs_image_end
> &_root_fs_image_start
)
90 set_mem_root (&_root_fs_image_start
,
91 &_root_fs_image_end
- &_root_fs_image_start
,
96 void __init
trap_init (void)
102 /* From drivers/mtd/devices/slram.c */
103 #define SLRAM_BLK_SZ 0x4000
105 /* Set the root filesystem to be the given memory region.
106 Some parameter may be appended to CMD_LINE. */
107 void set_mem_root (void *addr
, size_t len
, char *cmd_line
)
109 /* Some sort of idiocy in MTD means we must supply a length that's
110 a multiple of SLRAM_BLK_SZ. We just round up the real length,
111 as the file system shouldn't attempt to access anything beyond
112 the end of the image anyway. */
113 len
= (((len
- 1) + SLRAM_BLK_SZ
) / SLRAM_BLK_SZ
) * SLRAM_BLK_SZ
;
115 /* The only way to pass info to the MTD slram driver is via
118 cmd_line
+= strlen (cmd_line
);
121 sprintf (cmd_line
, "slram=root,0x%x,+0x%x", (u32
)addr
, (u32
)len
);
123 ROOT_DEV
= MKDEV (MTD_BLOCK_MAJOR
, 0);
128 static void irq_nop (unsigned irq
) { }
129 static unsigned irq_zero (unsigned irq
) { return 0; }
131 static void nmi_end (unsigned irq
)
133 if (irq
!= IRQ_NMI (0)) {
134 printk (KERN_CRIT
"NMI %d is unrecoverable; restarting...",
140 static struct hw_interrupt_type nmi_irq_type
= {
142 .startup
= irq_zero
, /* startup */
143 .shutdown
= irq_nop
, /* shutdown */
144 .enable
= irq_nop
, /* enable */
145 .disable
= irq_nop
, /* disable */
146 .ack
= irq_nop
, /* ack */
147 .end
= nmi_end
, /* end */
150 void __init
init_IRQ (void)
152 init_irq_handlers (0, NUM_MACH_IRQS
, 1, 0);
153 init_irq_handlers (IRQ_NMI (0), NUM_NMIS
, 1, &nmi_irq_type
);
158 void __init
mem_init (void)
160 max_mapnr
= MAP_NR (ram_start
+ ram_len
);
162 num_physpages
= ADDR_TO_PAGE (ram_len
);
164 total_ram_pages
= free_all_bootmem ();
167 "Memory: %luK/%luK available"
168 " (%luK kernel code, %luK data)\n",
169 PAGE_TO_ADDR (nr_free_pages()) / 1024,
171 ((unsigned long)&_etext
- (unsigned long)&_stext
) / 1024,
172 ((unsigned long)&_ebss
- (unsigned long)&_sdata
) / 1024);
175 void free_initmem (void)
177 unsigned long ram_end
= ram_start
+ ram_len
;
178 unsigned long start
= PAGE_ALIGN ((unsigned long)(&_init_start
));
180 if (start
>= ram_start
&& start
< ram_end
) {
182 unsigned long end
= PAGE_ALIGN ((unsigned long)(&_init_end
));
187 printk("Freeing unused kernel memory: %ldK freed\n",
188 (end
- start
) / 1024);
190 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
191 struct page
*page
= virt_to_page (addr
);
192 ClearPageReserved (page
);
193 init_page_count (page
);
201 /* Initialize the `bootmem allocator'. RAM_START and RAM_LEN identify
202 what RAM may be used. */
204 init_bootmem_alloc (unsigned long ram_start
, unsigned long ram_len
)
206 /* The part of the kernel that's in the same managed RAM space
207 used for general allocation. */
208 unsigned long kram_start
= (unsigned long)&_kram_start
;
209 unsigned long kram_end
= (unsigned long)&_kram_end
;
210 /* End of the managed RAM space. */
211 unsigned long ram_end
= ram_start
+ ram_len
;
212 /* Address range of the interrupt vector table. */
213 unsigned long intv_start
= (unsigned long)&_intv_start
;
214 unsigned long intv_end
= (unsigned long)&_intv_end
;
215 /* True if the interrupt vectors are in the managed RAM area. */
216 int intv_in_ram
= (intv_end
> ram_start
&& intv_start
< ram_end
);
217 /* True if the interrupt vectors are inside the kernel's RAM. */
218 int intv_in_kram
= (intv_end
> kram_start
&& intv_start
< kram_end
);
219 /* A pointer to an optional function that reserves platform-specific
220 memory regions. We declare the pointer `volatile' to avoid gcc
221 turning the call into a static call (the problem is that since
222 it's a weak symbol, a static call may end up trying to reference
223 the location 0x0, which is not always reachable). */
224 void (*volatile mrb
) (void) = mach_reserve_bootmem
;
225 /* The bootmem allocator's allocation bitmap. */
226 unsigned long bootmap
= (unsigned long)&_bootmap
;
227 unsigned long bootmap_len
;
229 /* Round bootmap location up to next page. */
230 bootmap
= PAGE_TO_ADDR (ADDR_TO_PAGE_UP (bootmap
));
232 /* Initialize bootmem allocator. */
233 bootmap_len
= init_bootmem_node (NODE_DATA (0),
234 ADDR_TO_PAGE (bootmap
),
235 ADDR_TO_PAGE (PAGE_OFFSET
),
236 ADDR_TO_PAGE (ram_end
));
238 /* Now make the RAM actually allocatable (it starts out `reserved'). */
239 free_bootmem (ram_start
, ram_len
);
241 if (kram_end
> kram_start
)
242 /* Reserve the RAM part of the kernel's address space, so it
243 doesn't get allocated. */
244 reserve_bootmem(kram_start
, kram_end
- kram_start
,
247 if (intv_in_ram
&& !intv_in_kram
)
248 /* Reserve the interrupt vector space. */
249 reserve_bootmem(intv_start
, intv_end
- intv_start
,
252 if (bootmap
>= ram_start
&& bootmap
< ram_end
)
253 /* Reserve the bootmap space. */
254 reserve_bootmem(bootmap
, bootmap_len
,
257 /* Reserve the memory used by the root filesystem image if it's
259 if (&_root_fs_image_end
> &_root_fs_image_start
260 && (unsigned long)&_root_fs_image_start
>= ram_start
261 && (unsigned long)&_root_fs_image_start
< ram_end
)
262 reserve_bootmem ((unsigned long)&_root_fs_image_start
,
263 &_root_fs_image_end
- &_root_fs_image_start
,
266 /* Let the platform-dependent code reserve some too. */
271 /* Tell the kernel about what RAM it may use for memory allocation. */
273 init_mem_alloc (unsigned long ram_start
, unsigned long ram_len
)
276 unsigned long zones_size
[MAX_NR_ZONES
];
278 init_bootmem_alloc (ram_start
, ram_len
);
280 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
283 /* We stuff all the memory into one area, which includes the
284 initial gap from PAGE_OFFSET to ram_start. */
286 = ADDR_TO_PAGE (ram_len
+ (ram_start
- PAGE_OFFSET
));
288 /* The allocator is very picky about the address of the first
289 allocatable page -- it must be at least as aligned as the
290 maximum allocation -- so try to detect cases where it will get
291 confused and signal them at compile time (this is a common
292 problem when porting to a new platform with ). There is a
293 similar runtime check in free_area_init_core. */
294 #if ((PAGE_OFFSET >> PAGE_SHIFT) & ((1UL << (MAX_ORDER - 1)) - 1))
295 #error MAX_ORDER is too large for given PAGE_OFFSET (use CONFIG_FORCE_MAX_ZONEORDER to change it)
297 NODE_DATA(0)->node_mem_map
= NULL
;
298 free_area_init_node (0, NODE_DATA(0), zones_size
,
299 ADDR_TO_PAGE (PAGE_OFFSET
), 0);
304 /* Taken from m68knommu */
308 int free
= 0, total
= 0, reserved
= 0, shared
= 0;
311 printk(KERN_INFO
"\nMem-info:\n");
316 if (PageReserved(mem_map
+i
))
318 else if (PageSwapCache(mem_map
+i
))
320 else if (!page_count(mem_map
+i
))
323 shared
+= page_count(mem_map
+i
) - 1;
325 printk(KERN_INFO
"%d pages of RAM\n",total
);
326 printk(KERN_INFO
"%d free pages\n",free
);
327 printk(KERN_INFO
"%d reserved pages\n",reserved
);
328 printk(KERN_INFO
"%d pages shared\n",shared
);
329 printk(KERN_INFO
"%d pages swap cached\n",cached
);