OMAP: DISPC: Fix to disable also interface clocks. 2nd.
[linux-ginger.git] / arch / x86 / kernel / hpet.c
blob9b5cfcdfc426cc194365020c061c6c0b46e54083
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/delay.h>
4 #include <linux/errno.h>
5 #include <linux/hpet.h>
6 #include <linux/init.h>
7 #include <linux/sysdev.h>
8 #include <linux/pm.h>
10 #include <asm/fixmap.h>
11 #include <asm/hpet.h>
12 #include <asm/i8253.h>
13 #include <asm/io.h>
15 #define HPET_MASK CLOCKSOURCE_MASK(32)
16 #define HPET_SHIFT 22
18 /* FSEC = 10^-15
19 NSEC = 10^-9 */
20 #define FSEC_PER_NSEC 1000000
23 * HPET address is set in acpi/boot.c, when an ACPI entry exists
25 unsigned long hpet_address;
26 static void __iomem *hpet_virt_address;
28 unsigned long hpet_readl(unsigned long a)
30 return readl(hpet_virt_address + a);
33 static inline void hpet_writel(unsigned long d, unsigned long a)
35 writel(d, hpet_virt_address + a);
38 #ifdef CONFIG_X86_64
40 #include <asm/pgtable.h>
42 static inline void hpet_set_mapping(void)
44 set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
45 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
46 hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
49 static inline void hpet_clear_mapping(void)
51 hpet_virt_address = NULL;
54 #else
56 static inline void hpet_set_mapping(void)
58 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
61 static inline void hpet_clear_mapping(void)
63 iounmap(hpet_virt_address);
64 hpet_virt_address = NULL;
66 #endif
69 * HPET command line enable / disable
71 static int boot_hpet_disable;
72 int hpet_force_user;
74 static int __init hpet_setup(char* str)
76 if (str) {
77 if (!strncmp("disable", str, 7))
78 boot_hpet_disable = 1;
79 if (!strncmp("force", str, 5))
80 hpet_force_user = 1;
82 return 1;
84 __setup("hpet=", hpet_setup);
86 static int __init disable_hpet(char *str)
88 boot_hpet_disable = 1;
89 return 1;
91 __setup("nohpet", disable_hpet);
93 static inline int is_hpet_capable(void)
95 return (!boot_hpet_disable && hpet_address);
99 * HPET timer interrupt enable / disable
101 static int hpet_legacy_int_enabled;
104 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
106 int is_hpet_enabled(void)
108 return is_hpet_capable() && hpet_legacy_int_enabled;
110 EXPORT_SYMBOL_GPL(is_hpet_enabled);
113 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
114 * timer 0 and timer 1 in case of RTC emulation.
116 #ifdef CONFIG_HPET
117 static void hpet_reserve_platform_timers(unsigned long id)
119 struct hpet __iomem *hpet = hpet_virt_address;
120 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
121 unsigned int nrtimers, i;
122 struct hpet_data hd;
124 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
126 memset(&hd, 0, sizeof (hd));
127 hd.hd_phys_address = hpet_address;
128 hd.hd_address = hpet;
129 hd.hd_nirqs = nrtimers;
130 hd.hd_flags = HPET_DATA_PLATFORM;
131 hpet_reserve_timer(&hd, 0);
133 #ifdef CONFIG_HPET_EMULATE_RTC
134 hpet_reserve_timer(&hd, 1);
135 #endif
137 hd.hd_irq[0] = HPET_LEGACY_8254;
138 hd.hd_irq[1] = HPET_LEGACY_RTC;
140 for (i = 2; i < nrtimers; timer++, i++) {
141 hd.hd_irq[i] = (readl(&timer->hpet_config) & Tn_INT_ROUTE_CNF_MASK) >>
142 Tn_INT_ROUTE_CNF_SHIFT;
145 hpet_alloc(&hd);
148 #else
149 static void hpet_reserve_platform_timers(unsigned long id) { }
150 #endif
153 * Common hpet info
155 static unsigned long hpet_period;
157 static void hpet_legacy_set_mode(enum clock_event_mode mode,
158 struct clock_event_device *evt);
159 static int hpet_legacy_next_event(unsigned long delta,
160 struct clock_event_device *evt);
163 * The hpet clock event device
165 static struct clock_event_device hpet_clockevent = {
166 .name = "hpet",
167 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
168 .set_mode = hpet_legacy_set_mode,
169 .set_next_event = hpet_legacy_next_event,
170 .shift = 32,
171 .irq = 0,
172 .rating = 50,
175 static void hpet_start_counter(void)
177 unsigned long cfg = hpet_readl(HPET_CFG);
179 cfg &= ~HPET_CFG_ENABLE;
180 hpet_writel(cfg, HPET_CFG);
181 hpet_writel(0, HPET_COUNTER);
182 hpet_writel(0, HPET_COUNTER + 4);
183 cfg |= HPET_CFG_ENABLE;
184 hpet_writel(cfg, HPET_CFG);
187 static void hpet_resume_device(void)
189 force_hpet_resume();
192 static void hpet_restart_counter(void)
194 hpet_resume_device();
195 hpet_start_counter();
198 static void hpet_enable_legacy_int(void)
200 unsigned long cfg = hpet_readl(HPET_CFG);
202 cfg |= HPET_CFG_LEGACY;
203 hpet_writel(cfg, HPET_CFG);
204 hpet_legacy_int_enabled = 1;
207 static void hpet_legacy_clockevent_register(void)
209 uint64_t hpet_freq;
211 /* Start HPET legacy interrupts */
212 hpet_enable_legacy_int();
215 * The period is a femto seconds value. We need to calculate the
216 * scaled math multiplication factor for nanosecond to hpet tick
217 * conversion.
219 hpet_freq = 1000000000000000ULL;
220 do_div(hpet_freq, hpet_period);
221 hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
222 NSEC_PER_SEC, hpet_clockevent.shift);
223 /* Calculate the min / max delta */
224 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
225 &hpet_clockevent);
226 hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
227 &hpet_clockevent);
230 * Start hpet with the boot cpu mask and make it
231 * global after the IO_APIC has been initialized.
233 hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
234 clockevents_register_device(&hpet_clockevent);
235 global_clock_event = &hpet_clockevent;
236 printk(KERN_DEBUG "hpet clockevent registered\n");
239 static void hpet_legacy_set_mode(enum clock_event_mode mode,
240 struct clock_event_device *evt)
242 unsigned long cfg, cmp, now;
243 uint64_t delta;
245 switch(mode) {
246 case CLOCK_EVT_MODE_PERIODIC:
247 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
248 delta >>= hpet_clockevent.shift;
249 now = hpet_readl(HPET_COUNTER);
250 cmp = now + (unsigned long) delta;
251 cfg = hpet_readl(HPET_T0_CFG);
252 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
253 HPET_TN_SETVAL | HPET_TN_32BIT;
254 hpet_writel(cfg, HPET_T0_CFG);
256 * The first write after writing TN_SETVAL to the
257 * config register sets the counter value, the second
258 * write sets the period.
260 hpet_writel(cmp, HPET_T0_CMP);
261 udelay(1);
262 hpet_writel((unsigned long) delta, HPET_T0_CMP);
263 break;
265 case CLOCK_EVT_MODE_ONESHOT:
266 cfg = hpet_readl(HPET_T0_CFG);
267 cfg &= ~HPET_TN_PERIODIC;
268 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
269 hpet_writel(cfg, HPET_T0_CFG);
270 break;
272 case CLOCK_EVT_MODE_UNUSED:
273 case CLOCK_EVT_MODE_SHUTDOWN:
274 cfg = hpet_readl(HPET_T0_CFG);
275 cfg &= ~HPET_TN_ENABLE;
276 hpet_writel(cfg, HPET_T0_CFG);
277 break;
279 case CLOCK_EVT_MODE_RESUME:
280 hpet_enable_legacy_int();
281 break;
285 static int hpet_legacy_next_event(unsigned long delta,
286 struct clock_event_device *evt)
288 unsigned long cnt;
290 cnt = hpet_readl(HPET_COUNTER);
291 cnt += delta;
292 hpet_writel(cnt, HPET_T0_CMP);
294 return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
298 * Clock source related code
300 static cycle_t read_hpet(void)
302 return (cycle_t)hpet_readl(HPET_COUNTER);
305 #ifdef CONFIG_X86_64
306 static cycle_t __vsyscall_fn vread_hpet(void)
308 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
310 #endif
312 static struct clocksource clocksource_hpet = {
313 .name = "hpet",
314 .rating = 250,
315 .read = read_hpet,
316 .mask = HPET_MASK,
317 .shift = HPET_SHIFT,
318 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
319 .resume = hpet_restart_counter,
320 #ifdef CONFIG_X86_64
321 .vread = vread_hpet,
322 #endif
325 static int hpet_clocksource_register(void)
327 u64 tmp, start, now;
328 cycle_t t1;
330 /* Start the counter */
331 hpet_start_counter();
333 /* Verify whether hpet counter works */
334 t1 = read_hpet();
335 rdtscll(start);
338 * We don't know the TSC frequency yet, but waiting for
339 * 200000 TSC cycles is safe:
340 * 4 GHz == 50us
341 * 1 GHz == 200us
343 do {
344 rep_nop();
345 rdtscll(now);
346 } while ((now - start) < 200000UL);
348 if (t1 == read_hpet()) {
349 printk(KERN_WARNING
350 "HPET counter not counting. HPET disabled\n");
351 return -ENODEV;
354 /* Initialize and register HPET clocksource
356 * hpet period is in femto seconds per cycle
357 * so we need to convert this to ns/cyc units
358 * approximated by mult/2^shift
360 * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
361 * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
362 * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
363 * (fsec/cyc << shift)/1000000 = mult
364 * (hpet_period << shift)/FSEC_PER_NSEC = mult
366 tmp = (u64)hpet_period << HPET_SHIFT;
367 do_div(tmp, FSEC_PER_NSEC);
368 clocksource_hpet.mult = (u32)tmp;
370 clocksource_register(&clocksource_hpet);
372 return 0;
376 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
378 int __init hpet_enable(void)
380 unsigned long id;
382 if (!is_hpet_capable())
383 return 0;
385 hpet_set_mapping();
388 * Read the period and check for a sane value:
390 hpet_period = hpet_readl(HPET_PERIOD);
391 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
392 goto out_nohpet;
395 * Read the HPET ID register to retrieve the IRQ routing
396 * information and the number of channels
398 id = hpet_readl(HPET_ID);
400 #ifdef CONFIG_HPET_EMULATE_RTC
402 * The legacy routing mode needs at least two channels, tick timer
403 * and the rtc emulation channel.
405 if (!(id & HPET_ID_NUMBER))
406 goto out_nohpet;
407 #endif
409 if (hpet_clocksource_register())
410 goto out_nohpet;
412 if (id & HPET_ID_LEGSUP) {
413 hpet_legacy_clockevent_register();
414 return 1;
416 return 0;
418 out_nohpet:
419 hpet_clear_mapping();
420 boot_hpet_disable = 1;
421 return 0;
425 * Needs to be late, as the reserve_timer code calls kalloc !
427 * Not a problem on i386 as hpet_enable is called from late_time_init,
428 * but on x86_64 it is necessary !
430 static __init int hpet_late_init(void)
432 if (boot_hpet_disable)
433 return -ENODEV;
435 if (!hpet_address) {
436 if (!force_hpet_address)
437 return -ENODEV;
439 hpet_address = force_hpet_address;
440 hpet_enable();
441 if (!hpet_virt_address)
442 return -ENODEV;
445 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
447 return 0;
449 fs_initcall(hpet_late_init);
451 void hpet_disable(void)
453 if (is_hpet_capable()) {
454 unsigned long cfg = hpet_readl(HPET_CFG);
456 if (hpet_legacy_int_enabled) {
457 cfg &= ~HPET_CFG_LEGACY;
458 hpet_legacy_int_enabled = 0;
460 cfg &= ~HPET_CFG_ENABLE;
461 hpet_writel(cfg, HPET_CFG);
465 #ifdef CONFIG_HPET_EMULATE_RTC
467 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
468 * is enabled, we support RTC interrupt functionality in software.
469 * RTC has 3 kinds of interrupts:
470 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
471 * is updated
472 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
473 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
474 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
475 * (1) and (2) above are implemented using polling at a frequency of
476 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
477 * overhead. (DEFAULT_RTC_INT_FREQ)
478 * For (3), we use interrupts at 64Hz or user specified periodic
479 * frequency, whichever is higher.
481 #include <linux/mc146818rtc.h>
482 #include <linux/rtc.h>
483 #include <asm/rtc.h>
485 #define DEFAULT_RTC_INT_FREQ 64
486 #define DEFAULT_RTC_SHIFT 6
487 #define RTC_NUM_INTS 1
489 static unsigned long hpet_rtc_flags;
490 static unsigned long hpet_prev_update_sec;
491 static struct rtc_time hpet_alarm_time;
492 static unsigned long hpet_pie_count;
493 static unsigned long hpet_t1_cmp;
494 static unsigned long hpet_default_delta;
495 static unsigned long hpet_pie_delta;
496 static unsigned long hpet_pie_limit;
498 static rtc_irq_handler irq_handler;
501 * Registers a IRQ handler.
503 int hpet_register_irq_handler(rtc_irq_handler handler)
505 if (!is_hpet_enabled())
506 return -ENODEV;
507 if (irq_handler)
508 return -EBUSY;
510 irq_handler = handler;
512 return 0;
514 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
517 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
518 * and does cleanup.
520 void hpet_unregister_irq_handler(rtc_irq_handler handler)
522 if (!is_hpet_enabled())
523 return;
525 irq_handler = NULL;
526 hpet_rtc_flags = 0;
528 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
531 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
532 * is not supported by all HPET implementations for timer 1.
534 * hpet_rtc_timer_init() is called when the rtc is initialized.
536 int hpet_rtc_timer_init(void)
538 unsigned long cfg, cnt, delta, flags;
540 if (!is_hpet_enabled())
541 return 0;
543 if (!hpet_default_delta) {
544 uint64_t clc;
546 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
547 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
548 hpet_default_delta = (unsigned long) clc;
551 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
552 delta = hpet_default_delta;
553 else
554 delta = hpet_pie_delta;
556 local_irq_save(flags);
558 cnt = delta + hpet_readl(HPET_COUNTER);
559 hpet_writel(cnt, HPET_T1_CMP);
560 hpet_t1_cmp = cnt;
562 cfg = hpet_readl(HPET_T1_CFG);
563 cfg &= ~HPET_TN_PERIODIC;
564 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
565 hpet_writel(cfg, HPET_T1_CFG);
567 local_irq_restore(flags);
569 return 1;
571 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
574 * The functions below are called from rtc driver.
575 * Return 0 if HPET is not being used.
576 * Otherwise do the necessary changes and return 1.
578 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
580 if (!is_hpet_enabled())
581 return 0;
583 hpet_rtc_flags &= ~bit_mask;
584 return 1;
586 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
588 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
590 unsigned long oldbits = hpet_rtc_flags;
592 if (!is_hpet_enabled())
593 return 0;
595 hpet_rtc_flags |= bit_mask;
597 if (!oldbits)
598 hpet_rtc_timer_init();
600 return 1;
602 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
604 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
605 unsigned char sec)
607 if (!is_hpet_enabled())
608 return 0;
610 hpet_alarm_time.tm_hour = hrs;
611 hpet_alarm_time.tm_min = min;
612 hpet_alarm_time.tm_sec = sec;
614 return 1;
616 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
618 int hpet_set_periodic_freq(unsigned long freq)
620 uint64_t clc;
622 if (!is_hpet_enabled())
623 return 0;
625 if (freq <= DEFAULT_RTC_INT_FREQ)
626 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
627 else {
628 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
629 do_div(clc, freq);
630 clc >>= hpet_clockevent.shift;
631 hpet_pie_delta = (unsigned long) clc;
633 return 1;
635 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
637 int hpet_rtc_dropped_irq(void)
639 return is_hpet_enabled();
641 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
643 static void hpet_rtc_timer_reinit(void)
645 unsigned long cfg, delta;
646 int lost_ints = -1;
648 if (unlikely(!hpet_rtc_flags)) {
649 cfg = hpet_readl(HPET_T1_CFG);
650 cfg &= ~HPET_TN_ENABLE;
651 hpet_writel(cfg, HPET_T1_CFG);
652 return;
655 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
656 delta = hpet_default_delta;
657 else
658 delta = hpet_pie_delta;
661 * Increment the comparator value until we are ahead of the
662 * current count.
664 do {
665 hpet_t1_cmp += delta;
666 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
667 lost_ints++;
668 } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
670 if (lost_ints) {
671 if (hpet_rtc_flags & RTC_PIE)
672 hpet_pie_count += lost_ints;
673 if (printk_ratelimit())
674 printk(KERN_WARNING "rtc: lost %d interrupts\n",
675 lost_ints);
679 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
681 struct rtc_time curr_time;
682 unsigned long rtc_int_flag = 0;
684 hpet_rtc_timer_reinit();
685 memset(&curr_time, 0, sizeof(struct rtc_time));
687 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
688 get_rtc_time(&curr_time);
690 if (hpet_rtc_flags & RTC_UIE &&
691 curr_time.tm_sec != hpet_prev_update_sec) {
692 rtc_int_flag = RTC_UF;
693 hpet_prev_update_sec = curr_time.tm_sec;
696 if (hpet_rtc_flags & RTC_PIE &&
697 ++hpet_pie_count >= hpet_pie_limit) {
698 rtc_int_flag |= RTC_PF;
699 hpet_pie_count = 0;
702 if (hpet_rtc_flags & RTC_AIE &&
703 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
704 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
705 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
706 rtc_int_flag |= RTC_AF;
708 if (rtc_int_flag) {
709 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
710 if (irq_handler)
711 irq_handler(rtc_int_flag, dev_id);
713 return IRQ_HANDLED;
715 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
716 #endif