2 * arch/arm/include/asm/pgtable.h
4 * Copyright (C) 1995-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #ifndef _ASMARM_PGTABLE_H
11 #define _ASMARM_PGTABLE_H
13 #include <asm-generic/4level-fixup.h>
14 #include <asm/proc-fns.h>
18 #include "pgtable-nommu.h"
22 #include <asm/memory.h>
23 #include <mach/vmalloc.h>
24 #include <asm/pgtable-hwdef.h>
27 * Just any arbitrary offset to the start of the vmalloc VM area: the
28 * current 8MB value just means that there will be a 8MB "hole" after the
29 * physical memory until the kernel virtual memory starts. That means that
30 * any out-of-bounds memory accesses will hopefully be caught.
31 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
32 * area for the same reason. ;)
34 * Note that platforms may override VMALLOC_START, but they must provide
35 * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
36 * which may not overlap IO space.
39 #define VMALLOC_OFFSET (8*1024*1024)
40 #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
44 * Hardware-wise, we have a two level page table structure, where the first
45 * level has 4096 entries, and the second level has 256 entries. Each entry
46 * is one 32-bit word. Most of the bits in the second level entry are used
47 * by hardware, and there aren't any "accessed" and "dirty" bits.
49 * Linux on the other hand has a three level page table structure, which can
50 * be wrapped to fit a two level page table structure easily - using the PGD
51 * and PTE only. However, Linux also expects one "PTE" table per page, and
52 * at least a "dirty" bit.
54 * Therefore, we tweak the implementation slightly - we tell Linux that we
55 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
56 * hardware pointers to the second level.) The second level contains two
57 * hardware PTE tables arranged contiguously, followed by Linux versions
58 * which contain the state information Linux needs. We, therefore, end up
59 * with 512 entries in the "PTE" level.
61 * This leads to the page tables having the following layout:
66 * | |-----> +------------+ +0
67 * +- - - - + +4 | h/w pt 0 |
68 * | |-----> +------------+ +1024
69 * +--------+ +8 | h/w pt 1 |
70 * | | +------------+ +2048
71 * +- - - - + | Linux pt 0 |
72 * | | +------------+ +3072
73 * +--------+ | Linux pt 1 |
74 * | | +------------+ +4096
76 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
77 * PTE_xxx for definitions of bits appearing in the "h/w pt".
79 * PMD_xxx definitions refer to bits in the first level page table.
81 * The "dirty" bit is emulated by only granting hardware write permission
82 * iff the page is marked "writable" and "dirty" in the Linux PTE. This
83 * means that a write to a clean page will cause a permission fault, and
84 * the Linux MM layer will mark the page dirty via handle_pte_fault().
85 * For the hardware to notice the permission change, the TLB entry must
86 * be flushed, and ptep_set_access_flags() does that for us.
88 * The "accessed" or "young" bit is emulated by a similar method; we only
89 * allow accesses to the page if the "young" bit is set. Accesses to the
90 * page will cause a fault, and handle_pte_fault() will set the young bit
91 * for us as long as the page is marked present in the corresponding Linux
92 * PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is
95 * However, when the "young" bit is cleared, we deny access to the page
96 * by clearing the hardware PTE. Currently Linux does not flush the TLB
97 * for us in this case, which means the TLB will retain the transation
98 * until either the TLB entry is evicted under pressure, or a context
99 * switch which changes the user space mapping occurs.
101 #define PTRS_PER_PTE 512
102 #define PTRS_PER_PMD 1
103 #define PTRS_PER_PGD 2048
106 * PMD_SHIFT determines the size of the area a second-level page table can map
107 * PGDIR_SHIFT determines what a third-level page table entry can map
110 #define PGDIR_SHIFT 21
112 #define LIBRARY_TEXT_START 0x0c000000
115 extern void __pte_error(const char *file
, int line
, unsigned long val
);
116 extern void __pmd_error(const char *file
, int line
, unsigned long val
);
117 extern void __pgd_error(const char *file
, int line
, unsigned long val
);
119 #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
120 #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
121 #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
122 #endif /* !__ASSEMBLY__ */
124 #define PMD_SIZE (1UL << PMD_SHIFT)
125 #define PMD_MASK (~(PMD_SIZE-1))
126 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
127 #define PGDIR_MASK (~(PGDIR_SIZE-1))
130 * This is the lowest virtual address we can permit any user space
131 * mapping to be mapped at. This is particularly important for
132 * non-high vector CPUs.
134 #define FIRST_USER_ADDRESS PAGE_SIZE
136 #define FIRST_USER_PGD_NR 1
137 #define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
140 * section address mask and size definitions.
142 #define SECTION_SHIFT 20
143 #define SECTION_SIZE (1UL << SECTION_SHIFT)
144 #define SECTION_MASK (~(SECTION_SIZE-1))
147 * ARMv6 supersection address mask and size definitions.
149 #define SUPERSECTION_SHIFT 24
150 #define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
151 #define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
154 * "Linux" PTE definitions.
156 * We keep two sets of PTEs - the hardware and the linux version.
157 * This allows greater flexibility in the way we map the Linux bits
158 * onto the hardware tables, and allows us to have YOUNG and DIRTY
161 * The PTE table pointer refers to the hardware entries; the "Linux"
162 * entries are stored 1024 bytes below.
164 #define L_PTE_PRESENT (1 << 0)
165 #define L_PTE_YOUNG (1 << 1)
166 #define L_PTE_FILE (1 << 2) /* only when !PRESENT */
167 #define L_PTE_DIRTY (1 << 6)
168 #define L_PTE_WRITE (1 << 7)
169 #define L_PTE_USER (1 << 8)
170 #define L_PTE_EXEC (1 << 9)
171 #define L_PTE_SHARED (1 << 10) /* shared(v6), coherent(xsc3) */
174 * These are the memory types, defined to be compatible with
175 * pre-ARMv6 CPUs cacheable and bufferable bits: XXCB
177 #define L_PTE_MT_UNCACHED (0x00 << 2) /* 0000 */
178 #define L_PTE_MT_BUFFERABLE (0x01 << 2) /* 0001 */
179 #define L_PTE_MT_WRITETHROUGH (0x02 << 2) /* 0010 */
180 #define L_PTE_MT_WRITEBACK (0x03 << 2) /* 0011 */
181 #define L_PTE_MT_MINICACHE (0x06 << 2) /* 0110 (sa1100, xscale) */
182 #define L_PTE_MT_WRITEALLOC (0x07 << 2) /* 0111 */
183 #define L_PTE_MT_DEV_SHARED (0x04 << 2) /* 0100 */
184 #define L_PTE_MT_DEV_NONSHARED (0x0c << 2) /* 1100 */
185 #define L_PTE_MT_DEV_WC (0x09 << 2) /* 1001 */
186 #define L_PTE_MT_DEV_CACHED (0x0b << 2) /* 1011 */
187 #define L_PTE_MT_MASK (0x0f << 2)
192 * The pgprot_* and protection_map entries will be fixed up in runtime
193 * to include the cachable and bufferable bits based on memory policy,
194 * as well as any architecture dependent bits like global/ASID and SMP
195 * shared mapping bits.
197 #define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG
199 extern pgprot_t pgprot_user
;
200 extern pgprot_t pgprot_kernel
;
202 #define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
204 #define PAGE_NONE pgprot_user
205 #define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE)
206 #define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC)
207 #define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER)
208 #define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC)
209 #define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER)
210 #define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC)
211 #define PAGE_KERNEL pgprot_kernel
212 #define PAGE_KERNEL_EXEC _MOD_PROT(pgprot_kernel, L_PTE_EXEC)
214 #define __PAGE_NONE __pgprot(_L_PTE_DEFAULT)
215 #define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE)
216 #define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC)
217 #define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
218 #define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC)
219 #define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
220 #define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC)
222 #endif /* __ASSEMBLY__ */
225 * The table below defines the page protection levels that we insert into our
226 * Linux page table version. These get translated into the best that the
227 * architecture can perform. Note that on most ARM hardware:
228 * 1) We cannot do execute protection
229 * 2) If we could do execute protection, then read is implied
230 * 3) write implies read permissions
232 #define __P000 __PAGE_NONE
233 #define __P001 __PAGE_READONLY
234 #define __P010 __PAGE_COPY
235 #define __P011 __PAGE_COPY
236 #define __P100 __PAGE_READONLY_EXEC
237 #define __P101 __PAGE_READONLY_EXEC
238 #define __P110 __PAGE_COPY_EXEC
239 #define __P111 __PAGE_COPY_EXEC
241 #define __S000 __PAGE_NONE
242 #define __S001 __PAGE_READONLY
243 #define __S010 __PAGE_SHARED
244 #define __S011 __PAGE_SHARED
245 #define __S100 __PAGE_READONLY_EXEC
246 #define __S101 __PAGE_READONLY_EXEC
247 #define __S110 __PAGE_SHARED_EXEC
248 #define __S111 __PAGE_SHARED_EXEC
252 * ZERO_PAGE is a global shared page that is always zero: used
253 * for zero-mapped memory areas etc..
255 extern struct page
*empty_zero_page
;
256 #define ZERO_PAGE(vaddr) (empty_zero_page)
258 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
259 #define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
261 #define pte_none(pte) (!pte_val(pte))
262 #define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
263 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
264 #define pte_offset_kernel(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr))
266 #define pte_offset_map(dir,addr) (__pte_map(dir, KM_PTE0) + __pte_index(addr))
267 #define pte_offset_map_nested(dir,addr) (__pte_map(dir, KM_PTE1) + __pte_index(addr))
268 #define pte_unmap(pte) __pte_unmap(pte, KM_PTE0)
269 #define pte_unmap_nested(pte) __pte_unmap(pte, KM_PTE1)
271 #ifndef CONFIG_HIGHPTE
272 #define __pte_map(dir,km) pmd_page_vaddr(*(dir))
273 #define __pte_unmap(pte,km) do { } while (0)
275 #define __pte_map(dir,km) ((pte_t *)kmap_atomic(pmd_page(*(dir)), km) + PTRS_PER_PTE)
276 #define __pte_unmap(pte,km) kunmap_atomic((pte - PTRS_PER_PTE), km)
279 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
281 #define set_pte_at(mm,addr,ptep,pteval) do { \
282 set_pte_ext(ptep, pteval, (addr) >= TASK_SIZE ? 0 : PTE_EXT_NG); \
286 * The following only work if pte_present() is true.
287 * Undefined behaviour if not..
289 #define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
290 #define pte_write(pte) (pte_val(pte) & L_PTE_WRITE)
291 #define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
292 #define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
293 #define pte_special(pte) (0)
295 #define PTE_BIT_FUNC(fn,op) \
296 static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
298 PTE_BIT_FUNC(wrprotect
, &= ~L_PTE_WRITE
);
299 PTE_BIT_FUNC(mkwrite
, |= L_PTE_WRITE
);
300 PTE_BIT_FUNC(mkclean
, &= ~L_PTE_DIRTY
);
301 PTE_BIT_FUNC(mkdirty
, |= L_PTE_DIRTY
);
302 PTE_BIT_FUNC(mkold
, &= ~L_PTE_YOUNG
);
303 PTE_BIT_FUNC(mkyoung
, |= L_PTE_YOUNG
);
305 static inline pte_t
pte_mkspecial(pte_t pte
) { return pte
; }
308 * Mark the prot value as uncacheable and unbufferable.
310 #define pgprot_noncached(prot) \
311 __pgprot((pgprot_val(prot) & ~L_PTE_MT_MASK) | L_PTE_MT_UNCACHED)
312 #define pgprot_writecombine(prot) \
313 __pgprot((pgprot_val(prot) & ~L_PTE_MT_MASK) | L_PTE_MT_BUFFERABLE)
315 #define pmd_none(pmd) (!pmd_val(pmd))
316 #define pmd_present(pmd) (pmd_val(pmd))
317 #define pmd_bad(pmd) (pmd_val(pmd) & 2)
319 #define copy_pmd(pmdpd,pmdps) \
321 pmdpd[0] = pmdps[0]; \
322 pmdpd[1] = pmdps[1]; \
323 flush_pmd_entry(pmdpd); \
326 #define pmd_clear(pmdp) \
328 pmdp[0] = __pmd(0); \
329 pmdp[1] = __pmd(0); \
330 clean_pmd_entry(pmdp); \
333 static inline pte_t
*pmd_page_vaddr(pmd_t pmd
)
337 ptr
= pmd_val(pmd
) & ~(PTRS_PER_PTE
* sizeof(void *) - 1);
338 ptr
+= PTRS_PER_PTE
* sizeof(void *);
343 #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
346 * Conversion functions: convert a page and protection to a page entry,
347 * and a page entry and page directory to the page they refer to.
349 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
352 * The "pgd_xxx()" functions here are trivial for a folded two-level
353 * setup: the pgd is never bad, and a pmd always exists (as it's folded
354 * into the pgd entry)
356 #define pgd_none(pgd) (0)
357 #define pgd_bad(pgd) (0)
358 #define pgd_present(pgd) (1)
359 #define pgd_clear(pgdp) do { } while (0)
360 #define set_pgd(pgd,pgdp) do { } while (0)
362 /* to find an entry in a page-table-directory */
363 #define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
365 #define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
367 /* to find an entry in a kernel page-table-directory */
368 #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
370 /* Find an entry in the second-level page table.. */
371 #define pmd_offset(dir, addr) ((pmd_t *)(dir))
373 /* Find an entry in the third-level page table.. */
374 #define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
376 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
378 const unsigned long mask
= L_PTE_EXEC
| L_PTE_WRITE
| L_PTE_USER
;
379 pte_val(pte
) = (pte_val(pte
) & ~mask
) | (pgprot_val(newprot
) & mask
);
383 extern pgd_t swapper_pg_dir
[PTRS_PER_PGD
];
386 * Encode and decode a swap entry. Swap entries are stored in the Linux
387 * page tables as follows:
389 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
390 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
391 * <--------------- offset --------------------> <- type --> 0 0 0
393 * This gives us up to 63 swap files and 32GB per swap file. Note that
394 * the offset field is always non-zero.
396 #define __SWP_TYPE_SHIFT 3
397 #define __SWP_TYPE_BITS 6
398 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
399 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
401 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
402 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
403 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
405 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
406 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
409 * It is an error for the kernel to have more swap files than we can
410 * encode in the PTEs. This ensures that we know when MAX_SWAPFILES
411 * is increased beyond what we presently support.
413 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
416 * Encode and decode a file entry. File entries are stored in the Linux
417 * page tables as follows:
419 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
420 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
421 * <----------------------- offset ------------------------> 1 0 0
423 #define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
424 #define pte_to_pgoff(x) (pte_val(x) >> 3)
425 #define pgoff_to_pte(x) __pte(((x) << 3) | L_PTE_FILE)
427 #define PTE_FILE_MAX_BITS 29
429 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
430 /* FIXME: this is not correct */
431 #define kern_addr_valid(addr) (1)
433 #include <asm-generic/pgtable.h>
436 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
438 #define HAVE_ARCH_UNMAPPED_AREA
441 * remap a physical page `pfn' of size `size' with page protection `prot'
442 * into virtual address `from'
444 #define io_remap_pfn_range(vma,from,pfn,size,prot) \
445 remap_pfn_range(vma, from, pfn, size, prot)
447 #define pgtable_cache_init() do { } while (0)
449 #endif /* !__ASSEMBLY__ */
451 #endif /* CONFIG_MMU */
453 #endif /* _ASMARM_PGTABLE_H */