2 * Freescale MPC85xx, MPC83xx DMA Engine support
4 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA contorller is also added.
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/interrupt.h>
31 #include <linux/dmaengine.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmapool.h>
35 #include <linux/of_platform.h>
37 #include <asm/fsldma.h>
40 static void dma_init(struct fsl_dma_chan
*fsl_chan
)
42 /* Reset the channel */
43 DMA_OUT(fsl_chan
, &fsl_chan
->reg_base
->mr
, 0, 32);
45 switch (fsl_chan
->feature
& FSL_DMA_IP_MASK
) {
47 /* Set the channel to below modes:
48 * EIE - Error interrupt enable
49 * EOSIE - End of segments interrupt enable (basic mode)
50 * EOLNIE - End of links interrupt enable
52 DMA_OUT(fsl_chan
, &fsl_chan
->reg_base
->mr
, FSL_DMA_MR_EIE
53 | FSL_DMA_MR_EOLNIE
| FSL_DMA_MR_EOSIE
, 32);
56 /* Set the channel to below modes:
57 * EOTIE - End-of-transfer interrupt enable
58 * PRC_RM - PCI read multiple
60 DMA_OUT(fsl_chan
, &fsl_chan
->reg_base
->mr
, FSL_DMA_MR_EOTIE
61 | FSL_DMA_MR_PRC_RM
, 32);
67 static void set_sr(struct fsl_dma_chan
*fsl_chan
, u32 val
)
69 DMA_OUT(fsl_chan
, &fsl_chan
->reg_base
->sr
, val
, 32);
72 static u32
get_sr(struct fsl_dma_chan
*fsl_chan
)
74 return DMA_IN(fsl_chan
, &fsl_chan
->reg_base
->sr
, 32);
77 static void set_desc_cnt(struct fsl_dma_chan
*fsl_chan
,
78 struct fsl_dma_ld_hw
*hw
, u32 count
)
80 hw
->count
= CPU_TO_DMA(fsl_chan
, count
, 32);
83 static void set_desc_src(struct fsl_dma_chan
*fsl_chan
,
84 struct fsl_dma_ld_hw
*hw
, dma_addr_t src
)
88 snoop_bits
= ((fsl_chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
)
89 ? ((u64
)FSL_DMA_SATR_SREADTYPE_SNOOP_READ
<< 32) : 0;
90 hw
->src_addr
= CPU_TO_DMA(fsl_chan
, snoop_bits
| src
, 64);
93 static void set_desc_dest(struct fsl_dma_chan
*fsl_chan
,
94 struct fsl_dma_ld_hw
*hw
, dma_addr_t dest
)
98 snoop_bits
= ((fsl_chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
)
99 ? ((u64
)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE
<< 32) : 0;
100 hw
->dst_addr
= CPU_TO_DMA(fsl_chan
, snoop_bits
| dest
, 64);
103 static void set_desc_next(struct fsl_dma_chan
*fsl_chan
,
104 struct fsl_dma_ld_hw
*hw
, dma_addr_t next
)
108 snoop_bits
= ((fsl_chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_83XX
)
110 hw
->next_ln_addr
= CPU_TO_DMA(fsl_chan
, snoop_bits
| next
, 64);
113 static void set_cdar(struct fsl_dma_chan
*fsl_chan
, dma_addr_t addr
)
115 DMA_OUT(fsl_chan
, &fsl_chan
->reg_base
->cdar
, addr
| FSL_DMA_SNEN
, 64);
118 static dma_addr_t
get_cdar(struct fsl_dma_chan
*fsl_chan
)
120 return DMA_IN(fsl_chan
, &fsl_chan
->reg_base
->cdar
, 64) & ~FSL_DMA_SNEN
;
123 static void set_ndar(struct fsl_dma_chan
*fsl_chan
, dma_addr_t addr
)
125 DMA_OUT(fsl_chan
, &fsl_chan
->reg_base
->ndar
, addr
, 64);
128 static dma_addr_t
get_ndar(struct fsl_dma_chan
*fsl_chan
)
130 return DMA_IN(fsl_chan
, &fsl_chan
->reg_base
->ndar
, 64);
133 static u32
get_bcr(struct fsl_dma_chan
*fsl_chan
)
135 return DMA_IN(fsl_chan
, &fsl_chan
->reg_base
->bcr
, 32);
138 static int dma_is_idle(struct fsl_dma_chan
*fsl_chan
)
140 u32 sr
= get_sr(fsl_chan
);
141 return (!(sr
& FSL_DMA_SR_CB
)) || (sr
& FSL_DMA_SR_CH
);
144 static void dma_start(struct fsl_dma_chan
*fsl_chan
)
148 if (fsl_chan
->feature
& FSL_DMA_CHAN_PAUSE_EXT
) {
149 DMA_OUT(fsl_chan
, &fsl_chan
->reg_base
->bcr
, 0, 32);
150 mr_set
|= FSL_DMA_MR_EMP_EN
;
151 } else if ((fsl_chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
) {
152 DMA_OUT(fsl_chan
, &fsl_chan
->reg_base
->mr
,
153 DMA_IN(fsl_chan
, &fsl_chan
->reg_base
->mr
, 32)
154 & ~FSL_DMA_MR_EMP_EN
, 32);
157 if (fsl_chan
->feature
& FSL_DMA_CHAN_START_EXT
)
158 mr_set
|= FSL_DMA_MR_EMS_EN
;
160 mr_set
|= FSL_DMA_MR_CS
;
162 DMA_OUT(fsl_chan
, &fsl_chan
->reg_base
->mr
,
163 DMA_IN(fsl_chan
, &fsl_chan
->reg_base
->mr
, 32)
167 static void dma_halt(struct fsl_dma_chan
*fsl_chan
)
171 DMA_OUT(fsl_chan
, &fsl_chan
->reg_base
->mr
,
172 DMA_IN(fsl_chan
, &fsl_chan
->reg_base
->mr
, 32) | FSL_DMA_MR_CA
,
174 DMA_OUT(fsl_chan
, &fsl_chan
->reg_base
->mr
,
175 DMA_IN(fsl_chan
, &fsl_chan
->reg_base
->mr
, 32) & ~(FSL_DMA_MR_CS
176 | FSL_DMA_MR_EMS_EN
| FSL_DMA_MR_CA
), 32);
178 for (i
= 0; i
< 100; i
++) {
179 if (dma_is_idle(fsl_chan
))
183 if (i
>= 100 && !dma_is_idle(fsl_chan
))
184 dev_err(fsl_chan
->dev
, "DMA halt timeout!\n");
187 static void set_ld_eol(struct fsl_dma_chan
*fsl_chan
,
188 struct fsl_desc_sw
*desc
)
192 snoop_bits
= ((fsl_chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_83XX
)
195 desc
->hw
.next_ln_addr
= CPU_TO_DMA(fsl_chan
,
196 DMA_TO_CPU(fsl_chan
, desc
->hw
.next_ln_addr
, 64) | FSL_DMA_EOL
200 static void append_ld_queue(struct fsl_dma_chan
*fsl_chan
,
201 struct fsl_desc_sw
*new_desc
)
203 struct fsl_desc_sw
*queue_tail
= to_fsl_desc(fsl_chan
->ld_queue
.prev
);
205 if (list_empty(&fsl_chan
->ld_queue
))
208 /* Link to the new descriptor physical address and
209 * Enable End-of-segment interrupt for
210 * the last link descriptor.
211 * (the previous node's next link descriptor)
213 * For FSL_DMA_IP_83xx, the snoop enable bit need be set.
215 queue_tail
->hw
.next_ln_addr
= CPU_TO_DMA(fsl_chan
,
216 new_desc
->async_tx
.phys
| FSL_DMA_EOSIE
|
217 (((fsl_chan
->feature
& FSL_DMA_IP_MASK
)
218 == FSL_DMA_IP_83XX
) ? FSL_DMA_SNEN
: 0), 64);
222 * fsl_chan_set_src_loop_size - Set source address hold transfer size
223 * @fsl_chan : Freescale DMA channel
224 * @size : Address loop size, 0 for disable loop
226 * The set source address hold transfer size. The source
227 * address hold or loop transfer size is when the DMA transfer
228 * data from source address (SA), if the loop size is 4, the DMA will
229 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
230 * SA + 1 ... and so on.
232 static void fsl_chan_set_src_loop_size(struct fsl_dma_chan
*fsl_chan
, int size
)
236 DMA_OUT(fsl_chan
, &fsl_chan
->reg_base
->mr
,
237 DMA_IN(fsl_chan
, &fsl_chan
->reg_base
->mr
, 32) &
238 (~FSL_DMA_MR_SAHE
), 32);
244 DMA_OUT(fsl_chan
, &fsl_chan
->reg_base
->mr
,
245 DMA_IN(fsl_chan
, &fsl_chan
->reg_base
->mr
, 32) |
246 FSL_DMA_MR_SAHE
| (__ilog2(size
) << 14),
253 * fsl_chan_set_dest_loop_size - Set destination address hold transfer size
254 * @fsl_chan : Freescale DMA channel
255 * @size : Address loop size, 0 for disable loop
257 * The set destination address hold transfer size. The destination
258 * address hold or loop transfer size is when the DMA transfer
259 * data to destination address (TA), if the loop size is 4, the DMA will
260 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
261 * TA + 1 ... and so on.
263 static void fsl_chan_set_dest_loop_size(struct fsl_dma_chan
*fsl_chan
, int size
)
267 DMA_OUT(fsl_chan
, &fsl_chan
->reg_base
->mr
,
268 DMA_IN(fsl_chan
, &fsl_chan
->reg_base
->mr
, 32) &
269 (~FSL_DMA_MR_DAHE
), 32);
275 DMA_OUT(fsl_chan
, &fsl_chan
->reg_base
->mr
,
276 DMA_IN(fsl_chan
, &fsl_chan
->reg_base
->mr
, 32) |
277 FSL_DMA_MR_DAHE
| (__ilog2(size
) << 16),
284 * fsl_chan_set_request_count - Set DMA Request Count for external control
285 * @fsl_chan : Freescale DMA channel
286 * @size : Number of bytes to transfer in a single request
288 * The Freescale DMA channel can be controlled by the external signal DREQ#.
289 * The DMA request count is how many bytes are allowed to transfer before
290 * pausing the channel, after which a new assertion of DREQ# resumes channel
293 * A size of 0 disables external pause control. The maximum size is 1024.
295 static void fsl_chan_set_request_count(struct fsl_dma_chan
*fsl_chan
, int size
)
298 DMA_OUT(fsl_chan
, &fsl_chan
->reg_base
->mr
,
299 DMA_IN(fsl_chan
, &fsl_chan
->reg_base
->mr
, 32)
300 | ((__ilog2(size
) << 24) & 0x0f000000),
305 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
306 * @fsl_chan : Freescale DMA channel
307 * @enable : 0 is disabled, 1 is enabled.
309 * The Freescale DMA channel can be controlled by the external signal DREQ#.
310 * The DMA Request Count feature should be used in addition to this feature
311 * to set the number of bytes to transfer before pausing the channel.
313 static void fsl_chan_toggle_ext_pause(struct fsl_dma_chan
*fsl_chan
, int enable
)
316 fsl_chan
->feature
|= FSL_DMA_CHAN_PAUSE_EXT
;
318 fsl_chan
->feature
&= ~FSL_DMA_CHAN_PAUSE_EXT
;
322 * fsl_chan_toggle_ext_start - Toggle channel external start status
323 * @fsl_chan : Freescale DMA channel
324 * @enable : 0 is disabled, 1 is enabled.
326 * If enable the external start, the channel can be started by an
327 * external DMA start pin. So the dma_start() does not start the
328 * transfer immediately. The DMA channel will wait for the
329 * control pin asserted.
331 static void fsl_chan_toggle_ext_start(struct fsl_dma_chan
*fsl_chan
, int enable
)
334 fsl_chan
->feature
|= FSL_DMA_CHAN_START_EXT
;
336 fsl_chan
->feature
&= ~FSL_DMA_CHAN_START_EXT
;
339 static dma_cookie_t
fsl_dma_tx_submit(struct dma_async_tx_descriptor
*tx
)
341 struct fsl_dma_chan
*fsl_chan
= to_fsl_chan(tx
->chan
);
342 struct fsl_desc_sw
*desc
= tx_to_fsl_desc(tx
);
343 struct fsl_desc_sw
*child
;
347 /* cookie increment and adding to ld_queue must be atomic */
348 spin_lock_irqsave(&fsl_chan
->desc_lock
, flags
);
350 cookie
= fsl_chan
->common
.cookie
;
351 list_for_each_entry(child
, &desc
->tx_list
, node
) {
356 desc
->async_tx
.cookie
= cookie
;
359 fsl_chan
->common
.cookie
= cookie
;
360 append_ld_queue(fsl_chan
, desc
);
361 list_splice_init(&desc
->tx_list
, fsl_chan
->ld_queue
.prev
);
363 spin_unlock_irqrestore(&fsl_chan
->desc_lock
, flags
);
369 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
370 * @fsl_chan : Freescale DMA channel
372 * Return - The descriptor allocated. NULL for failed.
374 static struct fsl_desc_sw
*fsl_dma_alloc_descriptor(
375 struct fsl_dma_chan
*fsl_chan
)
378 struct fsl_desc_sw
*desc_sw
;
380 desc_sw
= dma_pool_alloc(fsl_chan
->desc_pool
, GFP_ATOMIC
, &pdesc
);
382 memset(desc_sw
, 0, sizeof(struct fsl_desc_sw
));
383 INIT_LIST_HEAD(&desc_sw
->tx_list
);
384 dma_async_tx_descriptor_init(&desc_sw
->async_tx
,
386 desc_sw
->async_tx
.tx_submit
= fsl_dma_tx_submit
;
387 desc_sw
->async_tx
.phys
= pdesc
;
395 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
396 * @fsl_chan : Freescale DMA channel
398 * This function will create a dma pool for descriptor allocation.
400 * Return - The number of descriptors allocated.
402 static int fsl_dma_alloc_chan_resources(struct dma_chan
*chan
)
404 struct fsl_dma_chan
*fsl_chan
= to_fsl_chan(chan
);
406 /* Has this channel already been allocated? */
407 if (fsl_chan
->desc_pool
)
410 /* We need the descriptor to be aligned to 32bytes
411 * for meeting FSL DMA specification requirement.
413 fsl_chan
->desc_pool
= dma_pool_create("fsl_dma_engine_desc_pool",
414 fsl_chan
->dev
, sizeof(struct fsl_desc_sw
),
416 if (!fsl_chan
->desc_pool
) {
417 dev_err(fsl_chan
->dev
, "No memory for channel %d "
418 "descriptor dma pool.\n", fsl_chan
->id
);
426 * fsl_dma_free_chan_resources - Free all resources of the channel.
427 * @fsl_chan : Freescale DMA channel
429 static void fsl_dma_free_chan_resources(struct dma_chan
*chan
)
431 struct fsl_dma_chan
*fsl_chan
= to_fsl_chan(chan
);
432 struct fsl_desc_sw
*desc
, *_desc
;
435 dev_dbg(fsl_chan
->dev
, "Free all channel resources.\n");
436 spin_lock_irqsave(&fsl_chan
->desc_lock
, flags
);
437 list_for_each_entry_safe(desc
, _desc
, &fsl_chan
->ld_queue
, node
) {
438 #ifdef FSL_DMA_LD_DEBUG
439 dev_dbg(fsl_chan
->dev
,
440 "LD %p will be released.\n", desc
);
442 list_del(&desc
->node
);
443 /* free link descriptor */
444 dma_pool_free(fsl_chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
446 spin_unlock_irqrestore(&fsl_chan
->desc_lock
, flags
);
447 dma_pool_destroy(fsl_chan
->desc_pool
);
449 fsl_chan
->desc_pool
= NULL
;
452 static struct dma_async_tx_descriptor
*
453 fsl_dma_prep_interrupt(struct dma_chan
*chan
, unsigned long flags
)
455 struct fsl_dma_chan
*fsl_chan
;
456 struct fsl_desc_sw
*new;
461 fsl_chan
= to_fsl_chan(chan
);
463 new = fsl_dma_alloc_descriptor(fsl_chan
);
465 dev_err(fsl_chan
->dev
, "No free memory for link descriptor\n");
469 new->async_tx
.cookie
= -EBUSY
;
470 new->async_tx
.flags
= flags
;
472 /* Insert the link descriptor to the LD ring */
473 list_add_tail(&new->node
, &new->tx_list
);
475 /* Set End-of-link to the last link descriptor of new list*/
476 set_ld_eol(fsl_chan
, new);
478 return &new->async_tx
;
481 static struct dma_async_tx_descriptor
*fsl_dma_prep_memcpy(
482 struct dma_chan
*chan
, dma_addr_t dma_dest
, dma_addr_t dma_src
,
483 size_t len
, unsigned long flags
)
485 struct fsl_dma_chan
*fsl_chan
;
486 struct fsl_desc_sw
*first
= NULL
, *prev
= NULL
, *new;
487 struct list_head
*list
;
496 fsl_chan
= to_fsl_chan(chan
);
500 /* Allocate the link descriptor from DMA pool */
501 new = fsl_dma_alloc_descriptor(fsl_chan
);
503 dev_err(fsl_chan
->dev
,
504 "No free memory for link descriptor\n");
507 #ifdef FSL_DMA_LD_DEBUG
508 dev_dbg(fsl_chan
->dev
, "new link desc alloc %p\n", new);
511 copy
= min(len
, (size_t)FSL_DMA_BCR_MAX_CNT
);
513 set_desc_cnt(fsl_chan
, &new->hw
, copy
);
514 set_desc_src(fsl_chan
, &new->hw
, dma_src
);
515 set_desc_dest(fsl_chan
, &new->hw
, dma_dest
);
520 set_desc_next(fsl_chan
, &prev
->hw
, new->async_tx
.phys
);
522 new->async_tx
.cookie
= 0;
523 async_tx_ack(&new->async_tx
);
530 /* Insert the link descriptor to the LD ring */
531 list_add_tail(&new->node
, &first
->tx_list
);
534 new->async_tx
.flags
= flags
; /* client is in control of this ack */
535 new->async_tx
.cookie
= -EBUSY
;
537 /* Set End-of-link to the last link descriptor of new list*/
538 set_ld_eol(fsl_chan
, new);
540 return &first
->async_tx
;
546 list
= &first
->tx_list
;
547 list_for_each_entry_safe_reverse(new, prev
, list
, node
) {
548 list_del(&new->node
);
549 dma_pool_free(fsl_chan
->desc_pool
, new, new->async_tx
.phys
);
556 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
558 * @sgl: scatterlist to transfer to/from
559 * @sg_len: number of entries in @scatterlist
560 * @direction: DMA direction
561 * @flags: DMAEngine flags
563 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
564 * DMA_SLAVE API, this gets the device-specific information from the
565 * chan->private variable.
567 static struct dma_async_tx_descriptor
*fsl_dma_prep_slave_sg(
568 struct dma_chan
*chan
, struct scatterlist
*sgl
, unsigned int sg_len
,
569 enum dma_data_direction direction
, unsigned long flags
)
571 struct fsl_dma_chan
*fsl_chan
;
572 struct fsl_desc_sw
*first
= NULL
, *prev
= NULL
, *new = NULL
;
573 struct fsl_dma_slave
*slave
;
574 struct list_head
*tx_list
;
578 struct scatterlist
*sg
;
581 struct fsl_dma_hw_addr
*hw
;
582 dma_addr_t dma_dst
, dma_src
;
590 fsl_chan
= to_fsl_chan(chan
);
591 slave
= chan
->private;
593 if (list_empty(&slave
->addresses
))
596 hw
= list_first_entry(&slave
->addresses
, struct fsl_dma_hw_addr
, entry
);
600 * Build the hardware transaction to copy from the scatterlist to
601 * the hardware, or from the hardware to the scatterlist
603 * If you are copying from the hardware to the scatterlist and it
604 * takes two hardware entries to fill an entire page, then both
605 * hardware entries will be coalesced into the same page
607 * If you are copying from the scatterlist to the hardware and a
608 * single page can fill two hardware entries, then the data will
609 * be read out of the page into the first hardware entry, and so on
611 for_each_sg(sgl
, sg
, sg_len
, i
) {
614 /* Loop until the entire scatterlist entry is used */
615 while (sg_used
< sg_dma_len(sg
)) {
618 * If we've used up the current hardware address/length
619 * pair, we need to load a new one
621 * This is done in a while loop so that descriptors with
622 * length == 0 will be skipped
624 while (hw_used
>= hw
->length
) {
627 * If the current hardware entry is the last
628 * entry in the list, we're finished
630 if (list_is_last(&hw
->entry
, &slave
->addresses
))
633 /* Get the next hardware address/length pair */
634 hw
= list_entry(hw
->entry
.next
,
635 struct fsl_dma_hw_addr
, entry
);
639 /* Allocate the link descriptor from DMA pool */
640 new = fsl_dma_alloc_descriptor(fsl_chan
);
642 dev_err(fsl_chan
->dev
, "No free memory for "
643 "link descriptor\n");
646 #ifdef FSL_DMA_LD_DEBUG
647 dev_dbg(fsl_chan
->dev
, "new link desc alloc %p\n", new);
651 * Calculate the maximum number of bytes to transfer,
652 * making sure it is less than the DMA controller limit
654 copy
= min_t(size_t, sg_dma_len(sg
) - sg_used
,
655 hw
->length
- hw_used
);
656 copy
= min_t(size_t, copy
, FSL_DMA_BCR_MAX_CNT
);
660 * from the hardware to the scatterlist
663 * from the scatterlist to the hardware
665 if (direction
== DMA_FROM_DEVICE
) {
666 dma_src
= hw
->address
+ hw_used
;
667 dma_dst
= sg_dma_address(sg
) + sg_used
;
669 dma_src
= sg_dma_address(sg
) + sg_used
;
670 dma_dst
= hw
->address
+ hw_used
;
673 /* Fill in the descriptor */
674 set_desc_cnt(fsl_chan
, &new->hw
, copy
);
675 set_desc_src(fsl_chan
, &new->hw
, dma_src
);
676 set_desc_dest(fsl_chan
, &new->hw
, dma_dst
);
679 * If this is not the first descriptor, chain the
680 * current descriptor after the previous descriptor
685 set_desc_next(fsl_chan
, &prev
->hw
,
689 new->async_tx
.cookie
= 0;
690 async_tx_ack(&new->async_tx
);
696 /* Insert the link descriptor into the LD ring */
697 list_add_tail(&new->node
, &first
->tx_list
);
703 /* All of the hardware address/length pairs had length == 0 */
707 new->async_tx
.flags
= flags
;
708 new->async_tx
.cookie
= -EBUSY
;
710 /* Set End-of-link to the last link descriptor of new list */
711 set_ld_eol(fsl_chan
, new);
713 /* Enable extra controller features */
714 if (fsl_chan
->set_src_loop_size
)
715 fsl_chan
->set_src_loop_size(fsl_chan
, slave
->src_loop_size
);
717 if (fsl_chan
->set_dest_loop_size
)
718 fsl_chan
->set_dest_loop_size(fsl_chan
, slave
->dst_loop_size
);
720 if (fsl_chan
->toggle_ext_start
)
721 fsl_chan
->toggle_ext_start(fsl_chan
, slave
->external_start
);
723 if (fsl_chan
->toggle_ext_pause
)
724 fsl_chan
->toggle_ext_pause(fsl_chan
, slave
->external_pause
);
726 if (fsl_chan
->set_request_count
)
727 fsl_chan
->set_request_count(fsl_chan
, slave
->request_count
);
729 return &first
->async_tx
;
732 /* If first was not set, then we failed to allocate the very first
733 * descriptor, and we're done */
738 * First is set, so all of the descriptors we allocated have been added
739 * to first->tx_list, INCLUDING "first" itself. Therefore we
740 * must traverse the list backwards freeing each descriptor in turn
742 * We're re-using variables for the loop, oh well
744 tx_list
= &first
->tx_list
;
745 list_for_each_entry_safe_reverse(new, prev
, tx_list
, node
) {
746 list_del_init(&new->node
);
747 dma_pool_free(fsl_chan
->desc_pool
, new, new->async_tx
.phys
);
753 static void fsl_dma_device_terminate_all(struct dma_chan
*chan
)
755 struct fsl_dma_chan
*fsl_chan
;
756 struct fsl_desc_sw
*desc
, *tmp
;
762 fsl_chan
= to_fsl_chan(chan
);
764 /* Halt the DMA engine */
767 spin_lock_irqsave(&fsl_chan
->desc_lock
, flags
);
769 /* Remove and free all of the descriptors in the LD queue */
770 list_for_each_entry_safe(desc
, tmp
, &fsl_chan
->ld_queue
, node
) {
771 list_del(&desc
->node
);
772 dma_pool_free(fsl_chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
775 spin_unlock_irqrestore(&fsl_chan
->desc_lock
, flags
);
779 * fsl_dma_update_completed_cookie - Update the completed cookie.
780 * @fsl_chan : Freescale DMA channel
782 static void fsl_dma_update_completed_cookie(struct fsl_dma_chan
*fsl_chan
)
784 struct fsl_desc_sw
*cur_desc
, *desc
;
787 ld_phy
= get_cdar(fsl_chan
) & FSL_DMA_NLDA_MASK
;
791 list_for_each_entry(desc
, &fsl_chan
->ld_queue
, node
)
792 if (desc
->async_tx
.phys
== ld_phy
) {
797 if (cur_desc
&& cur_desc
->async_tx
.cookie
) {
798 if (dma_is_idle(fsl_chan
))
799 fsl_chan
->completed_cookie
=
800 cur_desc
->async_tx
.cookie
;
802 fsl_chan
->completed_cookie
=
803 cur_desc
->async_tx
.cookie
- 1;
809 * fsl_chan_ld_cleanup - Clean up link descriptors
810 * @fsl_chan : Freescale DMA channel
812 * This function clean up the ld_queue of DMA channel.
813 * If 'in_intr' is set, the function will move the link descriptor to
814 * the recycle list. Otherwise, free it directly.
816 static void fsl_chan_ld_cleanup(struct fsl_dma_chan
*fsl_chan
)
818 struct fsl_desc_sw
*desc
, *_desc
;
821 spin_lock_irqsave(&fsl_chan
->desc_lock
, flags
);
823 dev_dbg(fsl_chan
->dev
, "chan completed_cookie = %d\n",
824 fsl_chan
->completed_cookie
);
825 list_for_each_entry_safe(desc
, _desc
, &fsl_chan
->ld_queue
, node
) {
826 dma_async_tx_callback callback
;
827 void *callback_param
;
829 if (dma_async_is_complete(desc
->async_tx
.cookie
,
830 fsl_chan
->completed_cookie
, fsl_chan
->common
.cookie
)
834 callback
= desc
->async_tx
.callback
;
835 callback_param
= desc
->async_tx
.callback_param
;
837 /* Remove from ld_queue list */
838 list_del(&desc
->node
);
840 dev_dbg(fsl_chan
->dev
, "link descriptor %p will be recycle.\n",
842 dma_pool_free(fsl_chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
844 /* Run the link descriptor callback function */
846 spin_unlock_irqrestore(&fsl_chan
->desc_lock
, flags
);
847 dev_dbg(fsl_chan
->dev
, "link descriptor %p callback\n",
849 callback(callback_param
);
850 spin_lock_irqsave(&fsl_chan
->desc_lock
, flags
);
853 spin_unlock_irqrestore(&fsl_chan
->desc_lock
, flags
);
857 * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue.
858 * @fsl_chan : Freescale DMA channel
860 static void fsl_chan_xfer_ld_queue(struct fsl_dma_chan
*fsl_chan
)
862 struct list_head
*ld_node
;
863 dma_addr_t next_dest_addr
;
866 spin_lock_irqsave(&fsl_chan
->desc_lock
, flags
);
868 if (!dma_is_idle(fsl_chan
))
873 /* If there are some link descriptors
874 * not transfered in queue. We need to start it.
877 /* Find the first un-transfer desciptor */
878 for (ld_node
= fsl_chan
->ld_queue
.next
;
879 (ld_node
!= &fsl_chan
->ld_queue
)
880 && (dma_async_is_complete(
881 to_fsl_desc(ld_node
)->async_tx
.cookie
,
882 fsl_chan
->completed_cookie
,
883 fsl_chan
->common
.cookie
) == DMA_SUCCESS
);
884 ld_node
= ld_node
->next
);
886 if (ld_node
!= &fsl_chan
->ld_queue
) {
887 /* Get the ld start address from ld_queue */
888 next_dest_addr
= to_fsl_desc(ld_node
)->async_tx
.phys
;
889 dev_dbg(fsl_chan
->dev
, "xfer LDs staring from 0x%llx\n",
890 (unsigned long long)next_dest_addr
);
891 set_cdar(fsl_chan
, next_dest_addr
);
894 set_cdar(fsl_chan
, 0);
895 set_ndar(fsl_chan
, 0);
899 spin_unlock_irqrestore(&fsl_chan
->desc_lock
, flags
);
903 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
904 * @fsl_chan : Freescale DMA channel
906 static void fsl_dma_memcpy_issue_pending(struct dma_chan
*chan
)
908 struct fsl_dma_chan
*fsl_chan
= to_fsl_chan(chan
);
910 #ifdef FSL_DMA_LD_DEBUG
911 struct fsl_desc_sw
*ld
;
914 spin_lock_irqsave(&fsl_chan
->desc_lock
, flags
);
915 if (list_empty(&fsl_chan
->ld_queue
)) {
916 spin_unlock_irqrestore(&fsl_chan
->desc_lock
, flags
);
920 dev_dbg(fsl_chan
->dev
, "--memcpy issue--\n");
921 list_for_each_entry(ld
, &fsl_chan
->ld_queue
, node
) {
923 dev_dbg(fsl_chan
->dev
, "Ch %d, LD %08x\n",
924 fsl_chan
->id
, ld
->async_tx
.phys
);
925 for (i
= 0; i
< 8; i
++)
926 dev_dbg(fsl_chan
->dev
, "LD offset %d: %08x\n",
927 i
, *(((u32
*)&ld
->hw
) + i
));
929 dev_dbg(fsl_chan
->dev
, "----------------\n");
930 spin_unlock_irqrestore(&fsl_chan
->desc_lock
, flags
);
933 fsl_chan_xfer_ld_queue(fsl_chan
);
937 * fsl_dma_is_complete - Determine the DMA status
938 * @fsl_chan : Freescale DMA channel
940 static enum dma_status
fsl_dma_is_complete(struct dma_chan
*chan
,
945 struct fsl_dma_chan
*fsl_chan
= to_fsl_chan(chan
);
946 dma_cookie_t last_used
;
947 dma_cookie_t last_complete
;
949 fsl_chan_ld_cleanup(fsl_chan
);
951 last_used
= chan
->cookie
;
952 last_complete
= fsl_chan
->completed_cookie
;
955 *done
= last_complete
;
960 return dma_async_is_complete(cookie
, last_complete
, last_used
);
963 static irqreturn_t
fsl_dma_chan_do_interrupt(int irq
, void *data
)
965 struct fsl_dma_chan
*fsl_chan
= (struct fsl_dma_chan
*)data
;
967 int update_cookie
= 0;
970 stat
= get_sr(fsl_chan
);
971 dev_dbg(fsl_chan
->dev
, "event: channel %d, stat = 0x%x\n",
973 set_sr(fsl_chan
, stat
); /* Clear the event register */
975 stat
&= ~(FSL_DMA_SR_CB
| FSL_DMA_SR_CH
);
979 if (stat
& FSL_DMA_SR_TE
)
980 dev_err(fsl_chan
->dev
, "Transfer Error!\n");
983 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
984 * triger a PE interrupt.
986 if (stat
& FSL_DMA_SR_PE
) {
987 dev_dbg(fsl_chan
->dev
, "event: Programming Error INT\n");
988 if (get_bcr(fsl_chan
) == 0) {
989 /* BCR register is 0, this is a DMA_INTERRUPT async_tx.
990 * Now, update the completed cookie, and continue the
991 * next uncompleted transfer.
996 stat
&= ~FSL_DMA_SR_PE
;
999 /* If the link descriptor segment transfer finishes,
1000 * we will recycle the used descriptor.
1002 if (stat
& FSL_DMA_SR_EOSI
) {
1003 dev_dbg(fsl_chan
->dev
, "event: End-of-segments INT\n");
1004 dev_dbg(fsl_chan
->dev
, "event: clndar 0x%llx, nlndar 0x%llx\n",
1005 (unsigned long long)get_cdar(fsl_chan
),
1006 (unsigned long long)get_ndar(fsl_chan
));
1007 stat
&= ~FSL_DMA_SR_EOSI
;
1011 /* For MPC8349, EOCDI event need to update cookie
1012 * and start the next transfer if it exist.
1014 if (stat
& FSL_DMA_SR_EOCDI
) {
1015 dev_dbg(fsl_chan
->dev
, "event: End-of-Chain link INT\n");
1016 stat
&= ~FSL_DMA_SR_EOCDI
;
1021 /* If it current transfer is the end-of-transfer,
1022 * we should clear the Channel Start bit for
1023 * prepare next transfer.
1025 if (stat
& FSL_DMA_SR_EOLNI
) {
1026 dev_dbg(fsl_chan
->dev
, "event: End-of-link INT\n");
1027 stat
&= ~FSL_DMA_SR_EOLNI
;
1032 fsl_dma_update_completed_cookie(fsl_chan
);
1034 fsl_chan_xfer_ld_queue(fsl_chan
);
1036 dev_dbg(fsl_chan
->dev
, "event: unhandled sr 0x%02x\n",
1039 dev_dbg(fsl_chan
->dev
, "event: Exit\n");
1040 tasklet_schedule(&fsl_chan
->tasklet
);
1044 static irqreturn_t
fsl_dma_do_interrupt(int irq
, void *data
)
1046 struct fsl_dma_device
*fdev
= (struct fsl_dma_device
*)data
;
1050 gsr
= (fdev
->feature
& FSL_DMA_BIG_ENDIAN
) ? in_be32(fdev
->reg_base
)
1051 : in_le32(fdev
->reg_base
);
1052 ch_nr
= (32 - ffs(gsr
)) / 8;
1054 return fdev
->chan
[ch_nr
] ? fsl_dma_chan_do_interrupt(irq
,
1055 fdev
->chan
[ch_nr
]) : IRQ_NONE
;
1058 static void dma_do_tasklet(unsigned long data
)
1060 struct fsl_dma_chan
*fsl_chan
= (struct fsl_dma_chan
*)data
;
1061 fsl_chan_ld_cleanup(fsl_chan
);
1064 static int __devinit
fsl_dma_chan_probe(struct fsl_dma_device
*fdev
,
1065 struct device_node
*node
, u32 feature
, const char *compatible
)
1067 struct fsl_dma_chan
*new_fsl_chan
;
1071 new_fsl_chan
= kzalloc(sizeof(struct fsl_dma_chan
), GFP_KERNEL
);
1072 if (!new_fsl_chan
) {
1073 dev_err(fdev
->dev
, "No free memory for allocating "
1078 /* get dma channel register base */
1079 err
= of_address_to_resource(node
, 0, &new_fsl_chan
->reg
);
1081 dev_err(fdev
->dev
, "Can't get %s property 'reg'\n",
1086 new_fsl_chan
->feature
= feature
;
1089 fdev
->feature
= new_fsl_chan
->feature
;
1091 /* If the DMA device's feature is different than its channels',
1094 WARN_ON(fdev
->feature
!= new_fsl_chan
->feature
);
1096 new_fsl_chan
->dev
= fdev
->dev
;
1097 new_fsl_chan
->reg_base
= ioremap(new_fsl_chan
->reg
.start
,
1098 new_fsl_chan
->reg
.end
- new_fsl_chan
->reg
.start
+ 1);
1100 new_fsl_chan
->id
= ((new_fsl_chan
->reg
.start
- 0x100) & 0xfff) >> 7;
1101 if (new_fsl_chan
->id
>= FSL_DMA_MAX_CHANS_PER_DEVICE
) {
1102 dev_err(fdev
->dev
, "There is no %d channel!\n",
1107 fdev
->chan
[new_fsl_chan
->id
] = new_fsl_chan
;
1108 tasklet_init(&new_fsl_chan
->tasklet
, dma_do_tasklet
,
1109 (unsigned long)new_fsl_chan
);
1111 /* Init the channel */
1112 dma_init(new_fsl_chan
);
1114 /* Clear cdar registers */
1115 set_cdar(new_fsl_chan
, 0);
1117 switch (new_fsl_chan
->feature
& FSL_DMA_IP_MASK
) {
1118 case FSL_DMA_IP_85XX
:
1119 new_fsl_chan
->toggle_ext_pause
= fsl_chan_toggle_ext_pause
;
1120 case FSL_DMA_IP_83XX
:
1121 new_fsl_chan
->toggle_ext_start
= fsl_chan_toggle_ext_start
;
1122 new_fsl_chan
->set_src_loop_size
= fsl_chan_set_src_loop_size
;
1123 new_fsl_chan
->set_dest_loop_size
= fsl_chan_set_dest_loop_size
;
1124 new_fsl_chan
->set_request_count
= fsl_chan_set_request_count
;
1127 spin_lock_init(&new_fsl_chan
->desc_lock
);
1128 INIT_LIST_HEAD(&new_fsl_chan
->ld_queue
);
1130 new_fsl_chan
->common
.device
= &fdev
->common
;
1132 /* Add the channel to DMA device channel list */
1133 list_add_tail(&new_fsl_chan
->common
.device_node
,
1134 &fdev
->common
.channels
);
1135 fdev
->common
.chancnt
++;
1137 new_fsl_chan
->irq
= irq_of_parse_and_map(node
, 0);
1138 if (new_fsl_chan
->irq
!= NO_IRQ
) {
1139 err
= request_irq(new_fsl_chan
->irq
,
1140 &fsl_dma_chan_do_interrupt
, IRQF_SHARED
,
1141 "fsldma-channel", new_fsl_chan
);
1143 dev_err(fdev
->dev
, "DMA channel %s request_irq error "
1144 "with return %d\n", node
->full_name
, err
);
1149 dev_info(fdev
->dev
, "#%d (%s), irq %d\n", new_fsl_chan
->id
,
1151 new_fsl_chan
->irq
!= NO_IRQ
? new_fsl_chan
->irq
: fdev
->irq
);
1156 list_del(&new_fsl_chan
->common
.device_node
);
1158 iounmap(new_fsl_chan
->reg_base
);
1160 kfree(new_fsl_chan
);
1164 static void fsl_dma_chan_remove(struct fsl_dma_chan
*fchan
)
1166 if (fchan
->irq
!= NO_IRQ
)
1167 free_irq(fchan
->irq
, fchan
);
1168 list_del(&fchan
->common
.device_node
);
1169 iounmap(fchan
->reg_base
);
1173 static int __devinit
of_fsl_dma_probe(struct of_device
*dev
,
1174 const struct of_device_id
*match
)
1177 struct fsl_dma_device
*fdev
;
1178 struct device_node
*child
;
1180 fdev
= kzalloc(sizeof(struct fsl_dma_device
), GFP_KERNEL
);
1182 dev_err(&dev
->dev
, "No enough memory for 'priv'\n");
1185 fdev
->dev
= &dev
->dev
;
1186 INIT_LIST_HEAD(&fdev
->common
.channels
);
1188 /* get DMA controller register base */
1189 err
= of_address_to_resource(dev
->node
, 0, &fdev
->reg
);
1191 dev_err(&dev
->dev
, "Can't get %s property 'reg'\n",
1192 dev
->node
->full_name
);
1196 dev_info(&dev
->dev
, "Probe the Freescale DMA driver for %s "
1197 "controller at 0x%llx...\n",
1198 match
->compatible
, (unsigned long long)fdev
->reg
.start
);
1199 fdev
->reg_base
= ioremap(fdev
->reg
.start
, fdev
->reg
.end
1200 - fdev
->reg
.start
+ 1);
1202 dma_cap_set(DMA_MEMCPY
, fdev
->common
.cap_mask
);
1203 dma_cap_set(DMA_INTERRUPT
, fdev
->common
.cap_mask
);
1204 dma_cap_set(DMA_SLAVE
, fdev
->common
.cap_mask
);
1205 fdev
->common
.device_alloc_chan_resources
= fsl_dma_alloc_chan_resources
;
1206 fdev
->common
.device_free_chan_resources
= fsl_dma_free_chan_resources
;
1207 fdev
->common
.device_prep_dma_interrupt
= fsl_dma_prep_interrupt
;
1208 fdev
->common
.device_prep_dma_memcpy
= fsl_dma_prep_memcpy
;
1209 fdev
->common
.device_is_tx_complete
= fsl_dma_is_complete
;
1210 fdev
->common
.device_issue_pending
= fsl_dma_memcpy_issue_pending
;
1211 fdev
->common
.device_prep_slave_sg
= fsl_dma_prep_slave_sg
;
1212 fdev
->common
.device_terminate_all
= fsl_dma_device_terminate_all
;
1213 fdev
->common
.dev
= &dev
->dev
;
1215 fdev
->irq
= irq_of_parse_and_map(dev
->node
, 0);
1216 if (fdev
->irq
!= NO_IRQ
) {
1217 err
= request_irq(fdev
->irq
, &fsl_dma_do_interrupt
, IRQF_SHARED
,
1218 "fsldma-device", fdev
);
1220 dev_err(&dev
->dev
, "DMA device request_irq error "
1221 "with return %d\n", err
);
1226 dev_set_drvdata(&(dev
->dev
), fdev
);
1228 /* We cannot use of_platform_bus_probe() because there is no
1229 * of_platform_bus_remove. Instead, we manually instantiate every DMA
1232 for_each_child_of_node(dev
->node
, child
) {
1233 if (of_device_is_compatible(child
, "fsl,eloplus-dma-channel"))
1234 fsl_dma_chan_probe(fdev
, child
,
1235 FSL_DMA_IP_85XX
| FSL_DMA_BIG_ENDIAN
,
1236 "fsl,eloplus-dma-channel");
1237 if (of_device_is_compatible(child
, "fsl,elo-dma-channel"))
1238 fsl_dma_chan_probe(fdev
, child
,
1239 FSL_DMA_IP_83XX
| FSL_DMA_LITTLE_ENDIAN
,
1240 "fsl,elo-dma-channel");
1243 dma_async_device_register(&fdev
->common
);
1247 iounmap(fdev
->reg_base
);
1253 static int of_fsl_dma_remove(struct of_device
*of_dev
)
1255 struct fsl_dma_device
*fdev
;
1258 fdev
= dev_get_drvdata(&of_dev
->dev
);
1260 dma_async_device_unregister(&fdev
->common
);
1262 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++)
1264 fsl_dma_chan_remove(fdev
->chan
[i
]);
1266 if (fdev
->irq
!= NO_IRQ
)
1267 free_irq(fdev
->irq
, fdev
);
1269 iounmap(fdev
->reg_base
);
1272 dev_set_drvdata(&of_dev
->dev
, NULL
);
1277 static struct of_device_id of_fsl_dma_ids
[] = {
1278 { .compatible
= "fsl,eloplus-dma", },
1279 { .compatible
= "fsl,elo-dma", },
1283 static struct of_platform_driver of_fsl_dma_driver
= {
1284 .name
= "fsl-elo-dma",
1285 .match_table
= of_fsl_dma_ids
,
1286 .probe
= of_fsl_dma_probe
,
1287 .remove
= of_fsl_dma_remove
,
1290 static __init
int of_fsl_dma_init(void)
1294 pr_info("Freescale Elo / Elo Plus DMA driver\n");
1296 ret
= of_register_platform_driver(&of_fsl_dma_driver
);
1298 pr_err("fsldma: failed to register platform driver\n");
1303 static void __exit
of_fsl_dma_exit(void)
1305 of_unregister_platform_driver(&of_fsl_dma_driver
);
1308 subsys_initcall(of_fsl_dma_init
);
1309 module_exit(of_fsl_dma_exit
);
1311 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1312 MODULE_LICENSE("GPL");