OMAP3: PM: Enable VDD2 OPP1
[linux-ginger.git] / drivers / edac / edac_mc.c
blobb629c41756f0324b348827cb1e1975d1cdefe7c9
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/sysdev.h>
29 #include <linux/ctype.h>
30 #include <linux/edac.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
37 /* lock to memory controller's control array */
38 static DEFINE_MUTEX(mem_ctls_mutex);
39 static LIST_HEAD(mc_devices);
41 #ifdef CONFIG_EDAC_DEBUG
43 static void edac_mc_dump_channel(struct channel_info *chan)
45 debugf4("\tchannel = %p\n", chan);
46 debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
47 debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
48 debugf4("\tchannel->label = '%s'\n", chan->label);
49 debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
52 static void edac_mc_dump_csrow(struct csrow_info *csrow)
54 debugf4("\tcsrow = %p\n", csrow);
55 debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
56 debugf4("\tcsrow->first_page = 0x%lx\n", csrow->first_page);
57 debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
58 debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
59 debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
60 debugf4("\tcsrow->nr_channels = %d\n", csrow->nr_channels);
61 debugf4("\tcsrow->channels = %p\n", csrow->channels);
62 debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
65 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
67 debugf3("\tmci = %p\n", mci);
68 debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
69 debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
70 debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
71 debugf4("\tmci->edac_check = %p\n", mci->edac_check);
72 debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
73 mci->nr_csrows, mci->csrows);
74 debugf3("\tdev = %p\n", mci->dev);
75 debugf3("\tmod_name:ctl_name = %s:%s\n", mci->mod_name, mci->ctl_name);
76 debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
79 #endif /* CONFIG_EDAC_DEBUG */
81 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
82 * Adjust 'ptr' so that its alignment is at least as stringent as what the
83 * compiler would provide for X and return the aligned result.
85 * If 'size' is a constant, the compiler will optimize this whole function
86 * down to either a no-op or the addition of a constant to the value of 'ptr'.
88 void *edac_align_ptr(void *ptr, unsigned size)
90 unsigned align, r;
92 /* Here we assume that the alignment of a "long long" is the most
93 * stringent alignment that the compiler will ever provide by default.
94 * As far as I know, this is a reasonable assumption.
96 if (size > sizeof(long))
97 align = sizeof(long long);
98 else if (size > sizeof(int))
99 align = sizeof(long);
100 else if (size > sizeof(short))
101 align = sizeof(int);
102 else if (size > sizeof(char))
103 align = sizeof(short);
104 else
105 return (char *)ptr;
107 r = size % align;
109 if (r == 0)
110 return (char *)ptr;
112 return (void *)(((unsigned long)ptr) + align - r);
116 * edac_mc_alloc: Allocate a struct mem_ctl_info structure
117 * @size_pvt: size of private storage needed
118 * @nr_csrows: Number of CWROWS needed for this MC
119 * @nr_chans: Number of channels for the MC
121 * Everything is kmalloc'ed as one big chunk - more efficient.
122 * Only can be used if all structures have the same lifetime - otherwise
123 * you have to allocate and initialize your own structures.
125 * Use edac_mc_free() to free mc structures allocated by this function.
127 * Returns:
128 * NULL allocation failed
129 * struct mem_ctl_info pointer
131 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
132 unsigned nr_chans, int edac_index)
134 struct mem_ctl_info *mci;
135 struct csrow_info *csi, *csrow;
136 struct channel_info *chi, *chp, *chan;
137 void *pvt;
138 unsigned size;
139 int row, chn;
140 int err;
142 /* Figure out the offsets of the various items from the start of an mc
143 * structure. We want the alignment of each item to be at least as
144 * stringent as what the compiler would provide if we could simply
145 * hardcode everything into a single struct.
147 mci = (struct mem_ctl_info *)0;
148 csi = edac_align_ptr(&mci[1], sizeof(*csi));
149 chi = edac_align_ptr(&csi[nr_csrows], sizeof(*chi));
150 pvt = edac_align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
151 size = ((unsigned long)pvt) + sz_pvt;
153 mci = kzalloc(size, GFP_KERNEL);
154 if (mci == NULL)
155 return NULL;
157 /* Adjust pointers so they point within the memory we just allocated
158 * rather than an imaginary chunk of memory located at address 0.
160 csi = (struct csrow_info *)(((char *)mci) + ((unsigned long)csi));
161 chi = (struct channel_info *)(((char *)mci) + ((unsigned long)chi));
162 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
164 /* setup index and various internal pointers */
165 mci->mc_idx = edac_index;
166 mci->csrows = csi;
167 mci->pvt_info = pvt;
168 mci->nr_csrows = nr_csrows;
170 for (row = 0; row < nr_csrows; row++) {
171 csrow = &csi[row];
172 csrow->csrow_idx = row;
173 csrow->mci = mci;
174 csrow->nr_channels = nr_chans;
175 chp = &chi[row * nr_chans];
176 csrow->channels = chp;
178 for (chn = 0; chn < nr_chans; chn++) {
179 chan = &chp[chn];
180 chan->chan_idx = chn;
181 chan->csrow = csrow;
185 mci->op_state = OP_ALLOC;
188 * Initialize the 'root' kobj for the edac_mc controller
190 err = edac_mc_register_sysfs_main_kobj(mci);
191 if (err) {
192 kfree(mci);
193 return NULL;
196 /* at this point, the root kobj is valid, and in order to
197 * 'free' the object, then the function:
198 * edac_mc_unregister_sysfs_main_kobj() must be called
199 * which will perform kobj unregistration and the actual free
200 * will occur during the kobject callback operation
202 return mci;
204 EXPORT_SYMBOL_GPL(edac_mc_alloc);
207 * edac_mc_free
208 * 'Free' a previously allocated 'mci' structure
209 * @mci: pointer to a struct mem_ctl_info structure
211 void edac_mc_free(struct mem_ctl_info *mci)
213 edac_mc_unregister_sysfs_main_kobj(mci);
215 EXPORT_SYMBOL_GPL(edac_mc_free);
219 * find_mci_by_dev
221 * scan list of controllers looking for the one that manages
222 * the 'dev' device
224 static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
226 struct mem_ctl_info *mci;
227 struct list_head *item;
229 debugf3("%s()\n", __func__);
231 list_for_each(item, &mc_devices) {
232 mci = list_entry(item, struct mem_ctl_info, link);
234 if (mci->dev == dev)
235 return mci;
238 return NULL;
242 * handler for EDAC to check if NMI type handler has asserted interrupt
244 static int edac_mc_assert_error_check_and_clear(void)
246 int old_state;
248 if (edac_op_state == EDAC_OPSTATE_POLL)
249 return 1;
251 old_state = edac_err_assert;
252 edac_err_assert = 0;
254 return old_state;
258 * edac_mc_workq_function
259 * performs the operation scheduled by a workq request
261 static void edac_mc_workq_function(struct work_struct *work_req)
263 struct delayed_work *d_work = to_delayed_work(work_req);
264 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
266 mutex_lock(&mem_ctls_mutex);
268 /* if this control struct has movd to offline state, we are done */
269 if (mci->op_state == OP_OFFLINE) {
270 mutex_unlock(&mem_ctls_mutex);
271 return;
274 /* Only poll controllers that are running polled and have a check */
275 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
276 mci->edac_check(mci);
278 mutex_unlock(&mem_ctls_mutex);
280 /* Reschedule */
281 queue_delayed_work(edac_workqueue, &mci->work,
282 msecs_to_jiffies(edac_mc_get_poll_msec()));
286 * edac_mc_workq_setup
287 * initialize a workq item for this mci
288 * passing in the new delay period in msec
290 * locking model:
292 * called with the mem_ctls_mutex held
294 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
296 debugf0("%s()\n", __func__);
298 /* if this instance is not in the POLL state, then simply return */
299 if (mci->op_state != OP_RUNNING_POLL)
300 return;
302 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
303 queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
307 * edac_mc_workq_teardown
308 * stop the workq processing on this mci
310 * locking model:
312 * called WITHOUT lock held
314 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
316 int status;
318 status = cancel_delayed_work(&mci->work);
319 if (status == 0) {
320 debugf0("%s() not canceled, flush the queue\n",
321 __func__);
323 /* workq instance might be running, wait for it */
324 flush_workqueue(edac_workqueue);
329 * edac_mc_reset_delay_period(unsigned long value)
331 * user space has updated our poll period value, need to
332 * reset our workq delays
334 void edac_mc_reset_delay_period(int value)
336 struct mem_ctl_info *mci;
337 struct list_head *item;
339 mutex_lock(&mem_ctls_mutex);
341 /* scan the list and turn off all workq timers, doing so under lock
343 list_for_each(item, &mc_devices) {
344 mci = list_entry(item, struct mem_ctl_info, link);
346 if (mci->op_state == OP_RUNNING_POLL)
347 cancel_delayed_work(&mci->work);
350 mutex_unlock(&mem_ctls_mutex);
353 /* re-walk the list, and reset the poll delay */
354 mutex_lock(&mem_ctls_mutex);
356 list_for_each(item, &mc_devices) {
357 mci = list_entry(item, struct mem_ctl_info, link);
359 edac_mc_workq_setup(mci, (unsigned long) value);
362 mutex_unlock(&mem_ctls_mutex);
367 /* Return 0 on success, 1 on failure.
368 * Before calling this function, caller must
369 * assign a unique value to mci->mc_idx.
371 * locking model:
373 * called with the mem_ctls_mutex lock held
375 static int add_mc_to_global_list(struct mem_ctl_info *mci)
377 struct list_head *item, *insert_before;
378 struct mem_ctl_info *p;
380 insert_before = &mc_devices;
382 p = find_mci_by_dev(mci->dev);
383 if (unlikely(p != NULL))
384 goto fail0;
386 list_for_each(item, &mc_devices) {
387 p = list_entry(item, struct mem_ctl_info, link);
389 if (p->mc_idx >= mci->mc_idx) {
390 if (unlikely(p->mc_idx == mci->mc_idx))
391 goto fail1;
393 insert_before = item;
394 break;
398 list_add_tail_rcu(&mci->link, insert_before);
399 atomic_inc(&edac_handlers);
400 return 0;
402 fail0:
403 edac_printk(KERN_WARNING, EDAC_MC,
404 "%s (%s) %s %s already assigned %d\n", dev_name(p->dev),
405 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
406 return 1;
408 fail1:
409 edac_printk(KERN_WARNING, EDAC_MC,
410 "bug in low-level driver: attempt to assign\n"
411 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
412 return 1;
415 static void complete_mc_list_del(struct rcu_head *head)
417 struct mem_ctl_info *mci;
419 mci = container_of(head, struct mem_ctl_info, rcu);
420 INIT_LIST_HEAD(&mci->link);
423 static void del_mc_from_global_list(struct mem_ctl_info *mci)
425 atomic_dec(&edac_handlers);
426 list_del_rcu(&mci->link);
427 call_rcu(&mci->rcu, complete_mc_list_del);
428 rcu_barrier();
432 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
434 * If found, return a pointer to the structure.
435 * Else return NULL.
437 * Caller must hold mem_ctls_mutex.
439 struct mem_ctl_info *edac_mc_find(int idx)
441 struct list_head *item;
442 struct mem_ctl_info *mci;
444 list_for_each(item, &mc_devices) {
445 mci = list_entry(item, struct mem_ctl_info, link);
447 if (mci->mc_idx >= idx) {
448 if (mci->mc_idx == idx)
449 return mci;
451 break;
455 return NULL;
457 EXPORT_SYMBOL(edac_mc_find);
460 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
461 * create sysfs entries associated with mci structure
462 * @mci: pointer to the mci structure to be added to the list
463 * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
465 * Return:
466 * 0 Success
467 * !0 Failure
470 /* FIXME - should a warning be printed if no error detection? correction? */
471 int edac_mc_add_mc(struct mem_ctl_info *mci)
473 debugf0("%s()\n", __func__);
475 #ifdef CONFIG_EDAC_DEBUG
476 if (edac_debug_level >= 3)
477 edac_mc_dump_mci(mci);
479 if (edac_debug_level >= 4) {
480 int i;
482 for (i = 0; i < mci->nr_csrows; i++) {
483 int j;
485 edac_mc_dump_csrow(&mci->csrows[i]);
486 for (j = 0; j < mci->csrows[i].nr_channels; j++)
487 edac_mc_dump_channel(&mci->csrows[i].
488 channels[j]);
491 #endif
492 mutex_lock(&mem_ctls_mutex);
494 if (add_mc_to_global_list(mci))
495 goto fail0;
497 /* set load time so that error rate can be tracked */
498 mci->start_time = jiffies;
500 if (edac_create_sysfs_mci_device(mci)) {
501 edac_mc_printk(mci, KERN_WARNING,
502 "failed to create sysfs device\n");
503 goto fail1;
506 /* If there IS a check routine, then we are running POLLED */
507 if (mci->edac_check != NULL) {
508 /* This instance is NOW RUNNING */
509 mci->op_state = OP_RUNNING_POLL;
511 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
512 } else {
513 mci->op_state = OP_RUNNING_INTERRUPT;
516 /* Report action taken */
517 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
518 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
520 mutex_unlock(&mem_ctls_mutex);
521 return 0;
523 fail1:
524 del_mc_from_global_list(mci);
526 fail0:
527 mutex_unlock(&mem_ctls_mutex);
528 return 1;
530 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
533 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
534 * remove mci structure from global list
535 * @pdev: Pointer to 'struct device' representing mci structure to remove.
537 * Return pointer to removed mci structure, or NULL if device not found.
539 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
541 struct mem_ctl_info *mci;
543 debugf0("%s()\n", __func__);
545 mutex_lock(&mem_ctls_mutex);
547 /* find the requested mci struct in the global list */
548 mci = find_mci_by_dev(dev);
549 if (mci == NULL) {
550 mutex_unlock(&mem_ctls_mutex);
551 return NULL;
554 /* marking MCI offline */
555 mci->op_state = OP_OFFLINE;
557 del_mc_from_global_list(mci);
558 mutex_unlock(&mem_ctls_mutex);
560 /* flush workq processes and remove sysfs */
561 edac_mc_workq_teardown(mci);
562 edac_remove_sysfs_mci_device(mci);
564 edac_printk(KERN_INFO, EDAC_MC,
565 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
566 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
568 return mci;
570 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
572 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
573 u32 size)
575 struct page *pg;
576 void *virt_addr;
577 unsigned long flags = 0;
579 debugf3("%s()\n", __func__);
581 /* ECC error page was not in our memory. Ignore it. */
582 if (!pfn_valid(page))
583 return;
585 /* Find the actual page structure then map it and fix */
586 pg = pfn_to_page(page);
588 if (PageHighMem(pg))
589 local_irq_save(flags);
591 virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
593 /* Perform architecture specific atomic scrub operation */
594 atomic_scrub(virt_addr + offset, size);
596 /* Unmap and complete */
597 kunmap_atomic(virt_addr, KM_BOUNCE_READ);
599 if (PageHighMem(pg))
600 local_irq_restore(flags);
603 /* FIXME - should return -1 */
604 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
606 struct csrow_info *csrows = mci->csrows;
607 int row, i;
609 debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
610 row = -1;
612 for (i = 0; i < mci->nr_csrows; i++) {
613 struct csrow_info *csrow = &csrows[i];
615 if (csrow->nr_pages == 0)
616 continue;
618 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
619 "mask(0x%lx)\n", mci->mc_idx, __func__,
620 csrow->first_page, page, csrow->last_page,
621 csrow->page_mask);
623 if ((page >= csrow->first_page) &&
624 (page <= csrow->last_page) &&
625 ((page & csrow->page_mask) ==
626 (csrow->first_page & csrow->page_mask))) {
627 row = i;
628 break;
632 if (row == -1)
633 edac_mc_printk(mci, KERN_ERR,
634 "could not look up page error address %lx\n",
635 (unsigned long)page);
637 return row;
639 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
641 /* FIXME - setable log (warning/emerg) levels */
642 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
643 void edac_mc_handle_ce(struct mem_ctl_info *mci,
644 unsigned long page_frame_number,
645 unsigned long offset_in_page, unsigned long syndrome,
646 int row, int channel, const char *msg)
648 unsigned long remapped_page;
650 debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
652 /* FIXME - maybe make panic on INTERNAL ERROR an option */
653 if (row >= mci->nr_csrows || row < 0) {
654 /* something is wrong */
655 edac_mc_printk(mci, KERN_ERR,
656 "INTERNAL ERROR: row out of range "
657 "(%d >= %d)\n", row, mci->nr_csrows);
658 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
659 return;
662 if (channel >= mci->csrows[row].nr_channels || channel < 0) {
663 /* something is wrong */
664 edac_mc_printk(mci, KERN_ERR,
665 "INTERNAL ERROR: channel out of range "
666 "(%d >= %d)\n", channel,
667 mci->csrows[row].nr_channels);
668 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
669 return;
672 if (edac_mc_get_log_ce())
673 /* FIXME - put in DIMM location */
674 edac_mc_printk(mci, KERN_WARNING,
675 "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
676 "0x%lx, row %d, channel %d, label \"%s\": %s\n",
677 page_frame_number, offset_in_page,
678 mci->csrows[row].grain, syndrome, row, channel,
679 mci->csrows[row].channels[channel].label, msg);
681 mci->ce_count++;
682 mci->csrows[row].ce_count++;
683 mci->csrows[row].channels[channel].ce_count++;
685 if (mci->scrub_mode & SCRUB_SW_SRC) {
687 * Some MC's can remap memory so that it is still available
688 * at a different address when PCI devices map into memory.
689 * MC's that can't do this lose the memory where PCI devices
690 * are mapped. This mapping is MC dependant and so we call
691 * back into the MC driver for it to map the MC page to
692 * a physical (CPU) page which can then be mapped to a virtual
693 * page - which can then be scrubbed.
695 remapped_page = mci->ctl_page_to_phys ?
696 mci->ctl_page_to_phys(mci, page_frame_number) :
697 page_frame_number;
699 edac_mc_scrub_block(remapped_page, offset_in_page,
700 mci->csrows[row].grain);
703 EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
705 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
707 if (edac_mc_get_log_ce())
708 edac_mc_printk(mci, KERN_WARNING,
709 "CE - no information available: %s\n", msg);
711 mci->ce_noinfo_count++;
712 mci->ce_count++;
714 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
716 void edac_mc_handle_ue(struct mem_ctl_info *mci,
717 unsigned long page_frame_number,
718 unsigned long offset_in_page, int row, const char *msg)
720 int len = EDAC_MC_LABEL_LEN * 4;
721 char labels[len + 1];
722 char *pos = labels;
723 int chan;
724 int chars;
726 debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
728 /* FIXME - maybe make panic on INTERNAL ERROR an option */
729 if (row >= mci->nr_csrows || row < 0) {
730 /* something is wrong */
731 edac_mc_printk(mci, KERN_ERR,
732 "INTERNAL ERROR: row out of range "
733 "(%d >= %d)\n", row, mci->nr_csrows);
734 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
735 return;
738 chars = snprintf(pos, len + 1, "%s",
739 mci->csrows[row].channels[0].label);
740 len -= chars;
741 pos += chars;
743 for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
744 chan++) {
745 chars = snprintf(pos, len + 1, ":%s",
746 mci->csrows[row].channels[chan].label);
747 len -= chars;
748 pos += chars;
751 if (edac_mc_get_log_ue())
752 edac_mc_printk(mci, KERN_EMERG,
753 "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
754 "labels \"%s\": %s\n", page_frame_number,
755 offset_in_page, mci->csrows[row].grain, row,
756 labels, msg);
758 if (edac_mc_get_panic_on_ue())
759 panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
760 "row %d, labels \"%s\": %s\n", mci->mc_idx,
761 page_frame_number, offset_in_page,
762 mci->csrows[row].grain, row, labels, msg);
764 mci->ue_count++;
765 mci->csrows[row].ue_count++;
767 EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
769 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
771 if (edac_mc_get_panic_on_ue())
772 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
774 if (edac_mc_get_log_ue())
775 edac_mc_printk(mci, KERN_WARNING,
776 "UE - no information available: %s\n", msg);
777 mci->ue_noinfo_count++;
778 mci->ue_count++;
780 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
782 /*************************************************************
783 * On Fully Buffered DIMM modules, this help function is
784 * called to process UE events
786 void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci,
787 unsigned int csrow,
788 unsigned int channela,
789 unsigned int channelb, char *msg)
791 int len = EDAC_MC_LABEL_LEN * 4;
792 char labels[len + 1];
793 char *pos = labels;
794 int chars;
796 if (csrow >= mci->nr_csrows) {
797 /* something is wrong */
798 edac_mc_printk(mci, KERN_ERR,
799 "INTERNAL ERROR: row out of range (%d >= %d)\n",
800 csrow, mci->nr_csrows);
801 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
802 return;
805 if (channela >= mci->csrows[csrow].nr_channels) {
806 /* something is wrong */
807 edac_mc_printk(mci, KERN_ERR,
808 "INTERNAL ERROR: channel-a out of range "
809 "(%d >= %d)\n",
810 channela, mci->csrows[csrow].nr_channels);
811 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
812 return;
815 if (channelb >= mci->csrows[csrow].nr_channels) {
816 /* something is wrong */
817 edac_mc_printk(mci, KERN_ERR,
818 "INTERNAL ERROR: channel-b out of range "
819 "(%d >= %d)\n",
820 channelb, mci->csrows[csrow].nr_channels);
821 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
822 return;
825 mci->ue_count++;
826 mci->csrows[csrow].ue_count++;
828 /* Generate the DIMM labels from the specified channels */
829 chars = snprintf(pos, len + 1, "%s",
830 mci->csrows[csrow].channels[channela].label);
831 len -= chars;
832 pos += chars;
833 chars = snprintf(pos, len + 1, "-%s",
834 mci->csrows[csrow].channels[channelb].label);
836 if (edac_mc_get_log_ue())
837 edac_mc_printk(mci, KERN_EMERG,
838 "UE row %d, channel-a= %d channel-b= %d "
839 "labels \"%s\": %s\n", csrow, channela, channelb,
840 labels, msg);
842 if (edac_mc_get_panic_on_ue())
843 panic("UE row %d, channel-a= %d channel-b= %d "
844 "labels \"%s\": %s\n", csrow, channela,
845 channelb, labels, msg);
847 EXPORT_SYMBOL(edac_mc_handle_fbd_ue);
849 /*************************************************************
850 * On Fully Buffered DIMM modules, this help function is
851 * called to process CE events
853 void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci,
854 unsigned int csrow, unsigned int channel, char *msg)
857 /* Ensure boundary values */
858 if (csrow >= mci->nr_csrows) {
859 /* something is wrong */
860 edac_mc_printk(mci, KERN_ERR,
861 "INTERNAL ERROR: row out of range (%d >= %d)\n",
862 csrow, mci->nr_csrows);
863 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
864 return;
866 if (channel >= mci->csrows[csrow].nr_channels) {
867 /* something is wrong */
868 edac_mc_printk(mci, KERN_ERR,
869 "INTERNAL ERROR: channel out of range (%d >= %d)\n",
870 channel, mci->csrows[csrow].nr_channels);
871 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
872 return;
875 if (edac_mc_get_log_ce())
876 /* FIXME - put in DIMM location */
877 edac_mc_printk(mci, KERN_WARNING,
878 "CE row %d, channel %d, label \"%s\": %s\n",
879 csrow, channel,
880 mci->csrows[csrow].channels[channel].label, msg);
882 mci->ce_count++;
883 mci->csrows[csrow].ce_count++;
884 mci->csrows[csrow].channels[channel].ce_count++;
886 EXPORT_SYMBOL(edac_mc_handle_fbd_ce);