2 * Implementation of the policy database.
4 * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
10 * Support for enhanced MLS infrastructure.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
17 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation, version 2.
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/errno.h>
30 #include "conditional.h"
36 static char *symtab_name
[SYM_NUM
] = {
48 int selinux_mls_enabled
= 0;
50 static unsigned int symtab_sizes
[SYM_NUM
] = {
61 struct policydb_compat_info
{
67 /* These need to be updated if SYM_NUM or OCON_NUM changes */
68 static struct policydb_compat_info policydb_compat
[] = {
70 .version
= POLICYDB_VERSION_BASE
,
71 .sym_num
= SYM_NUM
- 3,
72 .ocon_num
= OCON_NUM
- 1,
75 .version
= POLICYDB_VERSION_BOOL
,
76 .sym_num
= SYM_NUM
- 2,
77 .ocon_num
= OCON_NUM
- 1,
80 .version
= POLICYDB_VERSION_IPV6
,
81 .sym_num
= SYM_NUM
- 2,
85 .version
= POLICYDB_VERSION_NLCLASS
,
86 .sym_num
= SYM_NUM
- 2,
90 .version
= POLICYDB_VERSION_MLS
,
95 .version
= POLICYDB_VERSION_AVTAB
,
101 static struct policydb_compat_info
*policydb_lookup_compat(int version
)
104 struct policydb_compat_info
*info
= NULL
;
106 for (i
= 0; i
< sizeof(policydb_compat
)/sizeof(*info
); i
++) {
107 if (policydb_compat
[i
].version
== version
) {
108 info
= &policydb_compat
[i
];
116 * Initialize the role table.
118 static int roles_init(struct policydb
*p
)
122 struct role_datum
*role
;
124 role
= kmalloc(sizeof(*role
), GFP_KERNEL
);
129 memset(role
, 0, sizeof(*role
));
130 role
->value
= ++p
->p_roles
.nprim
;
131 if (role
->value
!= OBJECT_R_VAL
) {
135 key
= kmalloc(strlen(OBJECT_R
)+1,GFP_KERNEL
);
140 strcpy(key
, OBJECT_R
);
141 rc
= hashtab_insert(p
->p_roles
.table
, key
, role
);
155 * Initialize a policy database structure.
157 static int policydb_init(struct policydb
*p
)
161 memset(p
, 0, sizeof(*p
));
163 for (i
= 0; i
< SYM_NUM
; i
++) {
164 rc
= symtab_init(&p
->symtab
[i
], symtab_sizes
[i
]);
166 goto out_free_symtab
;
169 rc
= avtab_init(&p
->te_avtab
);
171 goto out_free_symtab
;
177 rc
= cond_policydb_init(p
);
185 avtab_destroy(&p
->te_avtab
);
188 for (i
= 0; i
< SYM_NUM
; i
++)
189 hashtab_destroy(p
->symtab
[i
].table
);
194 * The following *_index functions are used to
195 * define the val_to_name and val_to_struct arrays
196 * in a policy database structure. The val_to_name
197 * arrays are used when converting security context
198 * structures into string representations. The
199 * val_to_struct arrays are used when the attributes
200 * of a class, role, or user are needed.
203 static int common_index(void *key
, void *datum
, void *datap
)
206 struct common_datum
*comdatum
;
210 if (!comdatum
->value
|| comdatum
->value
> p
->p_commons
.nprim
)
212 p
->p_common_val_to_name
[comdatum
->value
- 1] = key
;
216 static int class_index(void *key
, void *datum
, void *datap
)
219 struct class_datum
*cladatum
;
223 if (!cladatum
->value
|| cladatum
->value
> p
->p_classes
.nprim
)
225 p
->p_class_val_to_name
[cladatum
->value
- 1] = key
;
226 p
->class_val_to_struct
[cladatum
->value
- 1] = cladatum
;
230 static int role_index(void *key
, void *datum
, void *datap
)
233 struct role_datum
*role
;
237 if (!role
->value
|| role
->value
> p
->p_roles
.nprim
)
239 p
->p_role_val_to_name
[role
->value
- 1] = key
;
240 p
->role_val_to_struct
[role
->value
- 1] = role
;
244 static int type_index(void *key
, void *datum
, void *datap
)
247 struct type_datum
*typdatum
;
252 if (typdatum
->primary
) {
253 if (!typdatum
->value
|| typdatum
->value
> p
->p_types
.nprim
)
255 p
->p_type_val_to_name
[typdatum
->value
- 1] = key
;
261 static int user_index(void *key
, void *datum
, void *datap
)
264 struct user_datum
*usrdatum
;
268 if (!usrdatum
->value
|| usrdatum
->value
> p
->p_users
.nprim
)
270 p
->p_user_val_to_name
[usrdatum
->value
- 1] = key
;
271 p
->user_val_to_struct
[usrdatum
->value
- 1] = usrdatum
;
275 static int sens_index(void *key
, void *datum
, void *datap
)
278 struct level_datum
*levdatum
;
283 if (!levdatum
->isalias
) {
284 if (!levdatum
->level
->sens
||
285 levdatum
->level
->sens
> p
->p_levels
.nprim
)
287 p
->p_sens_val_to_name
[levdatum
->level
->sens
- 1] = key
;
293 static int cat_index(void *key
, void *datum
, void *datap
)
296 struct cat_datum
*catdatum
;
301 if (!catdatum
->isalias
) {
302 if (!catdatum
->value
|| catdatum
->value
> p
->p_cats
.nprim
)
304 p
->p_cat_val_to_name
[catdatum
->value
- 1] = key
;
310 static int (*index_f
[SYM_NUM
]) (void *key
, void *datum
, void *datap
) =
323 * Define the common val_to_name array and the class
324 * val_to_name and val_to_struct arrays in a policy
325 * database structure.
327 * Caller must clean up upon failure.
329 static int policydb_index_classes(struct policydb
*p
)
333 p
->p_common_val_to_name
=
334 kmalloc(p
->p_commons
.nprim
* sizeof(char *), GFP_KERNEL
);
335 if (!p
->p_common_val_to_name
) {
340 rc
= hashtab_map(p
->p_commons
.table
, common_index
, p
);
344 p
->class_val_to_struct
=
345 kmalloc(p
->p_classes
.nprim
* sizeof(*(p
->class_val_to_struct
)), GFP_KERNEL
);
346 if (!p
->class_val_to_struct
) {
351 p
->p_class_val_to_name
=
352 kmalloc(p
->p_classes
.nprim
* sizeof(char *), GFP_KERNEL
);
353 if (!p
->p_class_val_to_name
) {
358 rc
= hashtab_map(p
->p_classes
.table
, class_index
, p
);
364 static void symtab_hash_eval(struct symtab
*s
)
368 for (i
= 0; i
< SYM_NUM
; i
++) {
369 struct hashtab
*h
= s
[i
].table
;
370 struct hashtab_info info
;
372 hashtab_stat(h
, &info
);
373 printk(KERN_INFO
"%s: %d entries and %d/%d buckets used, "
374 "longest chain length %d\n", symtab_name
[i
], h
->nel
,
375 info
.slots_used
, h
->size
, info
.max_chain_len
);
381 * Define the other val_to_name and val_to_struct arrays
382 * in a policy database structure.
384 * Caller must clean up on failure.
386 static int policydb_index_others(struct policydb
*p
)
390 printk(KERN_INFO
"security: %d users, %d roles, %d types, %d bools",
391 p
->p_users
.nprim
, p
->p_roles
.nprim
, p
->p_types
.nprim
, p
->p_bools
.nprim
);
392 if (selinux_mls_enabled
)
393 printk(", %d sens, %d cats", p
->p_levels
.nprim
,
397 printk(KERN_INFO
"security: %d classes, %d rules\n",
398 p
->p_classes
.nprim
, p
->te_avtab
.nel
);
401 avtab_hash_eval(&p
->te_avtab
, "rules");
402 symtab_hash_eval(p
->symtab
);
405 p
->role_val_to_struct
=
406 kmalloc(p
->p_roles
.nprim
* sizeof(*(p
->role_val_to_struct
)),
408 if (!p
->role_val_to_struct
) {
413 p
->user_val_to_struct
=
414 kmalloc(p
->p_users
.nprim
* sizeof(*(p
->user_val_to_struct
)),
416 if (!p
->user_val_to_struct
) {
421 if (cond_init_bool_indexes(p
)) {
426 for (i
= SYM_ROLES
; i
< SYM_NUM
; i
++) {
427 p
->sym_val_to_name
[i
] =
428 kmalloc(p
->symtab
[i
].nprim
* sizeof(char *), GFP_KERNEL
);
429 if (!p
->sym_val_to_name
[i
]) {
433 rc
= hashtab_map(p
->symtab
[i
].table
, index_f
[i
], p
);
443 * The following *_destroy functions are used to
444 * free any memory allocated for each kind of
445 * symbol data in the policy database.
448 static int perm_destroy(void *key
, void *datum
, void *p
)
455 static int common_destroy(void *key
, void *datum
, void *p
)
457 struct common_datum
*comdatum
;
461 hashtab_map(comdatum
->permissions
.table
, perm_destroy
, NULL
);
462 hashtab_destroy(comdatum
->permissions
.table
);
467 static int class_destroy(void *key
, void *datum
, void *p
)
469 struct class_datum
*cladatum
;
470 struct constraint_node
*constraint
, *ctemp
;
471 struct constraint_expr
*e
, *etmp
;
475 hashtab_map(cladatum
->permissions
.table
, perm_destroy
, NULL
);
476 hashtab_destroy(cladatum
->permissions
.table
);
477 constraint
= cladatum
->constraints
;
479 e
= constraint
->expr
;
481 ebitmap_destroy(&e
->names
);
487 constraint
= constraint
->next
;
491 constraint
= cladatum
->validatetrans
;
493 e
= constraint
->expr
;
495 ebitmap_destroy(&e
->names
);
501 constraint
= constraint
->next
;
505 kfree(cladatum
->comkey
);
510 static int role_destroy(void *key
, void *datum
, void *p
)
512 struct role_datum
*role
;
516 ebitmap_destroy(&role
->dominates
);
517 ebitmap_destroy(&role
->types
);
522 static int type_destroy(void *key
, void *datum
, void *p
)
529 static int user_destroy(void *key
, void *datum
, void *p
)
531 struct user_datum
*usrdatum
;
535 ebitmap_destroy(&usrdatum
->roles
);
536 ebitmap_destroy(&usrdatum
->range
.level
[0].cat
);
537 ebitmap_destroy(&usrdatum
->range
.level
[1].cat
);
538 ebitmap_destroy(&usrdatum
->dfltlevel
.cat
);
543 static int sens_destroy(void *key
, void *datum
, void *p
)
545 struct level_datum
*levdatum
;
549 ebitmap_destroy(&levdatum
->level
->cat
);
550 kfree(levdatum
->level
);
555 static int cat_destroy(void *key
, void *datum
, void *p
)
562 static int (*destroy_f
[SYM_NUM
]) (void *key
, void *datum
, void *datap
) =
574 static void ocontext_destroy(struct ocontext
*c
, int i
)
576 context_destroy(&c
->context
[0]);
577 context_destroy(&c
->context
[1]);
578 if (i
== OCON_ISID
|| i
== OCON_FS
||
579 i
== OCON_NETIF
|| i
== OCON_FSUSE
)
585 * Free any memory allocated by a policy database structure.
587 void policydb_destroy(struct policydb
*p
)
589 struct ocontext
*c
, *ctmp
;
590 struct genfs
*g
, *gtmp
;
592 struct role_allow
*ra
, *lra
= NULL
;
593 struct role_trans
*tr
, *ltr
= NULL
;
594 struct range_trans
*rt
, *lrt
= NULL
;
596 for (i
= 0; i
< SYM_NUM
; i
++) {
597 hashtab_map(p
->symtab
[i
].table
, destroy_f
[i
], NULL
);
598 hashtab_destroy(p
->symtab
[i
].table
);
601 for (i
= 0; i
< SYM_NUM
; i
++)
602 kfree(p
->sym_val_to_name
[i
]);
604 kfree(p
->class_val_to_struct
);
605 kfree(p
->role_val_to_struct
);
606 kfree(p
->user_val_to_struct
);
608 avtab_destroy(&p
->te_avtab
);
610 for (i
= 0; i
< OCON_NUM
; i
++) {
615 ocontext_destroy(ctmp
,i
);
626 ocontext_destroy(ctmp
,OCON_FSUSE
);
633 cond_policydb_destroy(p
);
635 for (tr
= p
->role_tr
; tr
; tr
= tr
->next
) {
641 for (ra
= p
->role_allow
; ra
; ra
= ra
-> next
) {
647 for (rt
= p
->range_tr
; rt
; rt
= rt
-> next
) {
653 for (i
= 0; i
< p
->p_types
.nprim
; i
++)
654 ebitmap_destroy(&p
->type_attr_map
[i
]);
655 kfree(p
->type_attr_map
);
661 * Load the initial SIDs specified in a policy database
662 * structure into a SID table.
664 int policydb_load_isids(struct policydb
*p
, struct sidtab
*s
)
666 struct ocontext
*head
, *c
;
671 printk(KERN_ERR
"security: out of memory on SID table init\n");
675 head
= p
->ocontexts
[OCON_ISID
];
676 for (c
= head
; c
; c
= c
->next
) {
677 if (!c
->context
[0].user
) {
678 printk(KERN_ERR
"security: SID %s was never "
679 "defined.\n", c
->u
.name
);
683 if (sidtab_insert(s
, c
->sid
[0], &c
->context
[0])) {
684 printk(KERN_ERR
"security: unable to load initial "
685 "SID %s.\n", c
->u
.name
);
695 * Return 1 if the fields in the security context
696 * structure `c' are valid. Return 0 otherwise.
698 int policydb_context_isvalid(struct policydb
*p
, struct context
*c
)
700 struct role_datum
*role
;
701 struct user_datum
*usrdatum
;
703 if (!c
->role
|| c
->role
> p
->p_roles
.nprim
)
706 if (!c
->user
|| c
->user
> p
->p_users
.nprim
)
709 if (!c
->type
|| c
->type
> p
->p_types
.nprim
)
712 if (c
->role
!= OBJECT_R_VAL
) {
714 * Role must be authorized for the type.
716 role
= p
->role_val_to_struct
[c
->role
- 1];
717 if (!ebitmap_get_bit(&role
->types
,
719 /* role may not be associated with type */
723 * User must be authorized for the role.
725 usrdatum
= p
->user_val_to_struct
[c
->user
- 1];
729 if (!ebitmap_get_bit(&usrdatum
->roles
,
731 /* user may not be associated with role */
735 if (!mls_context_isvalid(p
, c
))
742 * Read a MLS range structure from a policydb binary
743 * representation file.
745 static int mls_read_range_helper(struct mls_range
*r
, void *fp
)
751 rc
= next_entry(buf
, fp
, sizeof(u32
));
755 items
= le32_to_cpu(buf
[0]);
756 if (items
> ARRAY_SIZE(buf
)) {
757 printk(KERN_ERR
"security: mls: range overflow\n");
761 rc
= next_entry(buf
, fp
, sizeof(u32
) * items
);
763 printk(KERN_ERR
"security: mls: truncated range\n");
766 r
->level
[0].sens
= le32_to_cpu(buf
[0]);
768 r
->level
[1].sens
= le32_to_cpu(buf
[1]);
770 r
->level
[1].sens
= r
->level
[0].sens
;
772 rc
= ebitmap_read(&r
->level
[0].cat
, fp
);
774 printk(KERN_ERR
"security: mls: error reading low "
779 rc
= ebitmap_read(&r
->level
[1].cat
, fp
);
781 printk(KERN_ERR
"security: mls: error reading high "
786 rc
= ebitmap_cpy(&r
->level
[1].cat
, &r
->level
[0].cat
);
788 printk(KERN_ERR
"security: mls: out of memory\n");
797 ebitmap_destroy(&r
->level
[0].cat
);
802 * Read and validate a security context structure
803 * from a policydb binary representation file.
805 static int context_read_and_validate(struct context
*c
,
812 rc
= next_entry(buf
, fp
, sizeof buf
);
814 printk(KERN_ERR
"security: context truncated\n");
817 c
->user
= le32_to_cpu(buf
[0]);
818 c
->role
= le32_to_cpu(buf
[1]);
819 c
->type
= le32_to_cpu(buf
[2]);
820 if (p
->policyvers
>= POLICYDB_VERSION_MLS
) {
821 if (mls_read_range_helper(&c
->range
, fp
)) {
822 printk(KERN_ERR
"security: error reading MLS range of "
829 if (!policydb_context_isvalid(p
, c
)) {
830 printk(KERN_ERR
"security: invalid security context\n");
839 * The following *_read functions are used to
840 * read the symbol data from a policy database
841 * binary representation file.
844 static int perm_read(struct policydb
*p
, struct hashtab
*h
, void *fp
)
847 struct perm_datum
*perdatum
;
852 perdatum
= kmalloc(sizeof(*perdatum
), GFP_KERNEL
);
857 memset(perdatum
, 0, sizeof(*perdatum
));
859 rc
= next_entry(buf
, fp
, sizeof buf
);
863 len
= le32_to_cpu(buf
[0]);
864 perdatum
->value
= le32_to_cpu(buf
[1]);
866 key
= kmalloc(len
+ 1,GFP_KERNEL
);
871 rc
= next_entry(key
, fp
, len
);
876 rc
= hashtab_insert(h
, key
, perdatum
);
882 perm_destroy(key
, perdatum
, NULL
);
886 static int common_read(struct policydb
*p
, struct hashtab
*h
, void *fp
)
889 struct common_datum
*comdatum
;
894 comdatum
= kmalloc(sizeof(*comdatum
), GFP_KERNEL
);
899 memset(comdatum
, 0, sizeof(*comdatum
));
901 rc
= next_entry(buf
, fp
, sizeof buf
);
905 len
= le32_to_cpu(buf
[0]);
906 comdatum
->value
= le32_to_cpu(buf
[1]);
908 rc
= symtab_init(&comdatum
->permissions
, PERM_SYMTAB_SIZE
);
911 comdatum
->permissions
.nprim
= le32_to_cpu(buf
[2]);
912 nel
= le32_to_cpu(buf
[3]);
914 key
= kmalloc(len
+ 1,GFP_KERNEL
);
919 rc
= next_entry(key
, fp
, len
);
924 for (i
= 0; i
< nel
; i
++) {
925 rc
= perm_read(p
, comdatum
->permissions
.table
, fp
);
930 rc
= hashtab_insert(h
, key
, comdatum
);
936 common_destroy(key
, comdatum
, NULL
);
940 static int read_cons_helper(struct constraint_node
**nodep
, int ncons
,
941 int allowxtarget
, void *fp
)
943 struct constraint_node
*c
, *lc
;
944 struct constraint_expr
*e
, *le
;
950 for (i
= 0; i
< ncons
; i
++) {
951 c
= kmalloc(sizeof(*c
), GFP_KERNEL
);
954 memset(c
, 0, sizeof(*c
));
962 rc
= next_entry(buf
, fp
, (sizeof(u32
) * 2));
965 c
->permissions
= le32_to_cpu(buf
[0]);
966 nexpr
= le32_to_cpu(buf
[1]);
969 for (j
= 0; j
< nexpr
; j
++) {
970 e
= kmalloc(sizeof(*e
), GFP_KERNEL
);
973 memset(e
, 0, sizeof(*e
));
981 rc
= next_entry(buf
, fp
, (sizeof(u32
) * 3));
984 e
->expr_type
= le32_to_cpu(buf
[0]);
985 e
->attr
= le32_to_cpu(buf
[1]);
986 e
->op
= le32_to_cpu(buf
[2]);
988 switch (e
->expr_type
) {
1000 if (depth
== (CEXPR_MAXDEPTH
- 1))
1005 if (!allowxtarget
&& (e
->attr
& CEXPR_XTARGET
))
1007 if (depth
== (CEXPR_MAXDEPTH
- 1))
1010 if (ebitmap_read(&e
->names
, fp
))
1026 static int class_read(struct policydb
*p
, struct hashtab
*h
, void *fp
)
1029 struct class_datum
*cladatum
;
1031 u32 len
, len2
, ncons
, nel
;
1034 cladatum
= kmalloc(sizeof(*cladatum
), GFP_KERNEL
);
1039 memset(cladatum
, 0, sizeof(*cladatum
));
1041 rc
= next_entry(buf
, fp
, sizeof(u32
)*6);
1045 len
= le32_to_cpu(buf
[0]);
1046 len2
= le32_to_cpu(buf
[1]);
1047 cladatum
->value
= le32_to_cpu(buf
[2]);
1049 rc
= symtab_init(&cladatum
->permissions
, PERM_SYMTAB_SIZE
);
1052 cladatum
->permissions
.nprim
= le32_to_cpu(buf
[3]);
1053 nel
= le32_to_cpu(buf
[4]);
1055 ncons
= le32_to_cpu(buf
[5]);
1057 key
= kmalloc(len
+ 1,GFP_KERNEL
);
1062 rc
= next_entry(key
, fp
, len
);
1068 cladatum
->comkey
= kmalloc(len2
+ 1,GFP_KERNEL
);
1069 if (!cladatum
->comkey
) {
1073 rc
= next_entry(cladatum
->comkey
, fp
, len2
);
1076 cladatum
->comkey
[len2
] = 0;
1078 cladatum
->comdatum
= hashtab_search(p
->p_commons
.table
,
1080 if (!cladatum
->comdatum
) {
1081 printk(KERN_ERR
"security: unknown common %s\n",
1087 for (i
= 0; i
< nel
; i
++) {
1088 rc
= perm_read(p
, cladatum
->permissions
.table
, fp
);
1093 rc
= read_cons_helper(&cladatum
->constraints
, ncons
, 0, fp
);
1097 if (p
->policyvers
>= POLICYDB_VERSION_VALIDATETRANS
) {
1098 /* grab the validatetrans rules */
1099 rc
= next_entry(buf
, fp
, sizeof(u32
));
1102 ncons
= le32_to_cpu(buf
[0]);
1103 rc
= read_cons_helper(&cladatum
->validatetrans
, ncons
, 1, fp
);
1108 rc
= hashtab_insert(h
, key
, cladatum
);
1116 class_destroy(key
, cladatum
, NULL
);
1120 static int role_read(struct policydb
*p
, struct hashtab
*h
, void *fp
)
1123 struct role_datum
*role
;
1128 role
= kmalloc(sizeof(*role
), GFP_KERNEL
);
1133 memset(role
, 0, sizeof(*role
));
1135 rc
= next_entry(buf
, fp
, sizeof buf
);
1139 len
= le32_to_cpu(buf
[0]);
1140 role
->value
= le32_to_cpu(buf
[1]);
1142 key
= kmalloc(len
+ 1,GFP_KERNEL
);
1147 rc
= next_entry(key
, fp
, len
);
1152 rc
= ebitmap_read(&role
->dominates
, fp
);
1156 rc
= ebitmap_read(&role
->types
, fp
);
1160 if (strcmp(key
, OBJECT_R
) == 0) {
1161 if (role
->value
!= OBJECT_R_VAL
) {
1162 printk(KERN_ERR
"Role %s has wrong value %d\n",
1163 OBJECT_R
, role
->value
);
1171 rc
= hashtab_insert(h
, key
, role
);
1177 role_destroy(key
, role
, NULL
);
1181 static int type_read(struct policydb
*p
, struct hashtab
*h
, void *fp
)
1184 struct type_datum
*typdatum
;
1189 typdatum
= kmalloc(sizeof(*typdatum
),GFP_KERNEL
);
1194 memset(typdatum
, 0, sizeof(*typdatum
));
1196 rc
= next_entry(buf
, fp
, sizeof buf
);
1200 len
= le32_to_cpu(buf
[0]);
1201 typdatum
->value
= le32_to_cpu(buf
[1]);
1202 typdatum
->primary
= le32_to_cpu(buf
[2]);
1204 key
= kmalloc(len
+ 1,GFP_KERNEL
);
1209 rc
= next_entry(key
, fp
, len
);
1214 rc
= hashtab_insert(h
, key
, typdatum
);
1220 type_destroy(key
, typdatum
, NULL
);
1226 * Read a MLS level structure from a policydb binary
1227 * representation file.
1229 static int mls_read_level(struct mls_level
*lp
, void *fp
)
1234 memset(lp
, 0, sizeof(*lp
));
1236 rc
= next_entry(buf
, fp
, sizeof buf
);
1238 printk(KERN_ERR
"security: mls: truncated level\n");
1241 lp
->sens
= le32_to_cpu(buf
[0]);
1243 if (ebitmap_read(&lp
->cat
, fp
)) {
1244 printk(KERN_ERR
"security: mls: error reading level "
1254 static int user_read(struct policydb
*p
, struct hashtab
*h
, void *fp
)
1257 struct user_datum
*usrdatum
;
1262 usrdatum
= kmalloc(sizeof(*usrdatum
), GFP_KERNEL
);
1267 memset(usrdatum
, 0, sizeof(*usrdatum
));
1269 rc
= next_entry(buf
, fp
, sizeof buf
);
1273 len
= le32_to_cpu(buf
[0]);
1274 usrdatum
->value
= le32_to_cpu(buf
[1]);
1276 key
= kmalloc(len
+ 1,GFP_KERNEL
);
1281 rc
= next_entry(key
, fp
, len
);
1286 rc
= ebitmap_read(&usrdatum
->roles
, fp
);
1290 if (p
->policyvers
>= POLICYDB_VERSION_MLS
) {
1291 rc
= mls_read_range_helper(&usrdatum
->range
, fp
);
1294 rc
= mls_read_level(&usrdatum
->dfltlevel
, fp
);
1299 rc
= hashtab_insert(h
, key
, usrdatum
);
1305 user_destroy(key
, usrdatum
, NULL
);
1309 static int sens_read(struct policydb
*p
, struct hashtab
*h
, void *fp
)
1312 struct level_datum
*levdatum
;
1317 levdatum
= kmalloc(sizeof(*levdatum
), GFP_ATOMIC
);
1322 memset(levdatum
, 0, sizeof(*levdatum
));
1324 rc
= next_entry(buf
, fp
, sizeof buf
);
1328 len
= le32_to_cpu(buf
[0]);
1329 levdatum
->isalias
= le32_to_cpu(buf
[1]);
1331 key
= kmalloc(len
+ 1,GFP_ATOMIC
);
1336 rc
= next_entry(key
, fp
, len
);
1341 levdatum
->level
= kmalloc(sizeof(struct mls_level
), GFP_ATOMIC
);
1342 if (!levdatum
->level
) {
1346 if (mls_read_level(levdatum
->level
, fp
)) {
1351 rc
= hashtab_insert(h
, key
, levdatum
);
1357 sens_destroy(key
, levdatum
, NULL
);
1361 static int cat_read(struct policydb
*p
, struct hashtab
*h
, void *fp
)
1364 struct cat_datum
*catdatum
;
1369 catdatum
= kmalloc(sizeof(*catdatum
), GFP_ATOMIC
);
1374 memset(catdatum
, 0, sizeof(*catdatum
));
1376 rc
= next_entry(buf
, fp
, sizeof buf
);
1380 len
= le32_to_cpu(buf
[0]);
1381 catdatum
->value
= le32_to_cpu(buf
[1]);
1382 catdatum
->isalias
= le32_to_cpu(buf
[2]);
1384 key
= kmalloc(len
+ 1,GFP_ATOMIC
);
1389 rc
= next_entry(key
, fp
, len
);
1394 rc
= hashtab_insert(h
, key
, catdatum
);
1401 cat_destroy(key
, catdatum
, NULL
);
1405 static int (*read_f
[SYM_NUM
]) (struct policydb
*p
, struct hashtab
*h
, void *fp
) =
1417 extern int ss_initialized
;
1420 * Read the configuration data from a policy database binary
1421 * representation file into a policy database structure.
1423 int policydb_read(struct policydb
*p
, void *fp
)
1425 struct role_allow
*ra
, *lra
;
1426 struct role_trans
*tr
, *ltr
;
1427 struct ocontext
*l
, *c
, *newc
;
1428 struct genfs
*genfs_p
, *genfs
, *newgenfs
;
1431 u32 len
, len2
, config
, nprim
, nel
, nel2
;
1433 struct policydb_compat_info
*info
;
1434 struct range_trans
*rt
, *lrt
;
1438 rc
= policydb_init(p
);
1442 /* Read the magic number and string length. */
1443 rc
= next_entry(buf
, fp
, sizeof(u32
)* 2);
1447 if (le32_to_cpu(buf
[0]) != POLICYDB_MAGIC
) {
1448 printk(KERN_ERR
"security: policydb magic number 0x%x does "
1449 "not match expected magic number 0x%x\n",
1450 le32_to_cpu(buf
[0]), POLICYDB_MAGIC
);
1454 len
= le32_to_cpu(buf
[1]);
1455 if (len
!= strlen(POLICYDB_STRING
)) {
1456 printk(KERN_ERR
"security: policydb string length %d does not "
1457 "match expected length %Zu\n",
1458 len
, strlen(POLICYDB_STRING
));
1461 policydb_str
= kmalloc(len
+ 1,GFP_KERNEL
);
1462 if (!policydb_str
) {
1463 printk(KERN_ERR
"security: unable to allocate memory for policydb "
1464 "string of length %d\n", len
);
1468 rc
= next_entry(policydb_str
, fp
, len
);
1470 printk(KERN_ERR
"security: truncated policydb string identifier\n");
1471 kfree(policydb_str
);
1474 policydb_str
[len
] = 0;
1475 if (strcmp(policydb_str
, POLICYDB_STRING
)) {
1476 printk(KERN_ERR
"security: policydb string %s does not match "
1477 "my string %s\n", policydb_str
, POLICYDB_STRING
);
1478 kfree(policydb_str
);
1481 /* Done with policydb_str. */
1482 kfree(policydb_str
);
1483 policydb_str
= NULL
;
1485 /* Read the version, config, and table sizes. */
1486 rc
= next_entry(buf
, fp
, sizeof(u32
)*4);
1490 p
->policyvers
= le32_to_cpu(buf
[0]);
1491 if (p
->policyvers
< POLICYDB_VERSION_MIN
||
1492 p
->policyvers
> POLICYDB_VERSION_MAX
) {
1493 printk(KERN_ERR
"security: policydb version %d does not match "
1494 "my version range %d-%d\n",
1495 le32_to_cpu(buf
[0]), POLICYDB_VERSION_MIN
, POLICYDB_VERSION_MAX
);
1499 if ((le32_to_cpu(buf
[1]) & POLICYDB_CONFIG_MLS
)) {
1500 if (ss_initialized
&& !selinux_mls_enabled
) {
1501 printk(KERN_ERR
"Cannot switch between non-MLS and MLS "
1505 selinux_mls_enabled
= 1;
1506 config
|= POLICYDB_CONFIG_MLS
;
1508 if (p
->policyvers
< POLICYDB_VERSION_MLS
) {
1509 printk(KERN_ERR
"security policydb version %d (MLS) "
1510 "not backwards compatible\n", p
->policyvers
);
1514 if (ss_initialized
&& selinux_mls_enabled
) {
1515 printk(KERN_ERR
"Cannot switch between MLS and non-MLS "
1521 info
= policydb_lookup_compat(p
->policyvers
);
1523 printk(KERN_ERR
"security: unable to find policy compat info "
1524 "for version %d\n", p
->policyvers
);
1528 if (le32_to_cpu(buf
[2]) != info
->sym_num
||
1529 le32_to_cpu(buf
[3]) != info
->ocon_num
) {
1530 printk(KERN_ERR
"security: policydb table sizes (%d,%d) do "
1531 "not match mine (%d,%d)\n", le32_to_cpu(buf
[2]),
1532 le32_to_cpu(buf
[3]),
1533 info
->sym_num
, info
->ocon_num
);
1537 for (i
= 0; i
< info
->sym_num
; i
++) {
1538 rc
= next_entry(buf
, fp
, sizeof(u32
)*2);
1541 nprim
= le32_to_cpu(buf
[0]);
1542 nel
= le32_to_cpu(buf
[1]);
1543 for (j
= 0; j
< nel
; j
++) {
1544 rc
= read_f
[i
](p
, p
->symtab
[i
].table
, fp
);
1549 p
->symtab
[i
].nprim
= nprim
;
1552 rc
= avtab_read(&p
->te_avtab
, fp
, p
->policyvers
);
1556 if (p
->policyvers
>= POLICYDB_VERSION_BOOL
) {
1557 rc
= cond_read_list(p
, fp
);
1562 rc
= next_entry(buf
, fp
, sizeof(u32
));
1565 nel
= le32_to_cpu(buf
[0]);
1567 for (i
= 0; i
< nel
; i
++) {
1568 tr
= kmalloc(sizeof(*tr
), GFP_KERNEL
);
1573 memset(tr
, 0, sizeof(*tr
));
1579 rc
= next_entry(buf
, fp
, sizeof(u32
)*3);
1582 tr
->role
= le32_to_cpu(buf
[0]);
1583 tr
->type
= le32_to_cpu(buf
[1]);
1584 tr
->new_role
= le32_to_cpu(buf
[2]);
1588 rc
= next_entry(buf
, fp
, sizeof(u32
));
1591 nel
= le32_to_cpu(buf
[0]);
1593 for (i
= 0; i
< nel
; i
++) {
1594 ra
= kmalloc(sizeof(*ra
), GFP_KERNEL
);
1599 memset(ra
, 0, sizeof(*ra
));
1605 rc
= next_entry(buf
, fp
, sizeof(u32
)*2);
1608 ra
->role
= le32_to_cpu(buf
[0]);
1609 ra
->new_role
= le32_to_cpu(buf
[1]);
1613 rc
= policydb_index_classes(p
);
1617 rc
= policydb_index_others(p
);
1621 for (i
= 0; i
< info
->ocon_num
; i
++) {
1622 rc
= next_entry(buf
, fp
, sizeof(u32
));
1625 nel
= le32_to_cpu(buf
[0]);
1627 for (j
= 0; j
< nel
; j
++) {
1628 c
= kmalloc(sizeof(*c
), GFP_KERNEL
);
1633 memset(c
, 0, sizeof(*c
));
1637 p
->ocontexts
[i
] = c
;
1643 rc
= next_entry(buf
, fp
, sizeof(u32
));
1646 c
->sid
[0] = le32_to_cpu(buf
[0]);
1647 rc
= context_read_and_validate(&c
->context
[0], p
, fp
);
1653 rc
= next_entry(buf
, fp
, sizeof(u32
));
1656 len
= le32_to_cpu(buf
[0]);
1657 c
->u
.name
= kmalloc(len
+ 1,GFP_KERNEL
);
1662 rc
= next_entry(c
->u
.name
, fp
, len
);
1666 rc
= context_read_and_validate(&c
->context
[0], p
, fp
);
1669 rc
= context_read_and_validate(&c
->context
[1], p
, fp
);
1674 rc
= next_entry(buf
, fp
, sizeof(u32
)*3);
1677 c
->u
.port
.protocol
= le32_to_cpu(buf
[0]);
1678 c
->u
.port
.low_port
= le32_to_cpu(buf
[1]);
1679 c
->u
.port
.high_port
= le32_to_cpu(buf
[2]);
1680 rc
= context_read_and_validate(&c
->context
[0], p
, fp
);
1685 rc
= next_entry(buf
, fp
, sizeof(u32
)* 2);
1688 c
->u
.node
.addr
= le32_to_cpu(buf
[0]);
1689 c
->u
.node
.mask
= le32_to_cpu(buf
[1]);
1690 rc
= context_read_and_validate(&c
->context
[0], p
, fp
);
1695 rc
= next_entry(buf
, fp
, sizeof(u32
)*2);
1698 c
->v
.behavior
= le32_to_cpu(buf
[0]);
1699 if (c
->v
.behavior
> SECURITY_FS_USE_NONE
)
1701 len
= le32_to_cpu(buf
[1]);
1702 c
->u
.name
= kmalloc(len
+ 1,GFP_KERNEL
);
1707 rc
= next_entry(c
->u
.name
, fp
, len
);
1711 rc
= context_read_and_validate(&c
->context
[0], p
, fp
);
1718 rc
= next_entry(buf
, fp
, sizeof(u32
) * 8);
1721 for (k
= 0; k
< 4; k
++)
1722 c
->u
.node6
.addr
[k
] = le32_to_cpu(buf
[k
]);
1723 for (k
= 0; k
< 4; k
++)
1724 c
->u
.node6
.mask
[k
] = le32_to_cpu(buf
[k
+4]);
1725 if (context_read_and_validate(&c
->context
[0], p
, fp
))
1733 rc
= next_entry(buf
, fp
, sizeof(u32
));
1736 nel
= le32_to_cpu(buf
[0]);
1739 for (i
= 0; i
< nel
; i
++) {
1740 rc
= next_entry(buf
, fp
, sizeof(u32
));
1743 len
= le32_to_cpu(buf
[0]);
1744 newgenfs
= kmalloc(sizeof(*newgenfs
), GFP_KERNEL
);
1749 memset(newgenfs
, 0, sizeof(*newgenfs
));
1751 newgenfs
->fstype
= kmalloc(len
+ 1,GFP_KERNEL
);
1752 if (!newgenfs
->fstype
) {
1757 rc
= next_entry(newgenfs
->fstype
, fp
, len
);
1759 kfree(newgenfs
->fstype
);
1763 newgenfs
->fstype
[len
] = 0;
1764 for (genfs_p
= NULL
, genfs
= p
->genfs
; genfs
;
1765 genfs_p
= genfs
, genfs
= genfs
->next
) {
1766 if (strcmp(newgenfs
->fstype
, genfs
->fstype
) == 0) {
1767 printk(KERN_ERR
"security: dup genfs "
1768 "fstype %s\n", newgenfs
->fstype
);
1769 kfree(newgenfs
->fstype
);
1773 if (strcmp(newgenfs
->fstype
, genfs
->fstype
) < 0)
1776 newgenfs
->next
= genfs
;
1778 genfs_p
->next
= newgenfs
;
1780 p
->genfs
= newgenfs
;
1781 rc
= next_entry(buf
, fp
, sizeof(u32
));
1784 nel2
= le32_to_cpu(buf
[0]);
1785 for (j
= 0; j
< nel2
; j
++) {
1786 rc
= next_entry(buf
, fp
, sizeof(u32
));
1789 len
= le32_to_cpu(buf
[0]);
1791 newc
= kmalloc(sizeof(*newc
), GFP_KERNEL
);
1796 memset(newc
, 0, sizeof(*newc
));
1798 newc
->u
.name
= kmalloc(len
+ 1,GFP_KERNEL
);
1799 if (!newc
->u
.name
) {
1803 rc
= next_entry(newc
->u
.name
, fp
, len
);
1806 newc
->u
.name
[len
] = 0;
1807 rc
= next_entry(buf
, fp
, sizeof(u32
));
1810 newc
->v
.sclass
= le32_to_cpu(buf
[0]);
1811 if (context_read_and_validate(&newc
->context
[0], p
, fp
))
1813 for (l
= NULL
, c
= newgenfs
->head
; c
;
1814 l
= c
, c
= c
->next
) {
1815 if (!strcmp(newc
->u
.name
, c
->u
.name
) &&
1816 (!c
->v
.sclass
|| !newc
->v
.sclass
||
1817 newc
->v
.sclass
== c
->v
.sclass
)) {
1818 printk(KERN_ERR
"security: dup genfs "
1820 newgenfs
->fstype
, c
->u
.name
);
1823 len
= strlen(newc
->u
.name
);
1824 len2
= strlen(c
->u
.name
);
1833 newgenfs
->head
= newc
;
1837 if (p
->policyvers
>= POLICYDB_VERSION_MLS
) {
1838 rc
= next_entry(buf
, fp
, sizeof(u32
));
1841 nel
= le32_to_cpu(buf
[0]);
1843 for (i
= 0; i
< nel
; i
++) {
1844 rt
= kmalloc(sizeof(*rt
), GFP_KERNEL
);
1849 memset(rt
, 0, sizeof(*rt
));
1854 rc
= next_entry(buf
, fp
, (sizeof(u32
) * 2));
1857 rt
->dom
= le32_to_cpu(buf
[0]);
1858 rt
->type
= le32_to_cpu(buf
[1]);
1859 rc
= mls_read_range_helper(&rt
->range
, fp
);
1866 p
->type_attr_map
= kmalloc(p
->p_types
.nprim
*sizeof(struct ebitmap
), GFP_KERNEL
);
1867 if (!p
->type_attr_map
)
1870 for (i
= 0; i
< p
->p_types
.nprim
; i
++) {
1871 ebitmap_init(&p
->type_attr_map
[i
]);
1872 if (p
->policyvers
>= POLICYDB_VERSION_AVTAB
) {
1873 if (ebitmap_read(&p
->type_attr_map
[i
], fp
))
1876 /* add the type itself as the degenerate case */
1877 if (ebitmap_set_bit(&p
->type_attr_map
[i
], i
, 1))
1885 ocontext_destroy(newc
,OCON_FSUSE
);
1889 policydb_destroy(p
);