2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
33 #include "transaction.h"
34 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
39 #include "ref-cache.h"
41 #include "free-space-cache.h"
43 static struct extent_io_ops btree_extent_io_ops
;
44 static void end_workqueue_fn(struct btrfs_work
*work
);
47 * end_io_wq structs are used to do processing in task context when an IO is
48 * complete. This is used during reads to verify checksums, and it is used
49 * by writes to insert metadata for new file extents after IO is complete.
55 struct btrfs_fs_info
*info
;
58 struct list_head list
;
59 struct btrfs_work work
;
63 * async submit bios are used to offload expensive checksumming
64 * onto the worker threads. They checksum file and metadata bios
65 * just before they are sent down the IO stack.
67 struct async_submit_bio
{
70 struct list_head list
;
71 extent_submit_bio_hook_t
*submit_bio_start
;
72 extent_submit_bio_hook_t
*submit_bio_done
;
75 unsigned long bio_flags
;
76 struct btrfs_work work
;
79 /* These are used to set the lockdep class on the extent buffer locks.
80 * The class is set by the readpage_end_io_hook after the buffer has
81 * passed csum validation but before the pages are unlocked.
83 * The lockdep class is also set by btrfs_init_new_buffer on freshly
86 * The class is based on the level in the tree block, which allows lockdep
87 * to know that lower nodes nest inside the locks of higher nodes.
89 * We also add a check to make sure the highest level of the tree is
90 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
91 * code needs update as well.
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 # if BTRFS_MAX_LEVEL != 8
97 static struct lock_class_key btrfs_eb_class
[BTRFS_MAX_LEVEL
+ 1];
98 static const char *btrfs_eb_name
[BTRFS_MAX_LEVEL
+ 1] = {
108 /* highest possible level */
114 * extents on the btree inode are pretty simple, there's one extent
115 * that covers the entire device
117 static struct extent_map
*btree_get_extent(struct inode
*inode
,
118 struct page
*page
, size_t page_offset
, u64 start
, u64 len
,
121 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
122 struct extent_map
*em
;
125 spin_lock(&em_tree
->lock
);
126 em
= lookup_extent_mapping(em_tree
, start
, len
);
129 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
130 spin_unlock(&em_tree
->lock
);
133 spin_unlock(&em_tree
->lock
);
135 em
= alloc_extent_map(GFP_NOFS
);
137 em
= ERR_PTR(-ENOMEM
);
142 em
->block_len
= (u64
)-1;
144 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
146 spin_lock(&em_tree
->lock
);
147 ret
= add_extent_mapping(em_tree
, em
);
148 if (ret
== -EEXIST
) {
149 u64 failed_start
= em
->start
;
150 u64 failed_len
= em
->len
;
153 em
= lookup_extent_mapping(em_tree
, start
, len
);
157 em
= lookup_extent_mapping(em_tree
, failed_start
,
165 spin_unlock(&em_tree
->lock
);
173 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
175 return btrfs_crc32c(seed
, data
, len
);
178 void btrfs_csum_final(u32 crc
, char *result
)
180 *(__le32
*)result
= ~cpu_to_le32(crc
);
184 * compute the csum for a btree block, and either verify it or write it
185 * into the csum field of the block.
187 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
191 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
194 unsigned long cur_len
;
195 unsigned long offset
= BTRFS_CSUM_SIZE
;
196 char *map_token
= NULL
;
198 unsigned long map_start
;
199 unsigned long map_len
;
202 unsigned long inline_result
;
204 len
= buf
->len
- offset
;
206 err
= map_private_extent_buffer(buf
, offset
, 32,
208 &map_start
, &map_len
, KM_USER0
);
211 cur_len
= min(len
, map_len
- (offset
- map_start
));
212 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
216 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
218 if (csum_size
> sizeof(inline_result
)) {
219 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
223 result
= (char *)&inline_result
;
226 btrfs_csum_final(crc
, result
);
229 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
232 memcpy(&found
, result
, csum_size
);
234 read_extent_buffer(buf
, &val
, 0, csum_size
);
235 printk(KERN_INFO
"btrfs: %s checksum verify failed "
236 "on %llu wanted %X found %X level %d\n",
237 root
->fs_info
->sb
->s_id
,
238 buf
->start
, val
, found
, btrfs_header_level(buf
));
239 if (result
!= (char *)&inline_result
)
244 write_extent_buffer(buf
, result
, 0, csum_size
);
246 if (result
!= (char *)&inline_result
)
252 * we can't consider a given block up to date unless the transid of the
253 * block matches the transid in the parent node's pointer. This is how we
254 * detect blocks that either didn't get written at all or got written
255 * in the wrong place.
257 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
258 struct extent_buffer
*eb
, u64 parent_transid
)
262 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
265 lock_extent(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1, GFP_NOFS
);
266 if (extent_buffer_uptodate(io_tree
, eb
) &&
267 btrfs_header_generation(eb
) == parent_transid
) {
271 printk("parent transid verify failed on %llu wanted %llu found %llu\n",
272 (unsigned long long)eb
->start
,
273 (unsigned long long)parent_transid
,
274 (unsigned long long)btrfs_header_generation(eb
));
276 clear_extent_buffer_uptodate(io_tree
, eb
);
278 unlock_extent(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
284 * helper to read a given tree block, doing retries as required when
285 * the checksums don't match and we have alternate mirrors to try.
287 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
288 struct extent_buffer
*eb
,
289 u64 start
, u64 parent_transid
)
291 struct extent_io_tree
*io_tree
;
296 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
298 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
299 btree_get_extent
, mirror_num
);
301 !verify_parent_transid(io_tree
, eb
, parent_transid
))
304 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
310 if (mirror_num
> num_copies
)
317 * checksum a dirty tree block before IO. This has extra checks to make sure
318 * we only fill in the checksum field in the first page of a multi-page block
321 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
323 struct extent_io_tree
*tree
;
324 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
328 struct extent_buffer
*eb
;
331 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
333 if (page
->private == EXTENT_PAGE_PRIVATE
)
337 len
= page
->private >> 2;
340 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
341 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
342 btrfs_header_generation(eb
));
344 found_start
= btrfs_header_bytenr(eb
);
345 if (found_start
!= start
) {
349 if (eb
->first_page
!= page
) {
353 if (!PageUptodate(page
)) {
357 found_level
= btrfs_header_level(eb
);
359 csum_tree_block(root
, eb
, 0);
361 free_extent_buffer(eb
);
366 static int check_tree_block_fsid(struct btrfs_root
*root
,
367 struct extent_buffer
*eb
)
369 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
370 u8 fsid
[BTRFS_UUID_SIZE
];
373 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
376 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
380 fs_devices
= fs_devices
->seed
;
385 #ifdef CONFIG_DEBUG_LOCK_ALLOC
386 void btrfs_set_buffer_lockdep_class(struct extent_buffer
*eb
, int level
)
388 lockdep_set_class_and_name(&eb
->lock
,
389 &btrfs_eb_class
[level
],
390 btrfs_eb_name
[level
]);
394 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
395 struct extent_state
*state
)
397 struct extent_io_tree
*tree
;
401 struct extent_buffer
*eb
;
402 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
405 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
406 if (page
->private == EXTENT_PAGE_PRIVATE
)
411 len
= page
->private >> 2;
414 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
416 found_start
= btrfs_header_bytenr(eb
);
417 if (found_start
!= start
) {
418 printk(KERN_INFO
"btrfs bad tree block start %llu %llu\n",
419 (unsigned long long)found_start
,
420 (unsigned long long)eb
->start
);
424 if (eb
->first_page
!= page
) {
425 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
426 eb
->first_page
->index
, page
->index
);
431 if (check_tree_block_fsid(root
, eb
)) {
432 printk(KERN_INFO
"btrfs bad fsid on block %llu\n",
433 (unsigned long long)eb
->start
);
437 found_level
= btrfs_header_level(eb
);
439 btrfs_set_buffer_lockdep_class(eb
, found_level
);
441 ret
= csum_tree_block(root
, eb
, 1);
445 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
446 end
= eb
->start
+ end
- 1;
448 free_extent_buffer(eb
);
453 static void end_workqueue_bio(struct bio
*bio
, int err
)
455 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
456 struct btrfs_fs_info
*fs_info
;
458 fs_info
= end_io_wq
->info
;
459 end_io_wq
->error
= err
;
460 end_io_wq
->work
.func
= end_workqueue_fn
;
461 end_io_wq
->work
.flags
= 0;
463 if (bio
->bi_rw
& (1 << BIO_RW
)) {
464 if (end_io_wq
->metadata
)
465 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
468 btrfs_queue_worker(&fs_info
->endio_write_workers
,
471 if (end_io_wq
->metadata
)
472 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
475 btrfs_queue_worker(&fs_info
->endio_workers
,
480 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
483 struct end_io_wq
*end_io_wq
;
484 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
488 end_io_wq
->private = bio
->bi_private
;
489 end_io_wq
->end_io
= bio
->bi_end_io
;
490 end_io_wq
->info
= info
;
491 end_io_wq
->error
= 0;
492 end_io_wq
->bio
= bio
;
493 end_io_wq
->metadata
= metadata
;
495 bio
->bi_private
= end_io_wq
;
496 bio
->bi_end_io
= end_workqueue_bio
;
500 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
502 unsigned long limit
= min_t(unsigned long,
503 info
->workers
.max_workers
,
504 info
->fs_devices
->open_devices
);
508 int btrfs_congested_async(struct btrfs_fs_info
*info
, int iodone
)
510 return atomic_read(&info
->nr_async_bios
) >
511 btrfs_async_submit_limit(info
);
514 static void run_one_async_start(struct btrfs_work
*work
)
516 struct btrfs_fs_info
*fs_info
;
517 struct async_submit_bio
*async
;
519 async
= container_of(work
, struct async_submit_bio
, work
);
520 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
521 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
522 async
->mirror_num
, async
->bio_flags
);
525 static void run_one_async_done(struct btrfs_work
*work
)
527 struct btrfs_fs_info
*fs_info
;
528 struct async_submit_bio
*async
;
531 async
= container_of(work
, struct async_submit_bio
, work
);
532 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
534 limit
= btrfs_async_submit_limit(fs_info
);
535 limit
= limit
* 2 / 3;
537 atomic_dec(&fs_info
->nr_async_submits
);
539 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
540 waitqueue_active(&fs_info
->async_submit_wait
))
541 wake_up(&fs_info
->async_submit_wait
);
543 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
544 async
->mirror_num
, async
->bio_flags
);
547 static void run_one_async_free(struct btrfs_work
*work
)
549 struct async_submit_bio
*async
;
551 async
= container_of(work
, struct async_submit_bio
, work
);
555 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
556 int rw
, struct bio
*bio
, int mirror_num
,
557 unsigned long bio_flags
,
558 extent_submit_bio_hook_t
*submit_bio_start
,
559 extent_submit_bio_hook_t
*submit_bio_done
)
561 struct async_submit_bio
*async
;
563 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
567 async
->inode
= inode
;
570 async
->mirror_num
= mirror_num
;
571 async
->submit_bio_start
= submit_bio_start
;
572 async
->submit_bio_done
= submit_bio_done
;
574 async
->work
.func
= run_one_async_start
;
575 async
->work
.ordered_func
= run_one_async_done
;
576 async
->work
.ordered_free
= run_one_async_free
;
578 async
->work
.flags
= 0;
579 async
->bio_flags
= bio_flags
;
581 atomic_inc(&fs_info
->nr_async_submits
);
583 if (rw
& (1 << BIO_RW_SYNCIO
))
584 btrfs_set_work_high_prio(&async
->work
);
586 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
588 int limit
= btrfs_async_submit_limit(fs_info
);
589 if (atomic_read(&fs_info
->nr_async_submits
) > limit
) {
590 wait_event_timeout(fs_info
->async_submit_wait
,
591 (atomic_read(&fs_info
->nr_async_submits
) < limit
),
594 wait_event_timeout(fs_info
->async_submit_wait
,
595 (atomic_read(&fs_info
->nr_async_bios
) < limit
),
599 while (atomic_read(&fs_info
->async_submit_draining
) &&
600 atomic_read(&fs_info
->nr_async_submits
)) {
601 wait_event(fs_info
->async_submit_wait
,
602 (atomic_read(&fs_info
->nr_async_submits
) == 0));
608 static int btree_csum_one_bio(struct bio
*bio
)
610 struct bio_vec
*bvec
= bio
->bi_io_vec
;
612 struct btrfs_root
*root
;
614 WARN_ON(bio
->bi_vcnt
<= 0);
615 while (bio_index
< bio
->bi_vcnt
) {
616 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
617 csum_dirty_buffer(root
, bvec
->bv_page
);
624 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
625 struct bio
*bio
, int mirror_num
,
626 unsigned long bio_flags
)
629 * when we're called for a write, we're already in the async
630 * submission context. Just jump into btrfs_map_bio
632 btree_csum_one_bio(bio
);
636 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
637 int mirror_num
, unsigned long bio_flags
)
640 * when we're called for a write, we're already in the async
641 * submission context. Just jump into btrfs_map_bio
643 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
646 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
647 int mirror_num
, unsigned long bio_flags
)
651 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
655 if (!(rw
& (1 << BIO_RW
))) {
657 * called for a read, do the setup so that checksum validation
658 * can happen in the async kernel threads
660 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
665 * kthread helpers are used to submit writes so that checksumming
666 * can happen in parallel across all CPUs
668 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
669 inode
, rw
, bio
, mirror_num
, 0,
670 __btree_submit_bio_start
,
671 __btree_submit_bio_done
);
674 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
676 struct extent_io_tree
*tree
;
677 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
678 struct extent_buffer
*eb
;
681 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
682 if (!(current
->flags
& PF_MEMALLOC
)) {
683 return extent_write_full_page(tree
, page
,
684 btree_get_extent
, wbc
);
687 redirty_page_for_writepage(wbc
, page
);
688 eb
= btrfs_find_tree_block(root
, page_offset(page
),
692 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
694 spin_lock(&root
->fs_info
->delalloc_lock
);
695 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
696 spin_unlock(&root
->fs_info
->delalloc_lock
);
698 free_extent_buffer(eb
);
704 static int btree_writepages(struct address_space
*mapping
,
705 struct writeback_control
*wbc
)
707 struct extent_io_tree
*tree
;
708 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
709 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
710 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
712 unsigned long thresh
= 32 * 1024 * 1024;
714 if (wbc
->for_kupdate
)
717 /* this is a bit racy, but that's ok */
718 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
719 if (num_dirty
< thresh
)
722 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
725 static int btree_readpage(struct file
*file
, struct page
*page
)
727 struct extent_io_tree
*tree
;
728 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
729 return extent_read_full_page(tree
, page
, btree_get_extent
);
732 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
734 struct extent_io_tree
*tree
;
735 struct extent_map_tree
*map
;
738 if (PageWriteback(page
) || PageDirty(page
))
741 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
742 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
744 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
748 ret
= try_release_extent_buffer(tree
, page
);
750 ClearPagePrivate(page
);
751 set_page_private(page
, 0);
752 page_cache_release(page
);
758 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
760 struct extent_io_tree
*tree
;
761 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
762 extent_invalidatepage(tree
, page
, offset
);
763 btree_releasepage(page
, GFP_NOFS
);
764 if (PagePrivate(page
)) {
765 printk(KERN_WARNING
"btrfs warning page private not zero "
766 "on page %llu\n", (unsigned long long)page_offset(page
));
767 ClearPagePrivate(page
);
768 set_page_private(page
, 0);
769 page_cache_release(page
);
774 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
776 struct buffer_head
*bh
;
777 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
778 struct buffer_head
*head
;
779 if (!page_has_buffers(page
)) {
780 create_empty_buffers(page
, root
->fs_info
->sb
->s_blocksize
,
781 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
783 head
= page_buffers(page
);
786 if (buffer_dirty(bh
))
787 csum_tree_block(root
, bh
, 0);
788 bh
= bh
->b_this_page
;
789 } while (bh
!= head
);
790 return block_write_full_page(page
, btree_get_block
, wbc
);
794 static struct address_space_operations btree_aops
= {
795 .readpage
= btree_readpage
,
796 .writepage
= btree_writepage
,
797 .writepages
= btree_writepages
,
798 .releasepage
= btree_releasepage
,
799 .invalidatepage
= btree_invalidatepage
,
800 .sync_page
= block_sync_page
,
803 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
806 struct extent_buffer
*buf
= NULL
;
807 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
810 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
813 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
814 buf
, 0, 0, btree_get_extent
, 0);
815 free_extent_buffer(buf
);
819 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
820 u64 bytenr
, u32 blocksize
)
822 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
823 struct extent_buffer
*eb
;
824 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
825 bytenr
, blocksize
, GFP_NOFS
);
829 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
830 u64 bytenr
, u32 blocksize
)
832 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
833 struct extent_buffer
*eb
;
835 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
836 bytenr
, blocksize
, NULL
, GFP_NOFS
);
841 int btrfs_write_tree_block(struct extent_buffer
*buf
)
843 return btrfs_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
844 buf
->start
+ buf
->len
- 1, WB_SYNC_ALL
);
847 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
849 return btrfs_wait_on_page_writeback_range(buf
->first_page
->mapping
,
850 buf
->start
, buf
->start
+ buf
->len
- 1);
853 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
854 u32 blocksize
, u64 parent_transid
)
856 struct extent_buffer
*buf
= NULL
;
857 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
858 struct extent_io_tree
*io_tree
;
861 io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
863 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
867 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
870 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
877 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
878 struct extent_buffer
*buf
)
880 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
881 if (btrfs_header_generation(buf
) ==
882 root
->fs_info
->running_transaction
->transid
) {
883 btrfs_assert_tree_locked(buf
);
885 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
886 spin_lock(&root
->fs_info
->delalloc_lock
);
887 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
888 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
891 spin_unlock(&root
->fs_info
->delalloc_lock
);
894 /* ugh, clear_extent_buffer_dirty needs to lock the page */
895 btrfs_set_lock_blocking(buf
);
896 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
902 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
903 u32 stripesize
, struct btrfs_root
*root
,
904 struct btrfs_fs_info
*fs_info
,
908 root
->commit_root
= NULL
;
909 root
->ref_tree
= NULL
;
910 root
->sectorsize
= sectorsize
;
911 root
->nodesize
= nodesize
;
912 root
->leafsize
= leafsize
;
913 root
->stripesize
= stripesize
;
915 root
->track_dirty
= 0;
917 root
->fs_info
= fs_info
;
918 root
->objectid
= objectid
;
919 root
->last_trans
= 0;
920 root
->highest_inode
= 0;
921 root
->last_inode_alloc
= 0;
925 INIT_LIST_HEAD(&root
->dirty_list
);
926 INIT_LIST_HEAD(&root
->orphan_list
);
927 INIT_LIST_HEAD(&root
->dead_list
);
928 spin_lock_init(&root
->node_lock
);
929 spin_lock_init(&root
->list_lock
);
930 mutex_init(&root
->objectid_mutex
);
931 mutex_init(&root
->log_mutex
);
932 init_waitqueue_head(&root
->log_writer_wait
);
933 init_waitqueue_head(&root
->log_commit_wait
[0]);
934 init_waitqueue_head(&root
->log_commit_wait
[1]);
935 atomic_set(&root
->log_commit
[0], 0);
936 atomic_set(&root
->log_commit
[1], 0);
937 atomic_set(&root
->log_writers
, 0);
939 root
->log_transid
= 0;
940 extent_io_tree_init(&root
->dirty_log_pages
,
941 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
943 btrfs_leaf_ref_tree_init(&root
->ref_tree_struct
);
944 root
->ref_tree
= &root
->ref_tree_struct
;
946 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
947 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
948 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
949 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
950 root
->defrag_trans_start
= fs_info
->generation
;
951 init_completion(&root
->kobj_unregister
);
952 root
->defrag_running
= 0;
953 root
->defrag_level
= 0;
954 root
->root_key
.objectid
= objectid
;
955 root
->anon_super
.s_root
= NULL
;
956 root
->anon_super
.s_dev
= 0;
957 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
958 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
959 init_rwsem(&root
->anon_super
.s_umount
);
964 static int find_and_setup_root(struct btrfs_root
*tree_root
,
965 struct btrfs_fs_info
*fs_info
,
967 struct btrfs_root
*root
)
973 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
974 tree_root
->sectorsize
, tree_root
->stripesize
,
975 root
, fs_info
, objectid
);
976 ret
= btrfs_find_last_root(tree_root
, objectid
,
977 &root
->root_item
, &root
->root_key
);
980 generation
= btrfs_root_generation(&root
->root_item
);
981 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
982 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
983 blocksize
, generation
);
988 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
989 struct btrfs_fs_info
*fs_info
)
991 struct extent_buffer
*eb
;
992 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
1001 ret
= find_first_extent_bit(&log_root_tree
->dirty_log_pages
,
1002 0, &start
, &end
, EXTENT_DIRTY
);
1006 clear_extent_dirty(&log_root_tree
->dirty_log_pages
,
1007 start
, end
, GFP_NOFS
);
1009 eb
= fs_info
->log_root_tree
->node
;
1011 WARN_ON(btrfs_header_level(eb
) != 0);
1012 WARN_ON(btrfs_header_nritems(eb
) != 0);
1014 ret
= btrfs_free_reserved_extent(fs_info
->tree_root
,
1015 eb
->start
, eb
->len
);
1018 free_extent_buffer(eb
);
1019 kfree(fs_info
->log_root_tree
);
1020 fs_info
->log_root_tree
= NULL
;
1024 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1025 struct btrfs_fs_info
*fs_info
)
1027 struct btrfs_root
*root
;
1028 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1029 struct extent_buffer
*leaf
;
1031 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1033 return ERR_PTR(-ENOMEM
);
1035 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1036 tree_root
->sectorsize
, tree_root
->stripesize
,
1037 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1039 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1040 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1041 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1043 * log trees do not get reference counted because they go away
1044 * before a real commit is actually done. They do store pointers
1045 * to file data extents, and those reference counts still get
1046 * updated (along with back refs to the log tree).
1050 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
1051 0, BTRFS_TREE_LOG_OBJECTID
,
1052 trans
->transid
, 0, 0, 0);
1055 return ERR_CAST(leaf
);
1059 btrfs_set_header_nritems(root
->node
, 0);
1060 btrfs_set_header_level(root
->node
, 0);
1061 btrfs_set_header_bytenr(root
->node
, root
->node
->start
);
1062 btrfs_set_header_generation(root
->node
, trans
->transid
);
1063 btrfs_set_header_owner(root
->node
, BTRFS_TREE_LOG_OBJECTID
);
1065 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1066 (unsigned long)btrfs_header_fsid(root
->node
),
1068 btrfs_mark_buffer_dirty(root
->node
);
1069 btrfs_tree_unlock(root
->node
);
1073 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1074 struct btrfs_fs_info
*fs_info
)
1076 struct btrfs_root
*log_root
;
1078 log_root
= alloc_log_tree(trans
, fs_info
);
1079 if (IS_ERR(log_root
))
1080 return PTR_ERR(log_root
);
1081 WARN_ON(fs_info
->log_root_tree
);
1082 fs_info
->log_root_tree
= log_root
;
1086 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1087 struct btrfs_root
*root
)
1089 struct btrfs_root
*log_root
;
1090 struct btrfs_inode_item
*inode_item
;
1092 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1093 if (IS_ERR(log_root
))
1094 return PTR_ERR(log_root
);
1096 log_root
->last_trans
= trans
->transid
;
1097 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1099 inode_item
= &log_root
->root_item
.inode
;
1100 inode_item
->generation
= cpu_to_le64(1);
1101 inode_item
->size
= cpu_to_le64(3);
1102 inode_item
->nlink
= cpu_to_le32(1);
1103 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1104 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1106 btrfs_set_root_bytenr(&log_root
->root_item
, log_root
->node
->start
);
1107 btrfs_set_root_generation(&log_root
->root_item
, trans
->transid
);
1109 WARN_ON(root
->log_root
);
1110 root
->log_root
= log_root
;
1111 root
->log_transid
= 0;
1115 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1116 struct btrfs_key
*location
)
1118 struct btrfs_root
*root
;
1119 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1120 struct btrfs_path
*path
;
1121 struct extent_buffer
*l
;
1127 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1129 return ERR_PTR(-ENOMEM
);
1130 if (location
->offset
== (u64
)-1) {
1131 ret
= find_and_setup_root(tree_root
, fs_info
,
1132 location
->objectid
, root
);
1135 return ERR_PTR(ret
);
1140 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1141 tree_root
->sectorsize
, tree_root
->stripesize
,
1142 root
, fs_info
, location
->objectid
);
1144 path
= btrfs_alloc_path();
1146 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1153 read_extent_buffer(l
, &root
->root_item
,
1154 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1155 sizeof(root
->root_item
));
1156 memcpy(&root
->root_key
, location
, sizeof(*location
));
1159 btrfs_release_path(root
, path
);
1160 btrfs_free_path(path
);
1163 return ERR_PTR(ret
);
1165 generation
= btrfs_root_generation(&root
->root_item
);
1166 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1167 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1168 blocksize
, generation
);
1169 BUG_ON(!root
->node
);
1171 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1173 ret
= btrfs_find_highest_inode(root
, &highest_inode
);
1175 root
->highest_inode
= highest_inode
;
1176 root
->last_inode_alloc
= highest_inode
;
1182 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1185 struct btrfs_root
*root
;
1187 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1188 return fs_info
->tree_root
;
1189 if (root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1190 return fs_info
->extent_root
;
1192 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1193 (unsigned long)root_objectid
);
1197 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1198 struct btrfs_key
*location
)
1200 struct btrfs_root
*root
;
1203 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1204 return fs_info
->tree_root
;
1205 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1206 return fs_info
->extent_root
;
1207 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1208 return fs_info
->chunk_root
;
1209 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1210 return fs_info
->dev_root
;
1211 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1212 return fs_info
->csum_root
;
1214 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1215 (unsigned long)location
->objectid
);
1219 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1223 set_anon_super(&root
->anon_super
, NULL
);
1225 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1226 (unsigned long)root
->root_key
.objectid
,
1229 free_extent_buffer(root
->node
);
1231 return ERR_PTR(ret
);
1233 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
1234 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1235 root
->root_key
.objectid
, root
);
1237 btrfs_orphan_cleanup(root
);
1242 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_fs_info
*fs_info
,
1243 struct btrfs_key
*location
,
1244 const char *name
, int namelen
)
1246 struct btrfs_root
*root
;
1249 root
= btrfs_read_fs_root_no_name(fs_info
, location
);
1256 ret
= btrfs_set_root_name(root
, name
, namelen
);
1258 free_extent_buffer(root
->node
);
1260 return ERR_PTR(ret
);
1263 ret
= btrfs_sysfs_add_root(root
);
1265 free_extent_buffer(root
->node
);
1268 return ERR_PTR(ret
);
1275 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1277 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1279 struct btrfs_device
*device
;
1280 struct backing_dev_info
*bdi
;
1282 if ((bdi_bits
& (1 << BDI_write_congested
)) &&
1283 btrfs_congested_async(info
, 0))
1286 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1289 bdi
= blk_get_backing_dev_info(device
->bdev
);
1290 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1299 * this unplugs every device on the box, and it is only used when page
1302 static void __unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1304 struct btrfs_device
*device
;
1305 struct btrfs_fs_info
*info
;
1307 info
= (struct btrfs_fs_info
*)bdi
->unplug_io_data
;
1308 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1312 bdi
= blk_get_backing_dev_info(device
->bdev
);
1313 if (bdi
->unplug_io_fn
)
1314 bdi
->unplug_io_fn(bdi
, page
);
1318 static void btrfs_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1320 struct inode
*inode
;
1321 struct extent_map_tree
*em_tree
;
1322 struct extent_map
*em
;
1323 struct address_space
*mapping
;
1326 /* the generic O_DIRECT read code does this */
1328 __unplug_io_fn(bdi
, page
);
1333 * page->mapping may change at any time. Get a consistent copy
1334 * and use that for everything below
1337 mapping
= page
->mapping
;
1341 inode
= mapping
->host
;
1344 * don't do the expensive searching for a small number of
1347 if (BTRFS_I(inode
)->root
->fs_info
->fs_devices
->open_devices
<= 2) {
1348 __unplug_io_fn(bdi
, page
);
1352 offset
= page_offset(page
);
1354 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1355 spin_lock(&em_tree
->lock
);
1356 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
1357 spin_unlock(&em_tree
->lock
);
1359 __unplug_io_fn(bdi
, page
);
1363 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1364 free_extent_map(em
);
1365 __unplug_io_fn(bdi
, page
);
1368 offset
= offset
- em
->start
;
1369 btrfs_unplug_page(&BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1370 em
->block_start
+ offset
, page
);
1371 free_extent_map(em
);
1374 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1377 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1379 bdi
->capabilities
= default_backing_dev_info
.capabilities
;
1380 bdi
->unplug_io_fn
= btrfs_unplug_io_fn
;
1381 bdi
->unplug_io_data
= info
;
1382 bdi
->congested_fn
= btrfs_congested_fn
;
1383 bdi
->congested_data
= info
;
1387 static int bio_ready_for_csum(struct bio
*bio
)
1393 struct extent_io_tree
*io_tree
= NULL
;
1394 struct btrfs_fs_info
*info
= NULL
;
1395 struct bio_vec
*bvec
;
1399 bio_for_each_segment(bvec
, bio
, i
) {
1400 page
= bvec
->bv_page
;
1401 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1402 length
+= bvec
->bv_len
;
1405 if (!page
->private) {
1406 length
+= bvec
->bv_len
;
1409 length
= bvec
->bv_len
;
1410 buf_len
= page
->private >> 2;
1411 start
= page_offset(page
) + bvec
->bv_offset
;
1412 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1413 info
= BTRFS_I(page
->mapping
->host
)->root
->fs_info
;
1415 /* are we fully contained in this bio? */
1416 if (buf_len
<= length
)
1419 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1420 start
+ buf_len
- 1);
1425 * called by the kthread helper functions to finally call the bio end_io
1426 * functions. This is where read checksum verification actually happens
1428 static void end_workqueue_fn(struct btrfs_work
*work
)
1431 struct end_io_wq
*end_io_wq
;
1432 struct btrfs_fs_info
*fs_info
;
1435 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1436 bio
= end_io_wq
->bio
;
1437 fs_info
= end_io_wq
->info
;
1439 /* metadata bio reads are special because the whole tree block must
1440 * be checksummed at once. This makes sure the entire block is in
1441 * ram and up to date before trying to verify things. For
1442 * blocksize <= pagesize, it is basically a noop
1444 if (!(bio
->bi_rw
& (1 << BIO_RW
)) && end_io_wq
->metadata
&&
1445 !bio_ready_for_csum(bio
)) {
1446 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1450 error
= end_io_wq
->error
;
1451 bio
->bi_private
= end_io_wq
->private;
1452 bio
->bi_end_io
= end_io_wq
->end_io
;
1454 bio_endio(bio
, error
);
1457 static int cleaner_kthread(void *arg
)
1459 struct btrfs_root
*root
= arg
;
1463 if (root
->fs_info
->closing
)
1466 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1467 mutex_lock(&root
->fs_info
->cleaner_mutex
);
1468 btrfs_clean_old_snapshots(root
);
1469 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1471 if (freezing(current
)) {
1475 if (root
->fs_info
->closing
)
1477 set_current_state(TASK_INTERRUPTIBLE
);
1479 __set_current_state(TASK_RUNNING
);
1481 } while (!kthread_should_stop());
1485 static int transaction_kthread(void *arg
)
1487 struct btrfs_root
*root
= arg
;
1488 struct btrfs_trans_handle
*trans
;
1489 struct btrfs_transaction
*cur
;
1491 unsigned long delay
;
1496 if (root
->fs_info
->closing
)
1500 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1501 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1503 mutex_lock(&root
->fs_info
->trans_mutex
);
1504 cur
= root
->fs_info
->running_transaction
;
1506 mutex_unlock(&root
->fs_info
->trans_mutex
);
1510 now
= get_seconds();
1511 if (now
< cur
->start_time
|| now
- cur
->start_time
< 30) {
1512 mutex_unlock(&root
->fs_info
->trans_mutex
);
1516 mutex_unlock(&root
->fs_info
->trans_mutex
);
1517 trans
= btrfs_start_transaction(root
, 1);
1518 ret
= btrfs_commit_transaction(trans
, root
);
1521 wake_up_process(root
->fs_info
->cleaner_kthread
);
1522 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1524 if (freezing(current
)) {
1527 if (root
->fs_info
->closing
)
1529 set_current_state(TASK_INTERRUPTIBLE
);
1530 schedule_timeout(delay
);
1531 __set_current_state(TASK_RUNNING
);
1533 } while (!kthread_should_stop());
1537 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1538 struct btrfs_fs_devices
*fs_devices
,
1548 struct btrfs_key location
;
1549 struct buffer_head
*bh
;
1550 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1552 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1554 struct btrfs_root
*tree_root
= kzalloc(sizeof(struct btrfs_root
),
1556 struct btrfs_fs_info
*fs_info
= kzalloc(sizeof(*fs_info
),
1558 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1560 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1562 struct btrfs_root
*log_tree_root
;
1567 struct btrfs_super_block
*disk_super
;
1569 if (!extent_root
|| !tree_root
|| !fs_info
||
1570 !chunk_root
|| !dev_root
|| !csum_root
) {
1574 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_NOFS
);
1575 INIT_LIST_HEAD(&fs_info
->trans_list
);
1576 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1577 INIT_LIST_HEAD(&fs_info
->hashers
);
1578 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1579 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1580 spin_lock_init(&fs_info
->delalloc_lock
);
1581 spin_lock_init(&fs_info
->new_trans_lock
);
1582 spin_lock_init(&fs_info
->ref_cache_lock
);
1584 init_completion(&fs_info
->kobj_unregister
);
1585 fs_info
->tree_root
= tree_root
;
1586 fs_info
->extent_root
= extent_root
;
1587 fs_info
->csum_root
= csum_root
;
1588 fs_info
->chunk_root
= chunk_root
;
1589 fs_info
->dev_root
= dev_root
;
1590 fs_info
->fs_devices
= fs_devices
;
1591 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1592 INIT_LIST_HEAD(&fs_info
->space_info
);
1593 btrfs_mapping_init(&fs_info
->mapping_tree
);
1594 atomic_set(&fs_info
->nr_async_submits
, 0);
1595 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1596 atomic_set(&fs_info
->async_submit_draining
, 0);
1597 atomic_set(&fs_info
->nr_async_bios
, 0);
1598 atomic_set(&fs_info
->throttles
, 0);
1599 atomic_set(&fs_info
->throttle_gen
, 0);
1601 fs_info
->max_extent
= (u64
)-1;
1602 fs_info
->max_inline
= 8192 * 1024;
1603 setup_bdi(fs_info
, &fs_info
->bdi
);
1604 fs_info
->btree_inode
= new_inode(sb
);
1605 fs_info
->btree_inode
->i_ino
= 1;
1606 fs_info
->btree_inode
->i_nlink
= 1;
1608 fs_info
->thread_pool_size
= min_t(unsigned long,
1609 num_online_cpus() + 2, 8);
1611 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1612 spin_lock_init(&fs_info
->ordered_extent_lock
);
1614 sb
->s_blocksize
= 4096;
1615 sb
->s_blocksize_bits
= blksize_bits(4096);
1618 * we set the i_size on the btree inode to the max possible int.
1619 * the real end of the address space is determined by all of
1620 * the devices in the system
1622 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1623 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1624 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1626 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1627 fs_info
->btree_inode
->i_mapping
,
1629 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
,
1632 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1634 spin_lock_init(&fs_info
->block_group_cache_lock
);
1635 fs_info
->block_group_cache_tree
.rb_node
= NULL
;
1637 extent_io_tree_init(&fs_info
->pinned_extents
,
1638 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1639 fs_info
->do_barriers
= 1;
1641 INIT_LIST_HEAD(&fs_info
->dead_reloc_roots
);
1642 btrfs_leaf_ref_tree_init(&fs_info
->reloc_ref_tree
);
1643 btrfs_leaf_ref_tree_init(&fs_info
->shared_ref_tree
);
1645 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1646 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1647 sizeof(struct btrfs_key
));
1648 insert_inode_hash(fs_info
->btree_inode
);
1650 mutex_init(&fs_info
->trans_mutex
);
1651 mutex_init(&fs_info
->ordered_operations_mutex
);
1652 mutex_init(&fs_info
->tree_log_mutex
);
1653 mutex_init(&fs_info
->drop_mutex
);
1654 mutex_init(&fs_info
->chunk_mutex
);
1655 mutex_init(&fs_info
->transaction_kthread_mutex
);
1656 mutex_init(&fs_info
->cleaner_mutex
);
1657 mutex_init(&fs_info
->volume_mutex
);
1658 mutex_init(&fs_info
->tree_reloc_mutex
);
1660 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
1661 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
1663 init_waitqueue_head(&fs_info
->transaction_throttle
);
1664 init_waitqueue_head(&fs_info
->transaction_wait
);
1665 init_waitqueue_head(&fs_info
->async_submit_wait
);
1667 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1668 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1671 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1675 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1676 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1677 sizeof(fs_info
->super_for_commit
));
1680 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1682 disk_super
= &fs_info
->super_copy
;
1683 if (!btrfs_super_root(disk_super
))
1686 ret
= btrfs_parse_options(tree_root
, options
);
1692 features
= btrfs_super_incompat_flags(disk_super
) &
1693 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1695 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1696 "unsupported optional features (%Lx).\n",
1702 features
= btrfs_super_compat_ro_flags(disk_super
) &
1703 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1704 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1705 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1706 "unsupported option features (%Lx).\n",
1713 * we need to start all the end_io workers up front because the
1714 * queue work function gets called at interrupt time, and so it
1715 * cannot dynamically grow.
1717 btrfs_init_workers(&fs_info
->workers
, "worker",
1718 fs_info
->thread_pool_size
);
1720 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1721 fs_info
->thread_pool_size
);
1723 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1724 min_t(u64
, fs_devices
->num_devices
,
1725 fs_info
->thread_pool_size
));
1727 /* a higher idle thresh on the submit workers makes it much more
1728 * likely that bios will be send down in a sane order to the
1731 fs_info
->submit_workers
.idle_thresh
= 64;
1733 fs_info
->workers
.idle_thresh
= 16;
1734 fs_info
->workers
.ordered
= 1;
1736 fs_info
->delalloc_workers
.idle_thresh
= 2;
1737 fs_info
->delalloc_workers
.ordered
= 1;
1739 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1);
1740 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1741 fs_info
->thread_pool_size
);
1742 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1743 fs_info
->thread_pool_size
);
1744 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1745 "endio-meta-write", fs_info
->thread_pool_size
);
1746 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1747 fs_info
->thread_pool_size
);
1750 * endios are largely parallel and should have a very
1753 fs_info
->endio_workers
.idle_thresh
= 4;
1754 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1756 fs_info
->endio_write_workers
.idle_thresh
= 64;
1757 fs_info
->endio_meta_write_workers
.idle_thresh
= 64;
1759 btrfs_start_workers(&fs_info
->workers
, 1);
1760 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1761 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1762 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1763 btrfs_start_workers(&fs_info
->endio_workers
, fs_info
->thread_pool_size
);
1764 btrfs_start_workers(&fs_info
->endio_meta_workers
,
1765 fs_info
->thread_pool_size
);
1766 btrfs_start_workers(&fs_info
->endio_meta_write_workers
,
1767 fs_info
->thread_pool_size
);
1768 btrfs_start_workers(&fs_info
->endio_write_workers
,
1769 fs_info
->thread_pool_size
);
1771 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1772 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1773 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1775 nodesize
= btrfs_super_nodesize(disk_super
);
1776 leafsize
= btrfs_super_leafsize(disk_super
);
1777 sectorsize
= btrfs_super_sectorsize(disk_super
);
1778 stripesize
= btrfs_super_stripesize(disk_super
);
1779 tree_root
->nodesize
= nodesize
;
1780 tree_root
->leafsize
= leafsize
;
1781 tree_root
->sectorsize
= sectorsize
;
1782 tree_root
->stripesize
= stripesize
;
1784 sb
->s_blocksize
= sectorsize
;
1785 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1787 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1788 sizeof(disk_super
->magic
))) {
1789 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1790 goto fail_sb_buffer
;
1793 mutex_lock(&fs_info
->chunk_mutex
);
1794 ret
= btrfs_read_sys_array(tree_root
);
1795 mutex_unlock(&fs_info
->chunk_mutex
);
1797 printk(KERN_WARNING
"btrfs: failed to read the system "
1798 "array on %s\n", sb
->s_id
);
1799 goto fail_sys_array
;
1802 blocksize
= btrfs_level_size(tree_root
,
1803 btrfs_super_chunk_root_level(disk_super
));
1804 generation
= btrfs_super_chunk_root_generation(disk_super
);
1806 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1807 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1809 chunk_root
->node
= read_tree_block(chunk_root
,
1810 btrfs_super_chunk_root(disk_super
),
1811 blocksize
, generation
);
1812 BUG_ON(!chunk_root
->node
);
1814 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1815 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1818 mutex_lock(&fs_info
->chunk_mutex
);
1819 ret
= btrfs_read_chunk_tree(chunk_root
);
1820 mutex_unlock(&fs_info
->chunk_mutex
);
1822 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1824 goto fail_chunk_root
;
1827 btrfs_close_extra_devices(fs_devices
);
1829 blocksize
= btrfs_level_size(tree_root
,
1830 btrfs_super_root_level(disk_super
));
1831 generation
= btrfs_super_generation(disk_super
);
1833 tree_root
->node
= read_tree_block(tree_root
,
1834 btrfs_super_root(disk_super
),
1835 blocksize
, generation
);
1836 if (!tree_root
->node
)
1837 goto fail_chunk_root
;
1840 ret
= find_and_setup_root(tree_root
, fs_info
,
1841 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1843 goto fail_tree_root
;
1844 extent_root
->track_dirty
= 1;
1846 ret
= find_and_setup_root(tree_root
, fs_info
,
1847 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1848 dev_root
->track_dirty
= 1;
1850 goto fail_extent_root
;
1852 ret
= find_and_setup_root(tree_root
, fs_info
,
1853 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1855 goto fail_extent_root
;
1857 csum_root
->track_dirty
= 1;
1859 btrfs_read_block_groups(extent_root
);
1861 fs_info
->generation
= generation
;
1862 fs_info
->last_trans_committed
= generation
;
1863 fs_info
->data_alloc_profile
= (u64
)-1;
1864 fs_info
->metadata_alloc_profile
= (u64
)-1;
1865 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
1866 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
1868 if (IS_ERR(fs_info
->cleaner_kthread
))
1869 goto fail_csum_root
;
1871 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
1873 "btrfs-transaction");
1874 if (IS_ERR(fs_info
->transaction_kthread
))
1877 if (btrfs_super_log_root(disk_super
) != 0) {
1878 u64 bytenr
= btrfs_super_log_root(disk_super
);
1880 if (fs_devices
->rw_devices
== 0) {
1881 printk(KERN_WARNING
"Btrfs log replay required "
1884 goto fail_trans_kthread
;
1887 btrfs_level_size(tree_root
,
1888 btrfs_super_log_root_level(disk_super
));
1890 log_tree_root
= kzalloc(sizeof(struct btrfs_root
),
1893 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1894 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1896 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
1899 ret
= btrfs_recover_log_trees(log_tree_root
);
1902 if (sb
->s_flags
& MS_RDONLY
) {
1903 ret
= btrfs_commit_super(tree_root
);
1908 if (!(sb
->s_flags
& MS_RDONLY
)) {
1909 ret
= btrfs_cleanup_reloc_trees(tree_root
);
1913 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
1914 location
.type
= BTRFS_ROOT_ITEM_KEY
;
1915 location
.offset
= (u64
)-1;
1917 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
1918 if (!fs_info
->fs_root
)
1919 goto fail_trans_kthread
;
1923 kthread_stop(fs_info
->transaction_kthread
);
1925 kthread_stop(fs_info
->cleaner_kthread
);
1928 * make sure we're done with the btree inode before we stop our
1931 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
1932 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
1935 free_extent_buffer(csum_root
->node
);
1937 free_extent_buffer(extent_root
->node
);
1939 free_extent_buffer(tree_root
->node
);
1941 free_extent_buffer(chunk_root
->node
);
1943 free_extent_buffer(dev_root
->node
);
1945 btrfs_stop_workers(&fs_info
->fixup_workers
);
1946 btrfs_stop_workers(&fs_info
->delalloc_workers
);
1947 btrfs_stop_workers(&fs_info
->workers
);
1948 btrfs_stop_workers(&fs_info
->endio_workers
);
1949 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
1950 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
1951 btrfs_stop_workers(&fs_info
->endio_write_workers
);
1952 btrfs_stop_workers(&fs_info
->submit_workers
);
1954 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
1955 iput(fs_info
->btree_inode
);
1957 btrfs_close_devices(fs_info
->fs_devices
);
1958 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
1959 bdi_destroy(&fs_info
->bdi
);
1968 return ERR_PTR(err
);
1971 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
1973 char b
[BDEVNAME_SIZE
];
1976 set_buffer_uptodate(bh
);
1978 if (!buffer_eopnotsupp(bh
) && printk_ratelimit()) {
1979 printk(KERN_WARNING
"lost page write due to "
1980 "I/O error on %s\n",
1981 bdevname(bh
->b_bdev
, b
));
1983 /* note, we dont' set_buffer_write_io_error because we have
1984 * our own ways of dealing with the IO errors
1986 clear_buffer_uptodate(bh
);
1992 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
1994 struct buffer_head
*bh
;
1995 struct buffer_head
*latest
= NULL
;
1996 struct btrfs_super_block
*super
;
2001 /* we would like to check all the supers, but that would make
2002 * a btrfs mount succeed after a mkfs from a different FS.
2003 * So, we need to add a special mount option to scan for
2004 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2006 for (i
= 0; i
< 1; i
++) {
2007 bytenr
= btrfs_sb_offset(i
);
2008 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2010 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2014 super
= (struct btrfs_super_block
*)bh
->b_data
;
2015 if (btrfs_super_bytenr(super
) != bytenr
||
2016 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2017 sizeof(super
->magic
))) {
2022 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2025 transid
= btrfs_super_generation(super
);
2033 static int write_dev_supers(struct btrfs_device
*device
,
2034 struct btrfs_super_block
*sb
,
2035 int do_barriers
, int wait
, int max_mirrors
)
2037 struct buffer_head
*bh
;
2043 int last_barrier
= 0;
2045 if (max_mirrors
== 0)
2046 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2048 /* make sure only the last submit_bh does a barrier */
2050 for (i
= 0; i
< max_mirrors
; i
++) {
2051 bytenr
= btrfs_sb_offset(i
);
2052 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2053 device
->total_bytes
)
2059 for (i
= 0; i
< max_mirrors
; i
++) {
2060 bytenr
= btrfs_sb_offset(i
);
2061 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2065 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2066 BTRFS_SUPER_INFO_SIZE
);
2070 if (buffer_uptodate(bh
)) {
2075 btrfs_set_super_bytenr(sb
, bytenr
);
2078 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2079 BTRFS_CSUM_SIZE
, crc
,
2080 BTRFS_SUPER_INFO_SIZE
-
2082 btrfs_csum_final(crc
, sb
->csum
);
2084 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2085 BTRFS_SUPER_INFO_SIZE
);
2086 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2088 set_buffer_uptodate(bh
);
2091 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2094 if (i
== last_barrier
&& do_barriers
&& device
->barriers
) {
2095 ret
= submit_bh(WRITE_BARRIER
, bh
);
2096 if (ret
== -EOPNOTSUPP
) {
2097 printk("btrfs: disabling barriers on dev %s\n",
2099 set_buffer_uptodate(bh
);
2100 device
->barriers
= 0;
2103 ret
= submit_bh(WRITE_SYNC
, bh
);
2106 ret
= submit_bh(WRITE_SYNC
, bh
);
2111 if (!buffer_uptodate(bh
))
2119 return errors
< i
? 0 : -1;
2122 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2124 struct list_head
*head
= &root
->fs_info
->fs_devices
->devices
;
2125 struct btrfs_device
*dev
;
2126 struct btrfs_super_block
*sb
;
2127 struct btrfs_dev_item
*dev_item
;
2131 int total_errors
= 0;
2134 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2135 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2137 sb
= &root
->fs_info
->super_for_commit
;
2138 dev_item
= &sb
->dev_item
;
2139 list_for_each_entry(dev
, head
, dev_list
) {
2144 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2147 btrfs_set_stack_device_generation(dev_item
, 0);
2148 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2149 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2150 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2151 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2152 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2153 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2154 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2155 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2156 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2158 flags
= btrfs_super_flags(sb
);
2159 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2161 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2165 if (total_errors
> max_errors
) {
2166 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2172 list_for_each_entry(dev
, head
, dev_list
) {
2175 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2178 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2182 if (total_errors
> max_errors
) {
2183 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2190 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2191 struct btrfs_root
*root
, int max_mirrors
)
2195 ret
= write_all_supers(root
, max_mirrors
);
2199 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2201 radix_tree_delete(&fs_info
->fs_roots_radix
,
2202 (unsigned long)root
->root_key
.objectid
);
2203 if (root
->anon_super
.s_dev
) {
2204 down_write(&root
->anon_super
.s_umount
);
2205 kill_anon_super(&root
->anon_super
);
2208 free_extent_buffer(root
->node
);
2209 if (root
->commit_root
)
2210 free_extent_buffer(root
->commit_root
);
2216 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2219 struct btrfs_root
*gang
[8];
2223 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2228 for (i
= 0; i
< ret
; i
++)
2229 btrfs_free_fs_root(fs_info
, gang
[i
]);
2234 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2236 u64 root_objectid
= 0;
2237 struct btrfs_root
*gang
[8];
2242 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2243 (void **)gang
, root_objectid
,
2247 for (i
= 0; i
< ret
; i
++) {
2248 root_objectid
= gang
[i
]->root_key
.objectid
;
2249 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
2250 root_objectid
, gang
[i
]);
2252 btrfs_orphan_cleanup(gang
[i
]);
2259 int btrfs_commit_super(struct btrfs_root
*root
)
2261 struct btrfs_trans_handle
*trans
;
2264 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2265 btrfs_clean_old_snapshots(root
);
2266 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2267 trans
= btrfs_start_transaction(root
, 1);
2268 ret
= btrfs_commit_transaction(trans
, root
);
2270 /* run commit again to drop the original snapshot */
2271 trans
= btrfs_start_transaction(root
, 1);
2272 btrfs_commit_transaction(trans
, root
);
2273 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2276 ret
= write_ctree_super(NULL
, root
, 0);
2280 int close_ctree(struct btrfs_root
*root
)
2282 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2285 fs_info
->closing
= 1;
2288 kthread_stop(root
->fs_info
->transaction_kthread
);
2289 kthread_stop(root
->fs_info
->cleaner_kthread
);
2291 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2292 ret
= btrfs_commit_super(root
);
2294 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2297 if (fs_info
->delalloc_bytes
) {
2298 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2299 fs_info
->delalloc_bytes
);
2301 if (fs_info
->total_ref_cache_size
) {
2302 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2303 (unsigned long long)fs_info
->total_ref_cache_size
);
2306 if (fs_info
->extent_root
->node
)
2307 free_extent_buffer(fs_info
->extent_root
->node
);
2309 if (fs_info
->tree_root
->node
)
2310 free_extent_buffer(fs_info
->tree_root
->node
);
2312 if (root
->fs_info
->chunk_root
->node
)
2313 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2315 if (root
->fs_info
->dev_root
->node
)
2316 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2318 if (root
->fs_info
->csum_root
->node
)
2319 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2321 btrfs_free_block_groups(root
->fs_info
);
2323 del_fs_roots(fs_info
);
2325 iput(fs_info
->btree_inode
);
2327 btrfs_stop_workers(&fs_info
->fixup_workers
);
2328 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2329 btrfs_stop_workers(&fs_info
->workers
);
2330 btrfs_stop_workers(&fs_info
->endio_workers
);
2331 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2332 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2333 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2334 btrfs_stop_workers(&fs_info
->submit_workers
);
2337 while (!list_empty(&fs_info
->hashers
)) {
2338 struct btrfs_hasher
*hasher
;
2339 hasher
= list_entry(fs_info
->hashers
.next
, struct btrfs_hasher
,
2341 list_del(&hasher
->hashers
);
2342 crypto_free_hash(&fs_info
->hash_tfm
);
2346 btrfs_close_devices(fs_info
->fs_devices
);
2347 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2349 bdi_destroy(&fs_info
->bdi
);
2351 kfree(fs_info
->extent_root
);
2352 kfree(fs_info
->tree_root
);
2353 kfree(fs_info
->chunk_root
);
2354 kfree(fs_info
->dev_root
);
2355 kfree(fs_info
->csum_root
);
2359 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2362 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2364 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
);
2368 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2373 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2375 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2376 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2380 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2382 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2383 u64 transid
= btrfs_header_generation(buf
);
2384 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2387 btrfs_assert_tree_locked(buf
);
2388 if (transid
!= root
->fs_info
->generation
) {
2389 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2390 "found %llu running %llu\n",
2391 (unsigned long long)buf
->start
,
2392 (unsigned long long)transid
,
2393 (unsigned long long)root
->fs_info
->generation
);
2396 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2399 spin_lock(&root
->fs_info
->delalloc_lock
);
2400 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2401 spin_unlock(&root
->fs_info
->delalloc_lock
);
2405 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2408 * looks as though older kernels can get into trouble with
2409 * this code, they end up stuck in balance_dirty_pages forever
2411 struct extent_io_tree
*tree
;
2414 unsigned long thresh
= 32 * 1024 * 1024;
2415 tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
2417 if (current
->flags
& PF_MEMALLOC
)
2420 num_dirty
= count_range_bits(tree
, &start
, (u64
)-1,
2421 thresh
, EXTENT_DIRTY
);
2422 if (num_dirty
> thresh
) {
2423 balance_dirty_pages_ratelimited_nr(
2424 root
->fs_info
->btree_inode
->i_mapping
, 1);
2429 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2431 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2433 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2435 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2439 int btree_lock_page_hook(struct page
*page
)
2441 struct inode
*inode
= page
->mapping
->host
;
2442 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2443 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2444 struct extent_buffer
*eb
;
2446 u64 bytenr
= page_offset(page
);
2448 if (page
->private == EXTENT_PAGE_PRIVATE
)
2451 len
= page
->private >> 2;
2452 eb
= find_extent_buffer(io_tree
, bytenr
, len
, GFP_NOFS
);
2456 btrfs_tree_lock(eb
);
2457 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2459 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2460 spin_lock(&root
->fs_info
->delalloc_lock
);
2461 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2462 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2465 spin_unlock(&root
->fs_info
->delalloc_lock
);
2468 btrfs_tree_unlock(eb
);
2469 free_extent_buffer(eb
);
2475 static struct extent_io_ops btree_extent_io_ops
= {
2476 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
2477 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
2478 .submit_bio_hook
= btree_submit_bio_hook
,
2479 /* note we're sharing with inode.c for the merge bio hook */
2480 .merge_bio_hook
= btrfs_merge_bio_hook
,