2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
43 #include "transaction.h"
44 #include "btrfs_inode.h"
46 #include "print-tree.h"
48 #include "ordered-data.h"
51 #include "ref-cache.h"
52 #include "compression.h"
55 struct btrfs_iget_args
{
57 struct btrfs_root
*root
;
60 static struct inode_operations btrfs_dir_inode_operations
;
61 static struct inode_operations btrfs_symlink_inode_operations
;
62 static struct inode_operations btrfs_dir_ro_inode_operations
;
63 static struct inode_operations btrfs_special_inode_operations
;
64 static struct inode_operations btrfs_file_inode_operations
;
65 static struct address_space_operations btrfs_aops
;
66 static struct address_space_operations btrfs_symlink_aops
;
67 static struct file_operations btrfs_dir_file_operations
;
68 static struct extent_io_ops btrfs_extent_io_ops
;
70 static struct kmem_cache
*btrfs_inode_cachep
;
71 struct kmem_cache
*btrfs_trans_handle_cachep
;
72 struct kmem_cache
*btrfs_transaction_cachep
;
73 struct kmem_cache
*btrfs_bit_radix_cachep
;
74 struct kmem_cache
*btrfs_path_cachep
;
77 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
78 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
79 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
80 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
81 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
82 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
83 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
84 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
87 static void btrfs_truncate(struct inode
*inode
);
88 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
89 static noinline
int cow_file_range(struct inode
*inode
,
90 struct page
*locked_page
,
91 u64 start
, u64 end
, int *page_started
,
92 unsigned long *nr_written
, int unlock
);
94 static int btrfs_init_inode_security(struct inode
*inode
, struct inode
*dir
)
98 err
= btrfs_init_acl(inode
, dir
);
100 err
= btrfs_xattr_security_init(inode
, dir
);
105 * this does all the hard work for inserting an inline extent into
106 * the btree. The caller should have done a btrfs_drop_extents so that
107 * no overlapping inline items exist in the btree
109 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
110 struct btrfs_root
*root
, struct inode
*inode
,
111 u64 start
, size_t size
, size_t compressed_size
,
112 struct page
**compressed_pages
)
114 struct btrfs_key key
;
115 struct btrfs_path
*path
;
116 struct extent_buffer
*leaf
;
117 struct page
*page
= NULL
;
120 struct btrfs_file_extent_item
*ei
;
123 size_t cur_size
= size
;
125 unsigned long offset
;
126 int use_compress
= 0;
128 if (compressed_size
&& compressed_pages
) {
130 cur_size
= compressed_size
;
133 path
= btrfs_alloc_path();
137 path
->leave_spinning
= 1;
138 btrfs_set_trans_block_group(trans
, inode
);
140 key
.objectid
= inode
->i_ino
;
142 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
143 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
145 inode_add_bytes(inode
, size
);
146 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
153 leaf
= path
->nodes
[0];
154 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
155 struct btrfs_file_extent_item
);
156 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
157 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
158 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
159 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
160 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
161 ptr
= btrfs_file_extent_inline_start(ei
);
166 while (compressed_size
> 0) {
167 cpage
= compressed_pages
[i
];
168 cur_size
= min_t(unsigned long, compressed_size
,
171 kaddr
= kmap_atomic(cpage
, KM_USER0
);
172 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
173 kunmap_atomic(kaddr
, KM_USER0
);
177 compressed_size
-= cur_size
;
179 btrfs_set_file_extent_compression(leaf
, ei
,
180 BTRFS_COMPRESS_ZLIB
);
182 page
= find_get_page(inode
->i_mapping
,
183 start
>> PAGE_CACHE_SHIFT
);
184 btrfs_set_file_extent_compression(leaf
, ei
, 0);
185 kaddr
= kmap_atomic(page
, KM_USER0
);
186 offset
= start
& (PAGE_CACHE_SIZE
- 1);
187 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
188 kunmap_atomic(kaddr
, KM_USER0
);
189 page_cache_release(page
);
191 btrfs_mark_buffer_dirty(leaf
);
192 btrfs_free_path(path
);
194 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
195 btrfs_update_inode(trans
, root
, inode
);
198 btrfs_free_path(path
);
204 * conditionally insert an inline extent into the file. This
205 * does the checks required to make sure the data is small enough
206 * to fit as an inline extent.
208 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
209 struct btrfs_root
*root
,
210 struct inode
*inode
, u64 start
, u64 end
,
211 size_t compressed_size
,
212 struct page
**compressed_pages
)
214 u64 isize
= i_size_read(inode
);
215 u64 actual_end
= min(end
+ 1, isize
);
216 u64 inline_len
= actual_end
- start
;
217 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
218 ~((u64
)root
->sectorsize
- 1);
220 u64 data_len
= inline_len
;
224 data_len
= compressed_size
;
227 actual_end
>= PAGE_CACHE_SIZE
||
228 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
230 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
232 data_len
> root
->fs_info
->max_inline
) {
236 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
237 aligned_end
, start
, &hint_byte
);
240 if (isize
> actual_end
)
241 inline_len
= min_t(u64
, isize
, actual_end
);
242 ret
= insert_inline_extent(trans
, root
, inode
, start
,
243 inline_len
, compressed_size
,
246 btrfs_drop_extent_cache(inode
, start
, aligned_end
, 0);
250 struct async_extent
{
255 unsigned long nr_pages
;
256 struct list_head list
;
261 struct btrfs_root
*root
;
262 struct page
*locked_page
;
265 struct list_head extents
;
266 struct btrfs_work work
;
269 static noinline
int add_async_extent(struct async_cow
*cow
,
270 u64 start
, u64 ram_size
,
273 unsigned long nr_pages
)
275 struct async_extent
*async_extent
;
277 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
278 async_extent
->start
= start
;
279 async_extent
->ram_size
= ram_size
;
280 async_extent
->compressed_size
= compressed_size
;
281 async_extent
->pages
= pages
;
282 async_extent
->nr_pages
= nr_pages
;
283 list_add_tail(&async_extent
->list
, &cow
->extents
);
288 * we create compressed extents in two phases. The first
289 * phase compresses a range of pages that have already been
290 * locked (both pages and state bits are locked).
292 * This is done inside an ordered work queue, and the compression
293 * is spread across many cpus. The actual IO submission is step
294 * two, and the ordered work queue takes care of making sure that
295 * happens in the same order things were put onto the queue by
296 * writepages and friends.
298 * If this code finds it can't get good compression, it puts an
299 * entry onto the work queue to write the uncompressed bytes. This
300 * makes sure that both compressed inodes and uncompressed inodes
301 * are written in the same order that pdflush sent them down.
303 static noinline
int compress_file_range(struct inode
*inode
,
304 struct page
*locked_page
,
306 struct async_cow
*async_cow
,
309 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
310 struct btrfs_trans_handle
*trans
;
314 u64 blocksize
= root
->sectorsize
;
316 u64 isize
= i_size_read(inode
);
318 struct page
**pages
= NULL
;
319 unsigned long nr_pages
;
320 unsigned long nr_pages_ret
= 0;
321 unsigned long total_compressed
= 0;
322 unsigned long total_in
= 0;
323 unsigned long max_compressed
= 128 * 1024;
324 unsigned long max_uncompressed
= 128 * 1024;
330 actual_end
= min_t(u64
, isize
, end
+ 1);
333 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
334 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
337 * we don't want to send crud past the end of i_size through
338 * compression, that's just a waste of CPU time. So, if the
339 * end of the file is before the start of our current
340 * requested range of bytes, we bail out to the uncompressed
341 * cleanup code that can deal with all of this.
343 * It isn't really the fastest way to fix things, but this is a
344 * very uncommon corner.
346 if (actual_end
<= start
)
347 goto cleanup_and_bail_uncompressed
;
349 total_compressed
= actual_end
- start
;
351 /* we want to make sure that amount of ram required to uncompress
352 * an extent is reasonable, so we limit the total size in ram
353 * of a compressed extent to 128k. This is a crucial number
354 * because it also controls how easily we can spread reads across
355 * cpus for decompression.
357 * We also want to make sure the amount of IO required to do
358 * a random read is reasonably small, so we limit the size of
359 * a compressed extent to 128k.
361 total_compressed
= min(total_compressed
, max_uncompressed
);
362 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
363 num_bytes
= max(blocksize
, num_bytes
);
364 disk_num_bytes
= num_bytes
;
369 * we do compression for mount -o compress and when the
370 * inode has not been flagged as nocompress. This flag can
371 * change at any time if we discover bad compression ratios.
373 if (!btrfs_test_flag(inode
, NOCOMPRESS
) &&
374 btrfs_test_opt(root
, COMPRESS
)) {
376 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
378 ret
= btrfs_zlib_compress_pages(inode
->i_mapping
, start
,
379 total_compressed
, pages
,
380 nr_pages
, &nr_pages_ret
,
386 unsigned long offset
= total_compressed
&
387 (PAGE_CACHE_SIZE
- 1);
388 struct page
*page
= pages
[nr_pages_ret
- 1];
391 /* zero the tail end of the last page, we might be
392 * sending it down to disk
395 kaddr
= kmap_atomic(page
, KM_USER0
);
396 memset(kaddr
+ offset
, 0,
397 PAGE_CACHE_SIZE
- offset
);
398 kunmap_atomic(kaddr
, KM_USER0
);
404 trans
= btrfs_join_transaction(root
, 1);
406 btrfs_set_trans_block_group(trans
, inode
);
408 /* lets try to make an inline extent */
409 if (ret
|| total_in
< (actual_end
- start
)) {
410 /* we didn't compress the entire range, try
411 * to make an uncompressed inline extent.
413 ret
= cow_file_range_inline(trans
, root
, inode
,
414 start
, end
, 0, NULL
);
416 /* try making a compressed inline extent */
417 ret
= cow_file_range_inline(trans
, root
, inode
,
419 total_compressed
, pages
);
421 btrfs_end_transaction(trans
, root
);
424 * inline extent creation worked, we don't need
425 * to create any more async work items. Unlock
426 * and free up our temp pages.
428 extent_clear_unlock_delalloc(inode
,
429 &BTRFS_I(inode
)->io_tree
,
430 start
, end
, NULL
, 1, 0,
439 * we aren't doing an inline extent round the compressed size
440 * up to a block size boundary so the allocator does sane
443 total_compressed
= (total_compressed
+ blocksize
- 1) &
447 * one last check to make sure the compression is really a
448 * win, compare the page count read with the blocks on disk
450 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
451 ~(PAGE_CACHE_SIZE
- 1);
452 if (total_compressed
>= total_in
) {
455 disk_num_bytes
= total_compressed
;
456 num_bytes
= total_in
;
459 if (!will_compress
&& pages
) {
461 * the compression code ran but failed to make things smaller,
462 * free any pages it allocated and our page pointer array
464 for (i
= 0; i
< nr_pages_ret
; i
++) {
465 WARN_ON(pages
[i
]->mapping
);
466 page_cache_release(pages
[i
]);
470 total_compressed
= 0;
473 /* flag the file so we don't compress in the future */
474 btrfs_set_flag(inode
, NOCOMPRESS
);
479 /* the async work queues will take care of doing actual
480 * allocation on disk for these compressed pages,
481 * and will submit them to the elevator.
483 add_async_extent(async_cow
, start
, num_bytes
,
484 total_compressed
, pages
, nr_pages_ret
);
486 if (start
+ num_bytes
< end
&& start
+ num_bytes
< actual_end
) {
493 cleanup_and_bail_uncompressed
:
495 * No compression, but we still need to write the pages in
496 * the file we've been given so far. redirty the locked
497 * page if it corresponds to our extent and set things up
498 * for the async work queue to run cow_file_range to do
499 * the normal delalloc dance
501 if (page_offset(locked_page
) >= start
&&
502 page_offset(locked_page
) <= end
) {
503 __set_page_dirty_nobuffers(locked_page
);
504 /* unlocked later on in the async handlers */
506 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0);
514 for (i
= 0; i
< nr_pages_ret
; i
++) {
515 WARN_ON(pages
[i
]->mapping
);
516 page_cache_release(pages
[i
]);
524 * phase two of compressed writeback. This is the ordered portion
525 * of the code, which only gets called in the order the work was
526 * queued. We walk all the async extents created by compress_file_range
527 * and send them down to the disk.
529 static noinline
int submit_compressed_extents(struct inode
*inode
,
530 struct async_cow
*async_cow
)
532 struct async_extent
*async_extent
;
534 struct btrfs_trans_handle
*trans
;
535 struct btrfs_key ins
;
536 struct extent_map
*em
;
537 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
538 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
539 struct extent_io_tree
*io_tree
;
542 if (list_empty(&async_cow
->extents
))
545 trans
= btrfs_join_transaction(root
, 1);
547 while (!list_empty(&async_cow
->extents
)) {
548 async_extent
= list_entry(async_cow
->extents
.next
,
549 struct async_extent
, list
);
550 list_del(&async_extent
->list
);
552 io_tree
= &BTRFS_I(inode
)->io_tree
;
554 /* did the compression code fall back to uncompressed IO? */
555 if (!async_extent
->pages
) {
556 int page_started
= 0;
557 unsigned long nr_written
= 0;
559 lock_extent(io_tree
, async_extent
->start
,
560 async_extent
->start
+
561 async_extent
->ram_size
- 1, GFP_NOFS
);
563 /* allocate blocks */
564 cow_file_range(inode
, async_cow
->locked_page
,
566 async_extent
->start
+
567 async_extent
->ram_size
- 1,
568 &page_started
, &nr_written
, 0);
571 * if page_started, cow_file_range inserted an
572 * inline extent and took care of all the unlocking
573 * and IO for us. Otherwise, we need to submit
574 * all those pages down to the drive.
577 extent_write_locked_range(io_tree
,
578 inode
, async_extent
->start
,
579 async_extent
->start
+
580 async_extent
->ram_size
- 1,
588 lock_extent(io_tree
, async_extent
->start
,
589 async_extent
->start
+ async_extent
->ram_size
- 1,
592 * here we're doing allocation and writeback of the
595 btrfs_drop_extent_cache(inode
, async_extent
->start
,
596 async_extent
->start
+
597 async_extent
->ram_size
- 1, 0);
599 ret
= btrfs_reserve_extent(trans
, root
,
600 async_extent
->compressed_size
,
601 async_extent
->compressed_size
,
605 em
= alloc_extent_map(GFP_NOFS
);
606 em
->start
= async_extent
->start
;
607 em
->len
= async_extent
->ram_size
;
608 em
->orig_start
= em
->start
;
610 em
->block_start
= ins
.objectid
;
611 em
->block_len
= ins
.offset
;
612 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
613 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
614 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
617 spin_lock(&em_tree
->lock
);
618 ret
= add_extent_mapping(em_tree
, em
);
619 spin_unlock(&em_tree
->lock
);
620 if (ret
!= -EEXIST
) {
624 btrfs_drop_extent_cache(inode
, async_extent
->start
,
625 async_extent
->start
+
626 async_extent
->ram_size
- 1, 0);
629 ret
= btrfs_add_ordered_extent(inode
, async_extent
->start
,
631 async_extent
->ram_size
,
633 BTRFS_ORDERED_COMPRESSED
);
636 btrfs_end_transaction(trans
, root
);
639 * clear dirty, set writeback and unlock the pages.
641 extent_clear_unlock_delalloc(inode
,
642 &BTRFS_I(inode
)->io_tree
,
644 async_extent
->start
+
645 async_extent
->ram_size
- 1,
646 NULL
, 1, 1, 0, 1, 1, 0);
648 ret
= btrfs_submit_compressed_write(inode
,
650 async_extent
->ram_size
,
652 ins
.offset
, async_extent
->pages
,
653 async_extent
->nr_pages
);
656 trans
= btrfs_join_transaction(root
, 1);
657 alloc_hint
= ins
.objectid
+ ins
.offset
;
662 btrfs_end_transaction(trans
, root
);
667 * when extent_io.c finds a delayed allocation range in the file,
668 * the call backs end up in this code. The basic idea is to
669 * allocate extents on disk for the range, and create ordered data structs
670 * in ram to track those extents.
672 * locked_page is the page that writepage had locked already. We use
673 * it to make sure we don't do extra locks or unlocks.
675 * *page_started is set to one if we unlock locked_page and do everything
676 * required to start IO on it. It may be clean and already done with
679 static noinline
int cow_file_range(struct inode
*inode
,
680 struct page
*locked_page
,
681 u64 start
, u64 end
, int *page_started
,
682 unsigned long *nr_written
,
685 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
686 struct btrfs_trans_handle
*trans
;
689 unsigned long ram_size
;
692 u64 blocksize
= root
->sectorsize
;
694 u64 isize
= i_size_read(inode
);
695 struct btrfs_key ins
;
696 struct extent_map
*em
;
697 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
700 trans
= btrfs_join_transaction(root
, 1);
702 btrfs_set_trans_block_group(trans
, inode
);
704 actual_end
= min_t(u64
, isize
, end
+ 1);
706 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
707 num_bytes
= max(blocksize
, num_bytes
);
708 disk_num_bytes
= num_bytes
;
712 /* lets try to make an inline extent */
713 ret
= cow_file_range_inline(trans
, root
, inode
,
714 start
, end
, 0, NULL
);
716 extent_clear_unlock_delalloc(inode
,
717 &BTRFS_I(inode
)->io_tree
,
718 start
, end
, NULL
, 1, 1,
720 *nr_written
= *nr_written
+
721 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
728 BUG_ON(disk_num_bytes
>
729 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
731 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
733 while (disk_num_bytes
> 0) {
734 cur_alloc_size
= min(disk_num_bytes
, root
->fs_info
->max_extent
);
735 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
736 root
->sectorsize
, 0, alloc_hint
,
740 em
= alloc_extent_map(GFP_NOFS
);
742 em
->orig_start
= em
->start
;
744 ram_size
= ins
.offset
;
745 em
->len
= ins
.offset
;
747 em
->block_start
= ins
.objectid
;
748 em
->block_len
= ins
.offset
;
749 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
750 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
753 spin_lock(&em_tree
->lock
);
754 ret
= add_extent_mapping(em_tree
, em
);
755 spin_unlock(&em_tree
->lock
);
756 if (ret
!= -EEXIST
) {
760 btrfs_drop_extent_cache(inode
, start
,
761 start
+ ram_size
- 1, 0);
764 cur_alloc_size
= ins
.offset
;
765 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
766 ram_size
, cur_alloc_size
, 0);
769 if (root
->root_key
.objectid
==
770 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
771 ret
= btrfs_reloc_clone_csums(inode
, start
,
776 if (disk_num_bytes
< cur_alloc_size
)
779 /* we're not doing compressed IO, don't unlock the first
780 * page (which the caller expects to stay locked), don't
781 * clear any dirty bits and don't set any writeback bits
783 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
784 start
, start
+ ram_size
- 1,
785 locked_page
, unlock
, 1,
787 disk_num_bytes
-= cur_alloc_size
;
788 num_bytes
-= cur_alloc_size
;
789 alloc_hint
= ins
.objectid
+ ins
.offset
;
790 start
+= cur_alloc_size
;
794 btrfs_end_transaction(trans
, root
);
800 * work queue call back to started compression on a file and pages
802 static noinline
void async_cow_start(struct btrfs_work
*work
)
804 struct async_cow
*async_cow
;
806 async_cow
= container_of(work
, struct async_cow
, work
);
808 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
809 async_cow
->start
, async_cow
->end
, async_cow
,
812 async_cow
->inode
= NULL
;
816 * work queue call back to submit previously compressed pages
818 static noinline
void async_cow_submit(struct btrfs_work
*work
)
820 struct async_cow
*async_cow
;
821 struct btrfs_root
*root
;
822 unsigned long nr_pages
;
824 async_cow
= container_of(work
, struct async_cow
, work
);
826 root
= async_cow
->root
;
827 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
830 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
832 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
834 waitqueue_active(&root
->fs_info
->async_submit_wait
))
835 wake_up(&root
->fs_info
->async_submit_wait
);
837 if (async_cow
->inode
)
838 submit_compressed_extents(async_cow
->inode
, async_cow
);
841 static noinline
void async_cow_free(struct btrfs_work
*work
)
843 struct async_cow
*async_cow
;
844 async_cow
= container_of(work
, struct async_cow
, work
);
848 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
849 u64 start
, u64 end
, int *page_started
,
850 unsigned long *nr_written
)
852 struct async_cow
*async_cow
;
853 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
854 unsigned long nr_pages
;
856 int limit
= 10 * 1024 * 1042;
858 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
|
859 EXTENT_DELALLOC
, 1, 0, GFP_NOFS
);
860 while (start
< end
) {
861 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
862 async_cow
->inode
= inode
;
863 async_cow
->root
= root
;
864 async_cow
->locked_page
= locked_page
;
865 async_cow
->start
= start
;
867 if (btrfs_test_flag(inode
, NOCOMPRESS
))
870 cur_end
= min(end
, start
+ 512 * 1024 - 1);
872 async_cow
->end
= cur_end
;
873 INIT_LIST_HEAD(&async_cow
->extents
);
875 async_cow
->work
.func
= async_cow_start
;
876 async_cow
->work
.ordered_func
= async_cow_submit
;
877 async_cow
->work
.ordered_free
= async_cow_free
;
878 async_cow
->work
.flags
= 0;
880 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
882 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
884 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
887 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
888 wait_event(root
->fs_info
->async_submit_wait
,
889 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
893 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
894 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
895 wait_event(root
->fs_info
->async_submit_wait
,
896 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
900 *nr_written
+= nr_pages
;
907 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
908 u64 bytenr
, u64 num_bytes
)
911 struct btrfs_ordered_sum
*sums
;
914 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
915 bytenr
+ num_bytes
- 1, &list
);
916 if (ret
== 0 && list_empty(&list
))
919 while (!list_empty(&list
)) {
920 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
921 list_del(&sums
->list
);
928 * when nowcow writeback call back. This checks for snapshots or COW copies
929 * of the extents that exist in the file, and COWs the file as required.
931 * If no cow copies or snapshots exist, we write directly to the existing
934 static noinline
int run_delalloc_nocow(struct inode
*inode
,
935 struct page
*locked_page
,
936 u64 start
, u64 end
, int *page_started
, int force
,
937 unsigned long *nr_written
)
939 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
940 struct btrfs_trans_handle
*trans
;
941 struct extent_buffer
*leaf
;
942 struct btrfs_path
*path
;
943 struct btrfs_file_extent_item
*fi
;
944 struct btrfs_key found_key
;
956 path
= btrfs_alloc_path();
958 trans
= btrfs_join_transaction(root
, 1);
964 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
967 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
968 leaf
= path
->nodes
[0];
969 btrfs_item_key_to_cpu(leaf
, &found_key
,
971 if (found_key
.objectid
== inode
->i_ino
&&
972 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
977 leaf
= path
->nodes
[0];
978 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
979 ret
= btrfs_next_leaf(root
, path
);
984 leaf
= path
->nodes
[0];
990 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
992 if (found_key
.objectid
> inode
->i_ino
||
993 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
994 found_key
.offset
> end
)
997 if (found_key
.offset
> cur_offset
) {
998 extent_end
= found_key
.offset
;
1002 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1003 struct btrfs_file_extent_item
);
1004 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1006 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1007 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1008 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1009 extent_end
= found_key
.offset
+
1010 btrfs_file_extent_num_bytes(leaf
, fi
);
1011 if (extent_end
<= start
) {
1015 if (disk_bytenr
== 0)
1017 if (btrfs_file_extent_compression(leaf
, fi
) ||
1018 btrfs_file_extent_encryption(leaf
, fi
) ||
1019 btrfs_file_extent_other_encoding(leaf
, fi
))
1021 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1023 if (btrfs_extent_readonly(root
, disk_bytenr
))
1025 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
1028 disk_bytenr
+= btrfs_file_extent_offset(leaf
, fi
);
1029 disk_bytenr
+= cur_offset
- found_key
.offset
;
1030 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1032 * force cow if csum exists in the range.
1033 * this ensure that csum for a given extent are
1034 * either valid or do not exist.
1036 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1039 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1040 extent_end
= found_key
.offset
+
1041 btrfs_file_extent_inline_len(leaf
, fi
);
1042 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1047 if (extent_end
<= start
) {
1052 if (cow_start
== (u64
)-1)
1053 cow_start
= cur_offset
;
1054 cur_offset
= extent_end
;
1055 if (cur_offset
> end
)
1061 btrfs_release_path(root
, path
);
1062 if (cow_start
!= (u64
)-1) {
1063 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1064 found_key
.offset
- 1, page_started
,
1067 cow_start
= (u64
)-1;
1070 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1071 struct extent_map
*em
;
1072 struct extent_map_tree
*em_tree
;
1073 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1074 em
= alloc_extent_map(GFP_NOFS
);
1075 em
->start
= cur_offset
;
1076 em
->orig_start
= em
->start
;
1077 em
->len
= num_bytes
;
1078 em
->block_len
= num_bytes
;
1079 em
->block_start
= disk_bytenr
;
1080 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1081 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1083 spin_lock(&em_tree
->lock
);
1084 ret
= add_extent_mapping(em_tree
, em
);
1085 spin_unlock(&em_tree
->lock
);
1086 if (ret
!= -EEXIST
) {
1087 free_extent_map(em
);
1090 btrfs_drop_extent_cache(inode
, em
->start
,
1091 em
->start
+ em
->len
- 1, 0);
1093 type
= BTRFS_ORDERED_PREALLOC
;
1095 type
= BTRFS_ORDERED_NOCOW
;
1098 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1099 num_bytes
, num_bytes
, type
);
1102 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1103 cur_offset
, cur_offset
+ num_bytes
- 1,
1104 locked_page
, 1, 1, 1, 0, 0, 0);
1105 cur_offset
= extent_end
;
1106 if (cur_offset
> end
)
1109 btrfs_release_path(root
, path
);
1111 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1112 cow_start
= cur_offset
;
1113 if (cow_start
!= (u64
)-1) {
1114 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1115 page_started
, nr_written
, 1);
1119 ret
= btrfs_end_transaction(trans
, root
);
1121 btrfs_free_path(path
);
1126 * extent_io.c call back to do delayed allocation processing
1128 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1129 u64 start
, u64 end
, int *page_started
,
1130 unsigned long *nr_written
)
1133 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1135 if (btrfs_test_flag(inode
, NODATACOW
))
1136 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1137 page_started
, 1, nr_written
);
1138 else if (btrfs_test_flag(inode
, PREALLOC
))
1139 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1140 page_started
, 0, nr_written
);
1141 else if (!btrfs_test_opt(root
, COMPRESS
))
1142 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1143 page_started
, nr_written
, 1);
1145 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1146 page_started
, nr_written
);
1151 * extent_io.c set_bit_hook, used to track delayed allocation
1152 * bytes in this file, and to maintain the list of inodes that
1153 * have pending delalloc work to be done.
1155 static int btrfs_set_bit_hook(struct inode
*inode
, u64 start
, u64 end
,
1156 unsigned long old
, unsigned long bits
)
1159 * set_bit and clear bit hooks normally require _irqsave/restore
1160 * but in this case, we are only testeing for the DELALLOC
1161 * bit, which is only set or cleared with irqs on
1163 if (!(old
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1164 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1165 btrfs_delalloc_reserve_space(root
, inode
, end
- start
+ 1);
1166 spin_lock(&root
->fs_info
->delalloc_lock
);
1167 BTRFS_I(inode
)->delalloc_bytes
+= end
- start
+ 1;
1168 root
->fs_info
->delalloc_bytes
+= end
- start
+ 1;
1169 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1170 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1171 &root
->fs_info
->delalloc_inodes
);
1173 spin_unlock(&root
->fs_info
->delalloc_lock
);
1179 * extent_io.c clear_bit_hook, see set_bit_hook for why
1181 static int btrfs_clear_bit_hook(struct inode
*inode
, u64 start
, u64 end
,
1182 unsigned long old
, unsigned long bits
)
1185 * set_bit and clear bit hooks normally require _irqsave/restore
1186 * but in this case, we are only testeing for the DELALLOC
1187 * bit, which is only set or cleared with irqs on
1189 if ((old
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1190 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1192 spin_lock(&root
->fs_info
->delalloc_lock
);
1193 if (end
- start
+ 1 > root
->fs_info
->delalloc_bytes
) {
1194 printk(KERN_INFO
"btrfs warning: delalloc account "
1196 (unsigned long long)end
- start
+ 1,
1197 (unsigned long long)
1198 root
->fs_info
->delalloc_bytes
);
1199 btrfs_delalloc_free_space(root
, inode
, (u64
)-1);
1200 root
->fs_info
->delalloc_bytes
= 0;
1201 BTRFS_I(inode
)->delalloc_bytes
= 0;
1203 btrfs_delalloc_free_space(root
, inode
,
1205 root
->fs_info
->delalloc_bytes
-= end
- start
+ 1;
1206 BTRFS_I(inode
)->delalloc_bytes
-= end
- start
+ 1;
1208 if (BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1209 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1210 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1212 spin_unlock(&root
->fs_info
->delalloc_lock
);
1218 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1219 * we don't create bios that span stripes or chunks
1221 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1222 size_t size
, struct bio
*bio
,
1223 unsigned long bio_flags
)
1225 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1226 struct btrfs_mapping_tree
*map_tree
;
1227 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1232 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1235 length
= bio
->bi_size
;
1236 map_tree
= &root
->fs_info
->mapping_tree
;
1237 map_length
= length
;
1238 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1239 &map_length
, NULL
, 0);
1241 if (map_length
< length
+ size
)
1247 * in order to insert checksums into the metadata in large chunks,
1248 * we wait until bio submission time. All the pages in the bio are
1249 * checksummed and sums are attached onto the ordered extent record.
1251 * At IO completion time the cums attached on the ordered extent record
1252 * are inserted into the btree
1254 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1255 struct bio
*bio
, int mirror_num
,
1256 unsigned long bio_flags
)
1258 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1261 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1267 * in order to insert checksums into the metadata in large chunks,
1268 * we wait until bio submission time. All the pages in the bio are
1269 * checksummed and sums are attached onto the ordered extent record.
1271 * At IO completion time the cums attached on the ordered extent record
1272 * are inserted into the btree
1274 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1275 int mirror_num
, unsigned long bio_flags
)
1277 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1278 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1282 * extent_io.c submission hook. This does the right thing for csum calculation
1283 * on write, or reading the csums from the tree before a read
1285 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1286 int mirror_num
, unsigned long bio_flags
)
1288 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1292 skip_sum
= btrfs_test_flag(inode
, NODATASUM
);
1294 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1297 if (!(rw
& (1 << BIO_RW
))) {
1298 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1299 return btrfs_submit_compressed_read(inode
, bio
,
1300 mirror_num
, bio_flags
);
1301 } else if (!skip_sum
)
1302 btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1304 } else if (!skip_sum
) {
1305 /* csum items have already been cloned */
1306 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1308 /* we're doing a write, do the async checksumming */
1309 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1310 inode
, rw
, bio
, mirror_num
,
1311 bio_flags
, __btrfs_submit_bio_start
,
1312 __btrfs_submit_bio_done
);
1316 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1320 * given a list of ordered sums record them in the inode. This happens
1321 * at IO completion time based on sums calculated at bio submission time.
1323 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1324 struct inode
*inode
, u64 file_offset
,
1325 struct list_head
*list
)
1327 struct btrfs_ordered_sum
*sum
;
1329 btrfs_set_trans_block_group(trans
, inode
);
1331 list_for_each_entry(sum
, list
, list
) {
1332 btrfs_csum_file_blocks(trans
,
1333 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1338 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
)
1340 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1342 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1346 /* see btrfs_writepage_start_hook for details on why this is required */
1347 struct btrfs_writepage_fixup
{
1349 struct btrfs_work work
;
1352 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1354 struct btrfs_writepage_fixup
*fixup
;
1355 struct btrfs_ordered_extent
*ordered
;
1357 struct inode
*inode
;
1361 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1365 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1366 ClearPageChecked(page
);
1370 inode
= page
->mapping
->host
;
1371 page_start
= page_offset(page
);
1372 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1374 lock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, GFP_NOFS
);
1376 /* already ordered? We're done */
1377 if (test_range_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1378 EXTENT_ORDERED
, 0)) {
1382 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1384 unlock_extent(&BTRFS_I(inode
)->io_tree
, page_start
,
1385 page_end
, GFP_NOFS
);
1387 btrfs_start_ordered_extent(inode
, ordered
, 1);
1391 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
1392 ClearPageChecked(page
);
1394 unlock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, GFP_NOFS
);
1397 page_cache_release(page
);
1401 * There are a few paths in the higher layers of the kernel that directly
1402 * set the page dirty bit without asking the filesystem if it is a
1403 * good idea. This causes problems because we want to make sure COW
1404 * properly happens and the data=ordered rules are followed.
1406 * In our case any range that doesn't have the ORDERED bit set
1407 * hasn't been properly setup for IO. We kick off an async process
1408 * to fix it up. The async helper will wait for ordered extents, set
1409 * the delalloc bit and make it safe to write the page.
1411 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1413 struct inode
*inode
= page
->mapping
->host
;
1414 struct btrfs_writepage_fixup
*fixup
;
1415 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1418 ret
= test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1423 if (PageChecked(page
))
1426 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1430 SetPageChecked(page
);
1431 page_cache_get(page
);
1432 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1434 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1438 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1439 struct inode
*inode
, u64 file_pos
,
1440 u64 disk_bytenr
, u64 disk_num_bytes
,
1441 u64 num_bytes
, u64 ram_bytes
,
1442 u8 compression
, u8 encryption
,
1443 u16 other_encoding
, int extent_type
)
1445 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1446 struct btrfs_file_extent_item
*fi
;
1447 struct btrfs_path
*path
;
1448 struct extent_buffer
*leaf
;
1449 struct btrfs_key ins
;
1453 path
= btrfs_alloc_path();
1456 path
->leave_spinning
= 1;
1457 ret
= btrfs_drop_extents(trans
, root
, inode
, file_pos
,
1458 file_pos
+ num_bytes
, file_pos
, &hint
);
1461 ins
.objectid
= inode
->i_ino
;
1462 ins
.offset
= file_pos
;
1463 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1464 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1466 leaf
= path
->nodes
[0];
1467 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1468 struct btrfs_file_extent_item
);
1469 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1470 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1471 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1472 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1473 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1474 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1475 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1476 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1477 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1478 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1480 btrfs_unlock_up_safe(path
, 1);
1481 btrfs_set_lock_blocking(leaf
);
1483 btrfs_mark_buffer_dirty(leaf
);
1485 inode_add_bytes(inode
, num_bytes
);
1486 btrfs_drop_extent_cache(inode
, file_pos
, file_pos
+ num_bytes
- 1, 0);
1488 ins
.objectid
= disk_bytenr
;
1489 ins
.offset
= disk_num_bytes
;
1490 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1491 ret
= btrfs_alloc_reserved_extent(trans
, root
, leaf
->start
,
1492 root
->root_key
.objectid
,
1493 trans
->transid
, inode
->i_ino
, &ins
);
1495 btrfs_free_path(path
);
1501 * helper function for btrfs_finish_ordered_io, this
1502 * just reads in some of the csum leaves to prime them into ram
1503 * before we start the transaction. It limits the amount of btree
1504 * reads required while inside the transaction.
1506 static noinline
void reada_csum(struct btrfs_root
*root
,
1507 struct btrfs_path
*path
,
1508 struct btrfs_ordered_extent
*ordered_extent
)
1510 struct btrfs_ordered_sum
*sum
;
1513 sum
= list_entry(ordered_extent
->list
.next
, struct btrfs_ordered_sum
,
1515 bytenr
= sum
->sums
[0].bytenr
;
1518 * we don't care about the results, the point of this search is
1519 * just to get the btree leaves into ram
1521 btrfs_lookup_csum(NULL
, root
->fs_info
->csum_root
, path
, bytenr
, 0);
1524 /* as ordered data IO finishes, this gets called so we can finish
1525 * an ordered extent if the range of bytes in the file it covers are
1528 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1530 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1531 struct btrfs_trans_handle
*trans
;
1532 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1533 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1534 struct btrfs_path
*path
;
1538 ret
= btrfs_dec_test_ordered_pending(inode
, start
, end
- start
+ 1);
1543 * before we join the transaction, try to do some of our IO.
1544 * This will limit the amount of IO that we have to do with
1545 * the transaction running. We're unlikely to need to do any
1546 * IO if the file extents are new, the disk_i_size checks
1547 * covers the most common case.
1549 if (start
< BTRFS_I(inode
)->disk_i_size
) {
1550 path
= btrfs_alloc_path();
1552 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
1555 ordered_extent
= btrfs_lookup_ordered_extent(inode
,
1557 if (!list_empty(&ordered_extent
->list
)) {
1558 btrfs_release_path(root
, path
);
1559 reada_csum(root
, path
, ordered_extent
);
1561 btrfs_free_path(path
);
1565 trans
= btrfs_join_transaction(root
, 1);
1567 if (!ordered_extent
)
1568 ordered_extent
= btrfs_lookup_ordered_extent(inode
, start
);
1569 BUG_ON(!ordered_extent
);
1570 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
))
1573 lock_extent(io_tree
, ordered_extent
->file_offset
,
1574 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1577 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1579 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1581 ret
= btrfs_mark_extent_written(trans
, root
, inode
,
1582 ordered_extent
->file_offset
,
1583 ordered_extent
->file_offset
+
1584 ordered_extent
->len
);
1587 ret
= insert_reserved_file_extent(trans
, inode
,
1588 ordered_extent
->file_offset
,
1589 ordered_extent
->start
,
1590 ordered_extent
->disk_len
,
1591 ordered_extent
->len
,
1592 ordered_extent
->len
,
1594 BTRFS_FILE_EXTENT_REG
);
1597 unlock_extent(io_tree
, ordered_extent
->file_offset
,
1598 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1601 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1602 &ordered_extent
->list
);
1604 mutex_lock(&BTRFS_I(inode
)->extent_mutex
);
1605 btrfs_ordered_update_i_size(inode
, ordered_extent
);
1606 btrfs_update_inode(trans
, root
, inode
);
1607 btrfs_remove_ordered_extent(inode
, ordered_extent
);
1608 mutex_unlock(&BTRFS_I(inode
)->extent_mutex
);
1611 btrfs_put_ordered_extent(ordered_extent
);
1612 /* once for the tree */
1613 btrfs_put_ordered_extent(ordered_extent
);
1615 btrfs_end_transaction(trans
, root
);
1619 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1620 struct extent_state
*state
, int uptodate
)
1622 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1626 * When IO fails, either with EIO or csum verification fails, we
1627 * try other mirrors that might have a good copy of the data. This
1628 * io_failure_record is used to record state as we go through all the
1629 * mirrors. If another mirror has good data, the page is set up to date
1630 * and things continue. If a good mirror can't be found, the original
1631 * bio end_io callback is called to indicate things have failed.
1633 struct io_failure_record
{
1638 unsigned long bio_flags
;
1642 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1643 struct page
*page
, u64 start
, u64 end
,
1644 struct extent_state
*state
)
1646 struct io_failure_record
*failrec
= NULL
;
1648 struct extent_map
*em
;
1649 struct inode
*inode
= page
->mapping
->host
;
1650 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1651 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1658 ret
= get_state_private(failure_tree
, start
, &private);
1660 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1663 failrec
->start
= start
;
1664 failrec
->len
= end
- start
+ 1;
1665 failrec
->last_mirror
= 0;
1666 failrec
->bio_flags
= 0;
1668 spin_lock(&em_tree
->lock
);
1669 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1670 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1671 free_extent_map(em
);
1674 spin_unlock(&em_tree
->lock
);
1676 if (!em
|| IS_ERR(em
)) {
1680 logical
= start
- em
->start
;
1681 logical
= em
->block_start
+ logical
;
1682 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1683 logical
= em
->block_start
;
1684 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1686 failrec
->logical
= logical
;
1687 free_extent_map(em
);
1688 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1689 EXTENT_DIRTY
, GFP_NOFS
);
1690 set_state_private(failure_tree
, start
,
1691 (u64
)(unsigned long)failrec
);
1693 failrec
= (struct io_failure_record
*)(unsigned long)private;
1695 num_copies
= btrfs_num_copies(
1696 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1697 failrec
->logical
, failrec
->len
);
1698 failrec
->last_mirror
++;
1700 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1701 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1704 if (state
&& state
->start
!= failrec
->start
)
1706 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1708 if (!state
|| failrec
->last_mirror
> num_copies
) {
1709 set_state_private(failure_tree
, failrec
->start
, 0);
1710 clear_extent_bits(failure_tree
, failrec
->start
,
1711 failrec
->start
+ failrec
->len
- 1,
1712 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1716 bio
= bio_alloc(GFP_NOFS
, 1);
1717 bio
->bi_private
= state
;
1718 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1719 bio
->bi_sector
= failrec
->logical
>> 9;
1720 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1723 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1724 if (failed_bio
->bi_rw
& (1 << BIO_RW
))
1729 BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1730 failrec
->last_mirror
,
1731 failrec
->bio_flags
);
1736 * each time an IO finishes, we do a fast check in the IO failure tree
1737 * to see if we need to process or clean up an io_failure_record
1739 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1742 u64 private_failure
;
1743 struct io_failure_record
*failure
;
1747 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1748 (u64
)-1, 1, EXTENT_DIRTY
)) {
1749 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1750 start
, &private_failure
);
1752 failure
= (struct io_failure_record
*)(unsigned long)
1754 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1756 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1758 failure
->start
+ failure
->len
- 1,
1759 EXTENT_DIRTY
| EXTENT_LOCKED
,
1768 * when reads are done, we need to check csums to verify the data is correct
1769 * if there's a match, we allow the bio to finish. If not, we go through
1770 * the io_failure_record routines to find good copies
1772 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1773 struct extent_state
*state
)
1775 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1776 struct inode
*inode
= page
->mapping
->host
;
1777 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1779 u64
private = ~(u32
)0;
1781 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1784 if (PageChecked(page
)) {
1785 ClearPageChecked(page
);
1788 if (btrfs_test_flag(inode
, NODATASUM
))
1791 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1792 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1)) {
1793 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1798 if (state
&& state
->start
== start
) {
1799 private = state
->private;
1802 ret
= get_state_private(io_tree
, start
, &private);
1804 kaddr
= kmap_atomic(page
, KM_USER0
);
1808 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1809 btrfs_csum_final(csum
, (char *)&csum
);
1810 if (csum
!= private)
1813 kunmap_atomic(kaddr
, KM_USER0
);
1815 /* if the io failure tree for this inode is non-empty,
1816 * check to see if we've recovered from a failed IO
1818 btrfs_clean_io_failures(inode
, start
);
1822 printk(KERN_INFO
"btrfs csum failed ino %lu off %llu csum %u "
1823 "private %llu\n", page
->mapping
->host
->i_ino
,
1824 (unsigned long long)start
, csum
,
1825 (unsigned long long)private);
1826 memset(kaddr
+ offset
, 1, end
- start
+ 1);
1827 flush_dcache_page(page
);
1828 kunmap_atomic(kaddr
, KM_USER0
);
1835 * This creates an orphan entry for the given inode in case something goes
1836 * wrong in the middle of an unlink/truncate.
1838 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
1840 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1843 spin_lock(&root
->list_lock
);
1845 /* already on the orphan list, we're good */
1846 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
1847 spin_unlock(&root
->list_lock
);
1851 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
1853 spin_unlock(&root
->list_lock
);
1856 * insert an orphan item to track this unlinked/truncated file
1858 ret
= btrfs_insert_orphan_item(trans
, root
, inode
->i_ino
);
1864 * We have done the truncate/delete so we can go ahead and remove the orphan
1865 * item for this particular inode.
1867 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
1869 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1872 spin_lock(&root
->list_lock
);
1874 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
1875 spin_unlock(&root
->list_lock
);
1879 list_del_init(&BTRFS_I(inode
)->i_orphan
);
1881 spin_unlock(&root
->list_lock
);
1885 spin_unlock(&root
->list_lock
);
1887 ret
= btrfs_del_orphan_item(trans
, root
, inode
->i_ino
);
1893 * this cleans up any orphans that may be left on the list from the last use
1896 void btrfs_orphan_cleanup(struct btrfs_root
*root
)
1898 struct btrfs_path
*path
;
1899 struct extent_buffer
*leaf
;
1900 struct btrfs_item
*item
;
1901 struct btrfs_key key
, found_key
;
1902 struct btrfs_trans_handle
*trans
;
1903 struct inode
*inode
;
1904 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
1906 path
= btrfs_alloc_path();
1911 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1912 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1913 key
.offset
= (u64
)-1;
1917 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1919 printk(KERN_ERR
"Error searching slot for orphan: %d"
1925 * if ret == 0 means we found what we were searching for, which
1926 * is weird, but possible, so only screw with path if we didnt
1927 * find the key and see if we have stuff that matches
1930 if (path
->slots
[0] == 0)
1935 /* pull out the item */
1936 leaf
= path
->nodes
[0];
1937 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
1938 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1940 /* make sure the item matches what we want */
1941 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
1943 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
1946 /* release the path since we're done with it */
1947 btrfs_release_path(root
, path
);
1950 * this is where we are basically btrfs_lookup, without the
1951 * crossing root thing. we store the inode number in the
1952 * offset of the orphan item.
1954 inode
= btrfs_iget_locked(root
->fs_info
->sb
,
1955 found_key
.offset
, root
);
1959 if (inode
->i_state
& I_NEW
) {
1960 BTRFS_I(inode
)->root
= root
;
1962 /* have to set the location manually */
1963 BTRFS_I(inode
)->location
.objectid
= inode
->i_ino
;
1964 BTRFS_I(inode
)->location
.type
= BTRFS_INODE_ITEM_KEY
;
1965 BTRFS_I(inode
)->location
.offset
= 0;
1967 btrfs_read_locked_inode(inode
);
1968 unlock_new_inode(inode
);
1972 * add this inode to the orphan list so btrfs_orphan_del does
1973 * the proper thing when we hit it
1975 spin_lock(&root
->list_lock
);
1976 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
1977 spin_unlock(&root
->list_lock
);
1980 * if this is a bad inode, means we actually succeeded in
1981 * removing the inode, but not the orphan record, which means
1982 * we need to manually delete the orphan since iput will just
1983 * do a destroy_inode
1985 if (is_bad_inode(inode
)) {
1986 trans
= btrfs_start_transaction(root
, 1);
1987 btrfs_orphan_del(trans
, inode
);
1988 btrfs_end_transaction(trans
, root
);
1993 /* if we have links, this was a truncate, lets do that */
1994 if (inode
->i_nlink
) {
1996 btrfs_truncate(inode
);
2001 /* this will do delete_inode and everything for us */
2006 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2008 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2010 btrfs_free_path(path
);
2014 * read an inode from the btree into the in-memory inode
2016 void btrfs_read_locked_inode(struct inode
*inode
)
2018 struct btrfs_path
*path
;
2019 struct extent_buffer
*leaf
;
2020 struct btrfs_inode_item
*inode_item
;
2021 struct btrfs_timespec
*tspec
;
2022 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2023 struct btrfs_key location
;
2024 u64 alloc_group_block
;
2028 path
= btrfs_alloc_path();
2030 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2032 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2036 leaf
= path
->nodes
[0];
2037 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2038 struct btrfs_inode_item
);
2040 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2041 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
2042 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2043 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2044 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2046 tspec
= btrfs_inode_atime(inode_item
);
2047 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2048 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2050 tspec
= btrfs_inode_mtime(inode_item
);
2051 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2052 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2054 tspec
= btrfs_inode_ctime(inode_item
);
2055 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2056 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2058 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2059 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2060 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2061 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2063 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2065 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2066 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2068 alloc_group_block
= btrfs_inode_block_group(leaf
, inode_item
);
2070 BTRFS_I(inode
)->block_group
= btrfs_find_block_group(root
, 0,
2071 alloc_group_block
, 0);
2072 btrfs_free_path(path
);
2075 switch (inode
->i_mode
& S_IFMT
) {
2077 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2078 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2079 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2080 inode
->i_fop
= &btrfs_file_operations
;
2081 inode
->i_op
= &btrfs_file_inode_operations
;
2084 inode
->i_fop
= &btrfs_dir_file_operations
;
2085 if (root
== root
->fs_info
->tree_root
)
2086 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2088 inode
->i_op
= &btrfs_dir_inode_operations
;
2091 inode
->i_op
= &btrfs_symlink_inode_operations
;
2092 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2093 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2096 inode
->i_op
= &btrfs_special_inode_operations
;
2097 init_special_inode(inode
, inode
->i_mode
, rdev
);
2103 btrfs_free_path(path
);
2104 make_bad_inode(inode
);
2108 * given a leaf and an inode, copy the inode fields into the leaf
2110 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2111 struct extent_buffer
*leaf
,
2112 struct btrfs_inode_item
*item
,
2113 struct inode
*inode
)
2115 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2116 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2117 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2118 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2119 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2121 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2122 inode
->i_atime
.tv_sec
);
2123 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2124 inode
->i_atime
.tv_nsec
);
2126 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2127 inode
->i_mtime
.tv_sec
);
2128 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2129 inode
->i_mtime
.tv_nsec
);
2131 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2132 inode
->i_ctime
.tv_sec
);
2133 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2134 inode
->i_ctime
.tv_nsec
);
2136 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2137 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2138 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2139 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2140 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2141 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2142 btrfs_set_inode_block_group(leaf
, item
, BTRFS_I(inode
)->block_group
);
2146 * copy everything in the in-memory inode into the btree.
2148 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2149 struct btrfs_root
*root
, struct inode
*inode
)
2151 struct btrfs_inode_item
*inode_item
;
2152 struct btrfs_path
*path
;
2153 struct extent_buffer
*leaf
;
2156 path
= btrfs_alloc_path();
2158 path
->leave_spinning
= 1;
2159 ret
= btrfs_lookup_inode(trans
, root
, path
,
2160 &BTRFS_I(inode
)->location
, 1);
2167 btrfs_unlock_up_safe(path
, 1);
2168 leaf
= path
->nodes
[0];
2169 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2170 struct btrfs_inode_item
);
2172 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2173 btrfs_mark_buffer_dirty(leaf
);
2174 btrfs_set_inode_last_trans(trans
, inode
);
2177 btrfs_free_path(path
);
2183 * unlink helper that gets used here in inode.c and in the tree logging
2184 * recovery code. It remove a link in a directory with a given name, and
2185 * also drops the back refs in the inode to the directory
2187 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2188 struct btrfs_root
*root
,
2189 struct inode
*dir
, struct inode
*inode
,
2190 const char *name
, int name_len
)
2192 struct btrfs_path
*path
;
2194 struct extent_buffer
*leaf
;
2195 struct btrfs_dir_item
*di
;
2196 struct btrfs_key key
;
2199 path
= btrfs_alloc_path();
2205 path
->leave_spinning
= 1;
2206 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2207 name
, name_len
, -1);
2216 leaf
= path
->nodes
[0];
2217 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2218 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2221 btrfs_release_path(root
, path
);
2223 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
2225 dir
->i_ino
, &index
);
2227 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2228 "inode %lu parent %lu\n", name_len
, name
,
2229 inode
->i_ino
, dir
->i_ino
);
2233 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2234 index
, name
, name_len
, -1);
2243 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2244 btrfs_release_path(root
, path
);
2246 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2248 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2250 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2254 btrfs_free_path(path
);
2258 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2259 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2260 btrfs_update_inode(trans
, root
, dir
);
2261 btrfs_drop_nlink(inode
);
2262 ret
= btrfs_update_inode(trans
, root
, inode
);
2263 dir
->i_sb
->s_dirt
= 1;
2268 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2270 struct btrfs_root
*root
;
2271 struct btrfs_trans_handle
*trans
;
2272 struct inode
*inode
= dentry
->d_inode
;
2274 unsigned long nr
= 0;
2276 root
= BTRFS_I(dir
)->root
;
2278 trans
= btrfs_start_transaction(root
, 1);
2280 btrfs_set_trans_block_group(trans
, dir
);
2282 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2284 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2285 dentry
->d_name
.name
, dentry
->d_name
.len
);
2287 if (inode
->i_nlink
== 0)
2288 ret
= btrfs_orphan_add(trans
, inode
);
2290 nr
= trans
->blocks_used
;
2292 btrfs_end_transaction_throttle(trans
, root
);
2293 btrfs_btree_balance_dirty(root
, nr
);
2297 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2299 struct inode
*inode
= dentry
->d_inode
;
2302 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2303 struct btrfs_trans_handle
*trans
;
2304 unsigned long nr
= 0;
2307 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2308 * the root of a subvolume or snapshot
2310 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
2311 inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
2315 trans
= btrfs_start_transaction(root
, 1);
2316 btrfs_set_trans_block_group(trans
, dir
);
2318 err
= btrfs_orphan_add(trans
, inode
);
2322 /* now the directory is empty */
2323 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2324 dentry
->d_name
.name
, dentry
->d_name
.len
);
2326 btrfs_i_size_write(inode
, 0);
2329 nr
= trans
->blocks_used
;
2330 ret
= btrfs_end_transaction_throttle(trans
, root
);
2331 btrfs_btree_balance_dirty(root
, nr
);
2340 * when truncating bytes in a file, it is possible to avoid reading
2341 * the leaves that contain only checksum items. This can be the
2342 * majority of the IO required to delete a large file, but it must
2343 * be done carefully.
2345 * The keys in the level just above the leaves are checked to make sure
2346 * the lowest key in a given leaf is a csum key, and starts at an offset
2347 * after the new size.
2349 * Then the key for the next leaf is checked to make sure it also has
2350 * a checksum item for the same file. If it does, we know our target leaf
2351 * contains only checksum items, and it can be safely freed without reading
2354 * This is just an optimization targeted at large files. It may do
2355 * nothing. It will return 0 unless things went badly.
2357 static noinline
int drop_csum_leaves(struct btrfs_trans_handle
*trans
,
2358 struct btrfs_root
*root
,
2359 struct btrfs_path
*path
,
2360 struct inode
*inode
, u64 new_size
)
2362 struct btrfs_key key
;
2365 struct btrfs_key found_key
;
2366 struct btrfs_key other_key
;
2367 struct btrfs_leaf_ref
*ref
;
2371 path
->lowest_level
= 1;
2372 key
.objectid
= inode
->i_ino
;
2373 key
.type
= BTRFS_CSUM_ITEM_KEY
;
2374 key
.offset
= new_size
;
2376 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2380 if (path
->nodes
[1] == NULL
) {
2385 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, path
->slots
[1]);
2386 nritems
= btrfs_header_nritems(path
->nodes
[1]);
2391 if (path
->slots
[1] >= nritems
)
2394 /* did we find a key greater than anything we want to delete? */
2395 if (found_key
.objectid
> inode
->i_ino
||
2396 (found_key
.objectid
== inode
->i_ino
&& found_key
.type
> key
.type
))
2399 /* we check the next key in the node to make sure the leave contains
2400 * only checksum items. This comparison doesn't work if our
2401 * leaf is the last one in the node
2403 if (path
->slots
[1] + 1 >= nritems
) {
2405 /* search forward from the last key in the node, this
2406 * will bring us into the next node in the tree
2408 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, nritems
- 1);
2410 /* unlikely, but we inc below, so check to be safe */
2411 if (found_key
.offset
== (u64
)-1)
2414 /* search_forward needs a path with locks held, do the
2415 * search again for the original key. It is possible
2416 * this will race with a balance and return a path that
2417 * we could modify, but this drop is just an optimization
2418 * and is allowed to miss some leaves.
2420 btrfs_release_path(root
, path
);
2423 /* setup a max key for search_forward */
2424 other_key
.offset
= (u64
)-1;
2425 other_key
.type
= key
.type
;
2426 other_key
.objectid
= key
.objectid
;
2428 path
->keep_locks
= 1;
2429 ret
= btrfs_search_forward(root
, &found_key
, &other_key
,
2431 path
->keep_locks
= 0;
2432 if (ret
|| found_key
.objectid
!= key
.objectid
||
2433 found_key
.type
!= key
.type
) {
2438 key
.offset
= found_key
.offset
;
2439 btrfs_release_path(root
, path
);
2444 /* we know there's one more slot after us in the tree,
2445 * read that key so we can verify it is also a checksum item
2447 btrfs_node_key_to_cpu(path
->nodes
[1], &other_key
, path
->slots
[1] + 1);
2449 if (found_key
.objectid
< inode
->i_ino
)
2452 if (found_key
.type
!= key
.type
|| found_key
.offset
< new_size
)
2456 * if the key for the next leaf isn't a csum key from this objectid,
2457 * we can't be sure there aren't good items inside this leaf.
2460 if (other_key
.objectid
!= inode
->i_ino
|| other_key
.type
!= key
.type
)
2463 leaf_start
= btrfs_node_blockptr(path
->nodes
[1], path
->slots
[1]);
2464 leaf_gen
= btrfs_node_ptr_generation(path
->nodes
[1], path
->slots
[1]);
2466 * it is safe to delete this leaf, it contains only
2467 * csum items from this inode at an offset >= new_size
2469 ret
= btrfs_del_leaf(trans
, root
, path
, leaf_start
);
2472 if (root
->ref_cows
&& leaf_gen
< trans
->transid
) {
2473 ref
= btrfs_alloc_leaf_ref(root
, 0);
2475 ref
->root_gen
= root
->root_key
.offset
;
2476 ref
->bytenr
= leaf_start
;
2478 ref
->generation
= leaf_gen
;
2481 btrfs_sort_leaf_ref(ref
);
2483 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
2485 btrfs_free_leaf_ref(root
, ref
);
2491 btrfs_release_path(root
, path
);
2493 if (other_key
.objectid
== inode
->i_ino
&&
2494 other_key
.type
== key
.type
&& other_key
.offset
> key
.offset
) {
2495 key
.offset
= other_key
.offset
;
2501 /* fixup any changes we've made to the path */
2502 path
->lowest_level
= 0;
2503 path
->keep_locks
= 0;
2504 btrfs_release_path(root
, path
);
2511 * this can truncate away extent items, csum items and directory items.
2512 * It starts at a high offset and removes keys until it can't find
2513 * any higher than new_size
2515 * csum items that cross the new i_size are truncated to the new size
2518 * min_type is the minimum key type to truncate down to. If set to 0, this
2519 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2521 noinline
int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
2522 struct btrfs_root
*root
,
2523 struct inode
*inode
,
2524 u64 new_size
, u32 min_type
)
2527 struct btrfs_path
*path
;
2528 struct btrfs_key key
;
2529 struct btrfs_key found_key
;
2530 u32 found_type
= (u8
)-1;
2531 struct extent_buffer
*leaf
;
2532 struct btrfs_file_extent_item
*fi
;
2533 u64 extent_start
= 0;
2534 u64 extent_num_bytes
= 0;
2540 int pending_del_nr
= 0;
2541 int pending_del_slot
= 0;
2542 int extent_type
= -1;
2544 u64 mask
= root
->sectorsize
- 1;
2547 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
2548 path
= btrfs_alloc_path();
2552 /* FIXME, add redo link to tree so we don't leak on crash */
2553 key
.objectid
= inode
->i_ino
;
2554 key
.offset
= (u64
)-1;
2558 path
->leave_spinning
= 1;
2559 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2564 /* there are no items in the tree for us to truncate, we're
2567 if (path
->slots
[0] == 0) {
2576 leaf
= path
->nodes
[0];
2577 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2578 found_type
= btrfs_key_type(&found_key
);
2581 if (found_key
.objectid
!= inode
->i_ino
)
2584 if (found_type
< min_type
)
2587 item_end
= found_key
.offset
;
2588 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
2589 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2590 struct btrfs_file_extent_item
);
2591 extent_type
= btrfs_file_extent_type(leaf
, fi
);
2592 encoding
= btrfs_file_extent_compression(leaf
, fi
);
2593 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
2594 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
2596 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2598 btrfs_file_extent_num_bytes(leaf
, fi
);
2599 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2600 item_end
+= btrfs_file_extent_inline_len(leaf
,
2605 if (item_end
< new_size
) {
2606 if (found_type
== BTRFS_DIR_ITEM_KEY
)
2607 found_type
= BTRFS_INODE_ITEM_KEY
;
2608 else if (found_type
== BTRFS_EXTENT_ITEM_KEY
)
2609 found_type
= BTRFS_EXTENT_DATA_KEY
;
2610 else if (found_type
== BTRFS_EXTENT_DATA_KEY
)
2611 found_type
= BTRFS_XATTR_ITEM_KEY
;
2612 else if (found_type
== BTRFS_XATTR_ITEM_KEY
)
2613 found_type
= BTRFS_INODE_REF_KEY
;
2614 else if (found_type
)
2618 btrfs_set_key_type(&key
, found_type
);
2621 if (found_key
.offset
>= new_size
)
2627 /* FIXME, shrink the extent if the ref count is only 1 */
2628 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
2631 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2633 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
2634 if (!del_item
&& !encoding
) {
2635 u64 orig_num_bytes
=
2636 btrfs_file_extent_num_bytes(leaf
, fi
);
2637 extent_num_bytes
= new_size
-
2638 found_key
.offset
+ root
->sectorsize
- 1;
2639 extent_num_bytes
= extent_num_bytes
&
2640 ~((u64
)root
->sectorsize
- 1);
2641 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2643 num_dec
= (orig_num_bytes
-
2645 if (root
->ref_cows
&& extent_start
!= 0)
2646 inode_sub_bytes(inode
, num_dec
);
2647 btrfs_mark_buffer_dirty(leaf
);
2650 btrfs_file_extent_disk_num_bytes(leaf
,
2652 /* FIXME blocksize != 4096 */
2653 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
2654 if (extent_start
!= 0) {
2657 inode_sub_bytes(inode
, num_dec
);
2659 root_gen
= btrfs_header_generation(leaf
);
2660 root_owner
= btrfs_header_owner(leaf
);
2662 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2664 * we can't truncate inline items that have had
2668 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
2669 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
2670 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
2671 u32 size
= new_size
- found_key
.offset
;
2673 if (root
->ref_cows
) {
2674 inode_sub_bytes(inode
, item_end
+ 1 -
2678 btrfs_file_extent_calc_inline_size(size
);
2679 ret
= btrfs_truncate_item(trans
, root
, path
,
2682 } else if (root
->ref_cows
) {
2683 inode_sub_bytes(inode
, item_end
+ 1 -
2689 if (!pending_del_nr
) {
2690 /* no pending yet, add ourselves */
2691 pending_del_slot
= path
->slots
[0];
2693 } else if (pending_del_nr
&&
2694 path
->slots
[0] + 1 == pending_del_slot
) {
2695 /* hop on the pending chunk */
2697 pending_del_slot
= path
->slots
[0];
2705 btrfs_set_path_blocking(path
);
2706 ret
= btrfs_free_extent(trans
, root
, extent_start
,
2708 leaf
->start
, root_owner
,
2709 root_gen
, inode
->i_ino
, 0);
2713 if (path
->slots
[0] == 0) {
2716 btrfs_release_path(root
, path
);
2717 if (found_type
== BTRFS_INODE_ITEM_KEY
)
2723 if (pending_del_nr
&&
2724 path
->slots
[0] + 1 != pending_del_slot
) {
2725 struct btrfs_key debug
;
2727 btrfs_item_key_to_cpu(path
->nodes
[0], &debug
,
2729 ret
= btrfs_del_items(trans
, root
, path
,
2734 btrfs_release_path(root
, path
);
2735 if (found_type
== BTRFS_INODE_ITEM_KEY
)
2742 if (pending_del_nr
) {
2743 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
2746 btrfs_free_path(path
);
2747 inode
->i_sb
->s_dirt
= 1;
2752 * taken from block_truncate_page, but does cow as it zeros out
2753 * any bytes left in the last page in the file.
2755 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
2757 struct inode
*inode
= mapping
->host
;
2758 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2759 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2760 struct btrfs_ordered_extent
*ordered
;
2762 u32 blocksize
= root
->sectorsize
;
2763 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2764 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2770 if ((offset
& (blocksize
- 1)) == 0)
2775 page
= grab_cache_page(mapping
, index
);
2779 page_start
= page_offset(page
);
2780 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
2782 if (!PageUptodate(page
)) {
2783 ret
= btrfs_readpage(NULL
, page
);
2785 if (page
->mapping
!= mapping
) {
2787 page_cache_release(page
);
2790 if (!PageUptodate(page
)) {
2795 wait_on_page_writeback(page
);
2797 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2798 set_page_extent_mapped(page
);
2800 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
2802 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2804 page_cache_release(page
);
2805 btrfs_start_ordered_extent(inode
, ordered
, 1);
2806 btrfs_put_ordered_extent(ordered
);
2810 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
2812 if (offset
!= PAGE_CACHE_SIZE
) {
2814 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
2815 flush_dcache_page(page
);
2818 ClearPageChecked(page
);
2819 set_page_dirty(page
);
2820 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2824 page_cache_release(page
);
2829 int btrfs_cont_expand(struct inode
*inode
, loff_t size
)
2831 struct btrfs_trans_handle
*trans
;
2832 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2833 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2834 struct extent_map
*em
;
2835 u64 mask
= root
->sectorsize
- 1;
2836 u64 hole_start
= (inode
->i_size
+ mask
) & ~mask
;
2837 u64 block_end
= (size
+ mask
) & ~mask
;
2843 if (size
<= hole_start
)
2846 err
= btrfs_check_metadata_free_space(root
);
2850 btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
2853 struct btrfs_ordered_extent
*ordered
;
2854 btrfs_wait_ordered_range(inode
, hole_start
,
2855 block_end
- hole_start
);
2856 lock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2857 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
2860 unlock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2861 btrfs_put_ordered_extent(ordered
);
2864 trans
= btrfs_start_transaction(root
, 1);
2865 btrfs_set_trans_block_group(trans
, inode
);
2867 cur_offset
= hole_start
;
2869 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
2870 block_end
- cur_offset
, 0);
2871 BUG_ON(IS_ERR(em
) || !em
);
2872 last_byte
= min(extent_map_end(em
), block_end
);
2873 last_byte
= (last_byte
+ mask
) & ~mask
;
2874 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
2876 hole_size
= last_byte
- cur_offset
;
2877 err
= btrfs_drop_extents(trans
, root
, inode
,
2879 cur_offset
+ hole_size
,
2880 cur_offset
, &hint_byte
);
2883 err
= btrfs_insert_file_extent(trans
, root
,
2884 inode
->i_ino
, cur_offset
, 0,
2885 0, hole_size
, 0, hole_size
,
2887 btrfs_drop_extent_cache(inode
, hole_start
,
2890 free_extent_map(em
);
2891 cur_offset
= last_byte
;
2892 if (err
|| cur_offset
>= block_end
)
2896 btrfs_end_transaction(trans
, root
);
2897 unlock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2901 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
2903 struct inode
*inode
= dentry
->d_inode
;
2906 err
= inode_change_ok(inode
, attr
);
2910 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
2911 if (attr
->ia_size
> inode
->i_size
) {
2912 err
= btrfs_cont_expand(inode
, attr
->ia_size
);
2915 } else if (inode
->i_size
> 0 &&
2916 attr
->ia_size
== 0) {
2918 /* we're truncating a file that used to have good
2919 * data down to zero. Make sure it gets into
2920 * the ordered flush list so that any new writes
2921 * get down to disk quickly.
2923 BTRFS_I(inode
)->ordered_data_close
= 1;
2927 err
= inode_setattr(inode
, attr
);
2929 if (!err
&& ((attr
->ia_valid
& ATTR_MODE
)))
2930 err
= btrfs_acl_chmod(inode
);
2934 void btrfs_delete_inode(struct inode
*inode
)
2936 struct btrfs_trans_handle
*trans
;
2937 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2941 truncate_inode_pages(&inode
->i_data
, 0);
2942 if (is_bad_inode(inode
)) {
2943 btrfs_orphan_del(NULL
, inode
);
2946 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
2948 btrfs_i_size_write(inode
, 0);
2949 trans
= btrfs_join_transaction(root
, 1);
2951 btrfs_set_trans_block_group(trans
, inode
);
2952 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, inode
->i_size
, 0);
2954 btrfs_orphan_del(NULL
, inode
);
2955 goto no_delete_lock
;
2958 btrfs_orphan_del(trans
, inode
);
2960 nr
= trans
->blocks_used
;
2963 btrfs_end_transaction(trans
, root
);
2964 btrfs_btree_balance_dirty(root
, nr
);
2968 nr
= trans
->blocks_used
;
2969 btrfs_end_transaction(trans
, root
);
2970 btrfs_btree_balance_dirty(root
, nr
);
2976 * this returns the key found in the dir entry in the location pointer.
2977 * If no dir entries were found, location->objectid is 0.
2979 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
2980 struct btrfs_key
*location
)
2982 const char *name
= dentry
->d_name
.name
;
2983 int namelen
= dentry
->d_name
.len
;
2984 struct btrfs_dir_item
*di
;
2985 struct btrfs_path
*path
;
2986 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2989 path
= btrfs_alloc_path();
2992 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir
->i_ino
, name
,
2997 if (!di
|| IS_ERR(di
))
3000 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3002 btrfs_free_path(path
);
3005 location
->objectid
= 0;
3010 * when we hit a tree root in a directory, the btrfs part of the inode
3011 * needs to be changed to reflect the root directory of the tree root. This
3012 * is kind of like crossing a mount point.
3014 static int fixup_tree_root_location(struct btrfs_root
*root
,
3015 struct btrfs_key
*location
,
3016 struct btrfs_root
**sub_root
,
3017 struct dentry
*dentry
)
3019 struct btrfs_root_item
*ri
;
3021 if (btrfs_key_type(location
) != BTRFS_ROOT_ITEM_KEY
)
3023 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
3026 *sub_root
= btrfs_read_fs_root(root
->fs_info
, location
,
3027 dentry
->d_name
.name
,
3028 dentry
->d_name
.len
);
3029 if (IS_ERR(*sub_root
))
3030 return PTR_ERR(*sub_root
);
3032 ri
= &(*sub_root
)->root_item
;
3033 location
->objectid
= btrfs_root_dirid(ri
);
3034 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
3035 location
->offset
= 0;
3040 static noinline
void init_btrfs_i(struct inode
*inode
)
3042 struct btrfs_inode
*bi
= BTRFS_I(inode
);
3045 bi
->i_default_acl
= NULL
;
3050 bi
->logged_trans
= 0;
3051 bi
->delalloc_bytes
= 0;
3052 bi
->reserved_bytes
= 0;
3053 bi
->disk_i_size
= 0;
3055 bi
->index_cnt
= (u64
)-1;
3056 bi
->last_unlink_trans
= 0;
3057 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
, GFP_NOFS
);
3058 extent_io_tree_init(&BTRFS_I(inode
)->io_tree
,
3059 inode
->i_mapping
, GFP_NOFS
);
3060 extent_io_tree_init(&BTRFS_I(inode
)->io_failure_tree
,
3061 inode
->i_mapping
, GFP_NOFS
);
3062 INIT_LIST_HEAD(&BTRFS_I(inode
)->delalloc_inodes
);
3063 INIT_LIST_HEAD(&BTRFS_I(inode
)->ordered_operations
);
3064 btrfs_ordered_inode_tree_init(&BTRFS_I(inode
)->ordered_tree
);
3065 mutex_init(&BTRFS_I(inode
)->extent_mutex
);
3066 mutex_init(&BTRFS_I(inode
)->log_mutex
);
3069 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
3071 struct btrfs_iget_args
*args
= p
;
3072 inode
->i_ino
= args
->ino
;
3073 init_btrfs_i(inode
);
3074 BTRFS_I(inode
)->root
= args
->root
;
3075 btrfs_set_inode_space_info(args
->root
, inode
);
3079 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
3081 struct btrfs_iget_args
*args
= opaque
;
3082 return args
->ino
== inode
->i_ino
&&
3083 args
->root
== BTRFS_I(inode
)->root
;
3086 struct inode
*btrfs_ilookup(struct super_block
*s
, u64 objectid
,
3087 struct btrfs_root
*root
, int wait
)
3089 struct inode
*inode
;
3090 struct btrfs_iget_args args
;
3091 args
.ino
= objectid
;
3095 inode
= ilookup5(s
, objectid
, btrfs_find_actor
,
3098 inode
= ilookup5_nowait(s
, objectid
, btrfs_find_actor
,
3104 struct inode
*btrfs_iget_locked(struct super_block
*s
, u64 objectid
,
3105 struct btrfs_root
*root
)
3107 struct inode
*inode
;
3108 struct btrfs_iget_args args
;
3109 args
.ino
= objectid
;
3112 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
3113 btrfs_init_locked_inode
,
3118 /* Get an inode object given its location and corresponding root.
3119 * Returns in *is_new if the inode was read from disk
3121 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
3122 struct btrfs_root
*root
, int *is_new
)
3124 struct inode
*inode
;
3126 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
3128 return ERR_PTR(-EACCES
);
3130 if (inode
->i_state
& I_NEW
) {
3131 BTRFS_I(inode
)->root
= root
;
3132 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
3133 btrfs_read_locked_inode(inode
);
3134 unlock_new_inode(inode
);
3145 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
3147 struct inode
*inode
;
3148 struct btrfs_inode
*bi
= BTRFS_I(dir
);
3149 struct btrfs_root
*root
= bi
->root
;
3150 struct btrfs_root
*sub_root
= root
;
3151 struct btrfs_key location
;
3154 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3155 return ERR_PTR(-ENAMETOOLONG
);
3157 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
3160 return ERR_PTR(ret
);
3163 if (location
.objectid
) {
3164 ret
= fixup_tree_root_location(root
, &location
, &sub_root
,
3167 return ERR_PTR(ret
);
3169 return ERR_PTR(-ENOENT
);
3170 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, &new);
3172 return ERR_CAST(inode
);
3177 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
3178 struct nameidata
*nd
)
3180 struct inode
*inode
;
3182 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3183 return ERR_PTR(-ENAMETOOLONG
);
3185 inode
= btrfs_lookup_dentry(dir
, dentry
);
3187 return ERR_CAST(inode
);
3189 return d_splice_alias(inode
, dentry
);
3192 static unsigned char btrfs_filetype_table
[] = {
3193 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
3196 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
3199 struct inode
*inode
= filp
->f_dentry
->d_inode
;
3200 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3201 struct btrfs_item
*item
;
3202 struct btrfs_dir_item
*di
;
3203 struct btrfs_key key
;
3204 struct btrfs_key found_key
;
3205 struct btrfs_path
*path
;
3208 struct extent_buffer
*leaf
;
3211 unsigned char d_type
;
3216 int key_type
= BTRFS_DIR_INDEX_KEY
;
3221 /* FIXME, use a real flag for deciding about the key type */
3222 if (root
->fs_info
->tree_root
== root
)
3223 key_type
= BTRFS_DIR_ITEM_KEY
;
3225 /* special case for "." */
3226 if (filp
->f_pos
== 0) {
3227 over
= filldir(dirent
, ".", 1,
3234 /* special case for .., just use the back ref */
3235 if (filp
->f_pos
== 1) {
3236 u64 pino
= parent_ino(filp
->f_path
.dentry
);
3237 over
= filldir(dirent
, "..", 2,
3243 path
= btrfs_alloc_path();
3246 btrfs_set_key_type(&key
, key_type
);
3247 key
.offset
= filp
->f_pos
;
3248 key
.objectid
= inode
->i_ino
;
3250 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3256 leaf
= path
->nodes
[0];
3257 nritems
= btrfs_header_nritems(leaf
);
3258 slot
= path
->slots
[0];
3259 if (advance
|| slot
>= nritems
) {
3260 if (slot
>= nritems
- 1) {
3261 ret
= btrfs_next_leaf(root
, path
);
3264 leaf
= path
->nodes
[0];
3265 nritems
= btrfs_header_nritems(leaf
);
3266 slot
= path
->slots
[0];
3274 item
= btrfs_item_nr(leaf
, slot
);
3275 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3277 if (found_key
.objectid
!= key
.objectid
)
3279 if (btrfs_key_type(&found_key
) != key_type
)
3281 if (found_key
.offset
< filp
->f_pos
)
3284 filp
->f_pos
= found_key
.offset
;
3286 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
3288 di_total
= btrfs_item_size(leaf
, item
);
3290 while (di_cur
< di_total
) {
3291 struct btrfs_key location
;
3293 name_len
= btrfs_dir_name_len(leaf
, di
);
3294 if (name_len
<= sizeof(tmp_name
)) {
3295 name_ptr
= tmp_name
;
3297 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
3303 read_extent_buffer(leaf
, name_ptr
,
3304 (unsigned long)(di
+ 1), name_len
);
3306 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
3307 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
3309 /* is this a reference to our own snapshot? If so
3312 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
3313 location
.objectid
== root
->root_key
.objectid
) {
3317 over
= filldir(dirent
, name_ptr
, name_len
,
3318 found_key
.offset
, location
.objectid
,
3322 if (name_ptr
!= tmp_name
)
3327 di_len
= btrfs_dir_name_len(leaf
, di
) +
3328 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
3330 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
3334 /* Reached end of directory/root. Bump pos past the last item. */
3335 if (key_type
== BTRFS_DIR_INDEX_KEY
)
3336 filp
->f_pos
= INT_LIMIT(off_t
);
3342 btrfs_free_path(path
);
3346 int btrfs_write_inode(struct inode
*inode
, int wait
)
3348 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3349 struct btrfs_trans_handle
*trans
;
3352 if (root
->fs_info
->btree_inode
== inode
)
3356 trans
= btrfs_join_transaction(root
, 1);
3357 btrfs_set_trans_block_group(trans
, inode
);
3358 ret
= btrfs_commit_transaction(trans
, root
);
3364 * This is somewhat expensive, updating the tree every time the
3365 * inode changes. But, it is most likely to find the inode in cache.
3366 * FIXME, needs more benchmarking...there are no reasons other than performance
3367 * to keep or drop this code.
3369 void btrfs_dirty_inode(struct inode
*inode
)
3371 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3372 struct btrfs_trans_handle
*trans
;
3374 trans
= btrfs_join_transaction(root
, 1);
3375 btrfs_set_trans_block_group(trans
, inode
);
3376 btrfs_update_inode(trans
, root
, inode
);
3377 btrfs_end_transaction(trans
, root
);
3381 * find the highest existing sequence number in a directory
3382 * and then set the in-memory index_cnt variable to reflect
3383 * free sequence numbers
3385 static int btrfs_set_inode_index_count(struct inode
*inode
)
3387 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3388 struct btrfs_key key
, found_key
;
3389 struct btrfs_path
*path
;
3390 struct extent_buffer
*leaf
;
3393 key
.objectid
= inode
->i_ino
;
3394 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
3395 key
.offset
= (u64
)-1;
3397 path
= btrfs_alloc_path();
3401 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3404 /* FIXME: we should be able to handle this */
3410 * MAGIC NUMBER EXPLANATION:
3411 * since we search a directory based on f_pos we have to start at 2
3412 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3413 * else has to start at 2
3415 if (path
->slots
[0] == 0) {
3416 BTRFS_I(inode
)->index_cnt
= 2;
3422 leaf
= path
->nodes
[0];
3423 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3425 if (found_key
.objectid
!= inode
->i_ino
||
3426 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
3427 BTRFS_I(inode
)->index_cnt
= 2;
3431 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
3433 btrfs_free_path(path
);
3438 * helper to find a free sequence number in a given directory. This current
3439 * code is very simple, later versions will do smarter things in the btree
3441 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
3445 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
3446 ret
= btrfs_set_inode_index_count(dir
);
3451 *index
= BTRFS_I(dir
)->index_cnt
;
3452 BTRFS_I(dir
)->index_cnt
++;
3457 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
3458 struct btrfs_root
*root
,
3460 const char *name
, int name_len
,
3461 u64 ref_objectid
, u64 objectid
,
3462 u64 alloc_hint
, int mode
, u64
*index
)
3464 struct inode
*inode
;
3465 struct btrfs_inode_item
*inode_item
;
3466 struct btrfs_key
*location
;
3467 struct btrfs_path
*path
;
3468 struct btrfs_inode_ref
*ref
;
3469 struct btrfs_key key
[2];
3475 path
= btrfs_alloc_path();
3478 inode
= new_inode(root
->fs_info
->sb
);
3480 return ERR_PTR(-ENOMEM
);
3483 ret
= btrfs_set_inode_index(dir
, index
);
3486 return ERR_PTR(ret
);
3490 * index_cnt is ignored for everything but a dir,
3491 * btrfs_get_inode_index_count has an explanation for the magic
3494 init_btrfs_i(inode
);
3495 BTRFS_I(inode
)->index_cnt
= 2;
3496 BTRFS_I(inode
)->root
= root
;
3497 BTRFS_I(inode
)->generation
= trans
->transid
;
3498 btrfs_set_inode_space_info(root
, inode
);
3504 BTRFS_I(inode
)->block_group
=
3505 btrfs_find_block_group(root
, 0, alloc_hint
, owner
);
3506 if ((mode
& S_IFREG
)) {
3507 if (btrfs_test_opt(root
, NODATASUM
))
3508 btrfs_set_flag(inode
, NODATASUM
);
3509 if (btrfs_test_opt(root
, NODATACOW
))
3510 btrfs_set_flag(inode
, NODATACOW
);
3513 key
[0].objectid
= objectid
;
3514 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
3517 key
[1].objectid
= objectid
;
3518 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
3519 key
[1].offset
= ref_objectid
;
3521 sizes
[0] = sizeof(struct btrfs_inode_item
);
3522 sizes
[1] = name_len
+ sizeof(*ref
);
3524 path
->leave_spinning
= 1;
3525 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
3529 if (objectid
> root
->highest_inode
)
3530 root
->highest_inode
= objectid
;
3532 inode
->i_uid
= current_fsuid();
3534 if (dir
&& (dir
->i_mode
& S_ISGID
)) {
3535 inode
->i_gid
= dir
->i_gid
;
3539 inode
->i_gid
= current_fsgid();
3541 inode
->i_mode
= mode
;
3542 inode
->i_ino
= objectid
;
3543 inode_set_bytes(inode
, 0);
3544 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
3545 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3546 struct btrfs_inode_item
);
3547 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
3549 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
3550 struct btrfs_inode_ref
);
3551 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
3552 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
3553 ptr
= (unsigned long)(ref
+ 1);
3554 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
3556 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3557 btrfs_free_path(path
);
3559 location
= &BTRFS_I(inode
)->location
;
3560 location
->objectid
= objectid
;
3561 location
->offset
= 0;
3562 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
3564 insert_inode_hash(inode
);
3568 BTRFS_I(dir
)->index_cnt
--;
3569 btrfs_free_path(path
);
3571 return ERR_PTR(ret
);
3574 static inline u8
btrfs_inode_type(struct inode
*inode
)
3576 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
3580 * utility function to add 'inode' into 'parent_inode' with
3581 * a give name and a given sequence number.
3582 * if 'add_backref' is true, also insert a backref from the
3583 * inode to the parent directory.
3585 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
3586 struct inode
*parent_inode
, struct inode
*inode
,
3587 const char *name
, int name_len
, int add_backref
, u64 index
)
3590 struct btrfs_key key
;
3591 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
3593 key
.objectid
= inode
->i_ino
;
3594 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
3597 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
3598 parent_inode
->i_ino
,
3599 &key
, btrfs_inode_type(inode
),
3603 ret
= btrfs_insert_inode_ref(trans
, root
,
3606 parent_inode
->i_ino
,
3609 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
3611 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
3612 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
3617 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
3618 struct dentry
*dentry
, struct inode
*inode
,
3619 int backref
, u64 index
)
3621 int err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
3622 inode
, dentry
->d_name
.name
,
3623 dentry
->d_name
.len
, backref
, index
);
3625 d_instantiate(dentry
, inode
);
3633 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
3634 int mode
, dev_t rdev
)
3636 struct btrfs_trans_handle
*trans
;
3637 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3638 struct inode
*inode
= NULL
;
3642 unsigned long nr
= 0;
3645 if (!new_valid_dev(rdev
))
3648 err
= btrfs_check_metadata_free_space(root
);
3652 trans
= btrfs_start_transaction(root
, 1);
3653 btrfs_set_trans_block_group(trans
, dir
);
3655 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3661 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3663 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
3664 BTRFS_I(dir
)->block_group
, mode
, &index
);
3665 err
= PTR_ERR(inode
);
3669 err
= btrfs_init_inode_security(inode
, dir
);
3675 btrfs_set_trans_block_group(trans
, inode
);
3676 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
3680 inode
->i_op
= &btrfs_special_inode_operations
;
3681 init_special_inode(inode
, inode
->i_mode
, rdev
);
3682 btrfs_update_inode(trans
, root
, inode
);
3684 dir
->i_sb
->s_dirt
= 1;
3685 btrfs_update_inode_block_group(trans
, inode
);
3686 btrfs_update_inode_block_group(trans
, dir
);
3688 nr
= trans
->blocks_used
;
3689 btrfs_end_transaction_throttle(trans
, root
);
3692 inode_dec_link_count(inode
);
3695 btrfs_btree_balance_dirty(root
, nr
);
3699 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
3700 int mode
, struct nameidata
*nd
)
3702 struct btrfs_trans_handle
*trans
;
3703 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3704 struct inode
*inode
= NULL
;
3707 unsigned long nr
= 0;
3711 err
= btrfs_check_metadata_free_space(root
);
3714 trans
= btrfs_start_transaction(root
, 1);
3715 btrfs_set_trans_block_group(trans
, dir
);
3717 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3723 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3725 dentry
->d_parent
->d_inode
->i_ino
,
3726 objectid
, BTRFS_I(dir
)->block_group
, mode
,
3728 err
= PTR_ERR(inode
);
3732 err
= btrfs_init_inode_security(inode
, dir
);
3738 btrfs_set_trans_block_group(trans
, inode
);
3739 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
3743 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3744 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
3745 inode
->i_fop
= &btrfs_file_operations
;
3746 inode
->i_op
= &btrfs_file_inode_operations
;
3747 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3749 dir
->i_sb
->s_dirt
= 1;
3750 btrfs_update_inode_block_group(trans
, inode
);
3751 btrfs_update_inode_block_group(trans
, dir
);
3753 nr
= trans
->blocks_used
;
3754 btrfs_end_transaction_throttle(trans
, root
);
3757 inode_dec_link_count(inode
);
3760 btrfs_btree_balance_dirty(root
, nr
);
3764 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
3765 struct dentry
*dentry
)
3767 struct btrfs_trans_handle
*trans
;
3768 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3769 struct inode
*inode
= old_dentry
->d_inode
;
3771 unsigned long nr
= 0;
3775 if (inode
->i_nlink
== 0)
3778 btrfs_inc_nlink(inode
);
3779 err
= btrfs_check_metadata_free_space(root
);
3782 err
= btrfs_set_inode_index(dir
, &index
);
3786 trans
= btrfs_start_transaction(root
, 1);
3788 btrfs_set_trans_block_group(trans
, dir
);
3789 atomic_inc(&inode
->i_count
);
3791 err
= btrfs_add_nondir(trans
, dentry
, inode
, 1, index
);
3796 dir
->i_sb
->s_dirt
= 1;
3797 btrfs_update_inode_block_group(trans
, dir
);
3798 err
= btrfs_update_inode(trans
, root
, inode
);
3803 nr
= trans
->blocks_used
;
3805 btrfs_log_new_name(trans
, inode
, NULL
, dentry
->d_parent
);
3806 btrfs_end_transaction_throttle(trans
, root
);
3809 inode_dec_link_count(inode
);
3812 btrfs_btree_balance_dirty(root
, nr
);
3816 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
3818 struct inode
*inode
= NULL
;
3819 struct btrfs_trans_handle
*trans
;
3820 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3822 int drop_on_err
= 0;
3825 unsigned long nr
= 1;
3827 err
= btrfs_check_metadata_free_space(root
);
3831 trans
= btrfs_start_transaction(root
, 1);
3832 btrfs_set_trans_block_group(trans
, dir
);
3834 if (IS_ERR(trans
)) {
3835 err
= PTR_ERR(trans
);
3839 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3845 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3847 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
3848 BTRFS_I(dir
)->block_group
, S_IFDIR
| mode
,
3850 if (IS_ERR(inode
)) {
3851 err
= PTR_ERR(inode
);
3857 err
= btrfs_init_inode_security(inode
, dir
);
3861 inode
->i_op
= &btrfs_dir_inode_operations
;
3862 inode
->i_fop
= &btrfs_dir_file_operations
;
3863 btrfs_set_trans_block_group(trans
, inode
);
3865 btrfs_i_size_write(inode
, 0);
3866 err
= btrfs_update_inode(trans
, root
, inode
);
3870 err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
3871 inode
, dentry
->d_name
.name
,
3872 dentry
->d_name
.len
, 0, index
);
3876 d_instantiate(dentry
, inode
);
3878 dir
->i_sb
->s_dirt
= 1;
3879 btrfs_update_inode_block_group(trans
, inode
);
3880 btrfs_update_inode_block_group(trans
, dir
);
3883 nr
= trans
->blocks_used
;
3884 btrfs_end_transaction_throttle(trans
, root
);
3889 btrfs_btree_balance_dirty(root
, nr
);
3893 /* helper for btfs_get_extent. Given an existing extent in the tree,
3894 * and an extent that you want to insert, deal with overlap and insert
3895 * the new extent into the tree.
3897 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
3898 struct extent_map
*existing
,
3899 struct extent_map
*em
,
3900 u64 map_start
, u64 map_len
)
3904 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
3905 start_diff
= map_start
- em
->start
;
3906 em
->start
= map_start
;
3908 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
3909 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
3910 em
->block_start
+= start_diff
;
3911 em
->block_len
-= start_diff
;
3913 return add_extent_mapping(em_tree
, em
);
3916 static noinline
int uncompress_inline(struct btrfs_path
*path
,
3917 struct inode
*inode
, struct page
*page
,
3918 size_t pg_offset
, u64 extent_offset
,
3919 struct btrfs_file_extent_item
*item
)
3922 struct extent_buffer
*leaf
= path
->nodes
[0];
3925 unsigned long inline_size
;
3928 WARN_ON(pg_offset
!= 0);
3929 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
3930 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
3931 btrfs_item_nr(leaf
, path
->slots
[0]));
3932 tmp
= kmalloc(inline_size
, GFP_NOFS
);
3933 ptr
= btrfs_file_extent_inline_start(item
);
3935 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
3937 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
3938 ret
= btrfs_zlib_decompress(tmp
, page
, extent_offset
,
3939 inline_size
, max_size
);
3941 char *kaddr
= kmap_atomic(page
, KM_USER0
);
3942 unsigned long copy_size
= min_t(u64
,
3943 PAGE_CACHE_SIZE
- pg_offset
,
3944 max_size
- extent_offset
);
3945 memset(kaddr
+ pg_offset
, 0, copy_size
);
3946 kunmap_atomic(kaddr
, KM_USER0
);
3953 * a bit scary, this does extent mapping from logical file offset to the disk.
3954 * the ugly parts come from merging extents from the disk with the in-ram
3955 * representation. This gets more complex because of the data=ordered code,
3956 * where the in-ram extents might be locked pending data=ordered completion.
3958 * This also copies inline extents directly into the page.
3961 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
3962 size_t pg_offset
, u64 start
, u64 len
,
3968 u64 extent_start
= 0;
3970 u64 objectid
= inode
->i_ino
;
3972 struct btrfs_path
*path
= NULL
;
3973 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3974 struct btrfs_file_extent_item
*item
;
3975 struct extent_buffer
*leaf
;
3976 struct btrfs_key found_key
;
3977 struct extent_map
*em
= NULL
;
3978 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
3979 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3980 struct btrfs_trans_handle
*trans
= NULL
;
3984 spin_lock(&em_tree
->lock
);
3985 em
= lookup_extent_mapping(em_tree
, start
, len
);
3987 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
3988 spin_unlock(&em_tree
->lock
);
3991 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
3992 free_extent_map(em
);
3993 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
3994 free_extent_map(em
);
3998 em
= alloc_extent_map(GFP_NOFS
);
4003 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4004 em
->start
= EXTENT_MAP_HOLE
;
4005 em
->orig_start
= EXTENT_MAP_HOLE
;
4007 em
->block_len
= (u64
)-1;
4010 path
= btrfs_alloc_path();
4014 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
4015 objectid
, start
, trans
!= NULL
);
4022 if (path
->slots
[0] == 0)
4027 leaf
= path
->nodes
[0];
4028 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4029 struct btrfs_file_extent_item
);
4030 /* are we inside the extent that was found? */
4031 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4032 found_type
= btrfs_key_type(&found_key
);
4033 if (found_key
.objectid
!= objectid
||
4034 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4038 found_type
= btrfs_file_extent_type(leaf
, item
);
4039 extent_start
= found_key
.offset
;
4040 compressed
= btrfs_file_extent_compression(leaf
, item
);
4041 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4042 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4043 extent_end
= extent_start
+
4044 btrfs_file_extent_num_bytes(leaf
, item
);
4045 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4047 size
= btrfs_file_extent_inline_len(leaf
, item
);
4048 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
4049 ~((u64
)root
->sectorsize
- 1);
4052 if (start
>= extent_end
) {
4054 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
4055 ret
= btrfs_next_leaf(root
, path
);
4062 leaf
= path
->nodes
[0];
4064 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4065 if (found_key
.objectid
!= objectid
||
4066 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
4068 if (start
+ len
<= found_key
.offset
)
4071 em
->len
= found_key
.offset
- start
;
4075 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4076 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4077 em
->start
= extent_start
;
4078 em
->len
= extent_end
- extent_start
;
4079 em
->orig_start
= extent_start
-
4080 btrfs_file_extent_offset(leaf
, item
);
4081 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
4083 em
->block_start
= EXTENT_MAP_HOLE
;
4087 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4088 em
->block_start
= bytenr
;
4089 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
4092 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
4093 em
->block_start
= bytenr
;
4094 em
->block_len
= em
->len
;
4095 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
4096 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
4099 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4103 size_t extent_offset
;
4106 em
->block_start
= EXTENT_MAP_INLINE
;
4107 if (!page
|| create
) {
4108 em
->start
= extent_start
;
4109 em
->len
= extent_end
- extent_start
;
4113 size
= btrfs_file_extent_inline_len(leaf
, item
);
4114 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
4115 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
4116 size
- extent_offset
);
4117 em
->start
= extent_start
+ extent_offset
;
4118 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
4119 ~((u64
)root
->sectorsize
- 1);
4120 em
->orig_start
= EXTENT_MAP_INLINE
;
4122 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4123 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
4124 if (create
== 0 && !PageUptodate(page
)) {
4125 if (btrfs_file_extent_compression(leaf
, item
) ==
4126 BTRFS_COMPRESS_ZLIB
) {
4127 ret
= uncompress_inline(path
, inode
, page
,
4129 extent_offset
, item
);
4133 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4137 flush_dcache_page(page
);
4138 } else if (create
&& PageUptodate(page
)) {
4141 free_extent_map(em
);
4143 btrfs_release_path(root
, path
);
4144 trans
= btrfs_join_transaction(root
, 1);
4148 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4151 btrfs_mark_buffer_dirty(leaf
);
4153 set_extent_uptodate(io_tree
, em
->start
,
4154 extent_map_end(em
) - 1, GFP_NOFS
);
4157 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
4164 em
->block_start
= EXTENT_MAP_HOLE
;
4165 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
4167 btrfs_release_path(root
, path
);
4168 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
4169 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
4170 "[%llu %llu]\n", (unsigned long long)em
->start
,
4171 (unsigned long long)em
->len
,
4172 (unsigned long long)start
,
4173 (unsigned long long)len
);
4179 spin_lock(&em_tree
->lock
);
4180 ret
= add_extent_mapping(em_tree
, em
);
4181 /* it is possible that someone inserted the extent into the tree
4182 * while we had the lock dropped. It is also possible that
4183 * an overlapping map exists in the tree
4185 if (ret
== -EEXIST
) {
4186 struct extent_map
*existing
;
4190 existing
= lookup_extent_mapping(em_tree
, start
, len
);
4191 if (existing
&& (existing
->start
> start
||
4192 existing
->start
+ existing
->len
<= start
)) {
4193 free_extent_map(existing
);
4197 existing
= lookup_extent_mapping(em_tree
, em
->start
,
4200 err
= merge_extent_mapping(em_tree
, existing
,
4203 free_extent_map(existing
);
4205 free_extent_map(em
);
4210 free_extent_map(em
);
4214 free_extent_map(em
);
4219 spin_unlock(&em_tree
->lock
);
4222 btrfs_free_path(path
);
4224 ret
= btrfs_end_transaction(trans
, root
);
4229 free_extent_map(em
);
4231 return ERR_PTR(err
);
4236 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
4237 const struct iovec
*iov
, loff_t offset
,
4238 unsigned long nr_segs
)
4243 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4244 __u64 start
, __u64 len
)
4246 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent
);
4249 int btrfs_readpage(struct file
*file
, struct page
*page
)
4251 struct extent_io_tree
*tree
;
4252 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4253 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
4256 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
4258 struct extent_io_tree
*tree
;
4261 if (current
->flags
& PF_MEMALLOC
) {
4262 redirty_page_for_writepage(wbc
, page
);
4266 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4267 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
4270 int btrfs_writepages(struct address_space
*mapping
,
4271 struct writeback_control
*wbc
)
4273 struct extent_io_tree
*tree
;
4275 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4276 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
4280 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
4281 struct list_head
*pages
, unsigned nr_pages
)
4283 struct extent_io_tree
*tree
;
4284 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4285 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
4288 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4290 struct extent_io_tree
*tree
;
4291 struct extent_map_tree
*map
;
4294 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4295 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
4296 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
4298 ClearPagePrivate(page
);
4299 set_page_private(page
, 0);
4300 page_cache_release(page
);
4305 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4307 if (PageWriteback(page
) || PageDirty(page
))
4309 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
4312 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
4314 struct extent_io_tree
*tree
;
4315 struct btrfs_ordered_extent
*ordered
;
4316 u64 page_start
= page_offset(page
);
4317 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4319 wait_on_page_writeback(page
);
4320 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4322 btrfs_releasepage(page
, GFP_NOFS
);
4326 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
4327 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
4331 * IO on this page will never be started, so we need
4332 * to account for any ordered extents now
4334 clear_extent_bit(tree
, page_start
, page_end
,
4335 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4336 EXTENT_LOCKED
, 1, 0, GFP_NOFS
);
4337 btrfs_finish_ordered_io(page
->mapping
->host
,
4338 page_start
, page_end
);
4339 btrfs_put_ordered_extent(ordered
);
4340 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
4342 clear_extent_bit(tree
, page_start
, page_end
,
4343 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
4346 __btrfs_releasepage(page
, GFP_NOFS
);
4348 ClearPageChecked(page
);
4349 if (PagePrivate(page
)) {
4350 ClearPagePrivate(page
);
4351 set_page_private(page
, 0);
4352 page_cache_release(page
);
4357 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4358 * called from a page fault handler when a page is first dirtied. Hence we must
4359 * be careful to check for EOF conditions here. We set the page up correctly
4360 * for a written page which means we get ENOSPC checking when writing into
4361 * holes and correct delalloc and unwritten extent mapping on filesystems that
4362 * support these features.
4364 * We are not allowed to take the i_mutex here so we have to play games to
4365 * protect against truncate races as the page could now be beyond EOF. Because
4366 * vmtruncate() writes the inode size before removing pages, once we have the
4367 * page lock we can determine safely if the page is beyond EOF. If it is not
4368 * beyond EOF, then the page is guaranteed safe against truncation until we
4371 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4373 struct page
*page
= vmf
->page
;
4374 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
4375 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4376 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4377 struct btrfs_ordered_extent
*ordered
;
4379 unsigned long zero_start
;
4385 ret
= btrfs_check_data_free_space(root
, inode
, PAGE_CACHE_SIZE
);
4389 else /* -ENOSPC, -EIO, etc */
4390 ret
= VM_FAULT_SIGBUS
;
4394 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
4397 size
= i_size_read(inode
);
4398 page_start
= page_offset(page
);
4399 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4401 if ((page
->mapping
!= inode
->i_mapping
) ||
4402 (page_start
>= size
)) {
4403 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
4404 /* page got truncated out from underneath us */
4407 wait_on_page_writeback(page
);
4409 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4410 set_page_extent_mapped(page
);
4413 * we can't set the delalloc bits if there are pending ordered
4414 * extents. Drop our locks and wait for them to finish
4416 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
4418 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4420 btrfs_start_ordered_extent(inode
, ordered
, 1);
4421 btrfs_put_ordered_extent(ordered
);
4425 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
4428 /* page is wholly or partially inside EOF */
4429 if (page_start
+ PAGE_CACHE_SIZE
> size
)
4430 zero_start
= size
& ~PAGE_CACHE_MASK
;
4432 zero_start
= PAGE_CACHE_SIZE
;
4434 if (zero_start
!= PAGE_CACHE_SIZE
) {
4436 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
4437 flush_dcache_page(page
);
4440 ClearPageChecked(page
);
4441 set_page_dirty(page
);
4443 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
+ 1;
4444 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4452 static void btrfs_truncate(struct inode
*inode
)
4454 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4456 struct btrfs_trans_handle
*trans
;
4458 u64 mask
= root
->sectorsize
- 1;
4460 if (!S_ISREG(inode
->i_mode
))
4462 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4465 btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
4466 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
4468 trans
= btrfs_start_transaction(root
, 1);
4471 * setattr is responsible for setting the ordered_data_close flag,
4472 * but that is only tested during the last file release. That
4473 * could happen well after the next commit, leaving a great big
4474 * window where new writes may get lost if someone chooses to write
4475 * to this file after truncating to zero
4477 * The inode doesn't have any dirty data here, and so if we commit
4478 * this is a noop. If someone immediately starts writing to the inode
4479 * it is very likely we'll catch some of their writes in this
4480 * transaction, and the commit will find this file on the ordered
4481 * data list with good things to send down.
4483 * This is a best effort solution, there is still a window where
4484 * using truncate to replace the contents of the file will
4485 * end up with a zero length file after a crash.
4487 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
4488 btrfs_add_ordered_operation(trans
, root
, inode
);
4490 btrfs_set_trans_block_group(trans
, inode
);
4491 btrfs_i_size_write(inode
, inode
->i_size
);
4493 ret
= btrfs_orphan_add(trans
, inode
);
4496 /* FIXME, add redo link to tree so we don't leak on crash */
4497 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, inode
->i_size
,
4498 BTRFS_EXTENT_DATA_KEY
);
4499 btrfs_update_inode(trans
, root
, inode
);
4501 ret
= btrfs_orphan_del(trans
, inode
);
4505 nr
= trans
->blocks_used
;
4506 ret
= btrfs_end_transaction_throttle(trans
, root
);
4508 btrfs_btree_balance_dirty(root
, nr
);
4512 * create a new subvolume directory/inode (helper for the ioctl).
4514 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
4515 struct btrfs_root
*new_root
, struct dentry
*dentry
,
4516 u64 new_dirid
, u64 alloc_hint
)
4518 struct inode
*inode
;
4522 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
4523 new_dirid
, alloc_hint
, S_IFDIR
| 0700, &index
);
4525 return PTR_ERR(inode
);
4526 inode
->i_op
= &btrfs_dir_inode_operations
;
4527 inode
->i_fop
= &btrfs_dir_file_operations
;
4530 btrfs_i_size_write(inode
, 0);
4532 error
= btrfs_update_inode(trans
, new_root
, inode
);
4536 d_instantiate(dentry
, inode
);
4540 /* helper function for file defrag and space balancing. This
4541 * forces readahead on a given range of bytes in an inode
4543 unsigned long btrfs_force_ra(struct address_space
*mapping
,
4544 struct file_ra_state
*ra
, struct file
*file
,
4545 pgoff_t offset
, pgoff_t last_index
)
4547 pgoff_t req_size
= last_index
- offset
+ 1;
4549 page_cache_sync_readahead(mapping
, ra
, file
, offset
, req_size
);
4550 return offset
+ req_size
;
4553 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
4555 struct btrfs_inode
*ei
;
4557 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
4561 ei
->logged_trans
= 0;
4562 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
4563 ei
->i_acl
= BTRFS_ACL_NOT_CACHED
;
4564 ei
->i_default_acl
= BTRFS_ACL_NOT_CACHED
;
4565 INIT_LIST_HEAD(&ei
->i_orphan
);
4566 INIT_LIST_HEAD(&ei
->ordered_operations
);
4567 return &ei
->vfs_inode
;
4570 void btrfs_destroy_inode(struct inode
*inode
)
4572 struct btrfs_ordered_extent
*ordered
;
4573 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4575 WARN_ON(!list_empty(&inode
->i_dentry
));
4576 WARN_ON(inode
->i_data
.nrpages
);
4578 if (BTRFS_I(inode
)->i_acl
&&
4579 BTRFS_I(inode
)->i_acl
!= BTRFS_ACL_NOT_CACHED
)
4580 posix_acl_release(BTRFS_I(inode
)->i_acl
);
4581 if (BTRFS_I(inode
)->i_default_acl
&&
4582 BTRFS_I(inode
)->i_default_acl
!= BTRFS_ACL_NOT_CACHED
)
4583 posix_acl_release(BTRFS_I(inode
)->i_default_acl
);
4586 * Make sure we're properly removed from the ordered operation
4590 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
4591 spin_lock(&root
->fs_info
->ordered_extent_lock
);
4592 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
4593 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
4596 spin_lock(&root
->list_lock
);
4597 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
4598 printk(KERN_ERR
"BTRFS: inode %lu: inode still on the orphan"
4599 " list\n", inode
->i_ino
);
4602 spin_unlock(&root
->list_lock
);
4605 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
4609 printk(KERN_ERR
"btrfs found ordered "
4610 "extent %llu %llu on inode cleanup\n",
4611 (unsigned long long)ordered
->file_offset
,
4612 (unsigned long long)ordered
->len
);
4613 btrfs_remove_ordered_extent(inode
, ordered
);
4614 btrfs_put_ordered_extent(ordered
);
4615 btrfs_put_ordered_extent(ordered
);
4618 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
4619 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
4622 static void init_once(void *foo
)
4624 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
4626 inode_init_once(&ei
->vfs_inode
);
4629 void btrfs_destroy_cachep(void)
4631 if (btrfs_inode_cachep
)
4632 kmem_cache_destroy(btrfs_inode_cachep
);
4633 if (btrfs_trans_handle_cachep
)
4634 kmem_cache_destroy(btrfs_trans_handle_cachep
);
4635 if (btrfs_transaction_cachep
)
4636 kmem_cache_destroy(btrfs_transaction_cachep
);
4637 if (btrfs_bit_radix_cachep
)
4638 kmem_cache_destroy(btrfs_bit_radix_cachep
);
4639 if (btrfs_path_cachep
)
4640 kmem_cache_destroy(btrfs_path_cachep
);
4643 struct kmem_cache
*btrfs_cache_create(const char *name
, size_t size
,
4644 unsigned long extra_flags
,
4645 void (*ctor
)(void *))
4647 return kmem_cache_create(name
, size
, 0, (SLAB_RECLAIM_ACCOUNT
|
4648 SLAB_MEM_SPREAD
| extra_flags
), ctor
);
4651 int btrfs_init_cachep(void)
4653 btrfs_inode_cachep
= btrfs_cache_create("btrfs_inode_cache",
4654 sizeof(struct btrfs_inode
),
4656 if (!btrfs_inode_cachep
)
4658 btrfs_trans_handle_cachep
=
4659 btrfs_cache_create("btrfs_trans_handle_cache",
4660 sizeof(struct btrfs_trans_handle
),
4662 if (!btrfs_trans_handle_cachep
)
4664 btrfs_transaction_cachep
= btrfs_cache_create("btrfs_transaction_cache",
4665 sizeof(struct btrfs_transaction
),
4667 if (!btrfs_transaction_cachep
)
4669 btrfs_path_cachep
= btrfs_cache_create("btrfs_path_cache",
4670 sizeof(struct btrfs_path
),
4672 if (!btrfs_path_cachep
)
4674 btrfs_bit_radix_cachep
= btrfs_cache_create("btrfs_radix", 256,
4675 SLAB_DESTROY_BY_RCU
, NULL
);
4676 if (!btrfs_bit_radix_cachep
)
4680 btrfs_destroy_cachep();
4684 static int btrfs_getattr(struct vfsmount
*mnt
,
4685 struct dentry
*dentry
, struct kstat
*stat
)
4687 struct inode
*inode
= dentry
->d_inode
;
4688 generic_fillattr(inode
, stat
);
4689 stat
->dev
= BTRFS_I(inode
)->root
->anon_super
.s_dev
;
4690 stat
->blksize
= PAGE_CACHE_SIZE
;
4691 stat
->blocks
= (inode_get_bytes(inode
) +
4692 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
4696 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
4697 struct inode
*new_dir
, struct dentry
*new_dentry
)
4699 struct btrfs_trans_handle
*trans
;
4700 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
4701 struct inode
*new_inode
= new_dentry
->d_inode
;
4702 struct inode
*old_inode
= old_dentry
->d_inode
;
4703 struct timespec ctime
= CURRENT_TIME
;
4707 /* we're not allowed to rename between subvolumes */
4708 if (BTRFS_I(old_inode
)->root
->root_key
.objectid
!=
4709 BTRFS_I(new_dir
)->root
->root_key
.objectid
)
4712 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
4713 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
) {
4717 /* to rename a snapshot or subvolume, we need to juggle the
4718 * backrefs. This isn't coded yet
4720 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
4723 ret
= btrfs_check_metadata_free_space(root
);
4728 * we're using rename to replace one file with another.
4729 * and the replacement file is large. Start IO on it now so
4730 * we don't add too much work to the end of the transaction
4732 if (new_inode
&& old_inode
&& S_ISREG(old_inode
->i_mode
) &&
4733 new_inode
->i_size
&&
4734 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
4735 filemap_flush(old_inode
->i_mapping
);
4737 trans
= btrfs_start_transaction(root
, 1);
4740 * make sure the inode gets flushed if it is replacing
4743 if (new_inode
&& new_inode
->i_size
&&
4744 old_inode
&& S_ISREG(old_inode
->i_mode
)) {
4745 btrfs_add_ordered_operation(trans
, root
, old_inode
);
4749 * this is an ugly little race, but the rename is required to make
4750 * sure that if we crash, the inode is either at the old name
4751 * or the new one. pinning the log transaction lets us make sure
4752 * we don't allow a log commit to come in after we unlink the
4753 * name but before we add the new name back in.
4755 btrfs_pin_log_trans(root
);
4757 btrfs_set_trans_block_group(trans
, new_dir
);
4759 btrfs_inc_nlink(old_dentry
->d_inode
);
4760 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
4761 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
4762 old_inode
->i_ctime
= ctime
;
4764 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
4765 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
4767 ret
= btrfs_unlink_inode(trans
, root
, old_dir
, old_dentry
->d_inode
,
4768 old_dentry
->d_name
.name
,
4769 old_dentry
->d_name
.len
);
4774 new_inode
->i_ctime
= CURRENT_TIME
;
4775 ret
= btrfs_unlink_inode(trans
, root
, new_dir
,
4776 new_dentry
->d_inode
,
4777 new_dentry
->d_name
.name
,
4778 new_dentry
->d_name
.len
);
4781 if (new_inode
->i_nlink
== 0) {
4782 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
4788 ret
= btrfs_set_inode_index(new_dir
, &index
);
4792 ret
= btrfs_add_link(trans
, new_dentry
->d_parent
->d_inode
,
4793 old_inode
, new_dentry
->d_name
.name
,
4794 new_dentry
->d_name
.len
, 1, index
);
4798 btrfs_log_new_name(trans
, old_inode
, old_dir
,
4799 new_dentry
->d_parent
);
4802 /* this btrfs_end_log_trans just allows the current
4803 * log-sub transaction to complete
4805 btrfs_end_log_trans(root
);
4806 btrfs_end_transaction_throttle(trans
, root
);
4812 * some fairly slow code that needs optimization. This walks the list
4813 * of all the inodes with pending delalloc and forces them to disk.
4815 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
)
4817 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
4818 struct btrfs_inode
*binode
;
4819 struct inode
*inode
;
4821 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
4824 spin_lock(&root
->fs_info
->delalloc_lock
);
4825 while (!list_empty(head
)) {
4826 binode
= list_entry(head
->next
, struct btrfs_inode
,
4828 inode
= igrab(&binode
->vfs_inode
);
4830 list_del_init(&binode
->delalloc_inodes
);
4831 spin_unlock(&root
->fs_info
->delalloc_lock
);
4833 filemap_flush(inode
->i_mapping
);
4837 spin_lock(&root
->fs_info
->delalloc_lock
);
4839 spin_unlock(&root
->fs_info
->delalloc_lock
);
4841 /* the filemap_flush will queue IO into the worker threads, but
4842 * we have to make sure the IO is actually started and that
4843 * ordered extents get created before we return
4845 atomic_inc(&root
->fs_info
->async_submit_draining
);
4846 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
4847 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
4848 wait_event(root
->fs_info
->async_submit_wait
,
4849 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
4850 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
4852 atomic_dec(&root
->fs_info
->async_submit_draining
);
4856 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
4857 const char *symname
)
4859 struct btrfs_trans_handle
*trans
;
4860 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4861 struct btrfs_path
*path
;
4862 struct btrfs_key key
;
4863 struct inode
*inode
= NULL
;
4871 struct btrfs_file_extent_item
*ei
;
4872 struct extent_buffer
*leaf
;
4873 unsigned long nr
= 0;
4875 name_len
= strlen(symname
) + 1;
4876 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
4877 return -ENAMETOOLONG
;
4879 err
= btrfs_check_metadata_free_space(root
);
4883 trans
= btrfs_start_transaction(root
, 1);
4884 btrfs_set_trans_block_group(trans
, dir
);
4886 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
4892 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4894 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
4895 BTRFS_I(dir
)->block_group
, S_IFLNK
|S_IRWXUGO
,
4897 err
= PTR_ERR(inode
);
4901 err
= btrfs_init_inode_security(inode
, dir
);
4907 btrfs_set_trans_block_group(trans
, inode
);
4908 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
4912 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4913 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4914 inode
->i_fop
= &btrfs_file_operations
;
4915 inode
->i_op
= &btrfs_file_inode_operations
;
4916 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4918 dir
->i_sb
->s_dirt
= 1;
4919 btrfs_update_inode_block_group(trans
, inode
);
4920 btrfs_update_inode_block_group(trans
, dir
);
4924 path
= btrfs_alloc_path();
4926 key
.objectid
= inode
->i_ino
;
4928 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
4929 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
4930 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
4936 leaf
= path
->nodes
[0];
4937 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
4938 struct btrfs_file_extent_item
);
4939 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
4940 btrfs_set_file_extent_type(leaf
, ei
,
4941 BTRFS_FILE_EXTENT_INLINE
);
4942 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
4943 btrfs_set_file_extent_compression(leaf
, ei
, 0);
4944 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
4945 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
4947 ptr
= btrfs_file_extent_inline_start(ei
);
4948 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
4949 btrfs_mark_buffer_dirty(leaf
);
4950 btrfs_free_path(path
);
4952 inode
->i_op
= &btrfs_symlink_inode_operations
;
4953 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
4954 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4955 inode_set_bytes(inode
, name_len
);
4956 btrfs_i_size_write(inode
, name_len
- 1);
4957 err
= btrfs_update_inode(trans
, root
, inode
);
4962 nr
= trans
->blocks_used
;
4963 btrfs_end_transaction_throttle(trans
, root
);
4966 inode_dec_link_count(inode
);
4969 btrfs_btree_balance_dirty(root
, nr
);
4973 static int prealloc_file_range(struct btrfs_trans_handle
*trans
,
4974 struct inode
*inode
, u64 start
, u64 end
,
4975 u64 alloc_hint
, int mode
)
4977 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4978 struct btrfs_key ins
;
4980 u64 cur_offset
= start
;
4981 u64 num_bytes
= end
- start
;
4984 while (num_bytes
> 0) {
4985 alloc_size
= min(num_bytes
, root
->fs_info
->max_extent
);
4986 ret
= btrfs_reserve_extent(trans
, root
, alloc_size
,
4987 root
->sectorsize
, 0, alloc_hint
,
4993 ret
= insert_reserved_file_extent(trans
, inode
,
4994 cur_offset
, ins
.objectid
,
4995 ins
.offset
, ins
.offset
,
4996 ins
.offset
, 0, 0, 0,
4997 BTRFS_FILE_EXTENT_PREALLOC
);
4999 num_bytes
-= ins
.offset
;
5000 cur_offset
+= ins
.offset
;
5001 alloc_hint
= ins
.objectid
+ ins
.offset
;
5004 if (cur_offset
> start
) {
5005 inode
->i_ctime
= CURRENT_TIME
;
5006 btrfs_set_flag(inode
, PREALLOC
);
5007 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
5008 cur_offset
> i_size_read(inode
))
5009 btrfs_i_size_write(inode
, cur_offset
);
5010 ret
= btrfs_update_inode(trans
, root
, inode
);
5017 static long btrfs_fallocate(struct inode
*inode
, int mode
,
5018 loff_t offset
, loff_t len
)
5025 u64 mask
= BTRFS_I(inode
)->root
->sectorsize
- 1;
5026 struct extent_map
*em
;
5027 struct btrfs_trans_handle
*trans
;
5030 alloc_start
= offset
& ~mask
;
5031 alloc_end
= (offset
+ len
+ mask
) & ~mask
;
5034 * wait for ordered IO before we have any locks. We'll loop again
5035 * below with the locks held.
5037 btrfs_wait_ordered_range(inode
, alloc_start
, alloc_end
- alloc_start
);
5039 mutex_lock(&inode
->i_mutex
);
5040 if (alloc_start
> inode
->i_size
) {
5041 ret
= btrfs_cont_expand(inode
, alloc_start
);
5047 struct btrfs_ordered_extent
*ordered
;
5049 trans
= btrfs_start_transaction(BTRFS_I(inode
)->root
, 1);
5055 /* the extent lock is ordered inside the running
5058 lock_extent(&BTRFS_I(inode
)->io_tree
, alloc_start
,
5059 alloc_end
- 1, GFP_NOFS
);
5060 ordered
= btrfs_lookup_first_ordered_extent(inode
,
5063 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
5064 ordered
->file_offset
< alloc_end
) {
5065 btrfs_put_ordered_extent(ordered
);
5066 unlock_extent(&BTRFS_I(inode
)->io_tree
,
5067 alloc_start
, alloc_end
- 1, GFP_NOFS
);
5068 btrfs_end_transaction(trans
, BTRFS_I(inode
)->root
);
5071 * we can't wait on the range with the transaction
5072 * running or with the extent lock held
5074 btrfs_wait_ordered_range(inode
, alloc_start
,
5075 alloc_end
- alloc_start
);
5078 btrfs_put_ordered_extent(ordered
);
5083 cur_offset
= alloc_start
;
5085 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
5086 alloc_end
- cur_offset
, 0);
5087 BUG_ON(IS_ERR(em
) || !em
);
5088 last_byte
= min(extent_map_end(em
), alloc_end
);
5089 last_byte
= (last_byte
+ mask
) & ~mask
;
5090 if (em
->block_start
== EXTENT_MAP_HOLE
) {
5091 ret
= prealloc_file_range(trans
, inode
, cur_offset
,
5092 last_byte
, alloc_hint
, mode
);
5094 free_extent_map(em
);
5098 if (em
->block_start
<= EXTENT_MAP_LAST_BYTE
)
5099 alloc_hint
= em
->block_start
;
5100 free_extent_map(em
);
5102 cur_offset
= last_byte
;
5103 if (cur_offset
>= alloc_end
) {
5108 unlock_extent(&BTRFS_I(inode
)->io_tree
, alloc_start
, alloc_end
- 1,
5111 btrfs_end_transaction(trans
, BTRFS_I(inode
)->root
);
5113 mutex_unlock(&inode
->i_mutex
);
5117 static int btrfs_set_page_dirty(struct page
*page
)
5119 return __set_page_dirty_nobuffers(page
);
5122 static int btrfs_permission(struct inode
*inode
, int mask
)
5124 if (btrfs_test_flag(inode
, READONLY
) && (mask
& MAY_WRITE
))
5126 return generic_permission(inode
, mask
, btrfs_check_acl
);
5129 static struct inode_operations btrfs_dir_inode_operations
= {
5130 .getattr
= btrfs_getattr
,
5131 .lookup
= btrfs_lookup
,
5132 .create
= btrfs_create
,
5133 .unlink
= btrfs_unlink
,
5135 .mkdir
= btrfs_mkdir
,
5136 .rmdir
= btrfs_rmdir
,
5137 .rename
= btrfs_rename
,
5138 .symlink
= btrfs_symlink
,
5139 .setattr
= btrfs_setattr
,
5140 .mknod
= btrfs_mknod
,
5141 .setxattr
= btrfs_setxattr
,
5142 .getxattr
= btrfs_getxattr
,
5143 .listxattr
= btrfs_listxattr
,
5144 .removexattr
= btrfs_removexattr
,
5145 .permission
= btrfs_permission
,
5147 static struct inode_operations btrfs_dir_ro_inode_operations
= {
5148 .lookup
= btrfs_lookup
,
5149 .permission
= btrfs_permission
,
5151 static struct file_operations btrfs_dir_file_operations
= {
5152 .llseek
= generic_file_llseek
,
5153 .read
= generic_read_dir
,
5154 .readdir
= btrfs_real_readdir
,
5155 .unlocked_ioctl
= btrfs_ioctl
,
5156 #ifdef CONFIG_COMPAT
5157 .compat_ioctl
= btrfs_ioctl
,
5159 .release
= btrfs_release_file
,
5160 .fsync
= btrfs_sync_file
,
5163 static struct extent_io_ops btrfs_extent_io_ops
= {
5164 .fill_delalloc
= run_delalloc_range
,
5165 .submit_bio_hook
= btrfs_submit_bio_hook
,
5166 .merge_bio_hook
= btrfs_merge_bio_hook
,
5167 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
5168 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
5169 .writepage_start_hook
= btrfs_writepage_start_hook
,
5170 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
5171 .set_bit_hook
= btrfs_set_bit_hook
,
5172 .clear_bit_hook
= btrfs_clear_bit_hook
,
5176 * btrfs doesn't support the bmap operation because swapfiles
5177 * use bmap to make a mapping of extents in the file. They assume
5178 * these extents won't change over the life of the file and they
5179 * use the bmap result to do IO directly to the drive.
5181 * the btrfs bmap call would return logical addresses that aren't
5182 * suitable for IO and they also will change frequently as COW
5183 * operations happen. So, swapfile + btrfs == corruption.
5185 * For now we're avoiding this by dropping bmap.
5187 static struct address_space_operations btrfs_aops
= {
5188 .readpage
= btrfs_readpage
,
5189 .writepage
= btrfs_writepage
,
5190 .writepages
= btrfs_writepages
,
5191 .readpages
= btrfs_readpages
,
5192 .sync_page
= block_sync_page
,
5193 .direct_IO
= btrfs_direct_IO
,
5194 .invalidatepage
= btrfs_invalidatepage
,
5195 .releasepage
= btrfs_releasepage
,
5196 .set_page_dirty
= btrfs_set_page_dirty
,
5199 static struct address_space_operations btrfs_symlink_aops
= {
5200 .readpage
= btrfs_readpage
,
5201 .writepage
= btrfs_writepage
,
5202 .invalidatepage
= btrfs_invalidatepage
,
5203 .releasepage
= btrfs_releasepage
,
5206 static struct inode_operations btrfs_file_inode_operations
= {
5207 .truncate
= btrfs_truncate
,
5208 .getattr
= btrfs_getattr
,
5209 .setattr
= btrfs_setattr
,
5210 .setxattr
= btrfs_setxattr
,
5211 .getxattr
= btrfs_getxattr
,
5212 .listxattr
= btrfs_listxattr
,
5213 .removexattr
= btrfs_removexattr
,
5214 .permission
= btrfs_permission
,
5215 .fallocate
= btrfs_fallocate
,
5216 .fiemap
= btrfs_fiemap
,
5218 static struct inode_operations btrfs_special_inode_operations
= {
5219 .getattr
= btrfs_getattr
,
5220 .setattr
= btrfs_setattr
,
5221 .permission
= btrfs_permission
,
5222 .setxattr
= btrfs_setxattr
,
5223 .getxattr
= btrfs_getxattr
,
5224 .listxattr
= btrfs_listxattr
,
5225 .removexattr
= btrfs_removexattr
,
5227 static struct inode_operations btrfs_symlink_inode_operations
= {
5228 .readlink
= generic_readlink
,
5229 .follow_link
= page_follow_link_light
,
5230 .put_link
= page_put_link
,
5231 .permission
= btrfs_permission
,
5232 .setxattr
= btrfs_setxattr
,
5233 .getxattr
= btrfs_getxattr
,
5234 .listxattr
= btrfs_listxattr
,
5235 .removexattr
= btrfs_removexattr
,