2 * drivers/spi/amba-pl022.c
4 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
6 * Copyright (C) 2008-2009 ST-Ericsson AB
7 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
9 * Author: Linus Walleij <linus.walleij@stericsson.com>
11 * Initial version inspired by:
12 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
13 * Initial adoption to PL022 by:
14 * Sachin Verma <sachin.verma@st.com>
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
29 * - add timeout on polled transfers
30 * - add generic DMA framework support
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/device.h>
36 #include <linux/ioport.h>
37 #include <linux/errno.h>
38 #include <linux/interrupt.h>
39 #include <linux/spi/spi.h>
40 #include <linux/workqueue.h>
41 #include <linux/errno.h>
42 #include <linux/delay.h>
43 #include <linux/clk.h>
44 #include <linux/err.h>
45 #include <linux/amba/bus.h>
46 #include <linux/amba/pl022.h>
48 #include <linux/delay.h>
51 * This macro is used to define some register default values.
52 * reg is masked with mask, the OR:ed with an (again masked)
53 * val shifted sb steps to the left.
55 #define SSP_WRITE_BITS(reg, val, mask, sb) \
56 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
59 * This macro is also used to define some default values.
60 * It will just shift val by sb steps to the left and mask
61 * the result with mask.
63 #define GEN_MASK_BITS(val, mask, sb) \
64 (((val)<<(sb)) & (mask))
67 #define DO_NOT_DRIVE_TX 1
69 #define DO_NOT_QUEUE_DMA 0
76 * Macros to access SSP Registers with their offsets
78 #define SSP_CR0(r) (r + 0x000)
79 #define SSP_CR1(r) (r + 0x004)
80 #define SSP_DR(r) (r + 0x008)
81 #define SSP_SR(r) (r + 0x00C)
82 #define SSP_CPSR(r) (r + 0x010)
83 #define SSP_IMSC(r) (r + 0x014)
84 #define SSP_RIS(r) (r + 0x018)
85 #define SSP_MIS(r) (r + 0x01C)
86 #define SSP_ICR(r) (r + 0x020)
87 #define SSP_DMACR(r) (r + 0x024)
88 #define SSP_ITCR(r) (r + 0x080)
89 #define SSP_ITIP(r) (r + 0x084)
90 #define SSP_ITOP(r) (r + 0x088)
91 #define SSP_TDR(r) (r + 0x08C)
93 #define SSP_PID0(r) (r + 0xFE0)
94 #define SSP_PID1(r) (r + 0xFE4)
95 #define SSP_PID2(r) (r + 0xFE8)
96 #define SSP_PID3(r) (r + 0xFEC)
98 #define SSP_CID0(r) (r + 0xFF0)
99 #define SSP_CID1(r) (r + 0xFF4)
100 #define SSP_CID2(r) (r + 0xFF8)
101 #define SSP_CID3(r) (r + 0xFFC)
104 * SSP Control Register 0 - SSP_CR0
106 #define SSP_CR0_MASK_DSS (0x1FUL << 0)
107 #define SSP_CR0_MASK_HALFDUP (0x1UL << 5)
108 #define SSP_CR0_MASK_SPO (0x1UL << 6)
109 #define SSP_CR0_MASK_SPH (0x1UL << 7)
110 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
111 #define SSP_CR0_MASK_CSS (0x1FUL << 16)
112 #define SSP_CR0_MASK_FRF (0x3UL << 21)
115 * SSP Control Register 0 - SSP_CR1
117 #define SSP_CR1_MASK_LBM (0x1UL << 0)
118 #define SSP_CR1_MASK_SSE (0x1UL << 1)
119 #define SSP_CR1_MASK_MS (0x1UL << 2)
120 #define SSP_CR1_MASK_SOD (0x1UL << 3)
121 #define SSP_CR1_MASK_RENDN (0x1UL << 4)
122 #define SSP_CR1_MASK_TENDN (0x1UL << 5)
123 #define SSP_CR1_MASK_MWAIT (0x1UL << 6)
124 #define SSP_CR1_MASK_RXIFLSEL (0x7UL << 7)
125 #define SSP_CR1_MASK_TXIFLSEL (0x7UL << 10)
128 * SSP Data Register - SSP_DR
130 #define SSP_DR_MASK_DATA 0xFFFFFFFF
133 * SSP Status Register - SSP_SR
135 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
136 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
137 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
138 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
139 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
142 * SSP Clock Prescale Register - SSP_CPSR
144 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
147 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
149 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
150 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
151 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
152 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
155 * SSP Raw Interrupt Status Register - SSP_RIS
157 /* Receive Overrun Raw Interrupt status */
158 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
159 /* Receive Timeout Raw Interrupt status */
160 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
161 /* Receive FIFO Raw Interrupt status */
162 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
163 /* Transmit FIFO Raw Interrupt status */
164 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
167 * SSP Masked Interrupt Status Register - SSP_MIS
169 /* Receive Overrun Masked Interrupt status */
170 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
171 /* Receive Timeout Masked Interrupt status */
172 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
173 /* Receive FIFO Masked Interrupt status */
174 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
175 /* Transmit FIFO Masked Interrupt status */
176 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
179 * SSP Interrupt Clear Register - SSP_ICR
181 /* Receive Overrun Raw Clear Interrupt bit */
182 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
183 /* Receive Timeout Clear Interrupt bit */
184 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
187 * SSP DMA Control Register - SSP_DMACR
189 /* Receive DMA Enable bit */
190 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
191 /* Transmit DMA Enable bit */
192 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
195 * SSP Integration Test control Register - SSP_ITCR
197 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
198 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
201 * SSP Integration Test Input Register - SSP_ITIP
203 #define ITIP_MASK_SSPRXD (0x1UL << 0)
204 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
205 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
206 #define ITIP_MASK_RXDMAC (0x1UL << 3)
207 #define ITIP_MASK_TXDMAC (0x1UL << 4)
208 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
211 * SSP Integration Test output Register - SSP_ITOP
213 #define ITOP_MASK_SSPTXD (0x1UL << 0)
214 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
215 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
216 #define ITOP_MASK_SSPOEn (0x1UL << 3)
217 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
218 #define ITOP_MASK_RORINTR (0x1UL << 5)
219 #define ITOP_MASK_RTINTR (0x1UL << 6)
220 #define ITOP_MASK_RXINTR (0x1UL << 7)
221 #define ITOP_MASK_TXINTR (0x1UL << 8)
222 #define ITOP_MASK_INTR (0x1UL << 9)
223 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
224 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
225 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
226 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
229 * SSP Test Data Register - SSP_TDR
231 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
235 * we use the spi_message.state (void *) pointer to
236 * hold a single state value, that's why all this
237 * (void *) casting is done here.
239 #define STATE_START ((void *) 0)
240 #define STATE_RUNNING ((void *) 1)
241 #define STATE_DONE ((void *) 2)
242 #define STATE_ERROR ((void *) -1)
247 #define QUEUE_RUNNING (0)
248 #define QUEUE_STOPPED (1)
250 * SSP State - Whether Enabled or Disabled
252 #define SSP_DISABLED (0)
253 #define SSP_ENABLED (1)
256 * SSP DMA State - Whether DMA Enabled or Disabled
258 #define SSP_DMA_DISABLED (0)
259 #define SSP_DMA_ENABLED (1)
264 #define NMDK_SSP_DEFAULT_CLKRATE 0x2
265 #define NMDK_SSP_DEFAULT_PRESCALE 0x40
268 * SSP Clock Parameter ranges
270 #define CPSDVR_MIN 0x02
271 #define CPSDVR_MAX 0xFE
276 * SSP Interrupt related Macros
278 #define DEFAULT_SSP_REG_IMSC 0x0UL
279 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
280 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
282 #define CLEAR_ALL_INTERRUPTS 0x3
286 * The type of reading going on on this chip
296 * The type of writing going on on this chip
306 * struct vendor_data - vendor-specific config parameters
307 * for PL022 derivates
308 * @fifodepth: depth of FIFOs (both)
309 * @max_bpw: maximum number of bits per word
310 * @unidir: supports unidirection transfers
319 * struct pl022 - This is the private SSP driver data structure
320 * @adev: AMBA device model hookup
321 * @phybase: The physical memory where the SSP device resides
322 * @virtbase: The virtual memory where the SSP is mapped
323 * @master: SPI framework hookup
324 * @master_info: controller-specific data from machine setup
325 * @regs: SSP controller register's virtual address
326 * @pump_messages: Work struct for scheduling work to the workqueue
327 * @lock: spinlock to syncronise access to driver data
328 * @workqueue: a workqueue on which any spi_message request is queued
329 * @busy: workqueue is busy
330 * @run: workqueue is running
331 * @pump_transfers: Tasklet used in Interrupt Transfer mode
332 * @cur_msg: Pointer to current spi_message being processed
333 * @cur_transfer: Pointer to current spi_transfer
334 * @cur_chip: pointer to current clients chip(assigned from controller_state)
335 * @tx: current position in TX buffer to be read
336 * @tx_end: end position in TX buffer to be read
337 * @rx: current position in RX buffer to be written
338 * @rx_end: end position in RX buffer to be written
339 * @readingtype: the type of read currently going on
340 * @writingtype: the type or write currently going on
343 struct amba_device
*adev
;
344 struct vendor_data
*vendor
;
345 resource_size_t phybase
;
346 void __iomem
*virtbase
;
348 struct spi_master
*master
;
349 struct pl022_ssp_controller
*master_info
;
350 /* Driver message queue */
351 struct workqueue_struct
*workqueue
;
352 struct work_struct pump_messages
;
353 spinlock_t queue_lock
;
354 struct list_head queue
;
357 /* Message transfer pump */
358 struct tasklet_struct pump_transfers
;
359 struct spi_message
*cur_msg
;
360 struct spi_transfer
*cur_transfer
;
361 struct chip_data
*cur_chip
;
366 enum ssp_reading read
;
367 enum ssp_writing write
;
371 * struct chip_data - To maintain runtime state of SSP for each client chip
372 * @cr0: Value of control register CR0 of SSP
373 * @cr1: Value of control register CR1 of SSP
374 * @dmacr: Value of DMA control Register of SSP
375 * @cpsr: Value of Clock prescale register
376 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
377 * @enable_dma: Whether to enable DMA or not
378 * @write: function ptr to be used to write when doing xfer for this chip
379 * @read: function ptr to be used to read when doing xfer for this chip
380 * @cs_control: chip select callback provided by chip
381 * @xfer_type: polling/interrupt/DMA
383 * Runtime state of the SSP controller, maintained per chip,
384 * This would be set according to the current message that would be served
393 enum ssp_reading read
;
394 enum ssp_writing write
;
395 void (*cs_control
) (u32 command
);
400 * null_cs_control - Dummy chip select function
401 * @command: select/delect the chip
403 * If no chip select function is provided by client this is used as dummy
406 static void null_cs_control(u32 command
)
408 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command
);
412 * giveback - current spi_message is over, schedule next message and call
413 * callback of this message. Assumes that caller already
414 * set message->status; dma and pio irqs are blocked
415 * @pl022: SSP driver private data structure
417 static void giveback(struct pl022
*pl022
)
419 struct spi_transfer
*last_transfer
;
421 struct spi_message
*msg
;
422 void (*curr_cs_control
) (u32 command
);
425 * This local reference to the chip select function
426 * is needed because we set curr_chip to NULL
427 * as a step toward termininating the message.
429 curr_cs_control
= pl022
->cur_chip
->cs_control
;
430 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
431 msg
= pl022
->cur_msg
;
432 pl022
->cur_msg
= NULL
;
433 pl022
->cur_transfer
= NULL
;
434 pl022
->cur_chip
= NULL
;
435 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
436 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
438 last_transfer
= list_entry(msg
->transfers
.prev
,
442 /* Delay if requested before any change in chip select */
443 if (last_transfer
->delay_usecs
)
445 * FIXME: This runs in interrupt context.
446 * Is this really smart?
448 udelay(last_transfer
->delay_usecs
);
451 * Drop chip select UNLESS cs_change is true or we are returning
452 * a message with an error, or next message is for another chip
454 if (!last_transfer
->cs_change
)
455 curr_cs_control(SSP_CHIP_DESELECT
);
457 struct spi_message
*next_msg
;
459 /* Holding of cs was hinted, but we need to make sure
460 * the next message is for the same chip. Don't waste
461 * time with the following tests unless this was hinted.
463 * We cannot postpone this until pump_messages, because
464 * after calling msg->complete (below) the driver that
465 * sent the current message could be unloaded, which
466 * could invalidate the cs_control() callback...
469 /* get a pointer to the next message, if any */
470 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
471 if (list_empty(&pl022
->queue
))
474 next_msg
= list_entry(pl022
->queue
.next
,
475 struct spi_message
, queue
);
476 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
478 /* see if the next and current messages point
481 if (next_msg
&& next_msg
->spi
!= msg
->spi
)
483 if (!next_msg
|| msg
->state
== STATE_ERROR
)
484 curr_cs_control(SSP_CHIP_DESELECT
);
488 msg
->complete(msg
->context
);
489 /* This message is completed, so let's turn off the clock! */
490 clk_disable(pl022
->clk
);
494 * flush - flush the FIFO to reach a clean state
495 * @pl022: SSP driver private data structure
497 static int flush(struct pl022
*pl022
)
499 unsigned long limit
= loops_per_jiffy
<< 1;
501 dev_dbg(&pl022
->adev
->dev
, "flush\n");
503 while (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
504 readw(SSP_DR(pl022
->virtbase
));
505 } while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_BSY
) && limit
--);
510 * restore_state - Load configuration of current chip
511 * @pl022: SSP driver private data structure
513 static void restore_state(struct pl022
*pl022
)
515 struct chip_data
*chip
= pl022
->cur_chip
;
517 writew(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
518 writew(chip
->cr1
, SSP_CR1(pl022
->virtbase
));
519 writew(chip
->dmacr
, SSP_DMACR(pl022
->virtbase
));
520 writew(chip
->cpsr
, SSP_CPSR(pl022
->virtbase
));
521 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
522 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
526 * load_ssp_default_config - Load default configuration for SSP
527 * @pl022: SSP driver private data structure
531 * Default SSP Register Values
533 #define DEFAULT_SSP_REG_CR0 ( \
534 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
535 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP, 5) | \
536 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
537 GEN_MASK_BITS(SSP_CLK_FALLING_EDGE, SSP_CR0_MASK_SPH, 7) | \
538 GEN_MASK_BITS(NMDK_SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
539 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS, 16) | \
540 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 21) \
543 #define DEFAULT_SSP_REG_CR1 ( \
544 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
545 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
546 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
547 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
548 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN, 4) | \
549 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN, 5) | \
550 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT, 6) |\
551 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL, 7) | \
552 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL, 10) \
555 #define DEFAULT_SSP_REG_CPSR ( \
556 GEN_MASK_BITS(NMDK_SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
559 #define DEFAULT_SSP_REG_DMACR (\
560 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
561 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
565 static void load_ssp_default_config(struct pl022
*pl022
)
567 writew(DEFAULT_SSP_REG_CR0
, SSP_CR0(pl022
->virtbase
));
568 writew(DEFAULT_SSP_REG_CR1
, SSP_CR1(pl022
->virtbase
));
569 writew(DEFAULT_SSP_REG_DMACR
, SSP_DMACR(pl022
->virtbase
));
570 writew(DEFAULT_SSP_REG_CPSR
, SSP_CPSR(pl022
->virtbase
));
571 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
572 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
576 * This will write to TX and read from RX according to the parameters
579 static void readwriter(struct pl022
*pl022
)
583 * The FIFO depth is different inbetween primecell variants.
584 * I believe filling in too much in the FIFO might cause
585 * errons in 8bit wide transfers on ARM variants (just 8 words
586 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
588 * FIXME: currently we have no logic to account for this.
589 * perhaps there is even something broken in HW regarding
590 * 8bit transfers (it doesn't fail on 16bit) so this needs
591 * more investigation...
593 dev_dbg(&pl022
->adev
->dev
,
594 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
595 __func__
, pl022
->rx
, pl022
->rx_end
, pl022
->tx
, pl022
->tx_end
);
597 /* Read as much as you can */
598 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
599 && (pl022
->rx
< pl022
->rx_end
)) {
600 switch (pl022
->read
) {
602 readw(SSP_DR(pl022
->virtbase
));
605 *(u8
*) (pl022
->rx
) =
606 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
609 *(u16
*) (pl022
->rx
) =
610 (u16
) readw(SSP_DR(pl022
->virtbase
));
613 *(u32
*) (pl022
->rx
) =
614 readl(SSP_DR(pl022
->virtbase
));
617 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
620 * Write as much as you can, while keeping an eye on the RX FIFO!
622 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_TNF
)
623 && (pl022
->tx
< pl022
->tx_end
)) {
624 switch (pl022
->write
) {
626 writew(0x0, SSP_DR(pl022
->virtbase
));
629 writew(*(u8
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
632 writew((*(u16
*) (pl022
->tx
)), SSP_DR(pl022
->virtbase
));
635 writel(*(u32
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
638 pl022
->tx
+= (pl022
->cur_chip
->n_bytes
);
640 * This inner reader takes care of things appearing in the RX
641 * FIFO as we're transmitting. This will happen a lot since the
642 * clock starts running when you put things into the TX FIFO,
643 * and then things are continously clocked into the RX FIFO.
645 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
646 && (pl022
->rx
< pl022
->rx_end
)) {
647 switch (pl022
->read
) {
649 readw(SSP_DR(pl022
->virtbase
));
652 *(u8
*) (pl022
->rx
) =
653 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
656 *(u16
*) (pl022
->rx
) =
657 (u16
) readw(SSP_DR(pl022
->virtbase
));
660 *(u32
*) (pl022
->rx
) =
661 readl(SSP_DR(pl022
->virtbase
));
664 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
668 * When we exit here the TX FIFO should be full and the RX FIFO
675 * next_transfer - Move to the Next transfer in the current spi message
676 * @pl022: SSP driver private data structure
678 * This function moves though the linked list of spi transfers in the
679 * current spi message and returns with the state of current spi
680 * message i.e whether its last transfer is done(STATE_DONE) or
681 * Next transfer is ready(STATE_RUNNING)
683 static void *next_transfer(struct pl022
*pl022
)
685 struct spi_message
*msg
= pl022
->cur_msg
;
686 struct spi_transfer
*trans
= pl022
->cur_transfer
;
688 /* Move to next transfer */
689 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
690 pl022
->cur_transfer
=
691 list_entry(trans
->transfer_list
.next
,
692 struct spi_transfer
, transfer_list
);
693 return STATE_RUNNING
;
698 * pl022_interrupt_handler - Interrupt handler for SSP controller
700 * This function handles interrupts generated for an interrupt based transfer.
701 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
702 * current message's state as STATE_ERROR and schedule the tasklet
703 * pump_transfers which will do the postprocessing of the current message by
704 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
705 * more data, and writes data in TX FIFO till it is not full. If we complete
706 * the transfer we move to the next transfer and schedule the tasklet.
708 static irqreturn_t
pl022_interrupt_handler(int irq
, void *dev_id
)
710 struct pl022
*pl022
= dev_id
;
711 struct spi_message
*msg
= pl022
->cur_msg
;
715 if (unlikely(!msg
)) {
716 dev_err(&pl022
->adev
->dev
,
717 "bad message state in interrupt handler");
722 /* Read the Interrupt Status Register */
723 irq_status
= readw(SSP_MIS(pl022
->virtbase
));
725 if (unlikely(!irq_status
))
728 /* This handles the error code interrupts */
729 if (unlikely(irq_status
& SSP_MIS_MASK_RORMIS
)) {
731 * Overrun interrupt - bail out since our Data has been
734 dev_err(&pl022
->adev
->dev
,
736 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RFF
)
737 dev_err(&pl022
->adev
->dev
,
739 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_TNF
)
740 dev_err(&pl022
->adev
->dev
,
744 * Disable and clear interrupts, disable SSP,
745 * mark message with bad status so it can be
748 writew(DISABLE_ALL_INTERRUPTS
,
749 SSP_IMSC(pl022
->virtbase
));
750 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
751 writew((readw(SSP_CR1(pl022
->virtbase
)) &
752 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
753 msg
->state
= STATE_ERROR
;
755 /* Schedule message queue handler */
756 tasklet_schedule(&pl022
->pump_transfers
);
762 if ((pl022
->tx
== pl022
->tx_end
) && (flag
== 0)) {
764 /* Disable Transmit interrupt */
765 writew(readw(SSP_IMSC(pl022
->virtbase
)) &
766 (~SSP_IMSC_MASK_TXIM
),
767 SSP_IMSC(pl022
->virtbase
));
771 * Since all transactions must write as much as shall be read,
772 * we can conclude the entire transaction once RX is complete.
773 * At this point, all TX will always be finished.
775 if (pl022
->rx
>= pl022
->rx_end
) {
776 writew(DISABLE_ALL_INTERRUPTS
,
777 SSP_IMSC(pl022
->virtbase
));
778 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
779 if (unlikely(pl022
->rx
> pl022
->rx_end
)) {
780 dev_warn(&pl022
->adev
->dev
, "read %u surplus "
781 "bytes (did you request an odd "
782 "number of bytes on a 16bit bus?)\n",
783 (u32
) (pl022
->rx
- pl022
->rx_end
));
785 /* Update total bytes transfered */
786 msg
->actual_length
+= pl022
->cur_transfer
->len
;
787 if (pl022
->cur_transfer
->cs_change
)
789 cs_control(SSP_CHIP_DESELECT
);
790 /* Move to next transfer */
791 msg
->state
= next_transfer(pl022
);
792 tasklet_schedule(&pl022
->pump_transfers
);
800 * This sets up the pointers to memory for the next message to
801 * send out on the SPI bus.
803 static int set_up_next_transfer(struct pl022
*pl022
,
804 struct spi_transfer
*transfer
)
808 /* Sanity check the message for this bus width */
809 residue
= pl022
->cur_transfer
->len
% pl022
->cur_chip
->n_bytes
;
810 if (unlikely(residue
!= 0)) {
811 dev_err(&pl022
->adev
->dev
,
812 "message of %u bytes to transmit but the current "
813 "chip bus has a data width of %u bytes!\n",
814 pl022
->cur_transfer
->len
,
815 pl022
->cur_chip
->n_bytes
);
816 dev_err(&pl022
->adev
->dev
, "skipping this message\n");
819 pl022
->tx
= (void *)transfer
->tx_buf
;
820 pl022
->tx_end
= pl022
->tx
+ pl022
->cur_transfer
->len
;
821 pl022
->rx
= (void *)transfer
->rx_buf
;
822 pl022
->rx_end
= pl022
->rx
+ pl022
->cur_transfer
->len
;
824 pl022
->tx
? pl022
->cur_chip
->write
: WRITING_NULL
;
825 pl022
->read
= pl022
->rx
? pl022
->cur_chip
->read
: READING_NULL
;
830 * pump_transfers - Tasklet function which schedules next interrupt transfer
831 * when running in interrupt transfer mode.
832 * @data: SSP driver private data structure
835 static void pump_transfers(unsigned long data
)
837 struct pl022
*pl022
= (struct pl022
*) data
;
838 struct spi_message
*message
= NULL
;
839 struct spi_transfer
*transfer
= NULL
;
840 struct spi_transfer
*previous
= NULL
;
842 /* Get current state information */
843 message
= pl022
->cur_msg
;
844 transfer
= pl022
->cur_transfer
;
846 /* Handle for abort */
847 if (message
->state
== STATE_ERROR
) {
848 message
->status
= -EIO
;
853 /* Handle end of message */
854 if (message
->state
== STATE_DONE
) {
860 /* Delay if requested at end of transfer before CS change */
861 if (message
->state
== STATE_RUNNING
) {
862 previous
= list_entry(transfer
->transfer_list
.prev
,
865 if (previous
->delay_usecs
)
867 * FIXME: This runs in interrupt context.
868 * Is this really smart?
870 udelay(previous
->delay_usecs
);
872 /* Drop chip select only if cs_change is requested */
873 if (previous
->cs_change
)
874 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
877 message
->state
= STATE_RUNNING
;
880 if (set_up_next_transfer(pl022
, transfer
)) {
881 message
->state
= STATE_ERROR
;
882 message
->status
= -EIO
;
886 /* Flush the FIFOs and let's go! */
888 writew(ENABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
893 * configure_dma - It configures the DMA pipes for DMA transfers
894 * @data: SSP driver's private data structure
897 static int configure_dma(void *data
)
899 struct pl022
*pl022
= data
;
900 dev_dbg(&pl022
->adev
->dev
, "configure DMA\n");
905 * do_dma_transfer - It handles transfers of the current message
907 * NOT FULLY IMPLEMENTED
908 * @data: SSP driver's private data structure
910 static void do_dma_transfer(void *data
)
912 struct pl022
*pl022
= data
;
914 if (configure_dma(data
)) {
915 dev_dbg(&pl022
->adev
->dev
, "configuration of DMA Failed!\n");
919 /* TODO: Implememt DMA setup of pipes here */
921 /* Enable target chip, set up transfer */
922 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
923 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
925 pl022
->cur_msg
->state
= STATE_ERROR
;
926 pl022
->cur_msg
->status
= -EIO
;
931 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
932 SSP_CR1(pl022
->virtbase
));
934 /* TODO: Enable the DMA transfer here */
938 pl022
->cur_msg
->state
= STATE_ERROR
;
939 pl022
->cur_msg
->status
= -EIO
;
944 static void do_interrupt_transfer(void *data
)
946 struct pl022
*pl022
= data
;
948 /* Enable target chip */
949 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
950 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
952 pl022
->cur_msg
->state
= STATE_ERROR
;
953 pl022
->cur_msg
->status
= -EIO
;
957 /* Enable SSP, turn on interrupts */
958 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
959 SSP_CR1(pl022
->virtbase
));
960 writew(ENABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
963 static void do_polling_transfer(void *data
)
965 struct pl022
*pl022
= data
;
966 struct spi_message
*message
= NULL
;
967 struct spi_transfer
*transfer
= NULL
;
968 struct spi_transfer
*previous
= NULL
;
969 struct chip_data
*chip
;
971 chip
= pl022
->cur_chip
;
972 message
= pl022
->cur_msg
;
974 while (message
->state
!= STATE_DONE
) {
975 /* Handle for abort */
976 if (message
->state
== STATE_ERROR
)
978 transfer
= pl022
->cur_transfer
;
980 /* Delay if requested at end of transfer */
981 if (message
->state
== STATE_RUNNING
) {
983 list_entry(transfer
->transfer_list
.prev
,
984 struct spi_transfer
, transfer_list
);
985 if (previous
->delay_usecs
)
986 udelay(previous
->delay_usecs
);
987 if (previous
->cs_change
)
988 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
991 message
->state
= STATE_RUNNING
;
992 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
995 /* Configuration Changing Per Transfer */
996 if (set_up_next_transfer(pl022
, transfer
)) {
998 message
->state
= STATE_ERROR
;
1001 /* Flush FIFOs and enable SSP */
1003 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1004 SSP_CR1(pl022
->virtbase
));
1006 dev_dbg(&pl022
->adev
->dev
, "POLLING TRANSFER ONGOING ... \n");
1007 /* FIXME: insert a timeout so we don't hang here indefinately */
1008 while (pl022
->tx
< pl022
->tx_end
|| pl022
->rx
< pl022
->rx_end
)
1011 /* Update total byte transfered */
1012 message
->actual_length
+= pl022
->cur_transfer
->len
;
1013 if (pl022
->cur_transfer
->cs_change
)
1014 pl022
->cur_chip
->cs_control(SSP_CHIP_DESELECT
);
1015 /* Move to next transfer */
1016 message
->state
= next_transfer(pl022
);
1019 /* Handle end of message */
1020 if (message
->state
== STATE_DONE
)
1021 message
->status
= 0;
1023 message
->status
= -EIO
;
1030 * pump_messages - Workqueue function which processes spi message queue
1031 * @data: pointer to private data of SSP driver
1033 * This function checks if there is any spi message in the queue that
1034 * needs processing and delegate control to appropriate function
1035 * do_polling_transfer()/do_interrupt_transfer()/do_dma_transfer()
1036 * based on the kind of the transfer
1039 static void pump_messages(struct work_struct
*work
)
1041 struct pl022
*pl022
=
1042 container_of(work
, struct pl022
, pump_messages
);
1043 unsigned long flags
;
1045 /* Lock queue and check for queue work */
1046 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1047 if (list_empty(&pl022
->queue
) || pl022
->run
== QUEUE_STOPPED
) {
1049 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1052 /* Make sure we are not already running a message */
1053 if (pl022
->cur_msg
) {
1054 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1057 /* Extract head of queue */
1059 list_entry(pl022
->queue
.next
, struct spi_message
, queue
);
1061 list_del_init(&pl022
->cur_msg
->queue
);
1063 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1065 /* Initial message state */
1066 pl022
->cur_msg
->state
= STATE_START
;
1067 pl022
->cur_transfer
= list_entry(pl022
->cur_msg
->transfers
.next
,
1068 struct spi_transfer
,
1071 /* Setup the SPI using the per chip configuration */
1072 pl022
->cur_chip
= spi_get_ctldata(pl022
->cur_msg
->spi
);
1074 * We enable the clock here, then the clock will be disabled when
1075 * giveback() is called in each method (poll/interrupt/DMA)
1077 clk_enable(pl022
->clk
);
1078 restore_state(pl022
);
1081 if (pl022
->cur_chip
->xfer_type
== POLLING_TRANSFER
)
1082 do_polling_transfer(pl022
);
1083 else if (pl022
->cur_chip
->xfer_type
== INTERRUPT_TRANSFER
)
1084 do_interrupt_transfer(pl022
);
1086 do_dma_transfer(pl022
);
1090 static int __init
init_queue(struct pl022
*pl022
)
1092 INIT_LIST_HEAD(&pl022
->queue
);
1093 spin_lock_init(&pl022
->queue_lock
);
1095 pl022
->run
= QUEUE_STOPPED
;
1098 tasklet_init(&pl022
->pump_transfers
,
1099 pump_transfers
, (unsigned long)pl022
);
1101 INIT_WORK(&pl022
->pump_messages
, pump_messages
);
1102 pl022
->workqueue
= create_singlethread_workqueue(
1103 dev_name(pl022
->master
->dev
.parent
));
1104 if (pl022
->workqueue
== NULL
)
1111 static int start_queue(struct pl022
*pl022
)
1113 unsigned long flags
;
1115 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1117 if (pl022
->run
== QUEUE_RUNNING
|| pl022
->busy
) {
1118 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1122 pl022
->run
= QUEUE_RUNNING
;
1123 pl022
->cur_msg
= NULL
;
1124 pl022
->cur_transfer
= NULL
;
1125 pl022
->cur_chip
= NULL
;
1126 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1128 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1134 static int stop_queue(struct pl022
*pl022
)
1136 unsigned long flags
;
1137 unsigned limit
= 500;
1140 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1142 /* This is a bit lame, but is optimized for the common execution path.
1143 * A wait_queue on the pl022->busy could be used, but then the common
1144 * execution path (pump_messages) would be required to call wake_up or
1145 * friends on every SPI message. Do this instead */
1146 pl022
->run
= QUEUE_STOPPED
;
1147 while (!list_empty(&pl022
->queue
) && pl022
->busy
&& limit
--) {
1148 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1150 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1153 if (!list_empty(&pl022
->queue
) || pl022
->busy
)
1156 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1161 static int destroy_queue(struct pl022
*pl022
)
1165 status
= stop_queue(pl022
);
1166 /* we are unloading the module or failing to load (only two calls
1167 * to this routine), and neither call can handle a return value.
1168 * However, destroy_workqueue calls flush_workqueue, and that will
1169 * block until all work is done. If the reason that stop_queue
1170 * timed out is that the work will never finish, then it does no
1171 * good to call destroy_workqueue, so return anyway. */
1175 destroy_workqueue(pl022
->workqueue
);
1180 static int verify_controller_parameters(struct pl022
*pl022
,
1181 struct pl022_config_chip
*chip_info
)
1183 if ((chip_info
->lbm
!= LOOPBACK_ENABLED
)
1184 && (chip_info
->lbm
!= LOOPBACK_DISABLED
)) {
1185 dev_err(chip_info
->dev
,
1186 "loopback Mode is configured incorrectly\n");
1189 if ((chip_info
->iface
< SSP_INTERFACE_MOTOROLA_SPI
)
1190 || (chip_info
->iface
> SSP_INTERFACE_UNIDIRECTIONAL
)) {
1191 dev_err(chip_info
->dev
,
1192 "interface is configured incorrectly\n");
1195 if ((chip_info
->iface
== SSP_INTERFACE_UNIDIRECTIONAL
) &&
1196 (!pl022
->vendor
->unidir
)) {
1197 dev_err(chip_info
->dev
,
1198 "unidirectional mode not supported in this "
1199 "hardware version\n");
1202 if ((chip_info
->hierarchy
!= SSP_MASTER
)
1203 && (chip_info
->hierarchy
!= SSP_SLAVE
)) {
1204 dev_err(chip_info
->dev
,
1205 "hierarchy is configured incorrectly\n");
1208 if (((chip_info
->clk_freq
).cpsdvsr
< CPSDVR_MIN
)
1209 || ((chip_info
->clk_freq
).cpsdvsr
> CPSDVR_MAX
)) {
1210 dev_err(chip_info
->dev
,
1211 "cpsdvsr is configured incorrectly\n");
1214 if ((chip_info
->endian_rx
!= SSP_RX_MSB
)
1215 && (chip_info
->endian_rx
!= SSP_RX_LSB
)) {
1216 dev_err(chip_info
->dev
,
1217 "RX FIFO endianess is configured incorrectly\n");
1220 if ((chip_info
->endian_tx
!= SSP_TX_MSB
)
1221 && (chip_info
->endian_tx
!= SSP_TX_LSB
)) {
1222 dev_err(chip_info
->dev
,
1223 "TX FIFO endianess is configured incorrectly\n");
1226 if ((chip_info
->data_size
< SSP_DATA_BITS_4
)
1227 || (chip_info
->data_size
> SSP_DATA_BITS_32
)) {
1228 dev_err(chip_info
->dev
,
1229 "DATA Size is configured incorrectly\n");
1232 if ((chip_info
->com_mode
!= INTERRUPT_TRANSFER
)
1233 && (chip_info
->com_mode
!= DMA_TRANSFER
)
1234 && (chip_info
->com_mode
!= POLLING_TRANSFER
)) {
1235 dev_err(chip_info
->dev
,
1236 "Communication mode is configured incorrectly\n");
1239 if ((chip_info
->rx_lev_trig
< SSP_RX_1_OR_MORE_ELEM
)
1240 || (chip_info
->rx_lev_trig
> SSP_RX_32_OR_MORE_ELEM
)) {
1241 dev_err(chip_info
->dev
,
1242 "RX FIFO Trigger Level is configured incorrectly\n");
1245 if ((chip_info
->tx_lev_trig
< SSP_TX_1_OR_MORE_EMPTY_LOC
)
1246 || (chip_info
->tx_lev_trig
> SSP_TX_32_OR_MORE_EMPTY_LOC
)) {
1247 dev_err(chip_info
->dev
,
1248 "TX FIFO Trigger Level is configured incorrectly\n");
1251 if (chip_info
->iface
== SSP_INTERFACE_MOTOROLA_SPI
) {
1252 if ((chip_info
->clk_phase
!= SSP_CLK_RISING_EDGE
)
1253 && (chip_info
->clk_phase
!= SSP_CLK_FALLING_EDGE
)) {
1254 dev_err(chip_info
->dev
,
1255 "Clock Phase is configured incorrectly\n");
1258 if ((chip_info
->clk_pol
!= SSP_CLK_POL_IDLE_LOW
)
1259 && (chip_info
->clk_pol
!= SSP_CLK_POL_IDLE_HIGH
)) {
1260 dev_err(chip_info
->dev
,
1261 "Clock Polarity is configured incorrectly\n");
1265 if (chip_info
->iface
== SSP_INTERFACE_NATIONAL_MICROWIRE
) {
1266 if ((chip_info
->ctrl_len
< SSP_BITS_4
)
1267 || (chip_info
->ctrl_len
> SSP_BITS_32
)) {
1268 dev_err(chip_info
->dev
,
1269 "CTRL LEN is configured incorrectly\n");
1272 if ((chip_info
->wait_state
!= SSP_MWIRE_WAIT_ZERO
)
1273 && (chip_info
->wait_state
!= SSP_MWIRE_WAIT_ONE
)) {
1274 dev_err(chip_info
->dev
,
1275 "Wait State is configured incorrectly\n");
1278 if ((chip_info
->duplex
!= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1279 && (chip_info
->duplex
!=
1280 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX
)) {
1281 dev_err(chip_info
->dev
,
1282 "DUPLEX is configured incorrectly\n");
1286 if (chip_info
->cs_control
== NULL
) {
1287 dev_warn(chip_info
->dev
,
1288 "Chip Select Function is NULL for this chip\n");
1289 chip_info
->cs_control
= null_cs_control
;
1295 * pl022_transfer - transfer function registered to SPI master framework
1296 * @spi: spi device which is requesting transfer
1297 * @msg: spi message which is to handled is queued to driver queue
1299 * This function is registered to the SPI framework for this SPI master
1300 * controller. It will queue the spi_message in the queue of driver if
1301 * the queue is not stopped and return.
1303 static int pl022_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1305 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1306 unsigned long flags
;
1308 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1310 if (pl022
->run
== QUEUE_STOPPED
) {
1311 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1314 msg
->actual_length
= 0;
1315 msg
->status
= -EINPROGRESS
;
1316 msg
->state
= STATE_START
;
1318 list_add_tail(&msg
->queue
, &pl022
->queue
);
1319 if (pl022
->run
== QUEUE_RUNNING
&& !pl022
->busy
)
1320 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1322 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1326 static int calculate_effective_freq(struct pl022
*pl022
,
1328 struct ssp_clock_params
*clk_freq
)
1330 /* Lets calculate the frequency parameters */
1333 bool freq_found
= false;
1338 rate
= clk_get_rate(pl022
->clk
);
1339 /* cpsdvscr = 2 & scr 0 */
1340 max_tclk
= (rate
/ (CPSDVR_MIN
* (1 + SCR_MIN
)));
1341 /* cpsdvsr = 254 & scr = 255 */
1342 min_tclk
= (rate
/ (CPSDVR_MAX
* (1 + SCR_MAX
)));
1344 if ((freq
<= max_tclk
) && (freq
>= min_tclk
)) {
1345 while (cpsdvsr
<= CPSDVR_MAX
&& !freq_found
) {
1346 while (scr
<= SCR_MAX
&& !freq_found
) {
1348 (cpsdvsr
* (1 + scr
))) > freq
)
1352 * This bool is made true when
1353 * effective frequency >=
1354 * target frequency is found
1358 (cpsdvsr
* (1 + scr
))) != freq
) {
1359 if (scr
== SCR_MIN
) {
1373 dev_dbg(&pl022
->adev
->dev
,
1374 "SSP Effective Frequency is %u\n",
1375 (rate
/ (cpsdvsr
* (1 + scr
))));
1376 clk_freq
->cpsdvsr
= (u8
) (cpsdvsr
& 0xFF);
1377 clk_freq
->scr
= (u8
) (scr
& 0xFF);
1378 dev_dbg(&pl022
->adev
->dev
,
1379 "SSP cpsdvsr = %d, scr = %d\n",
1380 clk_freq
->cpsdvsr
, clk_freq
->scr
);
1383 dev_err(&pl022
->adev
->dev
,
1384 "controller data is incorrect: out of range frequency");
1392 * process_dma_info - Processes the DMA info provided by client drivers
1393 * @chip_info: chip info provided by client device
1394 * @chip: Runtime state maintained by the SSP controller for each spi device
1396 * This function processes and stores DMA config provided by client driver
1397 * into the runtime state maintained by the SSP controller driver
1399 static int process_dma_info(struct pl022_config_chip
*chip_info
,
1400 struct chip_data
*chip
)
1402 dev_err(chip_info
->dev
,
1403 "cannot process DMA info, DMA not implemented!\n");
1408 * pl022_setup - setup function registered to SPI master framework
1409 * @spi: spi device which is requesting setup
1411 * This function is registered to the SPI framework for this SPI master
1412 * controller. If it is the first time when setup is called by this device,
1413 * this function will initialize the runtime state for this chip and save
1414 * the same in the device structure. Else it will update the runtime info
1415 * with the updated chip info. Nothing is really being written to the
1416 * controller hardware here, that is not done until the actual transfer
1420 /* FIXME: JUST GUESSING the spi->mode bits understood by this driver */
1421 #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
1422 | SPI_LSB_FIRST | SPI_LOOP)
1424 static int pl022_setup(struct spi_device
*spi
)
1426 struct pl022_config_chip
*chip_info
;
1427 struct chip_data
*chip
;
1429 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1431 if (spi
->mode
& ~MODEBITS
) {
1432 dev_dbg(&spi
->dev
, "unsupported mode bits %x\n",
1433 spi
->mode
& ~MODEBITS
);
1437 if (!spi
->max_speed_hz
)
1440 /* Get controller_state if one is supplied */
1441 chip
= spi_get_ctldata(spi
);
1444 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1447 "cannot allocate controller state\n");
1451 "allocated memory for controller's runtime state\n");
1454 /* Get controller data if one is supplied */
1455 chip_info
= spi
->controller_data
;
1457 if (chip_info
== NULL
) {
1458 /* spi_board_info.controller_data not is supplied */
1460 "using default controller_data settings\n");
1463 kzalloc(sizeof(struct pl022_config_chip
), GFP_KERNEL
);
1467 "cannot allocate controller data\n");
1469 goto err_first_setup
;
1472 dev_dbg(&spi
->dev
, "allocated memory for controller data\n");
1474 /* Pointer back to the SPI device */
1475 chip_info
->dev
= &spi
->dev
;
1477 * Set controller data default values:
1478 * Polling is supported by default
1480 chip_info
->lbm
= LOOPBACK_DISABLED
;
1481 chip_info
->com_mode
= POLLING_TRANSFER
;
1482 chip_info
->iface
= SSP_INTERFACE_MOTOROLA_SPI
;
1483 chip_info
->hierarchy
= SSP_SLAVE
;
1484 chip_info
->slave_tx_disable
= DO_NOT_DRIVE_TX
;
1485 chip_info
->endian_tx
= SSP_TX_LSB
;
1486 chip_info
->endian_rx
= SSP_RX_LSB
;
1487 chip_info
->data_size
= SSP_DATA_BITS_12
;
1488 chip_info
->rx_lev_trig
= SSP_RX_1_OR_MORE_ELEM
;
1489 chip_info
->tx_lev_trig
= SSP_TX_1_OR_MORE_EMPTY_LOC
;
1490 chip_info
->clk_phase
= SSP_CLK_FALLING_EDGE
;
1491 chip_info
->clk_pol
= SSP_CLK_POL_IDLE_LOW
;
1492 chip_info
->ctrl_len
= SSP_BITS_8
;
1493 chip_info
->wait_state
= SSP_MWIRE_WAIT_ZERO
;
1494 chip_info
->duplex
= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
;
1495 chip_info
->cs_control
= null_cs_control
;
1498 "using user supplied controller_data settings\n");
1502 * We can override with custom divisors, else we use the board
1505 if ((0 == chip_info
->clk_freq
.cpsdvsr
)
1506 && (0 == chip_info
->clk_freq
.scr
)) {
1507 status
= calculate_effective_freq(pl022
,
1509 &chip_info
->clk_freq
);
1511 goto err_config_params
;
1513 if ((chip_info
->clk_freq
.cpsdvsr
% 2) != 0)
1514 chip_info
->clk_freq
.cpsdvsr
=
1515 chip_info
->clk_freq
.cpsdvsr
- 1;
1517 status
= verify_controller_parameters(pl022
, chip_info
);
1519 dev_err(&spi
->dev
, "controller data is incorrect");
1520 goto err_config_params
;
1522 /* Now set controller state based on controller data */
1523 chip
->xfer_type
= chip_info
->com_mode
;
1524 chip
->cs_control
= chip_info
->cs_control
;
1526 if (chip_info
->data_size
<= 8) {
1527 dev_dbg(&spi
->dev
, "1 <= n <=8 bits per word\n");
1529 chip
->read
= READING_U8
;
1530 chip
->write
= WRITING_U8
;
1531 } else if (chip_info
->data_size
<= 16) {
1532 dev_dbg(&spi
->dev
, "9 <= n <= 16 bits per word\n");
1534 chip
->read
= READING_U16
;
1535 chip
->write
= WRITING_U16
;
1537 if (pl022
->vendor
->max_bpw
>= 32) {
1538 dev_dbg(&spi
->dev
, "17 <= n <= 32 bits per word\n");
1540 chip
->read
= READING_U32
;
1541 chip
->write
= WRITING_U32
;
1544 "illegal data size for this controller!\n");
1546 "a standard pl022 can only handle "
1547 "1 <= n <= 16 bit words\n");
1548 goto err_config_params
;
1552 /* Now Initialize all register settings required for this chip */
1557 if ((chip_info
->com_mode
== DMA_TRANSFER
)
1558 && ((pl022
->master_info
)->enable_dma
)) {
1559 chip
->enable_dma
= 1;
1560 dev_dbg(&spi
->dev
, "DMA mode set in controller state\n");
1561 status
= process_dma_info(chip_info
, chip
);
1563 goto err_config_params
;
1564 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1565 SSP_DMACR_MASK_RXDMAE
, 0);
1566 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1567 SSP_DMACR_MASK_TXDMAE
, 1);
1569 chip
->enable_dma
= 0;
1570 dev_dbg(&spi
->dev
, "DMA mode NOT set in controller state\n");
1571 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1572 SSP_DMACR_MASK_RXDMAE
, 0);
1573 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1574 SSP_DMACR_MASK_TXDMAE
, 1);
1577 chip
->cpsr
= chip_info
->clk_freq
.cpsdvsr
;
1579 SSP_WRITE_BITS(chip
->cr0
, chip_info
->data_size
, SSP_CR0_MASK_DSS
, 0);
1580 SSP_WRITE_BITS(chip
->cr0
, chip_info
->duplex
, SSP_CR0_MASK_HALFDUP
, 5);
1581 SSP_WRITE_BITS(chip
->cr0
, chip_info
->clk_pol
, SSP_CR0_MASK_SPO
, 6);
1582 SSP_WRITE_BITS(chip
->cr0
, chip_info
->clk_phase
, SSP_CR0_MASK_SPH
, 7);
1583 SSP_WRITE_BITS(chip
->cr0
, chip_info
->clk_freq
.scr
, SSP_CR0_MASK_SCR
, 8);
1584 SSP_WRITE_BITS(chip
->cr0
, chip_info
->ctrl_len
, SSP_CR0_MASK_CSS
, 16);
1585 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
, SSP_CR0_MASK_FRF
, 21);
1586 SSP_WRITE_BITS(chip
->cr1
, chip_info
->lbm
, SSP_CR1_MASK_LBM
, 0);
1587 SSP_WRITE_BITS(chip
->cr1
, SSP_DISABLED
, SSP_CR1_MASK_SSE
, 1);
1588 SSP_WRITE_BITS(chip
->cr1
, chip_info
->hierarchy
, SSP_CR1_MASK_MS
, 2);
1589 SSP_WRITE_BITS(chip
->cr1
, chip_info
->slave_tx_disable
, SSP_CR1_MASK_SOD
, 3);
1590 SSP_WRITE_BITS(chip
->cr1
, chip_info
->endian_rx
, SSP_CR1_MASK_RENDN
, 4);
1591 SSP_WRITE_BITS(chip
->cr1
, chip_info
->endian_tx
, SSP_CR1_MASK_TENDN
, 5);
1592 SSP_WRITE_BITS(chip
->cr1
, chip_info
->wait_state
, SSP_CR1_MASK_MWAIT
, 6);
1593 SSP_WRITE_BITS(chip
->cr1
, chip_info
->rx_lev_trig
, SSP_CR1_MASK_RXIFLSEL
, 7);
1594 SSP_WRITE_BITS(chip
->cr1
, chip_info
->tx_lev_trig
, SSP_CR1_MASK_TXIFLSEL
, 10);
1596 /* Save controller_state */
1597 spi_set_ctldata(spi
, chip
);
1606 * pl022_cleanup - cleanup function registered to SPI master framework
1607 * @spi: spi device which is requesting cleanup
1609 * This function is registered to the SPI framework for this SPI master
1610 * controller. It will free the runtime state of chip.
1612 static void pl022_cleanup(struct spi_device
*spi
)
1614 struct chip_data
*chip
= spi_get_ctldata(spi
);
1616 spi_set_ctldata(spi
, NULL
);
1622 pl022_probe(struct amba_device
*adev
, struct amba_id
*id
)
1624 struct device
*dev
= &adev
->dev
;
1625 struct pl022_ssp_controller
*platform_info
= adev
->dev
.platform_data
;
1626 struct spi_master
*master
;
1627 struct pl022
*pl022
= NULL
; /*Data for this driver */
1630 dev_info(&adev
->dev
,
1631 "ARM PL022 driver, device ID: 0x%08x\n", adev
->periphid
);
1632 if (platform_info
== NULL
) {
1633 dev_err(&adev
->dev
, "probe - no platform data supplied\n");
1638 /* Allocate master with space for data */
1639 master
= spi_alloc_master(dev
, sizeof(struct pl022
));
1640 if (master
== NULL
) {
1641 dev_err(&adev
->dev
, "probe - cannot alloc SPI master\n");
1646 pl022
= spi_master_get_devdata(master
);
1647 pl022
->master
= master
;
1648 pl022
->master_info
= platform_info
;
1650 pl022
->vendor
= id
->data
;
1653 * Bus Number Which has been Assigned to this SSP controller
1656 master
->bus_num
= platform_info
->bus_id
;
1657 master
->num_chipselect
= platform_info
->num_chipselect
;
1658 master
->cleanup
= pl022_cleanup
;
1659 master
->setup
= pl022_setup
;
1660 master
->transfer
= pl022_transfer
;
1662 dev_dbg(&adev
->dev
, "BUSNO: %d\n", master
->bus_num
);
1664 status
= amba_request_regions(adev
, NULL
);
1666 goto err_no_ioregion
;
1668 pl022
->virtbase
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
1669 if (pl022
->virtbase
== NULL
) {
1671 goto err_no_ioremap
;
1673 printk(KERN_INFO
"pl022: mapped registers from 0x%08x to %p\n",
1674 adev
->res
.start
, pl022
->virtbase
);
1676 pl022
->clk
= clk_get(&adev
->dev
, NULL
);
1677 if (IS_ERR(pl022
->clk
)) {
1678 status
= PTR_ERR(pl022
->clk
);
1679 dev_err(&adev
->dev
, "could not retrieve SSP/SPI bus clock\n");
1684 clk_enable(pl022
->clk
);
1685 writew((readw(SSP_CR1(pl022
->virtbase
)) & (~SSP_CR1_MASK_SSE
)),
1686 SSP_CR1(pl022
->virtbase
));
1687 load_ssp_default_config(pl022
);
1688 clk_disable(pl022
->clk
);
1690 status
= request_irq(adev
->irq
[0], pl022_interrupt_handler
, 0, "pl022",
1693 dev_err(&adev
->dev
, "probe - cannot get IRQ (%d)\n", status
);
1696 /* Initialize and start queue */
1697 status
= init_queue(pl022
);
1699 dev_err(&adev
->dev
, "probe - problem initializing queue\n");
1700 goto err_init_queue
;
1702 status
= start_queue(pl022
);
1704 dev_err(&adev
->dev
, "probe - problem starting queue\n");
1705 goto err_start_queue
;
1707 /* Register with the SPI framework */
1708 amba_set_drvdata(adev
, pl022
);
1709 status
= spi_register_master(master
);
1712 "probe - problem registering spi master\n");
1713 goto err_spi_register
;
1715 dev_dbg(dev
, "probe succeded\n");
1721 destroy_queue(pl022
);
1722 free_irq(adev
->irq
[0], pl022
);
1724 clk_put(pl022
->clk
);
1726 iounmap(pl022
->virtbase
);
1728 amba_release_regions(adev
);
1730 spi_master_put(master
);
1737 pl022_remove(struct amba_device
*adev
)
1739 struct pl022
*pl022
= amba_get_drvdata(adev
);
1744 /* Remove the queue */
1745 status
= destroy_queue(pl022
);
1748 "queue remove failed (%d)\n", status
);
1751 load_ssp_default_config(pl022
);
1752 free_irq(adev
->irq
[0], pl022
);
1753 clk_disable(pl022
->clk
);
1754 clk_put(pl022
->clk
);
1755 iounmap(pl022
->virtbase
);
1756 amba_release_regions(adev
);
1757 tasklet_disable(&pl022
->pump_transfers
);
1758 spi_unregister_master(pl022
->master
);
1759 spi_master_put(pl022
->master
);
1760 amba_set_drvdata(adev
, NULL
);
1761 dev_dbg(&adev
->dev
, "remove succeded\n");
1766 static int pl022_suspend(struct amba_device
*adev
, pm_message_t state
)
1768 struct pl022
*pl022
= amba_get_drvdata(adev
);
1771 status
= stop_queue(pl022
);
1773 dev_warn(&adev
->dev
, "suspend cannot stop queue\n");
1777 clk_enable(pl022
->clk
);
1778 load_ssp_default_config(pl022
);
1779 clk_disable(pl022
->clk
);
1780 dev_dbg(&adev
->dev
, "suspended\n");
1784 static int pl022_resume(struct amba_device
*adev
)
1786 struct pl022
*pl022
= amba_get_drvdata(adev
);
1789 /* Start the queue running */
1790 status
= start_queue(pl022
);
1792 dev_err(&adev
->dev
, "problem starting queue (%d)\n", status
);
1794 dev_dbg(&adev
->dev
, "resumed\n");
1799 #define pl022_suspend NULL
1800 #define pl022_resume NULL
1801 #endif /* CONFIG_PM */
1803 static struct vendor_data vendor_arm
= {
1810 static struct vendor_data vendor_st
= {
1816 static struct amba_id pl022_ids
[] = {
1819 * ARM PL022 variant, this has a 16bit wide
1820 * and 8 locations deep TX/RX FIFO
1824 .data
= &vendor_arm
,
1828 * ST Micro derivative, this has 32bit wide
1829 * and 32 locations deep TX/RX FIFO
1838 static struct amba_driver pl022_driver
= {
1840 .name
= "ssp-pl022",
1842 .id_table
= pl022_ids
,
1843 .probe
= pl022_probe
,
1844 .remove
= __exit_p(pl022_remove
),
1845 .suspend
= pl022_suspend
,
1846 .resume
= pl022_resume
,
1850 static int __init
pl022_init(void)
1852 return amba_driver_register(&pl022_driver
);
1855 module_init(pl022_init
);
1857 static void __exit
pl022_exit(void)
1859 amba_driver_unregister(&pl022_driver
);
1862 module_exit(pl022_exit
);
1864 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
1865 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
1866 MODULE_LICENSE("GPL");