1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
7 * This file is part of the SCTP kernel implementation
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
29 * Please send any bug reports or fixes you make to the
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Perry Melange <pmelange@null.cc.uic.edu>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Jon Grimm <jgrimm@us.ibm.com>
45 * Any bugs reported given to us we will try to fix... any fixes shared will
46 * be incorporated into the next SCTP release.
49 #include <linux/types.h>
50 #include <linux/list.h> /* For struct list_head */
51 #include <linux/socket.h>
53 #include <net/sock.h> /* For skb_set_owner_w */
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
58 /* Declare internal functions here. */
59 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
);
60 static void sctp_check_transmitted(struct sctp_outq
*q
,
61 struct list_head
*transmitted_queue
,
62 struct sctp_transport
*transport
,
63 struct sctp_sackhdr
*sack
,
64 __u32 highest_new_tsn
);
66 static void sctp_mark_missing(struct sctp_outq
*q
,
67 struct list_head
*transmitted_queue
,
68 struct sctp_transport
*transport
,
69 __u32 highest_new_tsn
,
70 int count_of_newacks
);
72 static void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 sack_ctsn
);
74 static int sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
);
76 /* Add data to the front of the queue. */
77 static inline void sctp_outq_head_data(struct sctp_outq
*q
,
78 struct sctp_chunk
*ch
)
80 list_add(&ch
->list
, &q
->out_chunk_list
);
81 q
->out_qlen
+= ch
->skb
->len
;
85 /* Take data from the front of the queue. */
86 static inline struct sctp_chunk
*sctp_outq_dequeue_data(struct sctp_outq
*q
)
88 struct sctp_chunk
*ch
= NULL
;
90 if (!list_empty(&q
->out_chunk_list
)) {
91 struct list_head
*entry
= q
->out_chunk_list
.next
;
93 ch
= list_entry(entry
, struct sctp_chunk
, list
);
95 q
->out_qlen
-= ch
->skb
->len
;
99 /* Add data chunk to the end of the queue. */
100 static inline void sctp_outq_tail_data(struct sctp_outq
*q
,
101 struct sctp_chunk
*ch
)
103 list_add_tail(&ch
->list
, &q
->out_chunk_list
);
104 q
->out_qlen
+= ch
->skb
->len
;
109 * SFR-CACC algorithm:
110 * D) If count_of_newacks is greater than or equal to 2
111 * and t was not sent to the current primary then the
112 * sender MUST NOT increment missing report count for t.
114 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport
*primary
,
115 struct sctp_transport
*transport
,
116 int count_of_newacks
)
118 if (count_of_newacks
>=2 && transport
!= primary
)
124 * SFR-CACC algorithm:
125 * F) If count_of_newacks is less than 2, let d be the
126 * destination to which t was sent. If cacc_saw_newack
127 * is 0 for destination d, then the sender MUST NOT
128 * increment missing report count for t.
130 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport
*transport
,
131 int count_of_newacks
)
133 if (count_of_newacks
< 2 && !transport
->cacc
.cacc_saw_newack
)
139 * SFR-CACC algorithm:
140 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
141 * execute steps C, D, F.
143 * C has been implemented in sctp_outq_sack
145 static inline int sctp_cacc_skip_3_1(struct sctp_transport
*primary
,
146 struct sctp_transport
*transport
,
147 int count_of_newacks
)
149 if (!primary
->cacc
.cycling_changeover
) {
150 if (sctp_cacc_skip_3_1_d(primary
, transport
, count_of_newacks
))
152 if (sctp_cacc_skip_3_1_f(transport
, count_of_newacks
))
160 * SFR-CACC algorithm:
161 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
162 * than next_tsn_at_change of the current primary, then
163 * the sender MUST NOT increment missing report count
166 static inline int sctp_cacc_skip_3_2(struct sctp_transport
*primary
, __u32 tsn
)
168 if (primary
->cacc
.cycling_changeover
&&
169 TSN_lt(tsn
, primary
->cacc
.next_tsn_at_change
))
175 * SFR-CACC algorithm:
176 * 3) If the missing report count for TSN t is to be
177 * incremented according to [RFC2960] and
178 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
179 * then the sender MUST futher execute steps 3.1 and
180 * 3.2 to determine if the missing report count for
181 * TSN t SHOULD NOT be incremented.
183 * 3.3) If 3.1 and 3.2 do not dictate that the missing
184 * report count for t should not be incremented, then
185 * the sender SOULD increment missing report count for
186 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
188 static inline int sctp_cacc_skip(struct sctp_transport
*primary
,
189 struct sctp_transport
*transport
,
190 int count_of_newacks
,
193 if (primary
->cacc
.changeover_active
&&
194 (sctp_cacc_skip_3_1(primary
, transport
, count_of_newacks
)
195 || sctp_cacc_skip_3_2(primary
, tsn
)))
200 /* Initialize an existing sctp_outq. This does the boring stuff.
201 * You still need to define handlers if you really want to DO
202 * something with this structure...
204 void sctp_outq_init(struct sctp_association
*asoc
, struct sctp_outq
*q
)
207 INIT_LIST_HEAD(&q
->out_chunk_list
);
208 INIT_LIST_HEAD(&q
->control_chunk_list
);
209 INIT_LIST_HEAD(&q
->retransmit
);
210 INIT_LIST_HEAD(&q
->sacked
);
211 INIT_LIST_HEAD(&q
->abandoned
);
214 q
->outstanding_bytes
= 0;
222 /* Free the outqueue structure and any related pending chunks.
224 void sctp_outq_teardown(struct sctp_outq
*q
)
226 struct sctp_transport
*transport
;
227 struct list_head
*lchunk
, *temp
;
228 struct sctp_chunk
*chunk
, *tmp
;
230 /* Throw away unacknowledged chunks. */
231 list_for_each_entry(transport
, &q
->asoc
->peer
.transport_addr_list
,
233 while ((lchunk
= sctp_list_dequeue(&transport
->transmitted
)) != NULL
) {
234 chunk
= list_entry(lchunk
, struct sctp_chunk
,
236 /* Mark as part of a failed message. */
237 sctp_chunk_fail(chunk
, q
->error
);
238 sctp_chunk_free(chunk
);
242 /* Throw away chunks that have been gap ACKed. */
243 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
244 list_del_init(lchunk
);
245 chunk
= list_entry(lchunk
, struct sctp_chunk
,
247 sctp_chunk_fail(chunk
, q
->error
);
248 sctp_chunk_free(chunk
);
251 /* Throw away any chunks in the retransmit queue. */
252 list_for_each_safe(lchunk
, temp
, &q
->retransmit
) {
253 list_del_init(lchunk
);
254 chunk
= list_entry(lchunk
, struct sctp_chunk
,
256 sctp_chunk_fail(chunk
, q
->error
);
257 sctp_chunk_free(chunk
);
260 /* Throw away any chunks that are in the abandoned queue. */
261 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
262 list_del_init(lchunk
);
263 chunk
= list_entry(lchunk
, struct sctp_chunk
,
265 sctp_chunk_fail(chunk
, q
->error
);
266 sctp_chunk_free(chunk
);
269 /* Throw away any leftover data chunks. */
270 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
272 /* Mark as send failure. */
273 sctp_chunk_fail(chunk
, q
->error
);
274 sctp_chunk_free(chunk
);
279 /* Throw away any leftover control chunks. */
280 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
281 list_del_init(&chunk
->list
);
282 sctp_chunk_free(chunk
);
286 /* Free the outqueue structure and any related pending chunks. */
287 void sctp_outq_free(struct sctp_outq
*q
)
289 /* Throw away leftover chunks. */
290 sctp_outq_teardown(q
);
292 /* If we were kmalloc()'d, free the memory. */
297 /* Put a new chunk in an sctp_outq. */
298 int sctp_outq_tail(struct sctp_outq
*q
, struct sctp_chunk
*chunk
)
302 SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
303 q
, chunk
, chunk
&& chunk
->chunk_hdr
?
304 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
))
307 /* If it is data, queue it up, otherwise, send it
310 if (SCTP_CID_DATA
== chunk
->chunk_hdr
->type
) {
311 /* Is it OK to queue data chunks? */
312 /* From 9. Termination of Association
314 * When either endpoint performs a shutdown, the
315 * association on each peer will stop accepting new
316 * data from its user and only deliver data in queue
317 * at the time of sending or receiving the SHUTDOWN
320 switch (q
->asoc
->state
) {
321 case SCTP_STATE_EMPTY
:
322 case SCTP_STATE_CLOSED
:
323 case SCTP_STATE_SHUTDOWN_PENDING
:
324 case SCTP_STATE_SHUTDOWN_SENT
:
325 case SCTP_STATE_SHUTDOWN_RECEIVED
:
326 case SCTP_STATE_SHUTDOWN_ACK_SENT
:
327 /* Cannot send after transport endpoint shutdown */
332 SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
333 q
, chunk
, chunk
&& chunk
->chunk_hdr
?
334 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
))
337 sctp_outq_tail_data(q
, chunk
);
338 if (chunk
->chunk_hdr
->flags
& SCTP_DATA_UNORDERED
)
339 SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS
);
341 SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS
);
346 list_add_tail(&chunk
->list
, &q
->control_chunk_list
);
347 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS
);
354 error
= sctp_outq_flush(q
, 0);
359 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
360 * and the abandoned list are in ascending order.
362 static void sctp_insert_list(struct list_head
*head
, struct list_head
*new)
364 struct list_head
*pos
;
365 struct sctp_chunk
*nchunk
, *lchunk
;
369 nchunk
= list_entry(new, struct sctp_chunk
, transmitted_list
);
370 ntsn
= ntohl(nchunk
->subh
.data_hdr
->tsn
);
372 list_for_each(pos
, head
) {
373 lchunk
= list_entry(pos
, struct sctp_chunk
, transmitted_list
);
374 ltsn
= ntohl(lchunk
->subh
.data_hdr
->tsn
);
375 if (TSN_lt(ntsn
, ltsn
)) {
376 list_add(new, pos
->prev
);
382 list_add_tail(new, head
);
385 /* Mark all the eligible packets on a transport for retransmission. */
386 void sctp_retransmit_mark(struct sctp_outq
*q
,
387 struct sctp_transport
*transport
,
390 struct list_head
*lchunk
, *ltemp
;
391 struct sctp_chunk
*chunk
;
393 /* Walk through the specified transmitted queue. */
394 list_for_each_safe(lchunk
, ltemp
, &transport
->transmitted
) {
395 chunk
= list_entry(lchunk
, struct sctp_chunk
,
398 /* If the chunk is abandoned, move it to abandoned list. */
399 if (sctp_chunk_abandoned(chunk
)) {
400 list_del_init(lchunk
);
401 sctp_insert_list(&q
->abandoned
, lchunk
);
403 /* If this chunk has not been previousely acked,
404 * stop considering it 'outstanding'. Our peer
405 * will most likely never see it since it will
406 * not be retransmitted
408 if (!chunk
->tsn_gap_acked
) {
409 if (chunk
->transport
)
410 chunk
->transport
->flight_size
-=
411 sctp_data_size(chunk
);
412 q
->outstanding_bytes
-= sctp_data_size(chunk
);
413 q
->asoc
->peer
.rwnd
+= (sctp_data_size(chunk
) +
414 sizeof(struct sk_buff
));
419 /* If we are doing retransmission due to a timeout or pmtu
420 * discovery, only the chunks that are not yet acked should
421 * be added to the retransmit queue.
423 if ((reason
== SCTP_RTXR_FAST_RTX
&&
424 (chunk
->fast_retransmit
== SCTP_NEED_FRTX
)) ||
425 (reason
!= SCTP_RTXR_FAST_RTX
&& !chunk
->tsn_gap_acked
)) {
426 /* If this chunk was sent less then 1 rto ago, do not
427 * retransmit this chunk, but give the peer time
428 * to acknowlege it. Do this only when
429 * retransmitting due to T3 timeout.
431 if (reason
== SCTP_RTXR_T3_RTX
&&
432 time_before(jiffies
, chunk
->sent_at
+
433 transport
->last_rto
))
436 /* RFC 2960 6.2.1 Processing a Received SACK
438 * C) Any time a DATA chunk is marked for
439 * retransmission (via either T3-rtx timer expiration
440 * (Section 6.3.3) or via fast retransmit
441 * (Section 7.2.4)), add the data size of those
442 * chunks to the rwnd.
444 q
->asoc
->peer
.rwnd
+= (sctp_data_size(chunk
) +
445 sizeof(struct sk_buff
));
446 q
->outstanding_bytes
-= sctp_data_size(chunk
);
447 if (chunk
->transport
)
448 transport
->flight_size
-= sctp_data_size(chunk
);
450 /* sctpimpguide-05 Section 2.8.2
451 * M5) If a T3-rtx timer expires, the
452 * 'TSN.Missing.Report' of all affected TSNs is set
455 chunk
->tsn_missing_report
= 0;
457 /* If a chunk that is being used for RTT measurement
458 * has to be retransmitted, we cannot use this chunk
459 * anymore for RTT measurements. Reset rto_pending so
460 * that a new RTT measurement is started when a new
461 * data chunk is sent.
463 if (chunk
->rtt_in_progress
) {
464 chunk
->rtt_in_progress
= 0;
465 transport
->rto_pending
= 0;
468 /* Move the chunk to the retransmit queue. The chunks
469 * on the retransmit queue are always kept in order.
471 list_del_init(lchunk
);
472 sctp_insert_list(&q
->retransmit
, lchunk
);
476 SCTP_DEBUG_PRINTK("%s: transport: %p, reason: %d, "
477 "cwnd: %d, ssthresh: %d, flight_size: %d, "
478 "pba: %d\n", __func__
,
480 transport
->cwnd
, transport
->ssthresh
,
481 transport
->flight_size
,
482 transport
->partial_bytes_acked
);
486 /* Mark all the eligible packets on a transport for retransmission and force
489 void sctp_retransmit(struct sctp_outq
*q
, struct sctp_transport
*transport
,
490 sctp_retransmit_reason_t reason
)
495 case SCTP_RTXR_T3_RTX
:
496 SCTP_INC_STATS(SCTP_MIB_T3_RETRANSMITS
);
497 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_T3_RTX
);
498 /* Update the retran path if the T3-rtx timer has expired for
499 * the current retran path.
501 if (transport
== transport
->asoc
->peer
.retran_path
)
502 sctp_assoc_update_retran_path(transport
->asoc
);
503 transport
->asoc
->rtx_data_chunks
+=
504 transport
->asoc
->unack_data
;
506 case SCTP_RTXR_FAST_RTX
:
507 SCTP_INC_STATS(SCTP_MIB_FAST_RETRANSMITS
);
508 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_FAST_RTX
);
511 case SCTP_RTXR_PMTUD
:
512 SCTP_INC_STATS(SCTP_MIB_PMTUD_RETRANSMITS
);
514 case SCTP_RTXR_T1_RTX
:
515 SCTP_INC_STATS(SCTP_MIB_T1_RETRANSMITS
);
516 transport
->asoc
->init_retries
++;
522 sctp_retransmit_mark(q
, transport
, reason
);
524 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
525 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
526 * following the procedures outlined in C1 - C5.
528 if (reason
== SCTP_RTXR_T3_RTX
)
529 sctp_generate_fwdtsn(q
, q
->asoc
->ctsn_ack_point
);
531 /* Flush the queues only on timeout, since fast_rtx is only
532 * triggered during sack processing and the queue
533 * will be flushed at the end.
535 if (reason
!= SCTP_RTXR_FAST_RTX
)
536 error
= sctp_outq_flush(q
, /* rtx_timeout */ 1);
539 q
->asoc
->base
.sk
->sk_err
= -error
;
543 * Transmit DATA chunks on the retransmit queue. Upon return from
544 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
545 * need to be transmitted by the caller.
546 * We assume that pkt->transport has already been set.
548 * The return value is a normal kernel error return value.
550 static int sctp_outq_flush_rtx(struct sctp_outq
*q
, struct sctp_packet
*pkt
,
551 int rtx_timeout
, int *start_timer
)
553 struct list_head
*lqueue
;
554 struct sctp_transport
*transport
= pkt
->transport
;
556 struct sctp_chunk
*chunk
, *chunk1
;
557 struct sctp_association
*asoc
;
564 lqueue
= &q
->retransmit
;
565 fast_rtx
= q
->fast_rtx
;
567 /* This loop handles time-out retransmissions, fast retransmissions,
568 * and retransmissions due to opening of whindow.
570 * RFC 2960 6.3.3 Handle T3-rtx Expiration
572 * E3) Determine how many of the earliest (i.e., lowest TSN)
573 * outstanding DATA chunks for the address for which the
574 * T3-rtx has expired will fit into a single packet, subject
575 * to the MTU constraint for the path corresponding to the
576 * destination transport address to which the retransmission
577 * is being sent (this may be different from the address for
578 * which the timer expires [see Section 6.4]). Call this value
579 * K. Bundle and retransmit those K DATA chunks in a single
580 * packet to the destination endpoint.
582 * [Just to be painfully clear, if we are retransmitting
583 * because a timeout just happened, we should send only ONE
584 * packet of retransmitted data.]
586 * For fast retransmissions we also send only ONE packet. However,
587 * if we are just flushing the queue due to open window, we'll
588 * try to send as much as possible.
590 list_for_each_entry_safe(chunk
, chunk1
, lqueue
, transmitted_list
) {
592 /* Make sure that Gap Acked TSNs are not retransmitted. A
593 * simple approach is just to move such TSNs out of the
594 * way and into a 'transmitted' queue and skip to the
597 if (chunk
->tsn_gap_acked
) {
598 list_del(&chunk
->transmitted_list
);
599 list_add_tail(&chunk
->transmitted_list
,
600 &transport
->transmitted
);
604 /* If we are doing fast retransmit, ignore non-fast_rtransmit
607 if (fast_rtx
&& !chunk
->fast_retransmit
)
610 /* Attempt to append this chunk to the packet. */
611 status
= sctp_packet_append_chunk(pkt
, chunk
);
614 case SCTP_XMIT_PMTU_FULL
:
615 /* Send this packet. */
616 error
= sctp_packet_transmit(pkt
);
618 /* If we are retransmitting, we should only
619 * send a single packet.
621 if (rtx_timeout
|| fast_rtx
)
624 /* Bundle next chunk in the next round. */
627 case SCTP_XMIT_RWND_FULL
:
628 /* Send this packet. */
629 error
= sctp_packet_transmit(pkt
);
631 /* Stop sending DATA as there is no more room
637 case SCTP_XMIT_NAGLE_DELAY
:
638 /* Send this packet. */
639 error
= sctp_packet_transmit(pkt
);
641 /* Stop sending DATA because of nagle delay. */
646 /* The append was successful, so add this chunk to
647 * the transmitted list.
649 list_del(&chunk
->transmitted_list
);
650 list_add_tail(&chunk
->transmitted_list
,
651 &transport
->transmitted
);
653 /* Mark the chunk as ineligible for fast retransmit
654 * after it is retransmitted.
656 if (chunk
->fast_retransmit
== SCTP_NEED_FRTX
)
657 chunk
->fast_retransmit
= SCTP_DONT_FRTX
;
659 /* Force start T3-rtx timer when fast retransmitting
660 * the earliest outstanding TSN
662 if (!timer
&& fast_rtx
&&
663 ntohl(chunk
->subh
.data_hdr
->tsn
) ==
664 asoc
->ctsn_ack_point
+ 1)
671 /* Set the timer if there were no errors */
672 if (!error
&& !timer
)
679 /* If we are here due to a retransmit timeout or a fast
680 * retransmit and if there are any chunks left in the retransmit
681 * queue that could not fit in the PMTU sized packet, they need
682 * to be marked as ineligible for a subsequent fast retransmit.
684 if (rtx_timeout
|| fast_rtx
) {
685 list_for_each_entry(chunk1
, lqueue
, transmitted_list
) {
686 if (chunk1
->fast_retransmit
== SCTP_NEED_FRTX
)
687 chunk1
->fast_retransmit
= SCTP_DONT_FRTX
;
691 *start_timer
= timer
;
693 /* Clear fast retransmit hint */
700 /* Cork the outqueue so queued chunks are really queued. */
701 int sctp_outq_uncork(struct sctp_outq
*q
)
706 error
= sctp_outq_flush(q
, 0);
712 * Try to flush an outqueue.
714 * Description: Send everything in q which we legally can, subject to
715 * congestion limitations.
716 * * Note: This function can be called from multiple contexts so appropriate
717 * locking concerns must be made. Today we use the sock lock to protect
720 static int sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
)
722 struct sctp_packet
*packet
;
723 struct sctp_packet singleton
;
724 struct sctp_association
*asoc
= q
->asoc
;
725 __u16 sport
= asoc
->base
.bind_addr
.port
;
726 __u16 dport
= asoc
->peer
.port
;
727 __u32 vtag
= asoc
->peer
.i
.init_tag
;
728 struct sctp_transport
*transport
= NULL
;
729 struct sctp_transport
*new_transport
;
730 struct sctp_chunk
*chunk
, *tmp
;
736 /* These transports have chunks to send. */
737 struct list_head transport_list
;
738 struct list_head
*ltransport
;
740 INIT_LIST_HEAD(&transport_list
);
746 * When bundling control chunks with DATA chunks, an
747 * endpoint MUST place control chunks first in the outbound
748 * SCTP packet. The transmitter MUST transmit DATA chunks
749 * within a SCTP packet in increasing order of TSN.
753 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
754 list_del_init(&chunk
->list
);
756 /* Pick the right transport to use. */
757 new_transport
= chunk
->transport
;
759 if (!new_transport
) {
761 * If we have a prior transport pointer, see if
762 * the destination address of the chunk
763 * matches the destination address of the
764 * current transport. If not a match, then
765 * try to look up the transport with a given
766 * destination address. We do this because
767 * after processing ASCONFs, we may have new
768 * transports created.
771 sctp_cmp_addr_exact(&chunk
->dest
,
773 new_transport
= transport
;
775 new_transport
= sctp_assoc_lookup_paddr(asoc
,
778 /* if we still don't have a new transport, then
779 * use the current active path.
782 new_transport
= asoc
->peer
.active_path
;
783 } else if ((new_transport
->state
== SCTP_INACTIVE
) ||
784 (new_transport
->state
== SCTP_UNCONFIRMED
)) {
785 /* If the chunk is Heartbeat or Heartbeat Ack,
786 * send it to chunk->transport, even if it's
789 * 3.3.6 Heartbeat Acknowledgement:
791 * A HEARTBEAT ACK is always sent to the source IP
792 * address of the IP datagram containing the
793 * HEARTBEAT chunk to which this ack is responding.
796 * ASCONF_ACKs also must be sent to the source.
798 if (chunk
->chunk_hdr
->type
!= SCTP_CID_HEARTBEAT
&&
799 chunk
->chunk_hdr
->type
!= SCTP_CID_HEARTBEAT_ACK
&&
800 chunk
->chunk_hdr
->type
!= SCTP_CID_ASCONF_ACK
)
801 new_transport
= asoc
->peer
.active_path
;
804 /* Are we switching transports?
805 * Take care of transport locks.
807 if (new_transport
!= transport
) {
808 transport
= new_transport
;
809 if (list_empty(&transport
->send_ready
)) {
810 list_add_tail(&transport
->send_ready
,
813 packet
= &transport
->packet
;
814 sctp_packet_config(packet
, vtag
,
815 asoc
->peer
.ecn_capable
);
818 switch (chunk
->chunk_hdr
->type
) {
822 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
823 * COMPLETE with any other chunks. [Send them immediately.]
826 case SCTP_CID_INIT_ACK
:
827 case SCTP_CID_SHUTDOWN_COMPLETE
:
828 sctp_packet_init(&singleton
, transport
, sport
, dport
);
829 sctp_packet_config(&singleton
, vtag
, 0);
830 sctp_packet_append_chunk(&singleton
, chunk
);
831 error
= sctp_packet_transmit(&singleton
);
837 if (sctp_test_T_bit(chunk
)) {
838 packet
->vtag
= asoc
->c
.my_vtag
;
840 /* The following chunks are "response" chunks, i.e.
841 * they are generated in response to something we
842 * received. If we are sending these, then we can
843 * send only 1 packet containing these chunks.
845 case SCTP_CID_HEARTBEAT_ACK
:
846 case SCTP_CID_SHUTDOWN_ACK
:
847 case SCTP_CID_COOKIE_ACK
:
848 case SCTP_CID_COOKIE_ECHO
:
850 case SCTP_CID_ECN_CWR
:
851 case SCTP_CID_ASCONF_ACK
:
856 case SCTP_CID_HEARTBEAT
:
857 case SCTP_CID_SHUTDOWN
:
858 case SCTP_CID_ECN_ECNE
:
859 case SCTP_CID_ASCONF
:
860 case SCTP_CID_FWD_TSN
:
861 status
= sctp_packet_transmit_chunk(packet
, chunk
,
863 if (status
!= SCTP_XMIT_OK
) {
864 /* put the chunk back */
865 list_add(&chunk
->list
, &q
->control_chunk_list
);
870 /* We built a chunk with an illegal type! */
875 /* Is it OK to send data chunks? */
876 switch (asoc
->state
) {
877 case SCTP_STATE_COOKIE_ECHOED
:
878 /* Only allow bundling when this packet has a COOKIE-ECHO
881 if (!packet
|| !packet
->has_cookie_echo
)
885 case SCTP_STATE_ESTABLISHED
:
886 case SCTP_STATE_SHUTDOWN_PENDING
:
887 case SCTP_STATE_SHUTDOWN_RECEIVED
:
889 * RFC 2960 6.1 Transmission of DATA Chunks
891 * C) When the time comes for the sender to transmit,
892 * before sending new DATA chunks, the sender MUST
893 * first transmit any outstanding DATA chunks which
894 * are marked for retransmission (limited by the
897 if (!list_empty(&q
->retransmit
)) {
898 if (transport
== asoc
->peer
.retran_path
)
901 /* Switch transports & prepare the packet. */
903 transport
= asoc
->peer
.retran_path
;
905 if (list_empty(&transport
->send_ready
)) {
906 list_add_tail(&transport
->send_ready
,
910 packet
= &transport
->packet
;
911 sctp_packet_config(packet
, vtag
,
912 asoc
->peer
.ecn_capable
);
914 error
= sctp_outq_flush_rtx(q
, packet
,
915 rtx_timeout
, &start_timer
);
918 sctp_transport_reset_timers(transport
,
921 /* This can happen on COOKIE-ECHO resend. Only
922 * one chunk can get bundled with a COOKIE-ECHO.
924 if (packet
->has_cookie_echo
)
927 /* Don't send new data if there is still data
928 * waiting to retransmit.
930 if (!list_empty(&q
->retransmit
))
934 /* Finally, transmit new packets. */
935 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
936 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
939 if (chunk
->sinfo
.sinfo_stream
>=
940 asoc
->c
.sinit_num_ostreams
) {
942 /* Mark as failed send. */
943 sctp_chunk_fail(chunk
, SCTP_ERROR_INV_STRM
);
944 sctp_chunk_free(chunk
);
948 /* Has this chunk expired? */
949 if (sctp_chunk_abandoned(chunk
)) {
950 sctp_chunk_fail(chunk
, 0);
951 sctp_chunk_free(chunk
);
955 /* If there is a specified transport, use it.
956 * Otherwise, we want to use the active path.
958 new_transport
= chunk
->transport
;
959 if (!new_transport
||
960 ((new_transport
->state
== SCTP_INACTIVE
) ||
961 (new_transport
->state
== SCTP_UNCONFIRMED
)))
962 new_transport
= asoc
->peer
.active_path
;
964 /* Change packets if necessary. */
965 if (new_transport
!= transport
) {
966 transport
= new_transport
;
968 /* Schedule to have this transport's
971 if (list_empty(&transport
->send_ready
)) {
972 list_add_tail(&transport
->send_ready
,
976 packet
= &transport
->packet
;
977 sctp_packet_config(packet
, vtag
,
978 asoc
->peer
.ecn_capable
);
981 SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ",
983 chunk
&& chunk
->chunk_hdr
?
984 sctp_cname(SCTP_ST_CHUNK(
985 chunk
->chunk_hdr
->type
))
988 SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
989 "%p skb->users %d.\n",
990 ntohl(chunk
->subh
.data_hdr
->tsn
),
991 chunk
->skb
?chunk
->skb
->head
: NULL
,
993 atomic_read(&chunk
->skb
->users
) : -1);
995 /* Add the chunk to the packet. */
996 status
= sctp_packet_transmit_chunk(packet
, chunk
, 0);
999 case SCTP_XMIT_PMTU_FULL
:
1000 case SCTP_XMIT_RWND_FULL
:
1001 case SCTP_XMIT_NAGLE_DELAY
:
1002 /* We could not append this chunk, so put
1003 * the chunk back on the output queue.
1005 SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
1006 "not transmit TSN: 0x%x, status: %d\n",
1007 ntohl(chunk
->subh
.data_hdr
->tsn
),
1009 sctp_outq_head_data(q
, chunk
);
1010 goto sctp_flush_out
;
1020 /* BUG: We assume that the sctp_packet_transmit()
1021 * call below will succeed all the time and add the
1022 * chunk to the transmitted list and restart the
1024 * It is possible that the call can fail under OOM
1027 * Is this really a problem? Won't this behave
1030 list_add_tail(&chunk
->transmitted_list
,
1031 &transport
->transmitted
);
1033 sctp_transport_reset_timers(transport
, 0);
1037 /* Only let one DATA chunk get bundled with a
1038 * COOKIE-ECHO chunk.
1040 if (packet
->has_cookie_echo
)
1041 goto sctp_flush_out
;
1052 /* Before returning, examine all the transports touched in
1053 * this call. Right now, we bluntly force clear all the
1054 * transports. Things might change after we implement Nagle.
1055 * But such an examination is still required.
1059 while ((ltransport
= sctp_list_dequeue(&transport_list
)) != NULL
) {
1060 struct sctp_transport
*t
= list_entry(ltransport
,
1061 struct sctp_transport
,
1063 packet
= &t
->packet
;
1064 if (!sctp_packet_empty(packet
))
1065 error
= sctp_packet_transmit(packet
);
1071 /* Update unack_data based on the incoming SACK chunk */
1072 static void sctp_sack_update_unack_data(struct sctp_association
*assoc
,
1073 struct sctp_sackhdr
*sack
)
1075 sctp_sack_variable_t
*frags
;
1079 unack_data
= assoc
->next_tsn
- assoc
->ctsn_ack_point
- 1;
1081 frags
= sack
->variable
;
1082 for (i
= 0; i
< ntohs(sack
->num_gap_ack_blocks
); i
++) {
1083 unack_data
-= ((ntohs(frags
[i
].gab
.end
) -
1084 ntohs(frags
[i
].gab
.start
) + 1));
1087 assoc
->unack_data
= unack_data
;
1090 /* Return the highest new tsn that is acknowledged by the given SACK chunk. */
1091 static __u32
sctp_highest_new_tsn(struct sctp_sackhdr
*sack
,
1092 struct sctp_association
*asoc
)
1094 struct sctp_transport
*transport
;
1095 struct sctp_chunk
*chunk
;
1096 __u32 highest_new_tsn
, tsn
;
1097 struct list_head
*transport_list
= &asoc
->peer
.transport_addr_list
;
1099 highest_new_tsn
= ntohl(sack
->cum_tsn_ack
);
1101 list_for_each_entry(transport
, transport_list
, transports
) {
1102 list_for_each_entry(chunk
, &transport
->transmitted
,
1104 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1106 if (!chunk
->tsn_gap_acked
&&
1107 TSN_lt(highest_new_tsn
, tsn
) &&
1108 sctp_acked(sack
, tsn
))
1109 highest_new_tsn
= tsn
;
1113 return highest_new_tsn
;
1116 /* This is where we REALLY process a SACK.
1118 * Process the SACK against the outqueue. Mostly, this just frees
1119 * things off the transmitted queue.
1121 int sctp_outq_sack(struct sctp_outq
*q
, struct sctp_sackhdr
*sack
)
1123 struct sctp_association
*asoc
= q
->asoc
;
1124 struct sctp_transport
*transport
;
1125 struct sctp_chunk
*tchunk
= NULL
;
1126 struct list_head
*lchunk
, *transport_list
, *temp
;
1127 sctp_sack_variable_t
*frags
= sack
->variable
;
1128 __u32 sack_ctsn
, ctsn
, tsn
;
1129 __u32 highest_tsn
, highest_new_tsn
;
1131 unsigned outstanding
;
1132 struct sctp_transport
*primary
= asoc
->peer
.primary_path
;
1133 int count_of_newacks
= 0;
1136 /* Grab the association's destination address list. */
1137 transport_list
= &asoc
->peer
.transport_addr_list
;
1139 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1140 gap_ack_blocks
= ntohs(sack
->num_gap_ack_blocks
);
1142 * SFR-CACC algorithm:
1143 * On receipt of a SACK the sender SHOULD execute the
1144 * following statements.
1146 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1147 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1148 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1150 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1151 * is set the receiver of the SACK MUST take the following actions:
1153 * A) Initialize the cacc_saw_newack to 0 for all destination
1156 * Only bother if changeover_active is set. Otherwise, this is
1157 * totally suboptimal to do on every SACK.
1159 if (primary
->cacc
.changeover_active
) {
1160 u8 clear_cycling
= 0;
1162 if (TSN_lte(primary
->cacc
.next_tsn_at_change
, sack_ctsn
)) {
1163 primary
->cacc
.changeover_active
= 0;
1167 if (clear_cycling
|| gap_ack_blocks
) {
1168 list_for_each_entry(transport
, transport_list
,
1171 transport
->cacc
.cycling_changeover
= 0;
1173 transport
->cacc
.cacc_saw_newack
= 0;
1178 /* Get the highest TSN in the sack. */
1179 highest_tsn
= sack_ctsn
;
1181 highest_tsn
+= ntohs(frags
[gap_ack_blocks
- 1].gab
.end
);
1183 if (TSN_lt(asoc
->highest_sacked
, highest_tsn
)) {
1184 highest_new_tsn
= highest_tsn
;
1185 asoc
->highest_sacked
= highest_tsn
;
1187 highest_new_tsn
= sctp_highest_new_tsn(sack
, asoc
);
1191 /* Run through the retransmit queue. Credit bytes received
1192 * and free those chunks that we can.
1194 sctp_check_transmitted(q
, &q
->retransmit
, NULL
, sack
, highest_new_tsn
);
1196 /* Run through the transmitted queue.
1197 * Credit bytes received and free those chunks which we can.
1199 * This is a MASSIVE candidate for optimization.
1201 list_for_each_entry(transport
, transport_list
, transports
) {
1202 sctp_check_transmitted(q
, &transport
->transmitted
,
1203 transport
, sack
, highest_new_tsn
);
1205 * SFR-CACC algorithm:
1206 * C) Let count_of_newacks be the number of
1207 * destinations for which cacc_saw_newack is set.
1209 if (transport
->cacc
.cacc_saw_newack
)
1210 count_of_newacks
++;
1213 if (gap_ack_blocks
) {
1214 list_for_each_entry(transport
, transport_list
, transports
)
1215 sctp_mark_missing(q
, &transport
->transmitted
, transport
,
1216 highest_new_tsn
, count_of_newacks
);
1219 /* Move the Cumulative TSN Ack Point if appropriate. */
1220 if (TSN_lt(asoc
->ctsn_ack_point
, sack_ctsn
))
1221 asoc
->ctsn_ack_point
= sack_ctsn
;
1223 /* Update unack_data field in the assoc. */
1224 sctp_sack_update_unack_data(asoc
, sack
);
1226 ctsn
= asoc
->ctsn_ack_point
;
1228 /* Throw away stuff rotting on the sack queue. */
1229 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
1230 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1232 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1233 if (TSN_lte(tsn
, ctsn
)) {
1234 list_del_init(&tchunk
->transmitted_list
);
1235 sctp_chunk_free(tchunk
);
1239 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1240 * number of bytes still outstanding after processing the
1241 * Cumulative TSN Ack and the Gap Ack Blocks.
1244 sack_a_rwnd
= ntohl(sack
->a_rwnd
);
1245 outstanding
= q
->outstanding_bytes
;
1247 if (outstanding
< sack_a_rwnd
)
1248 sack_a_rwnd
-= outstanding
;
1252 asoc
->peer
.rwnd
= sack_a_rwnd
;
1254 sctp_generate_fwdtsn(q
, sack_ctsn
);
1256 SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
1257 __func__
, sack_ctsn
);
1258 SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, "
1259 "%p is 0x%x. Adv peer ack point: 0x%x\n",
1260 __func__
, asoc
, ctsn
, asoc
->adv_peer_ack_point
);
1262 /* See if all chunks are acked.
1263 * Make sure the empty queue handler will get run later.
1265 q
->empty
= (list_empty(&q
->out_chunk_list
) &&
1266 list_empty(&q
->retransmit
));
1270 list_for_each_entry(transport
, transport_list
, transports
) {
1271 q
->empty
= q
->empty
&& list_empty(&transport
->transmitted
);
1276 SCTP_DEBUG_PRINTK("sack queue is empty.\n");
1281 /* Is the outqueue empty? */
1282 int sctp_outq_is_empty(const struct sctp_outq
*q
)
1287 /********************************************************************
1288 * 2nd Level Abstractions
1289 ********************************************************************/
1291 /* Go through a transport's transmitted list or the association's retransmit
1292 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1293 * The retransmit list will not have an associated transport.
1295 * I added coherent debug information output. --xguo
1297 * Instead of printing 'sacked' or 'kept' for each TSN on the
1298 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1299 * KEPT TSN6-TSN7, etc.
1301 static void sctp_check_transmitted(struct sctp_outq
*q
,
1302 struct list_head
*transmitted_queue
,
1303 struct sctp_transport
*transport
,
1304 struct sctp_sackhdr
*sack
,
1305 __u32 highest_new_tsn_in_sack
)
1307 struct list_head
*lchunk
;
1308 struct sctp_chunk
*tchunk
;
1309 struct list_head tlist
;
1313 __u8 restart_timer
= 0;
1314 int bytes_acked
= 0;
1315 int migrate_bytes
= 0;
1317 /* These state variables are for coherent debug output. --xguo */
1320 __u32 dbg_ack_tsn
= 0; /* An ACKed TSN range starts here... */
1321 __u32 dbg_last_ack_tsn
= 0; /* ...and finishes here. */
1322 __u32 dbg_kept_tsn
= 0; /* An un-ACKed range starts here... */
1323 __u32 dbg_last_kept_tsn
= 0; /* ...and finishes here. */
1325 /* 0 : The last TSN was ACKed.
1326 * 1 : The last TSN was NOT ACKed (i.e. KEPT).
1327 * -1: We need to initialize.
1329 int dbg_prt_state
= -1;
1330 #endif /* SCTP_DEBUG */
1332 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1334 INIT_LIST_HEAD(&tlist
);
1336 /* The while loop will skip empty transmitted queues. */
1337 while (NULL
!= (lchunk
= sctp_list_dequeue(transmitted_queue
))) {
1338 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1341 if (sctp_chunk_abandoned(tchunk
)) {
1342 /* Move the chunk to abandoned list. */
1343 sctp_insert_list(&q
->abandoned
, lchunk
);
1345 /* If this chunk has not been acked, stop
1346 * considering it as 'outstanding'.
1348 if (!tchunk
->tsn_gap_acked
) {
1349 if (tchunk
->transport
)
1350 tchunk
->transport
->flight_size
-=
1351 sctp_data_size(tchunk
);
1352 q
->outstanding_bytes
-= sctp_data_size(tchunk
);
1357 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1358 if (sctp_acked(sack
, tsn
)) {
1359 /* If this queue is the retransmit queue, the
1360 * retransmit timer has already reclaimed
1361 * the outstanding bytes for this chunk, so only
1362 * count bytes associated with a transport.
1365 /* If this chunk is being used for RTT
1366 * measurement, calculate the RTT and update
1367 * the RTO using this value.
1369 * 6.3.1 C5) Karn's algorithm: RTT measurements
1370 * MUST NOT be made using packets that were
1371 * retransmitted (and thus for which it is
1372 * ambiguous whether the reply was for the
1373 * first instance of the packet or a later
1376 if (!tchunk
->tsn_gap_acked
&&
1378 tchunk
->rtt_in_progress
) {
1379 tchunk
->rtt_in_progress
= 0;
1380 rtt
= jiffies
- tchunk
->sent_at
;
1381 sctp_transport_update_rto(transport
,
1386 /* If the chunk hasn't been marked as ACKED,
1387 * mark it and account bytes_acked if the
1388 * chunk had a valid transport (it will not
1389 * have a transport if ASCONF had deleted it
1390 * while DATA was outstanding).
1392 if (!tchunk
->tsn_gap_acked
) {
1393 tchunk
->tsn_gap_acked
= 1;
1394 bytes_acked
+= sctp_data_size(tchunk
);
1395 if (!tchunk
->transport
)
1396 migrate_bytes
+= sctp_data_size(tchunk
);
1399 if (TSN_lte(tsn
, sack_ctsn
)) {
1400 /* RFC 2960 6.3.2 Retransmission Timer Rules
1402 * R3) Whenever a SACK is received
1403 * that acknowledges the DATA chunk
1404 * with the earliest outstanding TSN
1405 * for that address, restart T3-rtx
1406 * timer for that address with its
1411 if (!tchunk
->tsn_gap_acked
) {
1413 * SFR-CACC algorithm:
1414 * 2) If the SACK contains gap acks
1415 * and the flag CHANGEOVER_ACTIVE is
1416 * set the receiver of the SACK MUST
1417 * take the following action:
1419 * B) For each TSN t being acked that
1420 * has not been acked in any SACK so
1421 * far, set cacc_saw_newack to 1 for
1422 * the destination that the TSN was
1426 sack
->num_gap_ack_blocks
&&
1427 q
->asoc
->peer
.primary_path
->cacc
.
1429 transport
->cacc
.cacc_saw_newack
1433 list_add_tail(&tchunk
->transmitted_list
,
1436 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1437 * M2) Each time a SACK arrives reporting
1438 * 'Stray DATA chunk(s)' record the highest TSN
1439 * reported as newly acknowledged, call this
1440 * value 'HighestTSNinSack'. A newly
1441 * acknowledged DATA chunk is one not
1442 * previously acknowledged in a SACK.
1444 * When the SCTP sender of data receives a SACK
1445 * chunk that acknowledges, for the first time,
1446 * the receipt of a DATA chunk, all the still
1447 * unacknowledged DATA chunks whose TSN is
1448 * older than that newly acknowledged DATA
1449 * chunk, are qualified as 'Stray DATA chunks'.
1451 list_add_tail(lchunk
, &tlist
);
1455 switch (dbg_prt_state
) {
1456 case 0: /* last TSN was ACKed */
1457 if (dbg_last_ack_tsn
+ 1 == tsn
) {
1458 /* This TSN belongs to the
1459 * current ACK range.
1464 if (dbg_last_ack_tsn
!= dbg_ack_tsn
) {
1465 /* Display the end of the
1468 SCTP_DEBUG_PRINTK("-%08x",
1472 /* Start a new range. */
1473 SCTP_DEBUG_PRINTK(",%08x", tsn
);
1477 case 1: /* The last TSN was NOT ACKed. */
1478 if (dbg_last_kept_tsn
!= dbg_kept_tsn
) {
1479 /* Display the end of current range. */
1480 SCTP_DEBUG_PRINTK("-%08x",
1484 SCTP_DEBUG_PRINTK("\n");
1486 /* FALL THROUGH... */
1488 /* This is the first-ever TSN we examined. */
1489 /* Start a new range of ACK-ed TSNs. */
1490 SCTP_DEBUG_PRINTK("ACKed: %08x", tsn
);
1495 dbg_last_ack_tsn
= tsn
;
1496 #endif /* SCTP_DEBUG */
1499 if (tchunk
->tsn_gap_acked
) {
1500 SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
1504 tchunk
->tsn_gap_acked
= 0;
1506 if (tchunk
->transport
)
1507 bytes_acked
-= sctp_data_size(tchunk
);
1509 /* RFC 2960 6.3.2 Retransmission Timer Rules
1511 * R4) Whenever a SACK is received missing a
1512 * TSN that was previously acknowledged via a
1513 * Gap Ack Block, start T3-rtx for the
1514 * destination address to which the DATA
1515 * chunk was originally
1516 * transmitted if it is not already running.
1521 list_add_tail(lchunk
, &tlist
);
1524 /* See the above comments on ACK-ed TSNs. */
1525 switch (dbg_prt_state
) {
1527 if (dbg_last_kept_tsn
+ 1 == tsn
)
1530 if (dbg_last_kept_tsn
!= dbg_kept_tsn
)
1531 SCTP_DEBUG_PRINTK("-%08x",
1534 SCTP_DEBUG_PRINTK(",%08x", tsn
);
1539 if (dbg_last_ack_tsn
!= dbg_ack_tsn
)
1540 SCTP_DEBUG_PRINTK("-%08x",
1542 SCTP_DEBUG_PRINTK("\n");
1544 /* FALL THROUGH... */
1546 SCTP_DEBUG_PRINTK("KEPT: %08x",tsn
);
1551 dbg_last_kept_tsn
= tsn
;
1552 #endif /* SCTP_DEBUG */
1557 /* Finish off the last range, displaying its ending TSN. */
1558 switch (dbg_prt_state
) {
1560 if (dbg_last_ack_tsn
!= dbg_ack_tsn
) {
1561 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn
);
1563 SCTP_DEBUG_PRINTK("\n");
1568 if (dbg_last_kept_tsn
!= dbg_kept_tsn
) {
1569 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn
);
1571 SCTP_DEBUG_PRINTK("\n");
1574 #endif /* SCTP_DEBUG */
1577 /* We may have counted DATA that was migrated
1578 * to this transport due to DEL-IP operation.
1579 * Subtract those bytes, since the were never
1580 * send on this transport and shouldn't be
1581 * credited to this transport.
1583 bytes_acked
-= migrate_bytes
;
1585 /* 8.2. When an outstanding TSN is acknowledged,
1586 * the endpoint shall clear the error counter of
1587 * the destination transport address to which the
1588 * DATA chunk was last sent.
1589 * The association's overall error counter is
1592 transport
->error_count
= 0;
1593 transport
->asoc
->overall_error_count
= 0;
1595 /* Mark the destination transport address as
1596 * active if it is not so marked.
1598 if ((transport
->state
== SCTP_INACTIVE
) ||
1599 (transport
->state
== SCTP_UNCONFIRMED
)) {
1600 sctp_assoc_control_transport(
1604 SCTP_RECEIVED_SACK
);
1607 sctp_transport_raise_cwnd(transport
, sack_ctsn
,
1610 transport
->flight_size
-= bytes_acked
;
1611 if (transport
->flight_size
== 0)
1612 transport
->partial_bytes_acked
= 0;
1613 q
->outstanding_bytes
-= bytes_acked
+ migrate_bytes
;
1615 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1616 * When a sender is doing zero window probing, it
1617 * should not timeout the association if it continues
1618 * to receive new packets from the receiver. The
1619 * reason is that the receiver MAY keep its window
1620 * closed for an indefinite time.
1621 * A sender is doing zero window probing when the
1622 * receiver's advertised window is zero, and there is
1623 * only one data chunk in flight to the receiver.
1625 if (!q
->asoc
->peer
.rwnd
&&
1626 !list_empty(&tlist
) &&
1627 (sack_ctsn
+2 == q
->asoc
->next_tsn
)) {
1628 SCTP_DEBUG_PRINTK("%s: SACK received for zero "
1629 "window probe: %u\n",
1630 __func__
, sack_ctsn
);
1631 q
->asoc
->overall_error_count
= 0;
1632 transport
->error_count
= 0;
1636 /* RFC 2960 6.3.2 Retransmission Timer Rules
1638 * R2) Whenever all outstanding data sent to an address have
1639 * been acknowledged, turn off the T3-rtx timer of that
1642 if (!transport
->flight_size
) {
1643 if (timer_pending(&transport
->T3_rtx_timer
) &&
1644 del_timer(&transport
->T3_rtx_timer
)) {
1645 sctp_transport_put(transport
);
1647 } else if (restart_timer
) {
1648 if (!mod_timer(&transport
->T3_rtx_timer
,
1649 jiffies
+ transport
->rto
))
1650 sctp_transport_hold(transport
);
1654 list_splice(&tlist
, transmitted_queue
);
1657 /* Mark chunks as missing and consequently may get retransmitted. */
1658 static void sctp_mark_missing(struct sctp_outq
*q
,
1659 struct list_head
*transmitted_queue
,
1660 struct sctp_transport
*transport
,
1661 __u32 highest_new_tsn_in_sack
,
1662 int count_of_newacks
)
1664 struct sctp_chunk
*chunk
;
1666 char do_fast_retransmit
= 0;
1667 struct sctp_transport
*primary
= q
->asoc
->peer
.primary_path
;
1669 list_for_each_entry(chunk
, transmitted_queue
, transmitted_list
) {
1671 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1673 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1674 * 'Unacknowledged TSN's', if the TSN number of an
1675 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1676 * value, increment the 'TSN.Missing.Report' count on that
1677 * chunk if it has NOT been fast retransmitted or marked for
1678 * fast retransmit already.
1680 if (chunk
->fast_retransmit
== SCTP_CAN_FRTX
&&
1681 !chunk
->tsn_gap_acked
&&
1682 TSN_lt(tsn
, highest_new_tsn_in_sack
)) {
1684 /* SFR-CACC may require us to skip marking
1685 * this chunk as missing.
1687 if (!transport
|| !sctp_cacc_skip(primary
, transport
,
1688 count_of_newacks
, tsn
)) {
1689 chunk
->tsn_missing_report
++;
1692 "%s: TSN 0x%x missing counter: %d\n",
1694 chunk
->tsn_missing_report
);
1698 * M4) If any DATA chunk is found to have a
1699 * 'TSN.Missing.Report'
1700 * value larger than or equal to 3, mark that chunk for
1701 * retransmission and start the fast retransmit procedure.
1704 if (chunk
->tsn_missing_report
>= 3) {
1705 chunk
->fast_retransmit
= SCTP_NEED_FRTX
;
1706 do_fast_retransmit
= 1;
1711 if (do_fast_retransmit
)
1712 sctp_retransmit(q
, transport
, SCTP_RTXR_FAST_RTX
);
1714 SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
1715 "ssthresh: %d, flight_size: %d, pba: %d\n",
1716 __func__
, transport
, transport
->cwnd
,
1717 transport
->ssthresh
, transport
->flight_size
,
1718 transport
->partial_bytes_acked
);
1722 /* Is the given TSN acked by this packet? */
1723 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
)
1726 sctp_sack_variable_t
*frags
;
1728 __u32 ctsn
= ntohl(sack
->cum_tsn_ack
);
1730 if (TSN_lte(tsn
, ctsn
))
1733 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1736 * These fields contain the Gap Ack Blocks. They are repeated
1737 * for each Gap Ack Block up to the number of Gap Ack Blocks
1738 * defined in the Number of Gap Ack Blocks field. All DATA
1739 * chunks with TSNs greater than or equal to (Cumulative TSN
1740 * Ack + Gap Ack Block Start) and less than or equal to
1741 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1742 * Block are assumed to have been received correctly.
1745 frags
= sack
->variable
;
1747 for (i
= 0; i
< ntohs(sack
->num_gap_ack_blocks
); ++i
) {
1748 if (TSN_lte(ntohs(frags
[i
].gab
.start
), gap
) &&
1749 TSN_lte(gap
, ntohs(frags
[i
].gab
.end
)))
1758 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip
*skiplist
,
1759 int nskips
, __be16 stream
)
1763 for (i
= 0; i
< nskips
; i
++) {
1764 if (skiplist
[i
].stream
== stream
)
1770 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1771 static void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 ctsn
)
1773 struct sctp_association
*asoc
= q
->asoc
;
1774 struct sctp_chunk
*ftsn_chunk
= NULL
;
1775 struct sctp_fwdtsn_skip ftsn_skip_arr
[10];
1779 struct sctp_chunk
*chunk
;
1780 struct list_head
*lchunk
, *temp
;
1782 if (!asoc
->peer
.prsctp_capable
)
1785 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1788 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1789 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1791 if (TSN_lt(asoc
->adv_peer_ack_point
, ctsn
))
1792 asoc
->adv_peer_ack_point
= ctsn
;
1794 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1795 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1796 * the chunk next in the out-queue space is marked as "abandoned" as
1797 * shown in the following example:
1799 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1800 * and the Advanced.Peer.Ack.Point is updated to this value:
1802 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1803 * normal SACK processing local advancement
1805 * Adv.Ack.Pt-> 102 acked 102 acked
1806 * 103 abandoned 103 abandoned
1807 * 104 abandoned Adv.Ack.P-> 104 abandoned
1809 * 106 acked 106 acked
1812 * In this example, the data sender successfully advanced the
1813 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1815 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
1816 chunk
= list_entry(lchunk
, struct sctp_chunk
,
1818 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1820 /* Remove any chunks in the abandoned queue that are acked by
1823 if (TSN_lte(tsn
, ctsn
)) {
1824 list_del_init(lchunk
);
1825 sctp_chunk_free(chunk
);
1827 if (TSN_lte(tsn
, asoc
->adv_peer_ack_point
+1)) {
1828 asoc
->adv_peer_ack_point
= tsn
;
1829 if (chunk
->chunk_hdr
->flags
&
1830 SCTP_DATA_UNORDERED
)
1832 skip_pos
= sctp_get_skip_pos(&ftsn_skip_arr
[0],
1834 chunk
->subh
.data_hdr
->stream
);
1835 ftsn_skip_arr
[skip_pos
].stream
=
1836 chunk
->subh
.data_hdr
->stream
;
1837 ftsn_skip_arr
[skip_pos
].ssn
=
1838 chunk
->subh
.data_hdr
->ssn
;
1839 if (skip_pos
== nskips
)
1848 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1849 * is greater than the Cumulative TSN ACK carried in the received
1850 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1851 * chunk containing the latest value of the
1852 * "Advanced.Peer.Ack.Point".
1854 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1855 * list each stream and sequence number in the forwarded TSN. This
1856 * information will enable the receiver to easily find any
1857 * stranded TSN's waiting on stream reorder queues. Each stream
1858 * SHOULD only be reported once; this means that if multiple
1859 * abandoned messages occur in the same stream then only the
1860 * highest abandoned stream sequence number is reported. If the
1861 * total size of the FORWARD TSN does NOT fit in a single MTU then
1862 * the sender of the FORWARD TSN SHOULD lower the
1863 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1866 if (asoc
->adv_peer_ack_point
> ctsn
)
1867 ftsn_chunk
= sctp_make_fwdtsn(asoc
, asoc
->adv_peer_ack_point
,
1868 nskips
, &ftsn_skip_arr
[0]);
1871 list_add_tail(&ftsn_chunk
->list
, &q
->control_chunk_list
);
1872 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS
);