2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
21 #include "transaction.h"
24 #include "print-tree.h"
28 /* magic values for the inode_only field in btrfs_log_inode:
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
38 * directory trouble cases
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
47 * rename foo/some_dir foo2/some_dir
49 * fsync foo/some_dir/some_file
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
89 #define LOG_WALK_PIN_ONLY 0
90 #define LOG_WALK_REPLAY_INODES 1
91 #define LOG_WALK_REPLAY_ALL 2
93 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
94 struct btrfs_root
*root
, struct inode
*inode
,
96 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
97 struct btrfs_root
*root
,
98 struct btrfs_path
*path
, u64 objectid
);
99 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
100 struct btrfs_root
*root
,
101 struct btrfs_root
*log
,
102 struct btrfs_path
*path
,
103 u64 dirid
, int del_all
);
106 * tree logging is a special write ahead log used to make sure that
107 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 * Full tree commits are expensive because they require commonly
110 * modified blocks to be recowed, creating many dirty pages in the
111 * extent tree an 4x-6x higher write load than ext3.
113 * Instead of doing a tree commit on every fsync, we use the
114 * key ranges and transaction ids to find items for a given file or directory
115 * that have changed in this transaction. Those items are copied into
116 * a special tree (one per subvolume root), that tree is written to disk
117 * and then the fsync is considered complete.
119 * After a crash, items are copied out of the log-tree back into the
120 * subvolume tree. Any file data extents found are recorded in the extent
121 * allocation tree, and the log-tree freed.
123 * The log tree is read three times, once to pin down all the extents it is
124 * using in ram and once, once to create all the inodes logged in the tree
125 * and once to do all the other items.
129 * start a sub transaction and setup the log tree
130 * this increments the log tree writer count to make the people
131 * syncing the tree wait for us to finish
133 static int start_log_trans(struct btrfs_trans_handle
*trans
,
134 struct btrfs_root
*root
)
138 mutex_lock(&root
->log_mutex
);
139 if (root
->log_root
) {
140 if (!root
->log_start_pid
) {
141 root
->log_start_pid
= current
->pid
;
142 root
->log_multiple_pids
= false;
143 } else if (root
->log_start_pid
!= current
->pid
) {
144 root
->log_multiple_pids
= true;
148 atomic_inc(&root
->log_writers
);
149 mutex_unlock(&root
->log_mutex
);
152 root
->log_multiple_pids
= false;
153 root
->log_start_pid
= current
->pid
;
154 mutex_lock(&root
->fs_info
->tree_log_mutex
);
155 if (!root
->fs_info
->log_root_tree
) {
156 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
159 if (!root
->log_root
) {
160 ret
= btrfs_add_log_tree(trans
, root
);
163 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
165 atomic_inc(&root
->log_writers
);
166 mutex_unlock(&root
->log_mutex
);
171 * returns 0 if there was a log transaction running and we were able
172 * to join, or returns -ENOENT if there were not transactions
175 static int join_running_log_trans(struct btrfs_root
*root
)
183 mutex_lock(&root
->log_mutex
);
184 if (root
->log_root
) {
186 atomic_inc(&root
->log_writers
);
188 mutex_unlock(&root
->log_mutex
);
193 * This either makes the current running log transaction wait
194 * until you call btrfs_end_log_trans() or it makes any future
195 * log transactions wait until you call btrfs_end_log_trans()
197 int btrfs_pin_log_trans(struct btrfs_root
*root
)
201 mutex_lock(&root
->log_mutex
);
202 atomic_inc(&root
->log_writers
);
203 mutex_unlock(&root
->log_mutex
);
208 * indicate we're done making changes to the log tree
209 * and wake up anyone waiting to do a sync
211 int btrfs_end_log_trans(struct btrfs_root
*root
)
213 if (atomic_dec_and_test(&root
->log_writers
)) {
215 if (waitqueue_active(&root
->log_writer_wait
))
216 wake_up(&root
->log_writer_wait
);
223 * the walk control struct is used to pass state down the chain when
224 * processing the log tree. The stage field tells us which part
225 * of the log tree processing we are currently doing. The others
226 * are state fields used for that specific part
228 struct walk_control
{
229 /* should we free the extent on disk when done? This is used
230 * at transaction commit time while freeing a log tree
234 /* should we write out the extent buffer? This is used
235 * while flushing the log tree to disk during a sync
239 /* should we wait for the extent buffer io to finish? Also used
240 * while flushing the log tree to disk for a sync
244 /* pin only walk, we record which extents on disk belong to the
249 /* what stage of the replay code we're currently in */
252 /* the root we are currently replaying */
253 struct btrfs_root
*replay_dest
;
255 /* the trans handle for the current replay */
256 struct btrfs_trans_handle
*trans
;
258 /* the function that gets used to process blocks we find in the
259 * tree. Note the extent_buffer might not be up to date when it is
260 * passed in, and it must be checked or read if you need the data
263 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
264 struct walk_control
*wc
, u64 gen
);
268 * process_func used to pin down extents, write them or wait on them
270 static int process_one_buffer(struct btrfs_root
*log
,
271 struct extent_buffer
*eb
,
272 struct walk_control
*wc
, u64 gen
)
275 btrfs_pin_extent(log
->fs_info
->extent_root
,
276 eb
->start
, eb
->len
, 0);
278 if (btrfs_buffer_uptodate(eb
, gen
)) {
280 btrfs_write_tree_block(eb
);
282 btrfs_wait_tree_block_writeback(eb
);
288 * Item overwrite used by replay and tree logging. eb, slot and key all refer
289 * to the src data we are copying out.
291 * root is the tree we are copying into, and path is a scratch
292 * path for use in this function (it should be released on entry and
293 * will be released on exit).
295 * If the key is already in the destination tree the existing item is
296 * overwritten. If the existing item isn't big enough, it is extended.
297 * If it is too large, it is truncated.
299 * If the key isn't in the destination yet, a new item is inserted.
301 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
302 struct btrfs_root
*root
,
303 struct btrfs_path
*path
,
304 struct extent_buffer
*eb
, int slot
,
305 struct btrfs_key
*key
)
309 u64 saved_i_size
= 0;
310 int save_old_i_size
= 0;
311 unsigned long src_ptr
;
312 unsigned long dst_ptr
;
313 int overwrite_root
= 0;
315 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
318 item_size
= btrfs_item_size_nr(eb
, slot
);
319 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
321 /* look for the key in the destination tree */
322 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
326 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
328 if (dst_size
!= item_size
)
331 if (item_size
== 0) {
332 btrfs_release_path(root
, path
);
335 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
336 src_copy
= kmalloc(item_size
, GFP_NOFS
);
338 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
340 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
341 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
343 ret
= memcmp(dst_copy
, src_copy
, item_size
);
348 * they have the same contents, just return, this saves
349 * us from cowing blocks in the destination tree and doing
350 * extra writes that may not have been done by a previous
354 btrfs_release_path(root
, path
);
360 btrfs_release_path(root
, path
);
361 /* try to insert the key into the destination tree */
362 ret
= btrfs_insert_empty_item(trans
, root
, path
,
365 /* make sure any existing item is the correct size */
366 if (ret
== -EEXIST
) {
368 found_size
= btrfs_item_size_nr(path
->nodes
[0],
370 if (found_size
> item_size
) {
371 btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
372 } else if (found_size
< item_size
) {
373 ret
= btrfs_extend_item(trans
, root
, path
,
374 item_size
- found_size
);
380 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
383 /* don't overwrite an existing inode if the generation number
384 * was logged as zero. This is done when the tree logging code
385 * is just logging an inode to make sure it exists after recovery.
387 * Also, don't overwrite i_size on directories during replay.
388 * log replay inserts and removes directory items based on the
389 * state of the tree found in the subvolume, and i_size is modified
392 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
393 struct btrfs_inode_item
*src_item
;
394 struct btrfs_inode_item
*dst_item
;
396 src_item
= (struct btrfs_inode_item
*)src_ptr
;
397 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
399 if (btrfs_inode_generation(eb
, src_item
) == 0)
402 if (overwrite_root
&&
403 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
404 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
406 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
411 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
414 if (save_old_i_size
) {
415 struct btrfs_inode_item
*dst_item
;
416 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
417 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
420 /* make sure the generation is filled in */
421 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
422 struct btrfs_inode_item
*dst_item
;
423 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
424 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
425 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
430 btrfs_mark_buffer_dirty(path
->nodes
[0]);
431 btrfs_release_path(root
, path
);
436 * simple helper to read an inode off the disk from a given root
437 * This can only be called for subvolume roots and not for the log
439 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
442 struct btrfs_key key
;
445 key
.objectid
= objectid
;
446 key
.type
= BTRFS_INODE_ITEM_KEY
;
448 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
);
451 } else if (is_bad_inode(inode
)) {
458 /* replays a single extent in 'eb' at 'slot' with 'key' into the
459 * subvolume 'root'. path is released on entry and should be released
462 * extents in the log tree have not been allocated out of the extent
463 * tree yet. So, this completes the allocation, taking a reference
464 * as required if the extent already exists or creating a new extent
465 * if it isn't in the extent allocation tree yet.
467 * The extent is inserted into the file, dropping any existing extents
468 * from the file that overlap the new one.
470 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
471 struct btrfs_root
*root
,
472 struct btrfs_path
*path
,
473 struct extent_buffer
*eb
, int slot
,
474 struct btrfs_key
*key
)
477 u64 mask
= root
->sectorsize
- 1;
480 u64 start
= key
->offset
;
482 struct btrfs_file_extent_item
*item
;
483 struct inode
*inode
= NULL
;
487 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
488 found_type
= btrfs_file_extent_type(eb
, item
);
490 if (found_type
== BTRFS_FILE_EXTENT_REG
||
491 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
492 extent_end
= start
+ btrfs_file_extent_num_bytes(eb
, item
);
493 else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
494 size
= btrfs_file_extent_inline_len(eb
, item
);
495 extent_end
= (start
+ size
+ mask
) & ~mask
;
501 inode
= read_one_inode(root
, key
->objectid
);
508 * first check to see if we already have this extent in the
509 * file. This must be done before the btrfs_drop_extents run
510 * so we don't try to drop this extent.
512 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
516 (found_type
== BTRFS_FILE_EXTENT_REG
||
517 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
518 struct btrfs_file_extent_item cmp1
;
519 struct btrfs_file_extent_item cmp2
;
520 struct btrfs_file_extent_item
*existing
;
521 struct extent_buffer
*leaf
;
523 leaf
= path
->nodes
[0];
524 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
525 struct btrfs_file_extent_item
);
527 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
529 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
533 * we already have a pointer to this exact extent,
534 * we don't have to do anything
536 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
537 btrfs_release_path(root
, path
);
541 btrfs_release_path(root
, path
);
543 saved_nbytes
= inode_get_bytes(inode
);
544 /* drop any overlapping extents */
545 ret
= btrfs_drop_extents(trans
, root
, inode
,
546 start
, extent_end
, extent_end
, start
, &alloc_hint
, 1);
549 if (found_type
== BTRFS_FILE_EXTENT_REG
||
550 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
552 unsigned long dest_offset
;
553 struct btrfs_key ins
;
555 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
558 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
560 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
561 (unsigned long)item
, sizeof(*item
));
563 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
564 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
565 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
566 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
568 if (ins
.objectid
> 0) {
571 LIST_HEAD(ordered_sums
);
573 * is this extent already allocated in the extent
574 * allocation tree? If so, just add a reference
576 ret
= btrfs_lookup_extent(root
, ins
.objectid
,
579 ret
= btrfs_inc_extent_ref(trans
, root
,
580 ins
.objectid
, ins
.offset
,
581 0, root
->root_key
.objectid
,
582 key
->objectid
, offset
);
585 * insert the extent pointer in the extent
588 ret
= btrfs_alloc_logged_file_extent(trans
,
589 root
, root
->root_key
.objectid
,
590 key
->objectid
, offset
, &ins
);
593 btrfs_release_path(root
, path
);
595 if (btrfs_file_extent_compression(eb
, item
)) {
596 csum_start
= ins
.objectid
;
597 csum_end
= csum_start
+ ins
.offset
;
599 csum_start
= ins
.objectid
+
600 btrfs_file_extent_offset(eb
, item
);
601 csum_end
= csum_start
+
602 btrfs_file_extent_num_bytes(eb
, item
);
605 ret
= btrfs_lookup_csums_range(root
->log_root
,
606 csum_start
, csum_end
- 1,
609 while (!list_empty(&ordered_sums
)) {
610 struct btrfs_ordered_sum
*sums
;
611 sums
= list_entry(ordered_sums
.next
,
612 struct btrfs_ordered_sum
,
614 ret
= btrfs_csum_file_blocks(trans
,
615 root
->fs_info
->csum_root
,
618 list_del(&sums
->list
);
622 btrfs_release_path(root
, path
);
624 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
625 /* inline extents are easy, we just overwrite them */
626 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
630 inode_set_bytes(inode
, saved_nbytes
);
631 btrfs_update_inode(trans
, root
, inode
);
639 * when cleaning up conflicts between the directory names in the
640 * subvolume, directory names in the log and directory names in the
641 * inode back references, we may have to unlink inodes from directories.
643 * This is a helper function to do the unlink of a specific directory
646 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
647 struct btrfs_root
*root
,
648 struct btrfs_path
*path
,
650 struct btrfs_dir_item
*di
)
655 struct extent_buffer
*leaf
;
656 struct btrfs_key location
;
659 leaf
= path
->nodes
[0];
661 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
662 name_len
= btrfs_dir_name_len(leaf
, di
);
663 name
= kmalloc(name_len
, GFP_NOFS
);
664 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
665 btrfs_release_path(root
, path
);
667 inode
= read_one_inode(root
, location
.objectid
);
670 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
673 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
682 * helper function to see if a given name and sequence number found
683 * in an inode back reference are already in a directory and correctly
684 * point to this inode
686 static noinline
int inode_in_dir(struct btrfs_root
*root
,
687 struct btrfs_path
*path
,
688 u64 dirid
, u64 objectid
, u64 index
,
689 const char *name
, int name_len
)
691 struct btrfs_dir_item
*di
;
692 struct btrfs_key location
;
695 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
696 index
, name
, name_len
, 0);
697 if (di
&& !IS_ERR(di
)) {
698 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
699 if (location
.objectid
!= objectid
)
703 btrfs_release_path(root
, path
);
705 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
706 if (di
&& !IS_ERR(di
)) {
707 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
708 if (location
.objectid
!= objectid
)
714 btrfs_release_path(root
, path
);
719 * helper function to check a log tree for a named back reference in
720 * an inode. This is used to decide if a back reference that is
721 * found in the subvolume conflicts with what we find in the log.
723 * inode backreferences may have multiple refs in a single item,
724 * during replay we process one reference at a time, and we don't
725 * want to delete valid links to a file from the subvolume if that
726 * link is also in the log.
728 static noinline
int backref_in_log(struct btrfs_root
*log
,
729 struct btrfs_key
*key
,
730 char *name
, int namelen
)
732 struct btrfs_path
*path
;
733 struct btrfs_inode_ref
*ref
;
735 unsigned long ptr_end
;
736 unsigned long name_ptr
;
742 path
= btrfs_alloc_path();
743 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
747 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
748 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
749 ptr_end
= ptr
+ item_size
;
750 while (ptr
< ptr_end
) {
751 ref
= (struct btrfs_inode_ref
*)ptr
;
752 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
753 if (found_name_len
== namelen
) {
754 name_ptr
= (unsigned long)(ref
+ 1);
755 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
762 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
765 btrfs_free_path(path
);
771 * replay one inode back reference item found in the log tree.
772 * eb, slot and key refer to the buffer and key found in the log tree.
773 * root is the destination we are replaying into, and path is for temp
774 * use by this function. (it should be released on return).
776 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
777 struct btrfs_root
*root
,
778 struct btrfs_root
*log
,
779 struct btrfs_path
*path
,
780 struct extent_buffer
*eb
, int slot
,
781 struct btrfs_key
*key
)
785 struct btrfs_key location
;
786 struct btrfs_inode_ref
*ref
;
787 struct btrfs_dir_item
*di
;
791 unsigned long ref_ptr
;
792 unsigned long ref_end
;
794 location
.objectid
= key
->objectid
;
795 location
.type
= BTRFS_INODE_ITEM_KEY
;
799 * it is possible that we didn't log all the parent directories
800 * for a given inode. If we don't find the dir, just don't
801 * copy the back ref in. The link count fixup code will take
804 dir
= read_one_inode(root
, key
->offset
);
808 inode
= read_one_inode(root
, key
->objectid
);
811 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
812 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
815 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
817 namelen
= btrfs_inode_ref_name_len(eb
, ref
);
818 name
= kmalloc(namelen
, GFP_NOFS
);
821 read_extent_buffer(eb
, name
, (unsigned long)(ref
+ 1), namelen
);
823 /* if we already have a perfect match, we're done */
824 if (inode_in_dir(root
, path
, dir
->i_ino
, inode
->i_ino
,
825 btrfs_inode_ref_index(eb
, ref
),
831 * look for a conflicting back reference in the metadata.
832 * if we find one we have to unlink that name of the file
833 * before we add our new link. Later on, we overwrite any
834 * existing back reference, and we don't want to create
835 * dangling pointers in the directory.
838 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
842 struct btrfs_inode_ref
*victim_ref
;
844 unsigned long ptr_end
;
845 struct extent_buffer
*leaf
= path
->nodes
[0];
847 /* are we trying to overwrite a back ref for the root directory
848 * if so, just jump out, we're done
850 if (key
->objectid
== key
->offset
)
853 /* check all the names in this back reference to see
854 * if they are in the log. if so, we allow them to stay
855 * otherwise they must be unlinked as a conflict
857 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
858 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
859 while (ptr
< ptr_end
) {
860 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
861 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
863 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
864 BUG_ON(!victim_name
);
866 read_extent_buffer(leaf
, victim_name
,
867 (unsigned long)(victim_ref
+ 1),
870 if (!backref_in_log(log
, key
, victim_name
,
872 btrfs_inc_nlink(inode
);
873 btrfs_release_path(root
, path
);
875 ret
= btrfs_unlink_inode(trans
, root
, dir
,
879 btrfs_release_path(root
, path
);
883 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
887 btrfs_release_path(root
, path
);
889 /* look for a conflicting sequence number */
890 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
891 btrfs_inode_ref_index(eb
, ref
),
893 if (di
&& !IS_ERR(di
)) {
894 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
897 btrfs_release_path(root
, path
);
900 /* look for a conflicting name */
901 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
903 if (di
&& !IS_ERR(di
)) {
904 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
907 btrfs_release_path(root
, path
);
909 /* insert our name */
910 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
, 0,
911 btrfs_inode_ref_index(eb
, ref
));
914 btrfs_update_inode(trans
, root
, inode
);
917 ref_ptr
= (unsigned long)(ref
+ 1) + namelen
;
919 if (ref_ptr
< ref_end
)
922 /* finally write the back reference in the inode */
923 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
927 btrfs_release_path(root
, path
);
934 * There are a few corners where the link count of the file can't
935 * be properly maintained during replay. So, instead of adding
936 * lots of complexity to the log code, we just scan the backrefs
937 * for any file that has been through replay.
939 * The scan will update the link count on the inode to reflect the
940 * number of back refs found. If it goes down to zero, the iput
941 * will free the inode.
943 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
944 struct btrfs_root
*root
,
947 struct btrfs_path
*path
;
949 struct btrfs_key key
;
952 unsigned long ptr_end
;
955 key
.objectid
= inode
->i_ino
;
956 key
.type
= BTRFS_INODE_REF_KEY
;
957 key
.offset
= (u64
)-1;
959 path
= btrfs_alloc_path();
962 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
966 if (path
->slots
[0] == 0)
970 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
972 if (key
.objectid
!= inode
->i_ino
||
973 key
.type
!= BTRFS_INODE_REF_KEY
)
975 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
976 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
978 while (ptr
< ptr_end
) {
979 struct btrfs_inode_ref
*ref
;
981 ref
= (struct btrfs_inode_ref
*)ptr
;
982 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
984 ptr
= (unsigned long)(ref
+ 1) + name_len
;
991 btrfs_release_path(root
, path
);
993 btrfs_release_path(root
, path
);
994 if (nlink
!= inode
->i_nlink
) {
995 inode
->i_nlink
= nlink
;
996 btrfs_update_inode(trans
, root
, inode
);
998 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1000 if (inode
->i_nlink
== 0 && S_ISDIR(inode
->i_mode
)) {
1001 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1005 btrfs_free_path(path
);
1010 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1011 struct btrfs_root
*root
,
1012 struct btrfs_path
*path
)
1015 struct btrfs_key key
;
1016 struct inode
*inode
;
1018 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1019 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1020 key
.offset
= (u64
)-1;
1022 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1027 if (path
->slots
[0] == 0)
1032 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1033 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1034 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1037 ret
= btrfs_del_item(trans
, root
, path
);
1040 btrfs_release_path(root
, path
);
1041 inode
= read_one_inode(root
, key
.offset
);
1044 ret
= fixup_inode_link_count(trans
, root
, inode
);
1050 * fixup on a directory may create new entries,
1051 * make sure we always look for the highset possible
1054 key
.offset
= (u64
)-1;
1056 btrfs_release_path(root
, path
);
1062 * record a given inode in the fixup dir so we can check its link
1063 * count when replay is done. The link count is incremented here
1064 * so the inode won't go away until we check it
1066 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1067 struct btrfs_root
*root
,
1068 struct btrfs_path
*path
,
1071 struct btrfs_key key
;
1073 struct inode
*inode
;
1075 inode
= read_one_inode(root
, objectid
);
1078 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1079 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1080 key
.offset
= objectid
;
1082 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1084 btrfs_release_path(root
, path
);
1086 btrfs_inc_nlink(inode
);
1087 btrfs_update_inode(trans
, root
, inode
);
1088 } else if (ret
== -EEXIST
) {
1099 * when replaying the log for a directory, we only insert names
1100 * for inodes that actually exist. This means an fsync on a directory
1101 * does not implicitly fsync all the new files in it
1103 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1104 struct btrfs_root
*root
,
1105 struct btrfs_path
*path
,
1106 u64 dirid
, u64 index
,
1107 char *name
, int name_len
, u8 type
,
1108 struct btrfs_key
*location
)
1110 struct inode
*inode
;
1114 inode
= read_one_inode(root
, location
->objectid
);
1118 dir
= read_one_inode(root
, dirid
);
1123 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1125 /* FIXME, put inode into FIXUP list */
1133 * take a single entry in a log directory item and replay it into
1136 * if a conflicting item exists in the subdirectory already,
1137 * the inode it points to is unlinked and put into the link count
1140 * If a name from the log points to a file or directory that does
1141 * not exist in the FS, it is skipped. fsyncs on directories
1142 * do not force down inodes inside that directory, just changes to the
1143 * names or unlinks in a directory.
1145 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1146 struct btrfs_root
*root
,
1147 struct btrfs_path
*path
,
1148 struct extent_buffer
*eb
,
1149 struct btrfs_dir_item
*di
,
1150 struct btrfs_key
*key
)
1154 struct btrfs_dir_item
*dst_di
;
1155 struct btrfs_key found_key
;
1156 struct btrfs_key log_key
;
1162 dir
= read_one_inode(root
, key
->objectid
);
1165 name_len
= btrfs_dir_name_len(eb
, di
);
1166 name
= kmalloc(name_len
, GFP_NOFS
);
1167 log_type
= btrfs_dir_type(eb
, di
);
1168 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1171 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1172 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1177 btrfs_release_path(root
, path
);
1179 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1180 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1182 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1183 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1190 if (!dst_di
|| IS_ERR(dst_di
)) {
1191 /* we need a sequence number to insert, so we only
1192 * do inserts for the BTRFS_DIR_INDEX_KEY types
1194 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1199 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1200 /* the existing item matches the logged item */
1201 if (found_key
.objectid
== log_key
.objectid
&&
1202 found_key
.type
== log_key
.type
&&
1203 found_key
.offset
== log_key
.offset
&&
1204 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1209 * don't drop the conflicting directory entry if the inode
1210 * for the new entry doesn't exist
1215 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1218 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1221 btrfs_release_path(root
, path
);
1227 btrfs_release_path(root
, path
);
1228 ret
= insert_one_name(trans
, root
, path
, key
->objectid
, key
->offset
,
1229 name
, name_len
, log_type
, &log_key
);
1231 BUG_ON(ret
&& ret
!= -ENOENT
);
1236 * find all the names in a directory item and reconcile them into
1237 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1238 * one name in a directory item, but the same code gets used for
1239 * both directory index types
1241 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1242 struct btrfs_root
*root
,
1243 struct btrfs_path
*path
,
1244 struct extent_buffer
*eb
, int slot
,
1245 struct btrfs_key
*key
)
1248 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1249 struct btrfs_dir_item
*di
;
1252 unsigned long ptr_end
;
1254 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1255 ptr_end
= ptr
+ item_size
;
1256 while (ptr
< ptr_end
) {
1257 di
= (struct btrfs_dir_item
*)ptr
;
1258 name_len
= btrfs_dir_name_len(eb
, di
);
1259 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1261 ptr
= (unsigned long)(di
+ 1);
1268 * directory replay has two parts. There are the standard directory
1269 * items in the log copied from the subvolume, and range items
1270 * created in the log while the subvolume was logged.
1272 * The range items tell us which parts of the key space the log
1273 * is authoritative for. During replay, if a key in the subvolume
1274 * directory is in a logged range item, but not actually in the log
1275 * that means it was deleted from the directory before the fsync
1276 * and should be removed.
1278 static noinline
int find_dir_range(struct btrfs_root
*root
,
1279 struct btrfs_path
*path
,
1280 u64 dirid
, int key_type
,
1281 u64
*start_ret
, u64
*end_ret
)
1283 struct btrfs_key key
;
1285 struct btrfs_dir_log_item
*item
;
1289 if (*start_ret
== (u64
)-1)
1292 key
.objectid
= dirid
;
1293 key
.type
= key_type
;
1294 key
.offset
= *start_ret
;
1296 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1300 if (path
->slots
[0] == 0)
1305 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1307 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1311 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1312 struct btrfs_dir_log_item
);
1313 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1315 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1317 *start_ret
= key
.offset
;
1318 *end_ret
= found_end
;
1323 /* check the next slot in the tree to see if it is a valid item */
1324 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1325 if (path
->slots
[0] >= nritems
) {
1326 ret
= btrfs_next_leaf(root
, path
);
1333 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1335 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1339 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1340 struct btrfs_dir_log_item
);
1341 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1342 *start_ret
= key
.offset
;
1343 *end_ret
= found_end
;
1346 btrfs_release_path(root
, path
);
1351 * this looks for a given directory item in the log. If the directory
1352 * item is not in the log, the item is removed and the inode it points
1355 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1356 struct btrfs_root
*root
,
1357 struct btrfs_root
*log
,
1358 struct btrfs_path
*path
,
1359 struct btrfs_path
*log_path
,
1361 struct btrfs_key
*dir_key
)
1364 struct extent_buffer
*eb
;
1367 struct btrfs_dir_item
*di
;
1368 struct btrfs_dir_item
*log_di
;
1371 unsigned long ptr_end
;
1373 struct inode
*inode
;
1374 struct btrfs_key location
;
1377 eb
= path
->nodes
[0];
1378 slot
= path
->slots
[0];
1379 item_size
= btrfs_item_size_nr(eb
, slot
);
1380 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1381 ptr_end
= ptr
+ item_size
;
1382 while (ptr
< ptr_end
) {
1383 di
= (struct btrfs_dir_item
*)ptr
;
1384 name_len
= btrfs_dir_name_len(eb
, di
);
1385 name
= kmalloc(name_len
, GFP_NOFS
);
1390 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1393 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
1394 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
1397 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
1398 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
1404 if (!log_di
|| IS_ERR(log_di
)) {
1405 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
1406 btrfs_release_path(root
, path
);
1407 btrfs_release_path(log
, log_path
);
1408 inode
= read_one_inode(root
, location
.objectid
);
1411 ret
= link_to_fixup_dir(trans
, root
,
1412 path
, location
.objectid
);
1414 btrfs_inc_nlink(inode
);
1415 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1421 /* there might still be more names under this key
1422 * check and repeat if required
1424 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
1431 btrfs_release_path(log
, log_path
);
1434 ptr
= (unsigned long)(di
+ 1);
1439 btrfs_release_path(root
, path
);
1440 btrfs_release_path(log
, log_path
);
1445 * deletion replay happens before we copy any new directory items
1446 * out of the log or out of backreferences from inodes. It
1447 * scans the log to find ranges of keys that log is authoritative for,
1448 * and then scans the directory to find items in those ranges that are
1449 * not present in the log.
1451 * Anything we don't find in the log is unlinked and removed from the
1454 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
1455 struct btrfs_root
*root
,
1456 struct btrfs_root
*log
,
1457 struct btrfs_path
*path
,
1458 u64 dirid
, int del_all
)
1462 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
1464 struct btrfs_key dir_key
;
1465 struct btrfs_key found_key
;
1466 struct btrfs_path
*log_path
;
1469 dir_key
.objectid
= dirid
;
1470 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
1471 log_path
= btrfs_alloc_path();
1475 dir
= read_one_inode(root
, dirid
);
1476 /* it isn't an error if the inode isn't there, that can happen
1477 * because we replay the deletes before we copy in the inode item
1481 btrfs_free_path(log_path
);
1489 range_end
= (u64
)-1;
1491 ret
= find_dir_range(log
, path
, dirid
, key_type
,
1492 &range_start
, &range_end
);
1497 dir_key
.offset
= range_start
;
1500 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
1505 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1506 if (path
->slots
[0] >= nritems
) {
1507 ret
= btrfs_next_leaf(root
, path
);
1511 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1513 if (found_key
.objectid
!= dirid
||
1514 found_key
.type
!= dir_key
.type
)
1517 if (found_key
.offset
> range_end
)
1520 ret
= check_item_in_log(trans
, root
, log
, path
,
1524 if (found_key
.offset
== (u64
)-1)
1526 dir_key
.offset
= found_key
.offset
+ 1;
1528 btrfs_release_path(root
, path
);
1529 if (range_end
== (u64
)-1)
1531 range_start
= range_end
+ 1;
1536 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
1537 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
1538 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
1539 btrfs_release_path(root
, path
);
1543 btrfs_release_path(root
, path
);
1544 btrfs_free_path(log_path
);
1550 * the process_func used to replay items from the log tree. This
1551 * gets called in two different stages. The first stage just looks
1552 * for inodes and makes sure they are all copied into the subvolume.
1554 * The second stage copies all the other item types from the log into
1555 * the subvolume. The two stage approach is slower, but gets rid of
1556 * lots of complexity around inodes referencing other inodes that exist
1557 * only in the log (references come from either directory items or inode
1560 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
1561 struct walk_control
*wc
, u64 gen
)
1564 struct btrfs_path
*path
;
1565 struct btrfs_root
*root
= wc
->replay_dest
;
1566 struct btrfs_key key
;
1572 btrfs_read_buffer(eb
, gen
);
1574 level
= btrfs_header_level(eb
);
1579 path
= btrfs_alloc_path();
1582 nritems
= btrfs_header_nritems(eb
);
1583 for (i
= 0; i
< nritems
; i
++) {
1584 btrfs_item_key_to_cpu(eb
, &key
, i
);
1585 item_size
= btrfs_item_size_nr(eb
, i
);
1587 /* inode keys are done during the first stage */
1588 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
1589 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
1590 struct inode
*inode
;
1591 struct btrfs_inode_item
*inode_item
;
1594 inode_item
= btrfs_item_ptr(eb
, i
,
1595 struct btrfs_inode_item
);
1596 mode
= btrfs_inode_mode(eb
, inode_item
);
1597 if (S_ISDIR(mode
)) {
1598 ret
= replay_dir_deletes(wc
->trans
,
1599 root
, log
, path
, key
.objectid
, 0);
1602 ret
= overwrite_item(wc
->trans
, root
, path
,
1606 /* for regular files, truncate away
1607 * extents past the new EOF
1609 if (S_ISREG(mode
)) {
1610 inode
= read_one_inode(root
,
1614 ret
= btrfs_truncate_inode_items(wc
->trans
,
1615 root
, inode
, inode
->i_size
,
1616 BTRFS_EXTENT_DATA_KEY
);
1619 /* if the nlink count is zero here, the iput
1620 * will free the inode. We bump it to make
1621 * sure it doesn't get freed until the link
1622 * count fixup is done
1624 if (inode
->i_nlink
== 0) {
1625 btrfs_inc_nlink(inode
);
1626 btrfs_update_inode(wc
->trans
,
1631 ret
= link_to_fixup_dir(wc
->trans
, root
,
1632 path
, key
.objectid
);
1635 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
1638 /* these keys are simply copied */
1639 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
1640 ret
= overwrite_item(wc
->trans
, root
, path
,
1643 } else if (key
.type
== BTRFS_INODE_REF_KEY
) {
1644 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
1646 BUG_ON(ret
&& ret
!= -ENOENT
);
1647 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
1648 ret
= replay_one_extent(wc
->trans
, root
, path
,
1651 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
||
1652 key
.type
== BTRFS_DIR_INDEX_KEY
) {
1653 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
1658 btrfs_free_path(path
);
1662 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
1663 struct btrfs_root
*root
,
1664 struct btrfs_path
*path
, int *level
,
1665 struct walk_control
*wc
)
1671 struct extent_buffer
*next
;
1672 struct extent_buffer
*cur
;
1673 struct extent_buffer
*parent
;
1677 WARN_ON(*level
< 0);
1678 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1680 while (*level
> 0) {
1681 WARN_ON(*level
< 0);
1682 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1683 cur
= path
->nodes
[*level
];
1685 if (btrfs_header_level(cur
) != *level
)
1688 if (path
->slots
[*level
] >=
1689 btrfs_header_nritems(cur
))
1692 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
1693 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
1694 blocksize
= btrfs_level_size(root
, *level
- 1);
1696 parent
= path
->nodes
[*level
];
1697 root_owner
= btrfs_header_owner(parent
);
1698 root_gen
= btrfs_header_generation(parent
);
1700 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1702 wc
->process_func(root
, next
, wc
, ptr_gen
);
1705 path
->slots
[*level
]++;
1707 btrfs_read_buffer(next
, ptr_gen
);
1709 btrfs_tree_lock(next
);
1710 clean_tree_block(trans
, root
, next
);
1711 btrfs_set_lock_blocking(next
);
1712 btrfs_wait_tree_block_writeback(next
);
1713 btrfs_tree_unlock(next
);
1715 WARN_ON(root_owner
!=
1716 BTRFS_TREE_LOG_OBJECTID
);
1717 ret
= btrfs_free_reserved_extent(root
,
1721 free_extent_buffer(next
);
1724 btrfs_read_buffer(next
, ptr_gen
);
1726 WARN_ON(*level
<= 0);
1727 if (path
->nodes
[*level
-1])
1728 free_extent_buffer(path
->nodes
[*level
-1]);
1729 path
->nodes
[*level
-1] = next
;
1730 *level
= btrfs_header_level(next
);
1731 path
->slots
[*level
] = 0;
1734 WARN_ON(*level
< 0);
1735 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1737 if (path
->nodes
[*level
] == root
->node
)
1738 parent
= path
->nodes
[*level
];
1740 parent
= path
->nodes
[*level
+ 1];
1742 bytenr
= path
->nodes
[*level
]->start
;
1744 blocksize
= btrfs_level_size(root
, *level
);
1745 root_owner
= btrfs_header_owner(parent
);
1746 root_gen
= btrfs_header_generation(parent
);
1748 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1749 btrfs_header_generation(path
->nodes
[*level
]));
1752 next
= path
->nodes
[*level
];
1753 btrfs_tree_lock(next
);
1754 clean_tree_block(trans
, root
, next
);
1755 btrfs_set_lock_blocking(next
);
1756 btrfs_wait_tree_block_writeback(next
);
1757 btrfs_tree_unlock(next
);
1759 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1760 ret
= btrfs_free_reserved_extent(root
, bytenr
, blocksize
);
1763 free_extent_buffer(path
->nodes
[*level
]);
1764 path
->nodes
[*level
] = NULL
;
1771 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
1772 struct btrfs_root
*root
,
1773 struct btrfs_path
*path
, int *level
,
1774 struct walk_control
*wc
)
1782 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
1783 slot
= path
->slots
[i
];
1784 if (slot
< btrfs_header_nritems(path
->nodes
[i
]) - 1) {
1785 struct extent_buffer
*node
;
1786 node
= path
->nodes
[i
];
1789 WARN_ON(*level
== 0);
1792 struct extent_buffer
*parent
;
1793 if (path
->nodes
[*level
] == root
->node
)
1794 parent
= path
->nodes
[*level
];
1796 parent
= path
->nodes
[*level
+ 1];
1798 root_owner
= btrfs_header_owner(parent
);
1799 root_gen
= btrfs_header_generation(parent
);
1800 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1801 btrfs_header_generation(path
->nodes
[*level
]));
1803 struct extent_buffer
*next
;
1805 next
= path
->nodes
[*level
];
1807 btrfs_tree_lock(next
);
1808 clean_tree_block(trans
, root
, next
);
1809 btrfs_set_lock_blocking(next
);
1810 btrfs_wait_tree_block_writeback(next
);
1811 btrfs_tree_unlock(next
);
1813 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1814 ret
= btrfs_free_reserved_extent(root
,
1815 path
->nodes
[*level
]->start
,
1816 path
->nodes
[*level
]->len
);
1819 free_extent_buffer(path
->nodes
[*level
]);
1820 path
->nodes
[*level
] = NULL
;
1828 * drop the reference count on the tree rooted at 'snap'. This traverses
1829 * the tree freeing any blocks that have a ref count of zero after being
1832 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
1833 struct btrfs_root
*log
, struct walk_control
*wc
)
1838 struct btrfs_path
*path
;
1842 path
= btrfs_alloc_path();
1845 level
= btrfs_header_level(log
->node
);
1847 path
->nodes
[level
] = log
->node
;
1848 extent_buffer_get(log
->node
);
1849 path
->slots
[level
] = 0;
1852 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
1858 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
1865 /* was the root node processed? if not, catch it here */
1866 if (path
->nodes
[orig_level
]) {
1867 wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
1868 btrfs_header_generation(path
->nodes
[orig_level
]));
1870 struct extent_buffer
*next
;
1872 next
= path
->nodes
[orig_level
];
1874 btrfs_tree_lock(next
);
1875 clean_tree_block(trans
, log
, next
);
1876 btrfs_set_lock_blocking(next
);
1877 btrfs_wait_tree_block_writeback(next
);
1878 btrfs_tree_unlock(next
);
1880 WARN_ON(log
->root_key
.objectid
!=
1881 BTRFS_TREE_LOG_OBJECTID
);
1882 ret
= btrfs_free_reserved_extent(log
, next
->start
,
1888 for (i
= 0; i
<= orig_level
; i
++) {
1889 if (path
->nodes
[i
]) {
1890 free_extent_buffer(path
->nodes
[i
]);
1891 path
->nodes
[i
] = NULL
;
1894 btrfs_free_path(path
);
1899 * helper function to update the item for a given subvolumes log root
1900 * in the tree of log roots
1902 static int update_log_root(struct btrfs_trans_handle
*trans
,
1903 struct btrfs_root
*log
)
1907 if (log
->log_transid
== 1) {
1908 /* insert root item on the first sync */
1909 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
1910 &log
->root_key
, &log
->root_item
);
1912 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
1913 &log
->root_key
, &log
->root_item
);
1918 static int wait_log_commit(struct btrfs_trans_handle
*trans
,
1919 struct btrfs_root
*root
, unsigned long transid
)
1922 int index
= transid
% 2;
1925 * we only allow two pending log transactions at a time,
1926 * so we know that if ours is more than 2 older than the
1927 * current transaction, we're done
1930 prepare_to_wait(&root
->log_commit_wait
[index
],
1931 &wait
, TASK_UNINTERRUPTIBLE
);
1932 mutex_unlock(&root
->log_mutex
);
1934 if (root
->fs_info
->last_trans_log_full_commit
!=
1935 trans
->transid
&& root
->log_transid
< transid
+ 2 &&
1936 atomic_read(&root
->log_commit
[index
]))
1939 finish_wait(&root
->log_commit_wait
[index
], &wait
);
1940 mutex_lock(&root
->log_mutex
);
1941 } while (root
->log_transid
< transid
+ 2 &&
1942 atomic_read(&root
->log_commit
[index
]));
1946 static int wait_for_writer(struct btrfs_trans_handle
*trans
,
1947 struct btrfs_root
*root
)
1950 while (atomic_read(&root
->log_writers
)) {
1951 prepare_to_wait(&root
->log_writer_wait
,
1952 &wait
, TASK_UNINTERRUPTIBLE
);
1953 mutex_unlock(&root
->log_mutex
);
1954 if (root
->fs_info
->last_trans_log_full_commit
!=
1955 trans
->transid
&& atomic_read(&root
->log_writers
))
1957 mutex_lock(&root
->log_mutex
);
1958 finish_wait(&root
->log_writer_wait
, &wait
);
1964 * btrfs_sync_log does sends a given tree log down to the disk and
1965 * updates the super blocks to record it. When this call is done,
1966 * you know that any inodes previously logged are safely on disk only
1969 * Any other return value means you need to call btrfs_commit_transaction.
1970 * Some of the edge cases for fsyncing directories that have had unlinks
1971 * or renames done in the past mean that sometimes the only safe
1972 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1973 * that has happened.
1975 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
1976 struct btrfs_root
*root
)
1981 struct btrfs_root
*log
= root
->log_root
;
1982 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
1983 u64 log_transid
= 0;
1985 mutex_lock(&root
->log_mutex
);
1986 index1
= root
->log_transid
% 2;
1987 if (atomic_read(&root
->log_commit
[index1
])) {
1988 wait_log_commit(trans
, root
, root
->log_transid
);
1989 mutex_unlock(&root
->log_mutex
);
1992 atomic_set(&root
->log_commit
[index1
], 1);
1994 /* wait for previous tree log sync to complete */
1995 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
1996 wait_log_commit(trans
, root
, root
->log_transid
- 1);
1999 unsigned long batch
= root
->log_batch
;
2000 if (root
->log_multiple_pids
) {
2001 mutex_unlock(&root
->log_mutex
);
2002 schedule_timeout_uninterruptible(1);
2003 mutex_lock(&root
->log_mutex
);
2005 wait_for_writer(trans
, root
);
2006 if (batch
== root
->log_batch
)
2010 /* bail out if we need to do a full commit */
2011 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2013 mutex_unlock(&root
->log_mutex
);
2017 /* we start IO on all the marked extents here, but we don't actually
2018 * wait for them until later.
2020 ret
= btrfs_write_marked_extents(log
, &log
->dirty_log_pages
);
2023 btrfs_set_root_node(&log
->root_item
, log
->node
);
2025 root
->log_batch
= 0;
2026 log_transid
= root
->log_transid
;
2027 root
->log_transid
++;
2028 log
->log_transid
= root
->log_transid
;
2029 root
->log_start_pid
= 0;
2032 * log tree has been flushed to disk, new modifications of
2033 * the log will be written to new positions. so it's safe to
2034 * allow log writers to go in.
2036 mutex_unlock(&root
->log_mutex
);
2038 mutex_lock(&log_root_tree
->log_mutex
);
2039 log_root_tree
->log_batch
++;
2040 atomic_inc(&log_root_tree
->log_writers
);
2041 mutex_unlock(&log_root_tree
->log_mutex
);
2043 ret
= update_log_root(trans
, log
);
2046 mutex_lock(&log_root_tree
->log_mutex
);
2047 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2049 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2050 wake_up(&log_root_tree
->log_writer_wait
);
2053 index2
= log_root_tree
->log_transid
% 2;
2054 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2055 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
);
2056 wait_log_commit(trans
, log_root_tree
,
2057 log_root_tree
->log_transid
);
2058 mutex_unlock(&log_root_tree
->log_mutex
);
2061 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2063 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2064 wait_log_commit(trans
, log_root_tree
,
2065 log_root_tree
->log_transid
- 1);
2068 wait_for_writer(trans
, log_root_tree
);
2071 * now that we've moved on to the tree of log tree roots,
2072 * check the full commit flag again
2074 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2075 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
);
2076 mutex_unlock(&log_root_tree
->log_mutex
);
2078 goto out_wake_log_root
;
2081 ret
= btrfs_write_and_wait_marked_extents(log_root_tree
,
2082 &log_root_tree
->dirty_log_pages
);
2084 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
);
2086 btrfs_set_super_log_root(&root
->fs_info
->super_for_commit
,
2087 log_root_tree
->node
->start
);
2088 btrfs_set_super_log_root_level(&root
->fs_info
->super_for_commit
,
2089 btrfs_header_level(log_root_tree
->node
));
2091 log_root_tree
->log_batch
= 0;
2092 log_root_tree
->log_transid
++;
2095 mutex_unlock(&log_root_tree
->log_mutex
);
2098 * nobody else is going to jump in and write the the ctree
2099 * super here because the log_commit atomic below is protecting
2100 * us. We must be called with a transaction handle pinning
2101 * the running transaction open, so a full commit can't hop
2102 * in and cause problems either.
2104 write_ctree_super(trans
, root
->fs_info
->tree_root
, 1);
2107 mutex_lock(&root
->log_mutex
);
2108 if (root
->last_log_commit
< log_transid
)
2109 root
->last_log_commit
= log_transid
;
2110 mutex_unlock(&root
->log_mutex
);
2113 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2115 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2116 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2118 atomic_set(&root
->log_commit
[index1
], 0);
2120 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2121 wake_up(&root
->log_commit_wait
[index1
]);
2126 * free all the extents used by the tree log. This should be called
2127 * at commit time of the full transaction
2129 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
2132 struct btrfs_root
*log
;
2136 struct walk_control wc
= {
2138 .process_func
= process_one_buffer
2141 if (!root
->log_root
|| root
->fs_info
->log_root_recovering
)
2144 log
= root
->log_root
;
2145 ret
= walk_log_tree(trans
, log
, &wc
);
2149 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
2150 0, &start
, &end
, EXTENT_DIRTY
);
2154 clear_extent_dirty(&log
->dirty_log_pages
,
2155 start
, end
, GFP_NOFS
);
2158 if (log
->log_transid
> 0) {
2159 ret
= btrfs_del_root(trans
, root
->fs_info
->log_root_tree
,
2163 root
->log_root
= NULL
;
2164 free_extent_buffer(log
->node
);
2170 * If both a file and directory are logged, and unlinks or renames are
2171 * mixed in, we have a few interesting corners:
2173 * create file X in dir Y
2174 * link file X to X.link in dir Y
2176 * unlink file X but leave X.link
2179 * After a crash we would expect only X.link to exist. But file X
2180 * didn't get fsync'd again so the log has back refs for X and X.link.
2182 * We solve this by removing directory entries and inode backrefs from the
2183 * log when a file that was logged in the current transaction is
2184 * unlinked. Any later fsync will include the updated log entries, and
2185 * we'll be able to reconstruct the proper directory items from backrefs.
2187 * This optimizations allows us to avoid relogging the entire inode
2188 * or the entire directory.
2190 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
2191 struct btrfs_root
*root
,
2192 const char *name
, int name_len
,
2193 struct inode
*dir
, u64 index
)
2195 struct btrfs_root
*log
;
2196 struct btrfs_dir_item
*di
;
2197 struct btrfs_path
*path
;
2201 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
2204 ret
= join_running_log_trans(root
);
2208 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
2210 log
= root
->log_root
;
2211 path
= btrfs_alloc_path();
2212 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir
->i_ino
,
2213 name
, name_len
, -1);
2214 if (di
&& !IS_ERR(di
)) {
2215 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2216 bytes_del
+= name_len
;
2219 btrfs_release_path(log
, path
);
2220 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir
->i_ino
,
2221 index
, name
, name_len
, -1);
2222 if (di
&& !IS_ERR(di
)) {
2223 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2224 bytes_del
+= name_len
;
2228 /* update the directory size in the log to reflect the names
2232 struct btrfs_key key
;
2234 key
.objectid
= dir
->i_ino
;
2236 key
.type
= BTRFS_INODE_ITEM_KEY
;
2237 btrfs_release_path(log
, path
);
2239 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
2241 struct btrfs_inode_item
*item
;
2244 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2245 struct btrfs_inode_item
);
2246 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
2247 if (i_size
> bytes_del
)
2248 i_size
-= bytes_del
;
2251 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
2252 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2255 btrfs_release_path(log
, path
);
2258 btrfs_free_path(path
);
2259 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
2260 btrfs_end_log_trans(root
);
2265 /* see comments for btrfs_del_dir_entries_in_log */
2266 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
2267 struct btrfs_root
*root
,
2268 const char *name
, int name_len
,
2269 struct inode
*inode
, u64 dirid
)
2271 struct btrfs_root
*log
;
2275 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
2278 ret
= join_running_log_trans(root
);
2281 log
= root
->log_root
;
2282 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2284 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, inode
->i_ino
,
2286 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2287 btrfs_end_log_trans(root
);
2293 * creates a range item in the log for 'dirid'. first_offset and
2294 * last_offset tell us which parts of the key space the log should
2295 * be considered authoritative for.
2297 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
2298 struct btrfs_root
*log
,
2299 struct btrfs_path
*path
,
2300 int key_type
, u64 dirid
,
2301 u64 first_offset
, u64 last_offset
)
2304 struct btrfs_key key
;
2305 struct btrfs_dir_log_item
*item
;
2307 key
.objectid
= dirid
;
2308 key
.offset
= first_offset
;
2309 if (key_type
== BTRFS_DIR_ITEM_KEY
)
2310 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
2312 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
2313 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
2316 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2317 struct btrfs_dir_log_item
);
2318 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
2319 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2320 btrfs_release_path(log
, path
);
2325 * log all the items included in the current transaction for a given
2326 * directory. This also creates the range items in the log tree required
2327 * to replay anything deleted before the fsync
2329 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
2330 struct btrfs_root
*root
, struct inode
*inode
,
2331 struct btrfs_path
*path
,
2332 struct btrfs_path
*dst_path
, int key_type
,
2333 u64 min_offset
, u64
*last_offset_ret
)
2335 struct btrfs_key min_key
;
2336 struct btrfs_key max_key
;
2337 struct btrfs_root
*log
= root
->log_root
;
2338 struct extent_buffer
*src
;
2342 u64 first_offset
= min_offset
;
2343 u64 last_offset
= (u64
)-1;
2345 log
= root
->log_root
;
2346 max_key
.objectid
= inode
->i_ino
;
2347 max_key
.offset
= (u64
)-1;
2348 max_key
.type
= key_type
;
2350 min_key
.objectid
= inode
->i_ino
;
2351 min_key
.type
= key_type
;
2352 min_key
.offset
= min_offset
;
2354 path
->keep_locks
= 1;
2356 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2357 path
, 0, trans
->transid
);
2360 * we didn't find anything from this transaction, see if there
2361 * is anything at all
2363 if (ret
!= 0 || min_key
.objectid
!= inode
->i_ino
||
2364 min_key
.type
!= key_type
) {
2365 min_key
.objectid
= inode
->i_ino
;
2366 min_key
.type
= key_type
;
2367 min_key
.offset
= (u64
)-1;
2368 btrfs_release_path(root
, path
);
2369 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2371 btrfs_release_path(root
, path
);
2374 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2376 /* if ret == 0 there are items for this type,
2377 * create a range to tell us the last key of this type.
2378 * otherwise, there are no items in this directory after
2379 * *min_offset, and we create a range to indicate that.
2382 struct btrfs_key tmp
;
2383 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
2385 if (key_type
== tmp
.type
)
2386 first_offset
= max(min_offset
, tmp
.offset
) + 1;
2391 /* go backward to find any previous key */
2392 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2394 struct btrfs_key tmp
;
2395 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2396 if (key_type
== tmp
.type
) {
2397 first_offset
= tmp
.offset
;
2398 ret
= overwrite_item(trans
, log
, dst_path
,
2399 path
->nodes
[0], path
->slots
[0],
2403 btrfs_release_path(root
, path
);
2405 /* find the first key from this transaction again */
2406 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2413 * we have a block from this transaction, log every item in it
2414 * from our directory
2417 struct btrfs_key tmp
;
2418 src
= path
->nodes
[0];
2419 nritems
= btrfs_header_nritems(src
);
2420 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2421 btrfs_item_key_to_cpu(src
, &min_key
, i
);
2423 if (min_key
.objectid
!= inode
->i_ino
||
2424 min_key
.type
!= key_type
)
2426 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
2430 path
->slots
[0] = nritems
;
2433 * look ahead to the next item and see if it is also
2434 * from this directory and from this transaction
2436 ret
= btrfs_next_leaf(root
, path
);
2438 last_offset
= (u64
)-1;
2441 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2442 if (tmp
.objectid
!= inode
->i_ino
|| tmp
.type
!= key_type
) {
2443 last_offset
= (u64
)-1;
2446 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
2447 ret
= overwrite_item(trans
, log
, dst_path
,
2448 path
->nodes
[0], path
->slots
[0],
2452 last_offset
= tmp
.offset
;
2457 *last_offset_ret
= last_offset
;
2458 btrfs_release_path(root
, path
);
2459 btrfs_release_path(log
, dst_path
);
2461 /* insert the log range keys to indicate where the log is valid */
2462 ret
= insert_dir_log_key(trans
, log
, path
, key_type
, inode
->i_ino
,
2463 first_offset
, last_offset
);
2469 * logging directories is very similar to logging inodes, We find all the items
2470 * from the current transaction and write them to the log.
2472 * The recovery code scans the directory in the subvolume, and if it finds a
2473 * key in the range logged that is not present in the log tree, then it means
2474 * that dir entry was unlinked during the transaction.
2476 * In order for that scan to work, we must include one key smaller than
2477 * the smallest logged by this transaction and one key larger than the largest
2478 * key logged by this transaction.
2480 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
2481 struct btrfs_root
*root
, struct inode
*inode
,
2482 struct btrfs_path
*path
,
2483 struct btrfs_path
*dst_path
)
2488 int key_type
= BTRFS_DIR_ITEM_KEY
;
2494 ret
= log_dir_items(trans
, root
, inode
, path
,
2495 dst_path
, key_type
, min_key
,
2498 if (max_key
== (u64
)-1)
2500 min_key
= max_key
+ 1;
2503 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
2504 key_type
= BTRFS_DIR_INDEX_KEY
;
2511 * a helper function to drop items from the log before we relog an
2512 * inode. max_key_type indicates the highest item type to remove.
2513 * This cannot be run for file data extents because it does not
2514 * free the extents they point to.
2516 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
2517 struct btrfs_root
*log
,
2518 struct btrfs_path
*path
,
2519 u64 objectid
, int max_key_type
)
2522 struct btrfs_key key
;
2523 struct btrfs_key found_key
;
2525 key
.objectid
= objectid
;
2526 key
.type
= max_key_type
;
2527 key
.offset
= (u64
)-1;
2530 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
2535 if (path
->slots
[0] == 0)
2539 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2542 if (found_key
.objectid
!= objectid
)
2545 ret
= btrfs_del_item(trans
, log
, path
);
2547 btrfs_release_path(log
, path
);
2549 btrfs_release_path(log
, path
);
2553 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
2554 struct btrfs_root
*log
,
2555 struct btrfs_path
*dst_path
,
2556 struct extent_buffer
*src
,
2557 int start_slot
, int nr
, int inode_only
)
2559 unsigned long src_offset
;
2560 unsigned long dst_offset
;
2561 struct btrfs_file_extent_item
*extent
;
2562 struct btrfs_inode_item
*inode_item
;
2564 struct btrfs_key
*ins_keys
;
2568 struct list_head ordered_sums
;
2570 INIT_LIST_HEAD(&ordered_sums
);
2572 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
2573 nr
* sizeof(u32
), GFP_NOFS
);
2574 ins_sizes
= (u32
*)ins_data
;
2575 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
2577 for (i
= 0; i
< nr
; i
++) {
2578 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
2579 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
2581 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
2582 ins_keys
, ins_sizes
, nr
);
2585 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
2586 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
2587 dst_path
->slots
[0]);
2589 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
2591 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
2592 src_offset
, ins_sizes
[i
]);
2594 if (inode_only
== LOG_INODE_EXISTS
&&
2595 ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
2596 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
2598 struct btrfs_inode_item
);
2599 btrfs_set_inode_size(dst_path
->nodes
[0], inode_item
, 0);
2601 /* set the generation to zero so the recover code
2602 * can tell the difference between an logging
2603 * just to say 'this inode exists' and a logging
2604 * to say 'update this inode with these values'
2606 btrfs_set_inode_generation(dst_path
->nodes
[0],
2609 /* take a reference on file data extents so that truncates
2610 * or deletes of this inode don't have to relog the inode
2613 if (btrfs_key_type(ins_keys
+ i
) == BTRFS_EXTENT_DATA_KEY
) {
2615 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
2616 struct btrfs_file_extent_item
);
2618 found_type
= btrfs_file_extent_type(src
, extent
);
2619 if (found_type
== BTRFS_FILE_EXTENT_REG
||
2620 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2622 ds
= btrfs_file_extent_disk_bytenr(src
,
2624 /* ds == 0 is a hole */
2628 dl
= btrfs_file_extent_disk_num_bytes(src
,
2630 cs
= btrfs_file_extent_offset(src
, extent
);
2631 cl
= btrfs_file_extent_num_bytes(src
,
2633 if (btrfs_file_extent_compression(src
,
2639 ret
= btrfs_lookup_csums_range(
2640 log
->fs_info
->csum_root
,
2641 ds
+ cs
, ds
+ cs
+ cl
- 1,
2648 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
2649 btrfs_release_path(log
, dst_path
);
2653 * we have to do this after the loop above to avoid changing the
2654 * log tree while trying to change the log tree.
2656 while (!list_empty(&ordered_sums
)) {
2657 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
2658 struct btrfs_ordered_sum
,
2660 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
2662 list_del(&sums
->list
);
2668 /* log a single inode in the tree log.
2669 * At least one parent directory for this inode must exist in the tree
2670 * or be logged already.
2672 * Any items from this inode changed by the current transaction are copied
2673 * to the log tree. An extra reference is taken on any extents in this
2674 * file, allowing us to avoid a whole pile of corner cases around logging
2675 * blocks that have been removed from the tree.
2677 * See LOG_INODE_ALL and related defines for a description of what inode_only
2680 * This handles both files and directories.
2682 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
2683 struct btrfs_root
*root
, struct inode
*inode
,
2686 struct btrfs_path
*path
;
2687 struct btrfs_path
*dst_path
;
2688 struct btrfs_key min_key
;
2689 struct btrfs_key max_key
;
2690 struct btrfs_root
*log
= root
->log_root
;
2691 struct extent_buffer
*src
= NULL
;
2695 int ins_start_slot
= 0;
2698 log
= root
->log_root
;
2700 path
= btrfs_alloc_path();
2701 dst_path
= btrfs_alloc_path();
2703 min_key
.objectid
= inode
->i_ino
;
2704 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
2707 max_key
.objectid
= inode
->i_ino
;
2709 /* today the code can only do partial logging of directories */
2710 if (!S_ISDIR(inode
->i_mode
))
2711 inode_only
= LOG_INODE_ALL
;
2713 if (inode_only
== LOG_INODE_EXISTS
|| S_ISDIR(inode
->i_mode
))
2714 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2716 max_key
.type
= (u8
)-1;
2717 max_key
.offset
= (u64
)-1;
2719 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2722 * a brute force approach to making sure we get the most uptodate
2723 * copies of everything.
2725 if (S_ISDIR(inode
->i_mode
)) {
2726 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2728 if (inode_only
== LOG_INODE_EXISTS
)
2729 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
2730 ret
= drop_objectid_items(trans
, log
, path
,
2731 inode
->i_ino
, max_key_type
);
2733 ret
= btrfs_truncate_inode_items(trans
, log
, inode
, 0, 0);
2736 path
->keep_locks
= 1;
2740 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2741 path
, 0, trans
->transid
);
2745 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2746 if (min_key
.objectid
!= inode
->i_ino
)
2748 if (min_key
.type
> max_key
.type
)
2751 src
= path
->nodes
[0];
2752 size
= btrfs_item_size_nr(src
, path
->slots
[0]);
2753 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
2756 } else if (!ins_nr
) {
2757 ins_start_slot
= path
->slots
[0];
2762 ret
= copy_items(trans
, log
, dst_path
, src
, ins_start_slot
,
2763 ins_nr
, inode_only
);
2766 ins_start_slot
= path
->slots
[0];
2769 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2771 if (path
->slots
[0] < nritems
) {
2772 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
2777 ret
= copy_items(trans
, log
, dst_path
, src
,
2779 ins_nr
, inode_only
);
2783 btrfs_release_path(root
, path
);
2785 if (min_key
.offset
< (u64
)-1)
2787 else if (min_key
.type
< (u8
)-1)
2789 else if (min_key
.objectid
< (u64
)-1)
2795 ret
= copy_items(trans
, log
, dst_path
, src
,
2797 ins_nr
, inode_only
);
2802 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
2803 btrfs_release_path(root
, path
);
2804 btrfs_release_path(log
, dst_path
);
2805 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
);
2808 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2809 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2811 btrfs_free_path(path
);
2812 btrfs_free_path(dst_path
);
2817 * follow the dentry parent pointers up the chain and see if any
2818 * of the directories in it require a full commit before they can
2819 * be logged. Returns zero if nothing special needs to be done or 1 if
2820 * a full commit is required.
2822 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
2823 struct inode
*inode
,
2824 struct dentry
*parent
,
2825 struct super_block
*sb
,
2829 struct btrfs_root
*root
;
2832 * for regular files, if its inode is already on disk, we don't
2833 * have to worry about the parents at all. This is because
2834 * we can use the last_unlink_trans field to record renames
2835 * and other fun in this file.
2837 if (S_ISREG(inode
->i_mode
) &&
2838 BTRFS_I(inode
)->generation
<= last_committed
&&
2839 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
2842 if (!S_ISDIR(inode
->i_mode
)) {
2843 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2845 inode
= parent
->d_inode
;
2849 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2852 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
2853 root
= BTRFS_I(inode
)->root
;
2856 * make sure any commits to the log are forced
2857 * to be full commits
2859 root
->fs_info
->last_trans_log_full_commit
=
2865 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2868 if (IS_ROOT(parent
))
2871 parent
= parent
->d_parent
;
2872 inode
= parent
->d_inode
;
2879 static int inode_in_log(struct btrfs_trans_handle
*trans
,
2880 struct inode
*inode
)
2882 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2885 mutex_lock(&root
->log_mutex
);
2886 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
&&
2887 BTRFS_I(inode
)->last_sub_trans
<= root
->last_log_commit
)
2889 mutex_unlock(&root
->log_mutex
);
2895 * helper function around btrfs_log_inode to make sure newly created
2896 * parent directories also end up in the log. A minimal inode and backref
2897 * only logging is done of any parent directories that are older than
2898 * the last committed transaction
2900 int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
2901 struct btrfs_root
*root
, struct inode
*inode
,
2902 struct dentry
*parent
, int exists_only
)
2904 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
2905 struct super_block
*sb
;
2907 u64 last_committed
= root
->fs_info
->last_trans_committed
;
2911 if (btrfs_test_opt(root
, NOTREELOG
)) {
2916 if (root
->fs_info
->last_trans_log_full_commit
>
2917 root
->fs_info
->last_trans_committed
) {
2922 if (root
!= BTRFS_I(inode
)->root
||
2923 btrfs_root_refs(&root
->root_item
) == 0) {
2928 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
2929 sb
, last_committed
);
2933 if (inode_in_log(trans
, inode
)) {
2934 ret
= BTRFS_NO_LOG_SYNC
;
2938 start_log_trans(trans
, root
);
2940 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
2944 * for regular files, if its inode is already on disk, we don't
2945 * have to worry about the parents at all. This is because
2946 * we can use the last_unlink_trans field to record renames
2947 * and other fun in this file.
2949 if (S_ISREG(inode
->i_mode
) &&
2950 BTRFS_I(inode
)->generation
<= last_committed
&&
2951 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
2954 inode_only
= LOG_INODE_EXISTS
;
2956 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2959 inode
= parent
->d_inode
;
2960 if (root
!= BTRFS_I(inode
)->root
)
2963 if (BTRFS_I(inode
)->generation
>
2964 root
->fs_info
->last_trans_committed
) {
2965 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
2968 if (IS_ROOT(parent
))
2971 parent
= parent
->d_parent
;
2975 btrfs_end_log_trans(root
);
2981 * it is not safe to log dentry if the chunk root has added new
2982 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2983 * If this returns 1, you must commit the transaction to safely get your
2986 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
2987 struct btrfs_root
*root
, struct dentry
*dentry
)
2989 return btrfs_log_inode_parent(trans
, root
, dentry
->d_inode
,
2990 dentry
->d_parent
, 0);
2994 * should be called during mount to recover any replay any log trees
2997 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
3000 struct btrfs_path
*path
;
3001 struct btrfs_trans_handle
*trans
;
3002 struct btrfs_key key
;
3003 struct btrfs_key found_key
;
3004 struct btrfs_key tmp_key
;
3005 struct btrfs_root
*log
;
3006 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
3007 struct walk_control wc
= {
3008 .process_func
= process_one_buffer
,
3012 fs_info
->log_root_recovering
= 1;
3013 path
= btrfs_alloc_path();
3016 trans
= btrfs_start_transaction(fs_info
->tree_root
, 1);
3021 walk_log_tree(trans
, log_root_tree
, &wc
);
3024 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
3025 key
.offset
= (u64
)-1;
3026 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
3029 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
3033 if (path
->slots
[0] == 0)
3037 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3039 btrfs_release_path(log_root_tree
, path
);
3040 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
3043 log
= btrfs_read_fs_root_no_radix(log_root_tree
,
3048 tmp_key
.objectid
= found_key
.offset
;
3049 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
3050 tmp_key
.offset
= (u64
)-1;
3052 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
3053 BUG_ON(!wc
.replay_dest
);
3055 wc
.replay_dest
->log_root
= log
;
3056 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
3057 ret
= walk_log_tree(trans
, log
, &wc
);
3060 if (wc
.stage
== LOG_WALK_REPLAY_ALL
) {
3061 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
3066 key
.offset
= found_key
.offset
- 1;
3067 wc
.replay_dest
->log_root
= NULL
;
3068 free_extent_buffer(log
->node
);
3069 free_extent_buffer(log
->commit_root
);
3072 if (found_key
.offset
== 0)
3075 btrfs_release_path(log_root_tree
, path
);
3077 /* step one is to pin it all, step two is to replay just inodes */
3080 wc
.process_func
= replay_one_buffer
;
3081 wc
.stage
= LOG_WALK_REPLAY_INODES
;
3084 /* step three is to replay everything */
3085 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
3090 btrfs_free_path(path
);
3092 free_extent_buffer(log_root_tree
->node
);
3093 log_root_tree
->log_root
= NULL
;
3094 fs_info
->log_root_recovering
= 0;
3096 /* step 4: commit the transaction, which also unpins the blocks */
3097 btrfs_commit_transaction(trans
, fs_info
->tree_root
);
3099 kfree(log_root_tree
);
3104 * there are some corner cases where we want to force a full
3105 * commit instead of allowing a directory to be logged.
3107 * They revolve around files there were unlinked from the directory, and
3108 * this function updates the parent directory so that a full commit is
3109 * properly done if it is fsync'd later after the unlinks are done.
3111 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
3112 struct inode
*dir
, struct inode
*inode
,
3116 * when we're logging a file, if it hasn't been renamed
3117 * or unlinked, and its inode is fully committed on disk,
3118 * we don't have to worry about walking up the directory chain
3119 * to log its parents.
3121 * So, we use the last_unlink_trans field to put this transid
3122 * into the file. When the file is logged we check it and
3123 * don't log the parents if the file is fully on disk.
3125 if (S_ISREG(inode
->i_mode
))
3126 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3129 * if this directory was already logged any new
3130 * names for this file/dir will get recorded
3133 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
3137 * if the inode we're about to unlink was logged,
3138 * the log will be properly updated for any new names
3140 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
3144 * when renaming files across directories, if the directory
3145 * there we're unlinking from gets fsync'd later on, there's
3146 * no way to find the destination directory later and fsync it
3147 * properly. So, we have to be conservative and force commits
3148 * so the new name gets discovered.
3153 /* we can safely do the unlink without any special recording */
3157 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
3161 * Call this after adding a new name for a file and it will properly
3162 * update the log to reflect the new name.
3164 * It will return zero if all goes well, and it will return 1 if a
3165 * full transaction commit is required.
3167 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
3168 struct inode
*inode
, struct inode
*old_dir
,
3169 struct dentry
*parent
)
3171 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
3174 * this will force the logging code to walk the dentry chain
3177 if (S_ISREG(inode
->i_mode
))
3178 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3181 * if this inode hasn't been logged and directory we're renaming it
3182 * from hasn't been logged, we don't need to log it
3184 if (BTRFS_I(inode
)->logged_trans
<=
3185 root
->fs_info
->last_trans_committed
&&
3186 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
3187 root
->fs_info
->last_trans_committed
))
3190 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 1);