ide: turn set_irq() method into write_devctl() method
[linux-ginger.git] / drivers / ide / pmac.c
blob7aa45ea37eeb0dde37a1384d4c3573e1c6068b66
1 /*
2 * Support for IDE interfaces on PowerMacs.
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
5 * for doing DMA.
7 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8 * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Some code taken from drivers/ide/ide-dma.c:
17 * Copyright (c) 1995-1998 Mark Lord
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
22 * big table
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/pci.h>
33 #include <linux/adb.h>
34 #include <linux/pmu.h>
35 #include <linux/scatterlist.h>
37 #include <asm/prom.h>
38 #include <asm/io.h>
39 #include <asm/dbdma.h>
40 #include <asm/ide.h>
41 #include <asm/pci-bridge.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
44 #include <asm/sections.h>
45 #include <asm/irq.h>
47 #ifndef CONFIG_PPC64
48 #include <asm/mediabay.h>
49 #endif
51 #define DRV_NAME "ide-pmac"
53 #undef IDE_PMAC_DEBUG
55 #define DMA_WAIT_TIMEOUT 50
57 typedef struct pmac_ide_hwif {
58 unsigned long regbase;
59 int irq;
60 int kind;
61 int aapl_bus_id;
62 unsigned mediabay : 1;
63 unsigned broken_dma : 1;
64 unsigned broken_dma_warn : 1;
65 struct device_node* node;
66 struct macio_dev *mdev;
67 u32 timings[4];
68 volatile u32 __iomem * *kauai_fcr;
69 /* Those fields are duplicating what is in hwif. We currently
70 * can't use the hwif ones because of some assumptions that are
71 * beeing done by the generic code about the kind of dma controller
72 * and format of the dma table. This will have to be fixed though.
74 volatile struct dbdma_regs __iomem * dma_regs;
75 struct dbdma_cmd* dma_table_cpu;
76 } pmac_ide_hwif_t;
78 enum {
79 controller_ohare, /* OHare based */
80 controller_heathrow, /* Heathrow/Paddington */
81 controller_kl_ata3, /* KeyLargo ATA-3 */
82 controller_kl_ata4, /* KeyLargo ATA-4 */
83 controller_un_ata6, /* UniNorth2 ATA-6 */
84 controller_k2_ata6, /* K2 ATA-6 */
85 controller_sh_ata6, /* Shasta ATA-6 */
88 static const char* model_name[] = {
89 "OHare ATA", /* OHare based */
90 "Heathrow ATA", /* Heathrow/Paddington */
91 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
92 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
93 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
94 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
95 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
99 * Extra registers, both 32-bit little-endian
101 #define IDE_TIMING_CONFIG 0x200
102 #define IDE_INTERRUPT 0x300
104 /* Kauai (U2) ATA has different register setup */
105 #define IDE_KAUAI_PIO_CONFIG 0x200
106 #define IDE_KAUAI_ULTRA_CONFIG 0x210
107 #define IDE_KAUAI_POLL_CONFIG 0x220
110 * Timing configuration register definitions
113 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
114 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
115 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
116 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
117 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
119 /* 133Mhz cell, found in shasta.
120 * See comments about 100 Mhz Uninorth 2...
121 * Note that PIO_MASK and MDMA_MASK seem to overlap
123 #define TR_133_PIOREG_PIO_MASK 0xff000fff
124 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
125 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
126 #define TR_133_UDMAREG_UDMA_EN 0x00000001
128 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
129 * this one yet, it appears as a pci device (106b/0033) on uninorth
130 * internal PCI bus and it's clock is controlled like gem or fw. It
131 * appears to be an evolution of keylargo ATA4 with a timing register
132 * extended to 2 32bits registers and a similar DBDMA channel. Other
133 * registers seem to exist but I can't tell much about them.
135 * So far, I'm using pre-calculated tables for this extracted from
136 * the values used by the MacOS X driver.
138 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
139 * register controls the UDMA timings. At least, it seems bit 0
140 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
141 * cycle time in units of 10ns. Bits 8..15 are used by I don't
142 * know their meaning yet
144 #define TR_100_PIOREG_PIO_MASK 0xff000fff
145 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
146 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
147 #define TR_100_UDMAREG_UDMA_EN 0x00000001
150 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
151 * 40 connector cable and to 4 on 80 connector one.
152 * Clock unit is 15ns (66Mhz)
154 * 3 Values can be programmed:
155 * - Write data setup, which appears to match the cycle time. They
156 * also call it DIOW setup.
157 * - Ready to pause time (from spec)
158 * - Address setup. That one is weird. I don't see where exactly
159 * it fits in UDMA cycles, I got it's name from an obscure piece
160 * of commented out code in Darwin. They leave it to 0, we do as
161 * well, despite a comment that would lead to think it has a
162 * min value of 45ns.
163 * Apple also add 60ns to the write data setup (or cycle time ?) on
164 * reads.
166 #define TR_66_UDMA_MASK 0xfff00000
167 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
168 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
169 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
170 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
171 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
172 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
173 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
174 #define TR_66_MDMA_MASK 0x000ffc00
175 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
176 #define TR_66_MDMA_RECOVERY_SHIFT 15
177 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
178 #define TR_66_MDMA_ACCESS_SHIFT 10
179 #define TR_66_PIO_MASK 0x000003ff
180 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
181 #define TR_66_PIO_RECOVERY_SHIFT 5
182 #define TR_66_PIO_ACCESS_MASK 0x0000001f
183 #define TR_66_PIO_ACCESS_SHIFT 0
185 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
186 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
188 * The access time and recovery time can be programmed. Some older
189 * Darwin code base limit OHare to 150ns cycle time. I decided to do
190 * the same here fore safety against broken old hardware ;)
191 * The HalfTick bit, when set, adds half a clock (15ns) to the access
192 * time and removes one from recovery. It's not supported on KeyLargo
193 * implementation afaik. The E bit appears to be set for PIO mode 0 and
194 * is used to reach long timings used in this mode.
196 #define TR_33_MDMA_MASK 0x003ff800
197 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
198 #define TR_33_MDMA_RECOVERY_SHIFT 16
199 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
200 #define TR_33_MDMA_ACCESS_SHIFT 11
201 #define TR_33_MDMA_HALFTICK 0x00200000
202 #define TR_33_PIO_MASK 0x000007ff
203 #define TR_33_PIO_E 0x00000400
204 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
205 #define TR_33_PIO_RECOVERY_SHIFT 5
206 #define TR_33_PIO_ACCESS_MASK 0x0000001f
207 #define TR_33_PIO_ACCESS_SHIFT 0
210 * Interrupt register definitions
212 #define IDE_INTR_DMA 0x80000000
213 #define IDE_INTR_DEVICE 0x40000000
216 * FCR Register on Kauai. Not sure what bit 0x4 is ...
218 #define KAUAI_FCR_UATA_MAGIC 0x00000004
219 #define KAUAI_FCR_UATA_RESET_N 0x00000002
220 #define KAUAI_FCR_UATA_ENABLE 0x00000001
222 /* Rounded Multiword DMA timings
224 * I gave up finding a generic formula for all controller
225 * types and instead, built tables based on timing values
226 * used by Apple in Darwin's implementation.
228 struct mdma_timings_t {
229 int accessTime;
230 int recoveryTime;
231 int cycleTime;
234 struct mdma_timings_t mdma_timings_33[] =
236 { 240, 240, 480 },
237 { 180, 180, 360 },
238 { 135, 135, 270 },
239 { 120, 120, 240 },
240 { 105, 105, 210 },
241 { 90, 90, 180 },
242 { 75, 75, 150 },
243 { 75, 45, 120 },
244 { 0, 0, 0 }
247 struct mdma_timings_t mdma_timings_33k[] =
249 { 240, 240, 480 },
250 { 180, 180, 360 },
251 { 150, 150, 300 },
252 { 120, 120, 240 },
253 { 90, 120, 210 },
254 { 90, 90, 180 },
255 { 90, 60, 150 },
256 { 90, 30, 120 },
257 { 0, 0, 0 }
260 struct mdma_timings_t mdma_timings_66[] =
262 { 240, 240, 480 },
263 { 180, 180, 360 },
264 { 135, 135, 270 },
265 { 120, 120, 240 },
266 { 105, 105, 210 },
267 { 90, 90, 180 },
268 { 90, 75, 165 },
269 { 75, 45, 120 },
270 { 0, 0, 0 }
273 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
274 struct {
275 int addrSetup; /* ??? */
276 int rdy2pause;
277 int wrDataSetup;
278 } kl66_udma_timings[] =
280 { 0, 180, 120 }, /* Mode 0 */
281 { 0, 150, 90 }, /* 1 */
282 { 0, 120, 60 }, /* 2 */
283 { 0, 90, 45 }, /* 3 */
284 { 0, 90, 30 } /* 4 */
287 /* UniNorth 2 ATA/100 timings */
288 struct kauai_timing {
289 int cycle_time;
290 u32 timing_reg;
293 static struct kauai_timing kauai_pio_timings[] =
295 { 930 , 0x08000fff },
296 { 600 , 0x08000a92 },
297 { 383 , 0x0800060f },
298 { 360 , 0x08000492 },
299 { 330 , 0x0800048f },
300 { 300 , 0x080003cf },
301 { 270 , 0x080003cc },
302 { 240 , 0x0800038b },
303 { 239 , 0x0800030c },
304 { 180 , 0x05000249 },
305 { 120 , 0x04000148 },
306 { 0 , 0 },
309 static struct kauai_timing kauai_mdma_timings[] =
311 { 1260 , 0x00fff000 },
312 { 480 , 0x00618000 },
313 { 360 , 0x00492000 },
314 { 270 , 0x0038e000 },
315 { 240 , 0x0030c000 },
316 { 210 , 0x002cb000 },
317 { 180 , 0x00249000 },
318 { 150 , 0x00209000 },
319 { 120 , 0x00148000 },
320 { 0 , 0 },
323 static struct kauai_timing kauai_udma_timings[] =
325 { 120 , 0x000070c0 },
326 { 90 , 0x00005d80 },
327 { 60 , 0x00004a60 },
328 { 45 , 0x00003a50 },
329 { 30 , 0x00002a30 },
330 { 20 , 0x00002921 },
331 { 0 , 0 },
334 static struct kauai_timing shasta_pio_timings[] =
336 { 930 , 0x08000fff },
337 { 600 , 0x0A000c97 },
338 { 383 , 0x07000712 },
339 { 360 , 0x040003cd },
340 { 330 , 0x040003cd },
341 { 300 , 0x040003cd },
342 { 270 , 0x040003cd },
343 { 240 , 0x040003cd },
344 { 239 , 0x040003cd },
345 { 180 , 0x0400028b },
346 { 120 , 0x0400010a },
347 { 0 , 0 },
350 static struct kauai_timing shasta_mdma_timings[] =
352 { 1260 , 0x00fff000 },
353 { 480 , 0x00820800 },
354 { 360 , 0x00820800 },
355 { 270 , 0x00820800 },
356 { 240 , 0x00820800 },
357 { 210 , 0x00820800 },
358 { 180 , 0x00820800 },
359 { 150 , 0x0028b000 },
360 { 120 , 0x001ca000 },
361 { 0 , 0 },
364 static struct kauai_timing shasta_udma133_timings[] =
366 { 120 , 0x00035901, },
367 { 90 , 0x000348b1, },
368 { 60 , 0x00033881, },
369 { 45 , 0x00033861, },
370 { 30 , 0x00033841, },
371 { 20 , 0x00033031, },
372 { 15 , 0x00033021, },
373 { 0 , 0 },
377 static inline u32
378 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
380 int i;
382 for (i=0; table[i].cycle_time; i++)
383 if (cycle_time > table[i+1].cycle_time)
384 return table[i].timing_reg;
385 BUG();
386 return 0;
389 /* allow up to 256 DBDMA commands per xfer */
390 #define MAX_DCMDS 256
393 * Wait 1s for disk to answer on IDE bus after a hard reset
394 * of the device (via GPIO/FCR).
396 * Some devices seem to "pollute" the bus even after dropping
397 * the BSY bit (typically some combo drives slave on the UDMA
398 * bus) after a hard reset. Since we hard reset all drives on
399 * KeyLargo ATA66, we have to keep that delay around. I may end
400 * up not hard resetting anymore on these and keep the delay only
401 * for older interfaces instead (we have to reset when coming
402 * from MacOS...) --BenH.
404 #define IDE_WAKEUP_DELAY (1*HZ)
406 static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
407 static void pmac_ide_selectproc(ide_drive_t *drive);
408 static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
410 #define PMAC_IDE_REG(x) \
411 ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
414 * Apply the timings of the proper unit (master/slave) to the shared
415 * timing register when selecting that unit. This version is for
416 * ASICs with a single timing register
418 static void
419 pmac_ide_selectproc(ide_drive_t *drive)
421 ide_hwif_t *hwif = drive->hwif;
422 pmac_ide_hwif_t *pmif =
423 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
425 if (drive->dn & 1)
426 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
427 else
428 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
429 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
433 * Apply the timings of the proper unit (master/slave) to the shared
434 * timing register when selecting that unit. This version is for
435 * ASICs with a dual timing register (Kauai)
437 static void
438 pmac_ide_kauai_selectproc(ide_drive_t *drive)
440 ide_hwif_t *hwif = drive->hwif;
441 pmac_ide_hwif_t *pmif =
442 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
444 if (drive->dn & 1) {
445 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
446 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
447 } else {
448 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
449 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
451 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
455 * Force an update of controller timing values for a given drive
457 static void
458 pmac_ide_do_update_timings(ide_drive_t *drive)
460 ide_hwif_t *hwif = drive->hwif;
461 pmac_ide_hwif_t *pmif =
462 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
464 if (pmif->kind == controller_sh_ata6 ||
465 pmif->kind == controller_un_ata6 ||
466 pmif->kind == controller_k2_ata6)
467 pmac_ide_kauai_selectproc(drive);
468 else
469 pmac_ide_selectproc(drive);
472 static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
474 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
475 (void)readl((void __iomem *)(hwif->io_ports.data_addr
476 + IDE_TIMING_CONFIG));
479 static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
481 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
482 (void)readl((void __iomem *)(hwif->io_ports.data_addr
483 + IDE_TIMING_CONFIG));
487 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
489 static void
490 pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
492 ide_hwif_t *hwif = drive->hwif;
493 pmac_ide_hwif_t *pmif =
494 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
495 struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
496 u32 *timings, t;
497 unsigned accessTicks, recTicks;
498 unsigned accessTime, recTime;
499 unsigned int cycle_time;
501 /* which drive is it ? */
502 timings = &pmif->timings[drive->dn & 1];
503 t = *timings;
505 cycle_time = ide_pio_cycle_time(drive, pio);
507 switch (pmif->kind) {
508 case controller_sh_ata6: {
509 /* 133Mhz cell */
510 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
511 t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
512 break;
514 case controller_un_ata6:
515 case controller_k2_ata6: {
516 /* 100Mhz cell */
517 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
518 t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
519 break;
521 case controller_kl_ata4:
522 /* 66Mhz cell */
523 recTime = cycle_time - tim->active - tim->setup;
524 recTime = max(recTime, 150U);
525 accessTime = tim->active;
526 accessTime = max(accessTime, 150U);
527 accessTicks = SYSCLK_TICKS_66(accessTime);
528 accessTicks = min(accessTicks, 0x1fU);
529 recTicks = SYSCLK_TICKS_66(recTime);
530 recTicks = min(recTicks, 0x1fU);
531 t = (t & ~TR_66_PIO_MASK) |
532 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
533 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
534 break;
535 default: {
536 /* 33Mhz cell */
537 int ebit = 0;
538 recTime = cycle_time - tim->active - tim->setup;
539 recTime = max(recTime, 150U);
540 accessTime = tim->active;
541 accessTime = max(accessTime, 150U);
542 accessTicks = SYSCLK_TICKS(accessTime);
543 accessTicks = min(accessTicks, 0x1fU);
544 accessTicks = max(accessTicks, 4U);
545 recTicks = SYSCLK_TICKS(recTime);
546 recTicks = min(recTicks, 0x1fU);
547 recTicks = max(recTicks, 5U) - 4;
548 if (recTicks > 9) {
549 recTicks--; /* guess, but it's only for PIO0, so... */
550 ebit = 1;
552 t = (t & ~TR_33_PIO_MASK) |
553 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
554 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
555 if (ebit)
556 t |= TR_33_PIO_E;
557 break;
561 #ifdef IDE_PMAC_DEBUG
562 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
563 drive->name, pio, *timings);
564 #endif
566 *timings = t;
567 pmac_ide_do_update_timings(drive);
571 * Calculate KeyLargo ATA/66 UDMA timings
573 static int
574 set_timings_udma_ata4(u32 *timings, u8 speed)
576 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
578 if (speed > XFER_UDMA_4)
579 return 1;
581 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
582 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
583 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
585 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
586 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
587 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
588 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
589 TR_66_UDMA_EN;
590 #ifdef IDE_PMAC_DEBUG
591 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
592 speed & 0xf, *timings);
593 #endif
595 return 0;
599 * Calculate Kauai ATA/100 UDMA timings
601 static int
602 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
604 struct ide_timing *t = ide_timing_find_mode(speed);
605 u32 tr;
607 if (speed > XFER_UDMA_5 || t == NULL)
608 return 1;
609 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
610 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
611 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
613 return 0;
617 * Calculate Shasta ATA/133 UDMA timings
619 static int
620 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
622 struct ide_timing *t = ide_timing_find_mode(speed);
623 u32 tr;
625 if (speed > XFER_UDMA_6 || t == NULL)
626 return 1;
627 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
628 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
629 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
631 return 0;
635 * Calculate MDMA timings for all cells
637 static void
638 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
639 u8 speed)
641 u16 *id = drive->id;
642 int cycleTime, accessTime = 0, recTime = 0;
643 unsigned accessTicks, recTicks;
644 struct mdma_timings_t* tm = NULL;
645 int i;
647 /* Get default cycle time for mode */
648 switch(speed & 0xf) {
649 case 0: cycleTime = 480; break;
650 case 1: cycleTime = 150; break;
651 case 2: cycleTime = 120; break;
652 default:
653 BUG();
654 break;
657 /* Check if drive provides explicit DMA cycle time */
658 if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
659 cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
661 /* OHare limits according to some old Apple sources */
662 if ((intf_type == controller_ohare) && (cycleTime < 150))
663 cycleTime = 150;
664 /* Get the proper timing array for this controller */
665 switch(intf_type) {
666 case controller_sh_ata6:
667 case controller_un_ata6:
668 case controller_k2_ata6:
669 break;
670 case controller_kl_ata4:
671 tm = mdma_timings_66;
672 break;
673 case controller_kl_ata3:
674 tm = mdma_timings_33k;
675 break;
676 default:
677 tm = mdma_timings_33;
678 break;
680 if (tm != NULL) {
681 /* Lookup matching access & recovery times */
682 i = -1;
683 for (;;) {
684 if (tm[i+1].cycleTime < cycleTime)
685 break;
686 i++;
688 cycleTime = tm[i].cycleTime;
689 accessTime = tm[i].accessTime;
690 recTime = tm[i].recoveryTime;
692 #ifdef IDE_PMAC_DEBUG
693 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
694 drive->name, cycleTime, accessTime, recTime);
695 #endif
697 switch(intf_type) {
698 case controller_sh_ata6: {
699 /* 133Mhz cell */
700 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
701 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
702 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
704 case controller_un_ata6:
705 case controller_k2_ata6: {
706 /* 100Mhz cell */
707 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
708 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
709 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
711 break;
712 case controller_kl_ata4:
713 /* 66Mhz cell */
714 accessTicks = SYSCLK_TICKS_66(accessTime);
715 accessTicks = min(accessTicks, 0x1fU);
716 accessTicks = max(accessTicks, 0x1U);
717 recTicks = SYSCLK_TICKS_66(recTime);
718 recTicks = min(recTicks, 0x1fU);
719 recTicks = max(recTicks, 0x3U);
720 /* Clear out mdma bits and disable udma */
721 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
722 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
723 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
724 break;
725 case controller_kl_ata3:
726 /* 33Mhz cell on KeyLargo */
727 accessTicks = SYSCLK_TICKS(accessTime);
728 accessTicks = max(accessTicks, 1U);
729 accessTicks = min(accessTicks, 0x1fU);
730 accessTime = accessTicks * IDE_SYSCLK_NS;
731 recTicks = SYSCLK_TICKS(recTime);
732 recTicks = max(recTicks, 1U);
733 recTicks = min(recTicks, 0x1fU);
734 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
735 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
736 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
737 break;
738 default: {
739 /* 33Mhz cell on others */
740 int halfTick = 0;
741 int origAccessTime = accessTime;
742 int origRecTime = recTime;
744 accessTicks = SYSCLK_TICKS(accessTime);
745 accessTicks = max(accessTicks, 1U);
746 accessTicks = min(accessTicks, 0x1fU);
747 accessTime = accessTicks * IDE_SYSCLK_NS;
748 recTicks = SYSCLK_TICKS(recTime);
749 recTicks = max(recTicks, 2U) - 1;
750 recTicks = min(recTicks, 0x1fU);
751 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
752 if ((accessTicks > 1) &&
753 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
754 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
755 halfTick = 1;
756 accessTicks--;
758 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
759 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
760 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
761 if (halfTick)
762 *timings |= TR_33_MDMA_HALFTICK;
765 #ifdef IDE_PMAC_DEBUG
766 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
767 drive->name, speed & 0xf, *timings);
768 #endif
771 static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
773 ide_hwif_t *hwif = drive->hwif;
774 pmac_ide_hwif_t *pmif =
775 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
776 int ret = 0;
777 u32 *timings, *timings2, tl[2];
778 u8 unit = drive->dn & 1;
780 timings = &pmif->timings[unit];
781 timings2 = &pmif->timings[unit+2];
783 /* Copy timings to local image */
784 tl[0] = *timings;
785 tl[1] = *timings2;
787 if (speed >= XFER_UDMA_0) {
788 if (pmif->kind == controller_kl_ata4)
789 ret = set_timings_udma_ata4(&tl[0], speed);
790 else if (pmif->kind == controller_un_ata6
791 || pmif->kind == controller_k2_ata6)
792 ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
793 else if (pmif->kind == controller_sh_ata6)
794 ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
795 else
796 ret = -1;
797 } else
798 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
800 if (ret)
801 return;
803 /* Apply timings to controller */
804 *timings = tl[0];
805 *timings2 = tl[1];
807 pmac_ide_do_update_timings(drive);
811 * Blast some well known "safe" values to the timing registers at init or
812 * wakeup from sleep time, before we do real calculation
814 static void
815 sanitize_timings(pmac_ide_hwif_t *pmif)
817 unsigned int value, value2 = 0;
819 switch(pmif->kind) {
820 case controller_sh_ata6:
821 value = 0x0a820c97;
822 value2 = 0x00033031;
823 break;
824 case controller_un_ata6:
825 case controller_k2_ata6:
826 value = 0x08618a92;
827 value2 = 0x00002921;
828 break;
829 case controller_kl_ata4:
830 value = 0x0008438c;
831 break;
832 case controller_kl_ata3:
833 value = 0x00084526;
834 break;
835 case controller_heathrow:
836 case controller_ohare:
837 default:
838 value = 0x00074526;
839 break;
841 pmif->timings[0] = pmif->timings[1] = value;
842 pmif->timings[2] = pmif->timings[3] = value2;
845 /* Suspend call back, should be called after the child devices
846 * have actually been suspended
848 static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
850 /* We clear the timings */
851 pmif->timings[0] = 0;
852 pmif->timings[1] = 0;
854 disable_irq(pmif->irq);
856 /* The media bay will handle itself just fine */
857 if (pmif->mediabay)
858 return 0;
860 /* Kauai has bus control FCRs directly here */
861 if (pmif->kauai_fcr) {
862 u32 fcr = readl(pmif->kauai_fcr);
863 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
864 writel(fcr, pmif->kauai_fcr);
867 /* Disable the bus on older machines and the cell on kauai */
868 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
871 return 0;
874 /* Resume call back, should be called before the child devices
875 * are resumed
877 static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
879 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
880 if (!pmif->mediabay) {
881 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
882 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
883 msleep(10);
884 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
886 /* Kauai has it different */
887 if (pmif->kauai_fcr) {
888 u32 fcr = readl(pmif->kauai_fcr);
889 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
890 writel(fcr, pmif->kauai_fcr);
893 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
896 /* Sanitize drive timings */
897 sanitize_timings(pmif);
899 enable_irq(pmif->irq);
901 return 0;
904 static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
906 pmac_ide_hwif_t *pmif =
907 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
908 struct device_node *np = pmif->node;
909 const char *cable = of_get_property(np, "cable-type", NULL);
911 /* Get cable type from device-tree. */
912 if (cable && !strncmp(cable, "80-", 3))
913 return ATA_CBL_PATA80;
916 * G5's seem to have incorrect cable type in device-tree.
917 * Let's assume they have a 80 conductor cable, this seem
918 * to be always the case unless the user mucked around.
920 if (of_device_is_compatible(np, "K2-UATA") ||
921 of_device_is_compatible(np, "shasta-ata"))
922 return ATA_CBL_PATA80;
924 return ATA_CBL_PATA40;
927 static void pmac_ide_init_dev(ide_drive_t *drive)
929 ide_hwif_t *hwif = drive->hwif;
930 pmac_ide_hwif_t *pmif =
931 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
933 if (pmif->mediabay) {
934 #ifdef CONFIG_PMAC_MEDIABAY
935 if (check_media_bay_by_base(pmif->regbase, MB_CD) == 0) {
936 drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
937 return;
939 #endif
940 drive->dev_flags |= IDE_DFLAG_NOPROBE;
944 static const struct ide_tp_ops pmac_tp_ops = {
945 .exec_command = pmac_exec_command,
946 .read_status = ide_read_status,
947 .read_altstatus = ide_read_altstatus,
948 .write_devctl = pmac_write_devctl,
950 .tf_load = ide_tf_load,
951 .tf_read = ide_tf_read,
953 .input_data = ide_input_data,
954 .output_data = ide_output_data,
957 static const struct ide_port_ops pmac_ide_ata6_port_ops = {
958 .init_dev = pmac_ide_init_dev,
959 .set_pio_mode = pmac_ide_set_pio_mode,
960 .set_dma_mode = pmac_ide_set_dma_mode,
961 .selectproc = pmac_ide_kauai_selectproc,
962 .cable_detect = pmac_ide_cable_detect,
965 static const struct ide_port_ops pmac_ide_ata4_port_ops = {
966 .init_dev = pmac_ide_init_dev,
967 .set_pio_mode = pmac_ide_set_pio_mode,
968 .set_dma_mode = pmac_ide_set_dma_mode,
969 .selectproc = pmac_ide_selectproc,
970 .cable_detect = pmac_ide_cable_detect,
973 static const struct ide_port_ops pmac_ide_port_ops = {
974 .init_dev = pmac_ide_init_dev,
975 .set_pio_mode = pmac_ide_set_pio_mode,
976 .set_dma_mode = pmac_ide_set_dma_mode,
977 .selectproc = pmac_ide_selectproc,
980 static const struct ide_dma_ops pmac_dma_ops;
982 static const struct ide_port_info pmac_port_info = {
983 .name = DRV_NAME,
984 .init_dma = pmac_ide_init_dma,
985 .chipset = ide_pmac,
986 .tp_ops = &pmac_tp_ops,
987 .port_ops = &pmac_ide_port_ops,
988 .dma_ops = &pmac_dma_ops,
989 .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
990 IDE_HFLAG_POST_SET_MODE |
991 IDE_HFLAG_MMIO |
992 IDE_HFLAG_UNMASK_IRQS,
993 .pio_mask = ATA_PIO4,
994 .mwdma_mask = ATA_MWDMA2,
998 * Setup, register & probe an IDE channel driven by this driver, this is
999 * called by one of the 2 probe functions (macio or PCI).
1001 static int __devinit pmac_ide_setup_device(pmac_ide_hwif_t *pmif, hw_regs_t *hw)
1003 struct device_node *np = pmif->node;
1004 const int *bidp;
1005 struct ide_host *host;
1006 ide_hwif_t *hwif;
1007 hw_regs_t *hws[] = { hw, NULL, NULL, NULL };
1008 struct ide_port_info d = pmac_port_info;
1009 int rc;
1011 pmif->broken_dma = pmif->broken_dma_warn = 0;
1012 if (of_device_is_compatible(np, "shasta-ata")) {
1013 pmif->kind = controller_sh_ata6;
1014 d.port_ops = &pmac_ide_ata6_port_ops;
1015 d.udma_mask = ATA_UDMA6;
1016 } else if (of_device_is_compatible(np, "kauai-ata")) {
1017 pmif->kind = controller_un_ata6;
1018 d.port_ops = &pmac_ide_ata6_port_ops;
1019 d.udma_mask = ATA_UDMA5;
1020 } else if (of_device_is_compatible(np, "K2-UATA")) {
1021 pmif->kind = controller_k2_ata6;
1022 d.port_ops = &pmac_ide_ata6_port_ops;
1023 d.udma_mask = ATA_UDMA5;
1024 } else if (of_device_is_compatible(np, "keylargo-ata")) {
1025 if (strcmp(np->name, "ata-4") == 0) {
1026 pmif->kind = controller_kl_ata4;
1027 d.port_ops = &pmac_ide_ata4_port_ops;
1028 d.udma_mask = ATA_UDMA4;
1029 } else
1030 pmif->kind = controller_kl_ata3;
1031 } else if (of_device_is_compatible(np, "heathrow-ata")) {
1032 pmif->kind = controller_heathrow;
1033 } else {
1034 pmif->kind = controller_ohare;
1035 pmif->broken_dma = 1;
1038 bidp = of_get_property(np, "AAPL,bus-id", NULL);
1039 pmif->aapl_bus_id = bidp ? *bidp : 0;
1041 /* On Kauai-type controllers, we make sure the FCR is correct */
1042 if (pmif->kauai_fcr)
1043 writel(KAUAI_FCR_UATA_MAGIC |
1044 KAUAI_FCR_UATA_RESET_N |
1045 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1047 pmif->mediabay = 0;
1049 /* Make sure we have sane timings */
1050 sanitize_timings(pmif);
1052 host = ide_host_alloc(&d, hws);
1053 if (host == NULL)
1054 return -ENOMEM;
1055 hwif = host->ports[0];
1057 #ifndef CONFIG_PPC64
1058 /* XXX FIXME: Media bay stuff need re-organizing */
1059 if (np->parent && np->parent->name
1060 && strcasecmp(np->parent->name, "media-bay") == 0) {
1061 #ifdef CONFIG_PMAC_MEDIABAY
1062 media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq,
1063 hwif);
1064 #endif /* CONFIG_PMAC_MEDIABAY */
1065 pmif->mediabay = 1;
1066 if (!bidp)
1067 pmif->aapl_bus_id = 1;
1068 } else if (pmif->kind == controller_ohare) {
1069 /* The code below is having trouble on some ohare machines
1070 * (timing related ?). Until I can put my hand on one of these
1071 * units, I keep the old way
1073 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1074 } else
1075 #endif
1077 /* This is necessary to enable IDE when net-booting */
1078 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1079 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1080 msleep(10);
1081 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1082 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1085 printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1086 "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1087 pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1088 pmif->mediabay ? " (mediabay)" : "", hw->irq);
1090 rc = ide_host_register(host, &d, hws);
1091 if (rc) {
1092 ide_host_free(host);
1093 return rc;
1096 return 0;
1099 static void __devinit pmac_ide_init_ports(hw_regs_t *hw, unsigned long base)
1101 int i;
1103 for (i = 0; i < 8; ++i)
1104 hw->io_ports_array[i] = base + i * 0x10;
1106 hw->io_ports.ctl_addr = base + 0x160;
1110 * Attach to a macio probed interface
1112 static int __devinit
1113 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1115 void __iomem *base;
1116 unsigned long regbase;
1117 pmac_ide_hwif_t *pmif;
1118 int irq, rc;
1119 hw_regs_t hw;
1121 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1122 if (pmif == NULL)
1123 return -ENOMEM;
1125 if (macio_resource_count(mdev) == 0) {
1126 printk(KERN_WARNING "ide-pmac: no address for %s\n",
1127 mdev->ofdev.node->full_name);
1128 rc = -ENXIO;
1129 goto out_free_pmif;
1132 /* Request memory resource for IO ports */
1133 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1134 printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1135 "%s!\n", mdev->ofdev.node->full_name);
1136 rc = -EBUSY;
1137 goto out_free_pmif;
1140 /* XXX This is bogus. Should be fixed in the registry by checking
1141 * the kind of host interrupt controller, a bit like gatwick
1142 * fixes in irq.c. That works well enough for the single case
1143 * where that happens though...
1145 if (macio_irq_count(mdev) == 0) {
1146 printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1147 "13\n", mdev->ofdev.node->full_name);
1148 irq = irq_create_mapping(NULL, 13);
1149 } else
1150 irq = macio_irq(mdev, 0);
1152 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1153 regbase = (unsigned long) base;
1155 pmif->mdev = mdev;
1156 pmif->node = mdev->ofdev.node;
1157 pmif->regbase = regbase;
1158 pmif->irq = irq;
1159 pmif->kauai_fcr = NULL;
1161 if (macio_resource_count(mdev) >= 2) {
1162 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1163 printk(KERN_WARNING "ide-pmac: can't request DMA "
1164 "resource for %s!\n",
1165 mdev->ofdev.node->full_name);
1166 else
1167 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1168 } else
1169 pmif->dma_regs = NULL;
1171 dev_set_drvdata(&mdev->ofdev.dev, pmif);
1173 memset(&hw, 0, sizeof(hw));
1174 pmac_ide_init_ports(&hw, pmif->regbase);
1175 hw.irq = irq;
1176 hw.dev = &mdev->bus->pdev->dev;
1177 hw.parent = &mdev->ofdev.dev;
1179 rc = pmac_ide_setup_device(pmif, &hw);
1180 if (rc != 0) {
1181 /* The inteface is released to the common IDE layer */
1182 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1183 iounmap(base);
1184 if (pmif->dma_regs) {
1185 iounmap(pmif->dma_regs);
1186 macio_release_resource(mdev, 1);
1188 macio_release_resource(mdev, 0);
1189 kfree(pmif);
1192 return rc;
1194 out_free_pmif:
1195 kfree(pmif);
1196 return rc;
1199 static int
1200 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1202 pmac_ide_hwif_t *pmif =
1203 (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1204 int rc = 0;
1206 if (mesg.event != mdev->ofdev.dev.power.power_state.event
1207 && (mesg.event & PM_EVENT_SLEEP)) {
1208 rc = pmac_ide_do_suspend(pmif);
1209 if (rc == 0)
1210 mdev->ofdev.dev.power.power_state = mesg;
1213 return rc;
1216 static int
1217 pmac_ide_macio_resume(struct macio_dev *mdev)
1219 pmac_ide_hwif_t *pmif =
1220 (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1221 int rc = 0;
1223 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1224 rc = pmac_ide_do_resume(pmif);
1225 if (rc == 0)
1226 mdev->ofdev.dev.power.power_state = PMSG_ON;
1229 return rc;
1233 * Attach to a PCI probed interface
1235 static int __devinit
1236 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1238 struct device_node *np;
1239 pmac_ide_hwif_t *pmif;
1240 void __iomem *base;
1241 unsigned long rbase, rlen;
1242 int rc;
1243 hw_regs_t hw;
1245 np = pci_device_to_OF_node(pdev);
1246 if (np == NULL) {
1247 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1248 return -ENODEV;
1251 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1252 if (pmif == NULL)
1253 return -ENOMEM;
1255 if (pci_enable_device(pdev)) {
1256 printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1257 "%s\n", np->full_name);
1258 rc = -ENXIO;
1259 goto out_free_pmif;
1261 pci_set_master(pdev);
1263 if (pci_request_regions(pdev, "Kauai ATA")) {
1264 printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1265 "%s\n", np->full_name);
1266 rc = -ENXIO;
1267 goto out_free_pmif;
1270 pmif->mdev = NULL;
1271 pmif->node = np;
1273 rbase = pci_resource_start(pdev, 0);
1274 rlen = pci_resource_len(pdev, 0);
1276 base = ioremap(rbase, rlen);
1277 pmif->regbase = (unsigned long) base + 0x2000;
1278 pmif->dma_regs = base + 0x1000;
1279 pmif->kauai_fcr = base;
1280 pmif->irq = pdev->irq;
1282 pci_set_drvdata(pdev, pmif);
1284 memset(&hw, 0, sizeof(hw));
1285 pmac_ide_init_ports(&hw, pmif->regbase);
1286 hw.irq = pdev->irq;
1287 hw.dev = &pdev->dev;
1289 rc = pmac_ide_setup_device(pmif, &hw);
1290 if (rc != 0) {
1291 /* The inteface is released to the common IDE layer */
1292 pci_set_drvdata(pdev, NULL);
1293 iounmap(base);
1294 pci_release_regions(pdev);
1295 kfree(pmif);
1298 return rc;
1300 out_free_pmif:
1301 kfree(pmif);
1302 return rc;
1305 static int
1306 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1308 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
1309 int rc = 0;
1311 if (mesg.event != pdev->dev.power.power_state.event
1312 && (mesg.event & PM_EVENT_SLEEP)) {
1313 rc = pmac_ide_do_suspend(pmif);
1314 if (rc == 0)
1315 pdev->dev.power.power_state = mesg;
1318 return rc;
1321 static int
1322 pmac_ide_pci_resume(struct pci_dev *pdev)
1324 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
1325 int rc = 0;
1327 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1328 rc = pmac_ide_do_resume(pmif);
1329 if (rc == 0)
1330 pdev->dev.power.power_state = PMSG_ON;
1333 return rc;
1336 static struct of_device_id pmac_ide_macio_match[] =
1339 .name = "IDE",
1342 .name = "ATA",
1345 .type = "ide",
1348 .type = "ata",
1353 static struct macio_driver pmac_ide_macio_driver =
1355 .name = "ide-pmac",
1356 .match_table = pmac_ide_macio_match,
1357 .probe = pmac_ide_macio_attach,
1358 .suspend = pmac_ide_macio_suspend,
1359 .resume = pmac_ide_macio_resume,
1362 static const struct pci_device_id pmac_ide_pci_match[] = {
1363 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
1364 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
1365 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
1366 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
1367 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
1371 static struct pci_driver pmac_ide_pci_driver = {
1372 .name = "ide-pmac",
1373 .id_table = pmac_ide_pci_match,
1374 .probe = pmac_ide_pci_attach,
1375 .suspend = pmac_ide_pci_suspend,
1376 .resume = pmac_ide_pci_resume,
1378 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1380 int __init pmac_ide_probe(void)
1382 int error;
1384 if (!machine_is(powermac))
1385 return -ENODEV;
1387 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1388 error = pci_register_driver(&pmac_ide_pci_driver);
1389 if (error)
1390 goto out;
1391 error = macio_register_driver(&pmac_ide_macio_driver);
1392 if (error) {
1393 pci_unregister_driver(&pmac_ide_pci_driver);
1394 goto out;
1396 #else
1397 error = macio_register_driver(&pmac_ide_macio_driver);
1398 if (error)
1399 goto out;
1400 error = pci_register_driver(&pmac_ide_pci_driver);
1401 if (error) {
1402 macio_unregister_driver(&pmac_ide_macio_driver);
1403 goto out;
1405 #endif
1406 out:
1407 return error;
1411 * pmac_ide_build_dmatable builds the DBDMA command list
1412 * for a transfer and sets the DBDMA channel to point to it.
1414 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1416 ide_hwif_t *hwif = drive->hwif;
1417 pmac_ide_hwif_t *pmif =
1418 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1419 struct dbdma_cmd *table;
1420 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1421 struct scatterlist *sg;
1422 int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1423 int i = cmd->sg_nents, count = 0;
1425 /* DMA table is already aligned */
1426 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1428 /* Make sure DMA controller is stopped (necessary ?) */
1429 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1430 while (readl(&dma->status) & RUN)
1431 udelay(1);
1433 /* Build DBDMA commands list */
1434 sg = hwif->sg_table;
1435 while (i && sg_dma_len(sg)) {
1436 u32 cur_addr;
1437 u32 cur_len;
1439 cur_addr = sg_dma_address(sg);
1440 cur_len = sg_dma_len(sg);
1442 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1443 if (pmif->broken_dma_warn == 0) {
1444 printk(KERN_WARNING "%s: DMA on non aligned address, "
1445 "switching to PIO on Ohare chipset\n", drive->name);
1446 pmif->broken_dma_warn = 1;
1448 return 0;
1450 while (cur_len) {
1451 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1453 if (count++ >= MAX_DCMDS) {
1454 printk(KERN_WARNING "%s: DMA table too small\n",
1455 drive->name);
1456 return 0;
1458 st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1459 st_le16(&table->req_count, tc);
1460 st_le32(&table->phy_addr, cur_addr);
1461 table->cmd_dep = 0;
1462 table->xfer_status = 0;
1463 table->res_count = 0;
1464 cur_addr += tc;
1465 cur_len -= tc;
1466 ++table;
1468 sg = sg_next(sg);
1469 i--;
1472 /* convert the last command to an input/output last command */
1473 if (count) {
1474 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1475 /* add the stop command to the end of the list */
1476 memset(table, 0, sizeof(struct dbdma_cmd));
1477 st_le16(&table->command, DBDMA_STOP);
1478 mb();
1479 writel(hwif->dmatable_dma, &dma->cmdptr);
1480 return 1;
1483 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1485 return 0; /* revert to PIO for this request */
1489 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1490 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1492 static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1494 ide_hwif_t *hwif = drive->hwif;
1495 pmac_ide_hwif_t *pmif =
1496 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1497 u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1498 u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1500 if (pmac_ide_build_dmatable(drive, cmd) == 0)
1501 return 1;
1503 /* Apple adds 60ns to wrDataSetup on reads */
1504 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1505 writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1506 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1507 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1510 return 0;
1514 * Kick the DMA controller into life after the DMA command has been issued
1515 * to the drive.
1517 static void
1518 pmac_ide_dma_start(ide_drive_t *drive)
1520 ide_hwif_t *hwif = drive->hwif;
1521 pmac_ide_hwif_t *pmif =
1522 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1523 volatile struct dbdma_regs __iomem *dma;
1525 dma = pmif->dma_regs;
1527 writel((RUN << 16) | RUN, &dma->control);
1528 /* Make sure it gets to the controller right now */
1529 (void)readl(&dma->control);
1533 * After a DMA transfer, make sure the controller is stopped
1535 static int
1536 pmac_ide_dma_end (ide_drive_t *drive)
1538 ide_hwif_t *hwif = drive->hwif;
1539 pmac_ide_hwif_t *pmif =
1540 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1541 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1542 u32 dstat;
1544 dstat = readl(&dma->status);
1545 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1547 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1548 * in theory, but with ATAPI decices doing buffer underruns, that would
1549 * cause us to disable DMA, which isn't what we want
1551 return (dstat & (RUN|DEAD)) != RUN;
1555 * Check out that the interrupt we got was for us. We can't always know this
1556 * for sure with those Apple interfaces (well, we could on the recent ones but
1557 * that's not implemented yet), on the other hand, we don't have shared interrupts
1558 * so it's not really a problem
1560 static int
1561 pmac_ide_dma_test_irq (ide_drive_t *drive)
1563 ide_hwif_t *hwif = drive->hwif;
1564 pmac_ide_hwif_t *pmif =
1565 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1566 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1567 unsigned long status, timeout;
1569 /* We have to things to deal with here:
1571 * - The dbdma won't stop if the command was started
1572 * but completed with an error without transferring all
1573 * datas. This happens when bad blocks are met during
1574 * a multi-block transfer.
1576 * - The dbdma fifo hasn't yet finished flushing to
1577 * to system memory when the disk interrupt occurs.
1581 /* If ACTIVE is cleared, the STOP command have passed and
1582 * transfer is complete.
1584 status = readl(&dma->status);
1585 if (!(status & ACTIVE))
1586 return 1;
1588 /* If dbdma didn't execute the STOP command yet, the
1589 * active bit is still set. We consider that we aren't
1590 * sharing interrupts (which is hopefully the case with
1591 * those controllers) and so we just try to flush the
1592 * channel for pending data in the fifo
1594 udelay(1);
1595 writel((FLUSH << 16) | FLUSH, &dma->control);
1596 timeout = 0;
1597 for (;;) {
1598 udelay(1);
1599 status = readl(&dma->status);
1600 if ((status & FLUSH) == 0)
1601 break;
1602 if (++timeout > 100) {
1603 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1604 timeout flushing channel\n", hwif->index);
1605 break;
1608 return 1;
1611 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1615 static void
1616 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1618 ide_hwif_t *hwif = drive->hwif;
1619 pmac_ide_hwif_t *pmif =
1620 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1621 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1622 unsigned long status = readl(&dma->status);
1624 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1627 static const struct ide_dma_ops pmac_dma_ops = {
1628 .dma_host_set = pmac_ide_dma_host_set,
1629 .dma_setup = pmac_ide_dma_setup,
1630 .dma_start = pmac_ide_dma_start,
1631 .dma_end = pmac_ide_dma_end,
1632 .dma_test_irq = pmac_ide_dma_test_irq,
1633 .dma_lost_irq = pmac_ide_dma_lost_irq,
1637 * Allocate the data structures needed for using DMA with an interface
1638 * and fill the proper list of functions pointers
1640 static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1641 const struct ide_port_info *d)
1643 pmac_ide_hwif_t *pmif =
1644 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1645 struct pci_dev *dev = to_pci_dev(hwif->dev);
1647 /* We won't need pci_dev if we switch to generic consistent
1648 * DMA routines ...
1650 if (dev == NULL || pmif->dma_regs == 0)
1651 return -ENODEV;
1653 * Allocate space for the DBDMA commands.
1654 * The +2 is +1 for the stop command and +1 to allow for
1655 * aligning the start address to a multiple of 16 bytes.
1657 pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
1658 dev,
1659 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1660 &hwif->dmatable_dma);
1661 if (pmif->dma_table_cpu == NULL) {
1662 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1663 hwif->name);
1664 return -ENOMEM;
1667 hwif->sg_max_nents = MAX_DCMDS;
1669 return 0;
1672 module_init(pmac_ide_probe);
1674 MODULE_LICENSE("GPL");