2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27 #include <linux/lmb.h>
28 #include <linux/mmzone.h>
31 #include <asm/system.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
42 #include <asm/starfire.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
47 #include <asm/hypervisor.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
55 unsigned long kern_linear_pte_xor
[2] __read_mostly
;
57 /* A bitmap, one bit for every 256MB of physical memory. If the bit
58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
61 unsigned long kpte_linear_bitmap
[KPTE_BITMAP_BYTES
/ sizeof(unsigned long)];
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65 * Space is allocated for this right after the trap table
66 * in arch/sparc64/kernel/head.S
68 extern struct tsb swapper_4m_tsb
[KERNEL_TSB4M_NENTRIES
];
73 static struct linux_prom64_registers pavail
[MAX_BANKS
] __devinitdata
;
74 static int pavail_ents __devinitdata
;
76 static int cmp_p64(const void *a
, const void *b
)
78 const struct linux_prom64_registers
*x
= a
, *y
= b
;
80 if (x
->phys_addr
> y
->phys_addr
)
82 if (x
->phys_addr
< y
->phys_addr
)
87 static void __init
read_obp_memory(const char *property
,
88 struct linux_prom64_registers
*regs
,
91 int node
= prom_finddevice("/memory");
92 int prop_size
= prom_getproplen(node
, property
);
95 ents
= prop_size
/ sizeof(struct linux_prom64_registers
);
96 if (ents
> MAX_BANKS
) {
97 prom_printf("The machine has more %s property entries than "
98 "this kernel can support (%d).\n",
103 ret
= prom_getproperty(node
, property
, (char *) regs
, prop_size
);
105 prom_printf("Couldn't get %s property from /memory.\n");
109 /* Sanitize what we got from the firmware, by page aligning
112 for (i
= 0; i
< ents
; i
++) {
113 unsigned long base
, size
;
115 base
= regs
[i
].phys_addr
;
116 size
= regs
[i
].reg_size
;
119 if (base
& ~PAGE_MASK
) {
120 unsigned long new_base
= PAGE_ALIGN(base
);
122 size
-= new_base
- base
;
123 if ((long) size
< 0L)
128 /* If it is empty, simply get rid of it.
129 * This simplifies the logic of the other
130 * functions that process these arrays.
132 memmove(®s
[i
], ®s
[i
+ 1],
133 (ents
- i
- 1) * sizeof(regs
[0]));
138 regs
[i
].phys_addr
= base
;
139 regs
[i
].reg_size
= size
;
144 sort(regs
, ents
, sizeof(struct linux_prom64_registers
),
148 unsigned long sparc64_valid_addr_bitmap
[VALID_ADDR_BITMAP_BYTES
/
149 sizeof(unsigned long)];
150 EXPORT_SYMBOL(sparc64_valid_addr_bitmap
);
152 /* Kernel physical address base and size in bytes. */
153 unsigned long kern_base __read_mostly
;
154 unsigned long kern_size __read_mostly
;
156 /* Initial ramdisk setup */
157 extern unsigned long sparc_ramdisk_image64
;
158 extern unsigned int sparc_ramdisk_image
;
159 extern unsigned int sparc_ramdisk_size
;
161 struct page
*mem_map_zero __read_mostly
;
162 EXPORT_SYMBOL(mem_map_zero
);
164 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly
;
166 unsigned long sparc64_kern_pri_context __read_mostly
;
167 unsigned long sparc64_kern_pri_nuc_bits __read_mostly
;
168 unsigned long sparc64_kern_sec_context __read_mostly
;
170 int num_kernel_image_mappings
;
172 #ifdef CONFIG_DEBUG_DCFLUSH
173 atomic_t dcpage_flushes
= ATOMIC_INIT(0);
175 atomic_t dcpage_flushes_xcall
= ATOMIC_INIT(0);
179 inline void flush_dcache_page_impl(struct page
*page
)
181 BUG_ON(tlb_type
== hypervisor
);
182 #ifdef CONFIG_DEBUG_DCFLUSH
183 atomic_inc(&dcpage_flushes
);
186 #ifdef DCACHE_ALIASING_POSSIBLE
187 __flush_dcache_page(page_address(page
),
188 ((tlb_type
== spitfire
) &&
189 page_mapping(page
) != NULL
));
191 if (page_mapping(page
) != NULL
&&
192 tlb_type
== spitfire
)
193 __flush_icache_page(__pa(page_address(page
)));
197 #define PG_dcache_dirty PG_arch_1
198 #define PG_dcache_cpu_shift 32UL
199 #define PG_dcache_cpu_mask \
200 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
202 #define dcache_dirty_cpu(page) \
203 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
205 static inline void set_dcache_dirty(struct page
*page
, int this_cpu
)
207 unsigned long mask
= this_cpu
;
208 unsigned long non_cpu_bits
;
210 non_cpu_bits
= ~(PG_dcache_cpu_mask
<< PG_dcache_cpu_shift
);
211 mask
= (mask
<< PG_dcache_cpu_shift
) | (1UL << PG_dcache_dirty
);
213 __asm__
__volatile__("1:\n\t"
215 "and %%g7, %1, %%g1\n\t"
216 "or %%g1, %0, %%g1\n\t"
217 "casx [%2], %%g7, %%g1\n\t"
219 "bne,pn %%xcc, 1b\n\t"
222 : "r" (mask
), "r" (non_cpu_bits
), "r" (&page
->flags
)
226 static inline void clear_dcache_dirty_cpu(struct page
*page
, unsigned long cpu
)
228 unsigned long mask
= (1UL << PG_dcache_dirty
);
230 __asm__
__volatile__("! test_and_clear_dcache_dirty\n"
233 "srlx %%g7, %4, %%g1\n\t"
234 "and %%g1, %3, %%g1\n\t"
236 "bne,pn %%icc, 2f\n\t"
237 " andn %%g7, %1, %%g1\n\t"
238 "casx [%2], %%g7, %%g1\n\t"
240 "bne,pn %%xcc, 1b\n\t"
244 : "r" (cpu
), "r" (mask
), "r" (&page
->flags
),
245 "i" (PG_dcache_cpu_mask
),
246 "i" (PG_dcache_cpu_shift
)
250 static inline void tsb_insert(struct tsb
*ent
, unsigned long tag
, unsigned long pte
)
252 unsigned long tsb_addr
= (unsigned long) ent
;
254 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
255 tsb_addr
= __pa(tsb_addr
);
257 __tsb_insert(tsb_addr
, tag
, pte
);
260 unsigned long _PAGE_ALL_SZ_BITS __read_mostly
;
261 unsigned long _PAGE_SZBITS __read_mostly
;
263 static void flush_dcache(unsigned long pfn
)
267 page
= pfn_to_page(pfn
);
269 unsigned long pg_flags
;
271 pg_flags
= page
->flags
;
272 if (pg_flags
& (1UL << PG_dcache_dirty
)) {
273 int cpu
= ((pg_flags
>> PG_dcache_cpu_shift
) &
275 int this_cpu
= get_cpu();
277 /* This is just to optimize away some function calls
281 flush_dcache_page_impl(page
);
283 smp_flush_dcache_page_impl(page
, cpu
);
285 clear_dcache_dirty_cpu(page
, cpu
);
292 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
, pte_t pte
)
294 struct mm_struct
*mm
;
296 unsigned long tag
, flags
;
297 unsigned long tsb_index
, tsb_hash_shift
;
299 if (tlb_type
!= hypervisor
) {
300 unsigned long pfn
= pte_pfn(pte
);
308 tsb_index
= MM_TSB_BASE
;
309 tsb_hash_shift
= PAGE_SHIFT
;
311 spin_lock_irqsave(&mm
->context
.lock
, flags
);
313 #ifdef CONFIG_HUGETLB_PAGE
314 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
!= NULL
) {
315 if ((tlb_type
== hypervisor
&&
316 (pte_val(pte
) & _PAGE_SZALL_4V
) == _PAGE_SZHUGE_4V
) ||
317 (tlb_type
!= hypervisor
&&
318 (pte_val(pte
) & _PAGE_SZALL_4U
) == _PAGE_SZHUGE_4U
)) {
319 tsb_index
= MM_TSB_HUGE
;
320 tsb_hash_shift
= HPAGE_SHIFT
;
325 tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
326 tsb
+= ((address
>> tsb_hash_shift
) &
327 (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
- 1UL));
328 tag
= (address
>> 22UL);
329 tsb_insert(tsb
, tag
, pte_val(pte
));
331 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
334 void flush_dcache_page(struct page
*page
)
336 struct address_space
*mapping
;
339 if (tlb_type
== hypervisor
)
342 /* Do not bother with the expensive D-cache flush if it
343 * is merely the zero page. The 'bigcore' testcase in GDB
344 * causes this case to run millions of times.
346 if (page
== ZERO_PAGE(0))
349 this_cpu
= get_cpu();
351 mapping
= page_mapping(page
);
352 if (mapping
&& !mapping_mapped(mapping
)) {
353 int dirty
= test_bit(PG_dcache_dirty
, &page
->flags
);
355 int dirty_cpu
= dcache_dirty_cpu(page
);
357 if (dirty_cpu
== this_cpu
)
359 smp_flush_dcache_page_impl(page
, dirty_cpu
);
361 set_dcache_dirty(page
, this_cpu
);
363 /* We could delay the flush for the !page_mapping
364 * case too. But that case is for exec env/arg
365 * pages and those are %99 certainly going to get
366 * faulted into the tlb (and thus flushed) anyways.
368 flush_dcache_page_impl(page
);
374 EXPORT_SYMBOL(flush_dcache_page
);
376 void __kprobes
flush_icache_range(unsigned long start
, unsigned long end
)
378 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
379 if (tlb_type
== spitfire
) {
382 /* This code only runs on Spitfire cpus so this is
383 * why we can assume _PAGE_PADDR_4U.
385 for (kaddr
= start
; kaddr
< end
; kaddr
+= PAGE_SIZE
) {
386 unsigned long paddr
, mask
= _PAGE_PADDR_4U
;
388 if (kaddr
>= PAGE_OFFSET
)
389 paddr
= kaddr
& mask
;
391 pgd_t
*pgdp
= pgd_offset_k(kaddr
);
392 pud_t
*pudp
= pud_offset(pgdp
, kaddr
);
393 pmd_t
*pmdp
= pmd_offset(pudp
, kaddr
);
394 pte_t
*ptep
= pte_offset_kernel(pmdp
, kaddr
);
396 paddr
= pte_val(*ptep
) & mask
;
398 __flush_icache_page(paddr
);
402 EXPORT_SYMBOL(flush_icache_range
);
404 void mmu_info(struct seq_file
*m
)
406 if (tlb_type
== cheetah
)
407 seq_printf(m
, "MMU Type\t: Cheetah\n");
408 else if (tlb_type
== cheetah_plus
)
409 seq_printf(m
, "MMU Type\t: Cheetah+\n");
410 else if (tlb_type
== spitfire
)
411 seq_printf(m
, "MMU Type\t: Spitfire\n");
412 else if (tlb_type
== hypervisor
)
413 seq_printf(m
, "MMU Type\t: Hypervisor (sun4v)\n");
415 seq_printf(m
, "MMU Type\t: ???\n");
417 #ifdef CONFIG_DEBUG_DCFLUSH
418 seq_printf(m
, "DCPageFlushes\t: %d\n",
419 atomic_read(&dcpage_flushes
));
421 seq_printf(m
, "DCPageFlushesXC\t: %d\n",
422 atomic_read(&dcpage_flushes_xcall
));
423 #endif /* CONFIG_SMP */
424 #endif /* CONFIG_DEBUG_DCFLUSH */
427 struct linux_prom_translation prom_trans
[512] __read_mostly
;
428 unsigned int prom_trans_ents __read_mostly
;
430 unsigned long kern_locked_tte_data
;
432 /* The obp translations are saved based on 8k pagesize, since obp can
433 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
434 * HI_OBP_ADDRESS range are handled in ktlb.S.
436 static inline int in_obp_range(unsigned long vaddr
)
438 return (vaddr
>= LOW_OBP_ADDRESS
&&
439 vaddr
< HI_OBP_ADDRESS
);
442 static int cmp_ptrans(const void *a
, const void *b
)
444 const struct linux_prom_translation
*x
= a
, *y
= b
;
446 if (x
->virt
> y
->virt
)
448 if (x
->virt
< y
->virt
)
453 /* Read OBP translations property into 'prom_trans[]'. */
454 static void __init
read_obp_translations(void)
456 int n
, node
, ents
, first
, last
, i
;
458 node
= prom_finddevice("/virtual-memory");
459 n
= prom_getproplen(node
, "translations");
460 if (unlikely(n
== 0 || n
== -1)) {
461 prom_printf("prom_mappings: Couldn't get size.\n");
464 if (unlikely(n
> sizeof(prom_trans
))) {
465 prom_printf("prom_mappings: Size %Zd is too big.\n", n
);
469 if ((n
= prom_getproperty(node
, "translations",
470 (char *)&prom_trans
[0],
471 sizeof(prom_trans
))) == -1) {
472 prom_printf("prom_mappings: Couldn't get property.\n");
476 n
= n
/ sizeof(struct linux_prom_translation
);
480 sort(prom_trans
, ents
, sizeof(struct linux_prom_translation
),
483 /* Now kick out all the non-OBP entries. */
484 for (i
= 0; i
< ents
; i
++) {
485 if (in_obp_range(prom_trans
[i
].virt
))
489 for (; i
< ents
; i
++) {
490 if (!in_obp_range(prom_trans
[i
].virt
))
495 for (i
= 0; i
< (last
- first
); i
++) {
496 struct linux_prom_translation
*src
= &prom_trans
[i
+ first
];
497 struct linux_prom_translation
*dest
= &prom_trans
[i
];
501 for (; i
< ents
; i
++) {
502 struct linux_prom_translation
*dest
= &prom_trans
[i
];
503 dest
->virt
= dest
->size
= dest
->data
= 0x0UL
;
506 prom_trans_ents
= last
- first
;
508 if (tlb_type
== spitfire
) {
509 /* Clear diag TTE bits. */
510 for (i
= 0; i
< prom_trans_ents
; i
++)
511 prom_trans
[i
].data
&= ~0x0003fe0000000000UL
;
515 static void __init
hypervisor_tlb_lock(unsigned long vaddr
,
519 unsigned long ret
= sun4v_mmu_map_perm_addr(vaddr
, 0, pte
, mmu
);
522 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
523 "errors with %lx\n", vaddr
, 0, pte
, mmu
, ret
);
528 static unsigned long kern_large_tte(unsigned long paddr
);
530 static void __init
remap_kernel(void)
532 unsigned long phys_page
, tte_vaddr
, tte_data
;
533 int i
, tlb_ent
= sparc64_highest_locked_tlbent();
535 tte_vaddr
= (unsigned long) KERNBASE
;
536 phys_page
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
537 tte_data
= kern_large_tte(phys_page
);
539 kern_locked_tte_data
= tte_data
;
541 /* Now lock us into the TLBs via Hypervisor or OBP. */
542 if (tlb_type
== hypervisor
) {
543 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
544 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
545 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
546 tte_vaddr
+= 0x400000;
547 tte_data
+= 0x400000;
550 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
551 prom_dtlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
552 prom_itlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
553 tte_vaddr
+= 0x400000;
554 tte_data
+= 0x400000;
556 sparc64_highest_unlocked_tlb_ent
= tlb_ent
- i
;
558 if (tlb_type
== cheetah_plus
) {
559 sparc64_kern_pri_context
= (CTX_CHEETAH_PLUS_CTX0
|
560 CTX_CHEETAH_PLUS_NUC
);
561 sparc64_kern_pri_nuc_bits
= CTX_CHEETAH_PLUS_NUC
;
562 sparc64_kern_sec_context
= CTX_CHEETAH_PLUS_CTX0
;
567 static void __init
inherit_prom_mappings(void)
569 /* Now fixup OBP's idea about where we really are mapped. */
570 printk("Remapping the kernel... ");
575 void prom_world(int enter
)
578 set_fs((mm_segment_t
) { get_thread_current_ds() });
580 __asm__
__volatile__("flushw");
583 void __flush_dcache_range(unsigned long start
, unsigned long end
)
587 if (tlb_type
== spitfire
) {
590 for (va
= start
; va
< end
; va
+= 32) {
591 spitfire_put_dcache_tag(va
& 0x3fe0, 0x0);
595 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
598 for (va
= start
; va
< end
; va
+= 32)
599 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
603 "i" (ASI_DCACHE_INVALIDATE
));
606 EXPORT_SYMBOL(__flush_dcache_range
);
608 /* get_new_mmu_context() uses "cache + 1". */
609 DEFINE_SPINLOCK(ctx_alloc_lock
);
610 unsigned long tlb_context_cache
= CTX_FIRST_VERSION
- 1;
611 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
612 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
613 DECLARE_BITMAP(mmu_context_bmap
, MAX_CTX_NR
);
615 /* Caller does TLB context flushing on local CPU if necessary.
616 * The caller also ensures that CTX_VALID(mm->context) is false.
618 * We must be careful about boundary cases so that we never
619 * let the user have CTX 0 (nucleus) or we ever use a CTX
620 * version of zero (and thus NO_CONTEXT would not be caught
621 * by version mis-match tests in mmu_context.h).
623 * Always invoked with interrupts disabled.
625 void get_new_mmu_context(struct mm_struct
*mm
)
627 unsigned long ctx
, new_ctx
;
628 unsigned long orig_pgsz_bits
;
632 spin_lock_irqsave(&ctx_alloc_lock
, flags
);
633 orig_pgsz_bits
= (mm
->context
.sparc64_ctx_val
& CTX_PGSZ_MASK
);
634 ctx
= (tlb_context_cache
+ 1) & CTX_NR_MASK
;
635 new_ctx
= find_next_zero_bit(mmu_context_bmap
, 1 << CTX_NR_BITS
, ctx
);
637 if (new_ctx
>= (1 << CTX_NR_BITS
)) {
638 new_ctx
= find_next_zero_bit(mmu_context_bmap
, ctx
, 1);
639 if (new_ctx
>= ctx
) {
641 new_ctx
= (tlb_context_cache
& CTX_VERSION_MASK
) +
644 new_ctx
= CTX_FIRST_VERSION
;
646 /* Don't call memset, for 16 entries that's just
649 mmu_context_bmap
[0] = 3;
650 mmu_context_bmap
[1] = 0;
651 mmu_context_bmap
[2] = 0;
652 mmu_context_bmap
[3] = 0;
653 for (i
= 4; i
< CTX_BMAP_SLOTS
; i
+= 4) {
654 mmu_context_bmap
[i
+ 0] = 0;
655 mmu_context_bmap
[i
+ 1] = 0;
656 mmu_context_bmap
[i
+ 2] = 0;
657 mmu_context_bmap
[i
+ 3] = 0;
663 mmu_context_bmap
[new_ctx
>>6] |= (1UL << (new_ctx
& 63));
664 new_ctx
|= (tlb_context_cache
& CTX_VERSION_MASK
);
666 tlb_context_cache
= new_ctx
;
667 mm
->context
.sparc64_ctx_val
= new_ctx
| orig_pgsz_bits
;
668 spin_unlock_irqrestore(&ctx_alloc_lock
, flags
);
670 if (unlikely(new_version
))
671 smp_new_mmu_context_version();
674 static int numa_enabled
= 1;
675 static int numa_debug
;
677 static int __init
early_numa(char *p
)
682 if (strstr(p
, "off"))
685 if (strstr(p
, "debug"))
690 early_param("numa", early_numa
);
692 #define numadbg(f, a...) \
693 do { if (numa_debug) \
694 printk(KERN_INFO f, ## a); \
697 static void __init
find_ramdisk(unsigned long phys_base
)
699 #ifdef CONFIG_BLK_DEV_INITRD
700 if (sparc_ramdisk_image
|| sparc_ramdisk_image64
) {
701 unsigned long ramdisk_image
;
703 /* Older versions of the bootloader only supported a
704 * 32-bit physical address for the ramdisk image
705 * location, stored at sparc_ramdisk_image. Newer
706 * SILO versions set sparc_ramdisk_image to zero and
707 * provide a full 64-bit physical address at
708 * sparc_ramdisk_image64.
710 ramdisk_image
= sparc_ramdisk_image
;
712 ramdisk_image
= sparc_ramdisk_image64
;
714 /* Another bootloader quirk. The bootloader normalizes
715 * the physical address to KERNBASE, so we have to
716 * factor that back out and add in the lowest valid
717 * physical page address to get the true physical address.
719 ramdisk_image
-= KERNBASE
;
720 ramdisk_image
+= phys_base
;
722 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
723 ramdisk_image
, sparc_ramdisk_size
);
725 initrd_start
= ramdisk_image
;
726 initrd_end
= ramdisk_image
+ sparc_ramdisk_size
;
728 lmb_reserve(initrd_start
, sparc_ramdisk_size
);
730 initrd_start
+= PAGE_OFFSET
;
731 initrd_end
+= PAGE_OFFSET
;
736 struct node_mem_mask
{
739 unsigned long bootmem_paddr
;
741 static struct node_mem_mask node_masks
[MAX_NUMNODES
];
742 static int num_node_masks
;
744 int numa_cpu_lookup_table
[NR_CPUS
];
745 cpumask_t numa_cpumask_lookup_table
[MAX_NUMNODES
];
747 #ifdef CONFIG_NEED_MULTIPLE_NODES
749 struct mdesc_mblock
{
752 u64 offset
; /* RA-to-PA */
754 static struct mdesc_mblock
*mblocks
;
755 static int num_mblocks
;
757 static unsigned long ra_to_pa(unsigned long addr
)
761 for (i
= 0; i
< num_mblocks
; i
++) {
762 struct mdesc_mblock
*m
= &mblocks
[i
];
764 if (addr
>= m
->base
&&
765 addr
< (m
->base
+ m
->size
)) {
773 static int find_node(unsigned long addr
)
777 addr
= ra_to_pa(addr
);
778 for (i
= 0; i
< num_node_masks
; i
++) {
779 struct node_mem_mask
*p
= &node_masks
[i
];
781 if ((addr
& p
->mask
) == p
->val
)
787 static unsigned long long nid_range(unsigned long long start
,
788 unsigned long long end
, int *nid
)
790 *nid
= find_node(start
);
792 while (start
< end
) {
793 int n
= find_node(start
);
806 static unsigned long long nid_range(unsigned long long start
,
807 unsigned long long end
, int *nid
)
814 /* This must be invoked after performing all of the necessary
815 * add_active_range() calls for 'nid'. We need to be able to get
816 * correct data from get_pfn_range_for_nid().
818 static void __init
allocate_node_data(int nid
)
820 unsigned long paddr
, num_pages
, start_pfn
, end_pfn
;
821 struct pglist_data
*p
;
823 #ifdef CONFIG_NEED_MULTIPLE_NODES
824 paddr
= lmb_alloc_nid(sizeof(struct pglist_data
),
825 SMP_CACHE_BYTES
, nid
, nid_range
);
827 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid
);
830 NODE_DATA(nid
) = __va(paddr
);
831 memset(NODE_DATA(nid
), 0, sizeof(struct pglist_data
));
833 NODE_DATA(nid
)->bdata
= &bootmem_node_data
[nid
];
838 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
839 p
->node_start_pfn
= start_pfn
;
840 p
->node_spanned_pages
= end_pfn
- start_pfn
;
842 if (p
->node_spanned_pages
) {
843 num_pages
= bootmem_bootmap_pages(p
->node_spanned_pages
);
845 paddr
= lmb_alloc_nid(num_pages
<< PAGE_SHIFT
, PAGE_SIZE
, nid
,
848 prom_printf("Cannot allocate bootmap for nid[%d]\n",
852 node_masks
[nid
].bootmem_paddr
= paddr
;
856 static void init_node_masks_nonnuma(void)
860 numadbg("Initializing tables for non-numa.\n");
862 node_masks
[0].mask
= node_masks
[0].val
= 0;
865 for (i
= 0; i
< NR_CPUS
; i
++)
866 numa_cpu_lookup_table
[i
] = 0;
868 numa_cpumask_lookup_table
[0] = CPU_MASK_ALL
;
871 #ifdef CONFIG_NEED_MULTIPLE_NODES
872 struct pglist_data
*node_data
[MAX_NUMNODES
];
874 EXPORT_SYMBOL(numa_cpu_lookup_table
);
875 EXPORT_SYMBOL(numa_cpumask_lookup_table
);
876 EXPORT_SYMBOL(node_data
);
878 struct mdesc_mlgroup
{
884 static struct mdesc_mlgroup
*mlgroups
;
885 static int num_mlgroups
;
887 static int scan_pio_for_cfg_handle(struct mdesc_handle
*md
, u64 pio
,
892 mdesc_for_each_arc(arc
, md
, pio
, MDESC_ARC_TYPE_FWD
) {
893 u64 target
= mdesc_arc_target(md
, arc
);
896 val
= mdesc_get_property(md
, target
,
898 if (val
&& *val
== cfg_handle
)
904 static int scan_arcs_for_cfg_handle(struct mdesc_handle
*md
, u64 grp
,
907 u64 arc
, candidate
, best_latency
= ~(u64
)0;
909 candidate
= MDESC_NODE_NULL
;
910 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
911 u64 target
= mdesc_arc_target(md
, arc
);
912 const char *name
= mdesc_node_name(md
, target
);
915 if (strcmp(name
, "pio-latency-group"))
918 val
= mdesc_get_property(md
, target
, "latency", NULL
);
922 if (*val
< best_latency
) {
928 if (candidate
== MDESC_NODE_NULL
)
931 return scan_pio_for_cfg_handle(md
, candidate
, cfg_handle
);
934 int of_node_to_nid(struct device_node
*dp
)
936 const struct linux_prom64_registers
*regs
;
937 struct mdesc_handle
*md
;
942 /* This is the right thing to do on currently supported
943 * SUN4U NUMA platforms as well, as the PCI controller does
944 * not sit behind any particular memory controller.
949 regs
= of_get_property(dp
, "reg", NULL
);
953 cfg_handle
= (regs
->phys_addr
>> 32UL) & 0x0fffffff;
959 mdesc_for_each_node_by_name(md
, grp
, "group") {
960 if (!scan_arcs_for_cfg_handle(md
, grp
, cfg_handle
)) {
972 static void __init
add_node_ranges(void)
976 for (i
= 0; i
< lmb
.memory
.cnt
; i
++) {
977 unsigned long size
= lmb_size_bytes(&lmb
.memory
, i
);
978 unsigned long start
, end
;
980 start
= lmb
.memory
.region
[i
].base
;
982 while (start
< end
) {
983 unsigned long this_end
;
986 this_end
= nid_range(start
, end
, &nid
);
988 numadbg("Adding active range nid[%d] "
989 "start[%lx] end[%lx]\n",
990 nid
, start
, this_end
);
992 add_active_range(nid
,
994 this_end
>> PAGE_SHIFT
);
1001 static int __init
grab_mlgroups(struct mdesc_handle
*md
)
1003 unsigned long paddr
;
1007 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group")
1012 paddr
= lmb_alloc(count
* sizeof(struct mdesc_mlgroup
),
1017 mlgroups
= __va(paddr
);
1018 num_mlgroups
= count
;
1021 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group") {
1022 struct mdesc_mlgroup
*m
= &mlgroups
[count
++];
1027 val
= mdesc_get_property(md
, node
, "latency", NULL
);
1029 val
= mdesc_get_property(md
, node
, "address-match", NULL
);
1031 val
= mdesc_get_property(md
, node
, "address-mask", NULL
);
1034 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1035 "match[%llx] mask[%llx]\n",
1036 count
- 1, m
->node
, m
->latency
, m
->match
, m
->mask
);
1042 static int __init
grab_mblocks(struct mdesc_handle
*md
)
1044 unsigned long paddr
;
1048 mdesc_for_each_node_by_name(md
, node
, "mblock")
1053 paddr
= lmb_alloc(count
* sizeof(struct mdesc_mblock
),
1058 mblocks
= __va(paddr
);
1059 num_mblocks
= count
;
1062 mdesc_for_each_node_by_name(md
, node
, "mblock") {
1063 struct mdesc_mblock
*m
= &mblocks
[count
++];
1066 val
= mdesc_get_property(md
, node
, "base", NULL
);
1068 val
= mdesc_get_property(md
, node
, "size", NULL
);
1070 val
= mdesc_get_property(md
, node
,
1071 "address-congruence-offset", NULL
);
1074 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1075 count
- 1, m
->base
, m
->size
, m
->offset
);
1081 static void __init
numa_parse_mdesc_group_cpus(struct mdesc_handle
*md
,
1082 u64 grp
, cpumask_t
*mask
)
1088 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_BACK
) {
1089 u64 target
= mdesc_arc_target(md
, arc
);
1090 const char *name
= mdesc_node_name(md
, target
);
1093 if (strcmp(name
, "cpu"))
1095 id
= mdesc_get_property(md
, target
, "id", NULL
);
1096 if (*id
< nr_cpu_ids
)
1097 cpu_set(*id
, *mask
);
1101 static struct mdesc_mlgroup
* __init
find_mlgroup(u64 node
)
1105 for (i
= 0; i
< num_mlgroups
; i
++) {
1106 struct mdesc_mlgroup
*m
= &mlgroups
[i
];
1107 if (m
->node
== node
)
1113 static int __init
numa_attach_mlgroup(struct mdesc_handle
*md
, u64 grp
,
1116 struct mdesc_mlgroup
*candidate
= NULL
;
1117 u64 arc
, best_latency
= ~(u64
)0;
1118 struct node_mem_mask
*n
;
1120 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1121 u64 target
= mdesc_arc_target(md
, arc
);
1122 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1125 if (m
->latency
< best_latency
) {
1127 best_latency
= m
->latency
;
1133 if (num_node_masks
!= index
) {
1134 printk(KERN_ERR
"Inconsistent NUMA state, "
1135 "index[%d] != num_node_masks[%d]\n",
1136 index
, num_node_masks
);
1140 n
= &node_masks
[num_node_masks
++];
1142 n
->mask
= candidate
->mask
;
1143 n
->val
= candidate
->match
;
1145 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1146 index
, n
->mask
, n
->val
, candidate
->latency
);
1151 static int __init
numa_parse_mdesc_group(struct mdesc_handle
*md
, u64 grp
,
1157 numa_parse_mdesc_group_cpus(md
, grp
, &mask
);
1159 for_each_cpu_mask(cpu
, mask
)
1160 numa_cpu_lookup_table
[cpu
] = index
;
1161 numa_cpumask_lookup_table
[index
] = mask
;
1164 printk(KERN_INFO
"NUMA GROUP[%d]: cpus [ ", index
);
1165 for_each_cpu_mask(cpu
, mask
)
1170 return numa_attach_mlgroup(md
, grp
, index
);
1173 static int __init
numa_parse_mdesc(void)
1175 struct mdesc_handle
*md
= mdesc_grab();
1179 node
= mdesc_node_by_name(md
, MDESC_NODE_NULL
, "latency-groups");
1180 if (node
== MDESC_NODE_NULL
) {
1185 err
= grab_mblocks(md
);
1189 err
= grab_mlgroups(md
);
1194 mdesc_for_each_node_by_name(md
, node
, "group") {
1195 err
= numa_parse_mdesc_group(md
, node
, count
);
1203 for (i
= 0; i
< num_node_masks
; i
++) {
1204 allocate_node_data(i
);
1214 static int __init
numa_parse_jbus(void)
1216 unsigned long cpu
, index
;
1218 /* NUMA node id is encoded in bits 36 and higher, and there is
1219 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1222 for_each_present_cpu(cpu
) {
1223 numa_cpu_lookup_table
[cpu
] = index
;
1224 numa_cpumask_lookup_table
[index
] = cpumask_of_cpu(cpu
);
1225 node_masks
[index
].mask
= ~((1UL << 36UL) - 1UL);
1226 node_masks
[index
].val
= cpu
<< 36UL;
1230 num_node_masks
= index
;
1234 for (index
= 0; index
< num_node_masks
; index
++) {
1235 allocate_node_data(index
);
1236 node_set_online(index
);
1242 static int __init
numa_parse_sun4u(void)
1244 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1247 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
1248 if ((ver
>> 32UL) == __JALAPENO_ID
||
1249 (ver
>> 32UL) == __SERRANO_ID
)
1250 return numa_parse_jbus();
1255 static int __init
bootmem_init_numa(void)
1259 numadbg("bootmem_init_numa()\n");
1262 if (tlb_type
== hypervisor
)
1263 err
= numa_parse_mdesc();
1265 err
= numa_parse_sun4u();
1272 static int bootmem_init_numa(void)
1279 static void __init
bootmem_init_nonnuma(void)
1281 unsigned long top_of_ram
= lmb_end_of_DRAM();
1282 unsigned long total_ram
= lmb_phys_mem_size();
1285 numadbg("bootmem_init_nonnuma()\n");
1287 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1288 top_of_ram
, total_ram
);
1289 printk(KERN_INFO
"Memory hole size: %ldMB\n",
1290 (top_of_ram
- total_ram
) >> 20);
1292 init_node_masks_nonnuma();
1294 for (i
= 0; i
< lmb
.memory
.cnt
; i
++) {
1295 unsigned long size
= lmb_size_bytes(&lmb
.memory
, i
);
1296 unsigned long start_pfn
, end_pfn
;
1301 start_pfn
= lmb
.memory
.region
[i
].base
>> PAGE_SHIFT
;
1302 end_pfn
= start_pfn
+ lmb_size_pages(&lmb
.memory
, i
);
1303 add_active_range(0, start_pfn
, end_pfn
);
1306 allocate_node_data(0);
1311 static void __init
reserve_range_in_node(int nid
, unsigned long start
,
1314 numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1316 while (start
< end
) {
1317 unsigned long this_end
;
1320 this_end
= nid_range(start
, end
, &n
);
1322 numadbg(" MATCH reserving range [%lx:%lx]\n",
1324 reserve_bootmem_node(NODE_DATA(nid
), start
,
1325 (this_end
- start
), BOOTMEM_DEFAULT
);
1327 numadbg(" NO MATCH, advancing start to %lx\n",
1334 static void __init
trim_reserved_in_node(int nid
)
1338 numadbg(" trim_reserved_in_node(%d)\n", nid
);
1340 for (i
= 0; i
< lmb
.reserved
.cnt
; i
++) {
1341 unsigned long start
= lmb
.reserved
.region
[i
].base
;
1342 unsigned long size
= lmb_size_bytes(&lmb
.reserved
, i
);
1343 unsigned long end
= start
+ size
;
1345 reserve_range_in_node(nid
, start
, end
);
1349 static void __init
bootmem_init_one_node(int nid
)
1351 struct pglist_data
*p
;
1353 numadbg("bootmem_init_one_node(%d)\n", nid
);
1357 if (p
->node_spanned_pages
) {
1358 unsigned long paddr
= node_masks
[nid
].bootmem_paddr
;
1359 unsigned long end_pfn
;
1361 end_pfn
= p
->node_start_pfn
+ p
->node_spanned_pages
;
1363 numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
1364 nid
, paddr
>> PAGE_SHIFT
, p
->node_start_pfn
, end_pfn
);
1366 init_bootmem_node(p
, paddr
>> PAGE_SHIFT
,
1367 p
->node_start_pfn
, end_pfn
);
1369 numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
1371 free_bootmem_with_active_regions(nid
, end_pfn
);
1373 trim_reserved_in_node(nid
);
1375 numadbg(" sparse_memory_present_with_active_regions(%d)\n",
1377 sparse_memory_present_with_active_regions(nid
);
1381 static unsigned long __init
bootmem_init(unsigned long phys_base
)
1383 unsigned long end_pfn
;
1386 end_pfn
= lmb_end_of_DRAM() >> PAGE_SHIFT
;
1387 max_pfn
= max_low_pfn
= end_pfn
;
1388 min_low_pfn
= (phys_base
>> PAGE_SHIFT
);
1390 if (bootmem_init_numa() < 0)
1391 bootmem_init_nonnuma();
1393 /* XXX cpu notifier XXX */
1395 for_each_online_node(nid
)
1396 bootmem_init_one_node(nid
);
1403 static struct linux_prom64_registers pall
[MAX_BANKS
] __initdata
;
1404 static int pall_ents __initdata
;
1406 #ifdef CONFIG_DEBUG_PAGEALLOC
1407 static unsigned long __ref
kernel_map_range(unsigned long pstart
,
1408 unsigned long pend
, pgprot_t prot
)
1410 unsigned long vstart
= PAGE_OFFSET
+ pstart
;
1411 unsigned long vend
= PAGE_OFFSET
+ pend
;
1412 unsigned long alloc_bytes
= 0UL;
1414 if ((vstart
& ~PAGE_MASK
) || (vend
& ~PAGE_MASK
)) {
1415 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1420 while (vstart
< vend
) {
1421 unsigned long this_end
, paddr
= __pa(vstart
);
1422 pgd_t
*pgd
= pgd_offset_k(vstart
);
1427 pud
= pud_offset(pgd
, vstart
);
1428 if (pud_none(*pud
)) {
1431 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1432 alloc_bytes
+= PAGE_SIZE
;
1433 pud_populate(&init_mm
, pud
, new);
1436 pmd
= pmd_offset(pud
, vstart
);
1437 if (!pmd_present(*pmd
)) {
1440 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1441 alloc_bytes
+= PAGE_SIZE
;
1442 pmd_populate_kernel(&init_mm
, pmd
, new);
1445 pte
= pte_offset_kernel(pmd
, vstart
);
1446 this_end
= (vstart
+ PMD_SIZE
) & PMD_MASK
;
1447 if (this_end
> vend
)
1450 while (vstart
< this_end
) {
1451 pte_val(*pte
) = (paddr
| pgprot_val(prot
));
1453 vstart
+= PAGE_SIZE
;
1462 extern unsigned int kvmap_linear_patch
[1];
1463 #endif /* CONFIG_DEBUG_PAGEALLOC */
1465 static void __init
mark_kpte_bitmap(unsigned long start
, unsigned long end
)
1467 const unsigned long shift_256MB
= 28;
1468 const unsigned long mask_256MB
= ((1UL << shift_256MB
) - 1UL);
1469 const unsigned long size_256MB
= (1UL << shift_256MB
);
1471 while (start
< end
) {
1474 remains
= end
- start
;
1475 if (remains
< size_256MB
)
1478 if (start
& mask_256MB
) {
1479 start
= (start
+ size_256MB
) & ~mask_256MB
;
1483 while (remains
>= size_256MB
) {
1484 unsigned long index
= start
>> shift_256MB
;
1486 __set_bit(index
, kpte_linear_bitmap
);
1488 start
+= size_256MB
;
1489 remains
-= size_256MB
;
1494 static void __init
init_kpte_bitmap(void)
1498 for (i
= 0; i
< pall_ents
; i
++) {
1499 unsigned long phys_start
, phys_end
;
1501 phys_start
= pall
[i
].phys_addr
;
1502 phys_end
= phys_start
+ pall
[i
].reg_size
;
1504 mark_kpte_bitmap(phys_start
, phys_end
);
1508 static void __init
kernel_physical_mapping_init(void)
1510 #ifdef CONFIG_DEBUG_PAGEALLOC
1511 unsigned long i
, mem_alloced
= 0UL;
1513 for (i
= 0; i
< pall_ents
; i
++) {
1514 unsigned long phys_start
, phys_end
;
1516 phys_start
= pall
[i
].phys_addr
;
1517 phys_end
= phys_start
+ pall
[i
].reg_size
;
1519 mem_alloced
+= kernel_map_range(phys_start
, phys_end
,
1523 printk("Allocated %ld bytes for kernel page tables.\n",
1526 kvmap_linear_patch
[0] = 0x01000000; /* nop */
1527 flushi(&kvmap_linear_patch
[0]);
1533 #ifdef CONFIG_DEBUG_PAGEALLOC
1534 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1536 unsigned long phys_start
= page_to_pfn(page
) << PAGE_SHIFT
;
1537 unsigned long phys_end
= phys_start
+ (numpages
* PAGE_SIZE
);
1539 kernel_map_range(phys_start
, phys_end
,
1540 (enable
? PAGE_KERNEL
: __pgprot(0)));
1542 flush_tsb_kernel_range(PAGE_OFFSET
+ phys_start
,
1543 PAGE_OFFSET
+ phys_end
);
1545 /* we should perform an IPI and flush all tlbs,
1546 * but that can deadlock->flush only current cpu.
1548 __flush_tlb_kernel_range(PAGE_OFFSET
+ phys_start
,
1549 PAGE_OFFSET
+ phys_end
);
1553 unsigned long __init
find_ecache_flush_span(unsigned long size
)
1557 for (i
= 0; i
< pavail_ents
; i
++) {
1558 if (pavail
[i
].reg_size
>= size
)
1559 return pavail
[i
].phys_addr
;
1565 static void __init
tsb_phys_patch(void)
1567 struct tsb_ldquad_phys_patch_entry
*pquad
;
1568 struct tsb_phys_patch_entry
*p
;
1570 pquad
= &__tsb_ldquad_phys_patch
;
1571 while (pquad
< &__tsb_ldquad_phys_patch_end
) {
1572 unsigned long addr
= pquad
->addr
;
1574 if (tlb_type
== hypervisor
)
1575 *(unsigned int *) addr
= pquad
->sun4v_insn
;
1577 *(unsigned int *) addr
= pquad
->sun4u_insn
;
1579 __asm__
__volatile__("flush %0"
1586 p
= &__tsb_phys_patch
;
1587 while (p
< &__tsb_phys_patch_end
) {
1588 unsigned long addr
= p
->addr
;
1590 *(unsigned int *) addr
= p
->insn
;
1592 __asm__
__volatile__("flush %0"
1600 /* Don't mark as init, we give this to the Hypervisor. */
1601 #ifndef CONFIG_DEBUG_PAGEALLOC
1602 #define NUM_KTSB_DESCR 2
1604 #define NUM_KTSB_DESCR 1
1606 static struct hv_tsb_descr ktsb_descr
[NUM_KTSB_DESCR
];
1607 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
1609 static void __init
sun4v_ktsb_init(void)
1611 unsigned long ktsb_pa
;
1613 /* First KTSB for PAGE_SIZE mappings. */
1614 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1616 switch (PAGE_SIZE
) {
1619 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_8K
;
1620 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_8K
;
1624 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_64K
;
1625 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_64K
;
1629 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_512K
;
1630 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_512K
;
1633 case 4 * 1024 * 1024:
1634 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1635 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_4MB
;
1639 ktsb_descr
[0].assoc
= 1;
1640 ktsb_descr
[0].num_ttes
= KERNEL_TSB_NENTRIES
;
1641 ktsb_descr
[0].ctx_idx
= 0;
1642 ktsb_descr
[0].tsb_base
= ktsb_pa
;
1643 ktsb_descr
[0].resv
= 0;
1645 #ifndef CONFIG_DEBUG_PAGEALLOC
1646 /* Second KTSB for 4MB/256MB mappings. */
1647 ktsb_pa
= (kern_base
+
1648 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1650 ktsb_descr
[1].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1651 ktsb_descr
[1].pgsz_mask
= (HV_PGSZ_MASK_4MB
|
1652 HV_PGSZ_MASK_256MB
);
1653 ktsb_descr
[1].assoc
= 1;
1654 ktsb_descr
[1].num_ttes
= KERNEL_TSB4M_NENTRIES
;
1655 ktsb_descr
[1].ctx_idx
= 0;
1656 ktsb_descr
[1].tsb_base
= ktsb_pa
;
1657 ktsb_descr
[1].resv
= 0;
1661 void __cpuinit
sun4v_ktsb_register(void)
1663 unsigned long pa
, ret
;
1665 pa
= kern_base
+ ((unsigned long)&ktsb_descr
[0] - KERNBASE
);
1667 ret
= sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR
, pa
);
1669 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1670 "errors with %lx\n", pa
, ret
);
1675 /* paging_init() sets up the page tables */
1677 static unsigned long last_valid_pfn
;
1678 pgd_t swapper_pg_dir
[2048];
1680 static void sun4u_pgprot_init(void);
1681 static void sun4v_pgprot_init(void);
1683 void __init
paging_init(void)
1685 unsigned long end_pfn
, shift
, phys_base
;
1686 unsigned long real_end
, i
;
1688 /* These build time checkes make sure that the dcache_dirty_cpu()
1689 * page->flags usage will work.
1691 * When a page gets marked as dcache-dirty, we store the
1692 * cpu number starting at bit 32 in the page->flags. Also,
1693 * functions like clear_dcache_dirty_cpu use the cpu mask
1694 * in 13-bit signed-immediate instruction fields.
1698 * Page flags must not reach into upper 32 bits that are used
1699 * for the cpu number
1701 BUILD_BUG_ON(NR_PAGEFLAGS
> 32);
1704 * The bit fields placed in the high range must not reach below
1705 * the 32 bit boundary. Otherwise we cannot place the cpu field
1706 * at the 32 bit boundary.
1708 BUILD_BUG_ON(SECTIONS_WIDTH
+ NODES_WIDTH
+ ZONES_WIDTH
+
1709 ilog2(roundup_pow_of_two(NR_CPUS
)) > 32);
1711 BUILD_BUG_ON(NR_CPUS
> 4096);
1713 kern_base
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
1714 kern_size
= (unsigned long)&_end
- (unsigned long)KERNBASE
;
1716 /* Invalidate both kernel TSBs. */
1717 memset(swapper_tsb
, 0x40, sizeof(swapper_tsb
));
1718 #ifndef CONFIG_DEBUG_PAGEALLOC
1719 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
1722 if (tlb_type
== hypervisor
)
1723 sun4v_pgprot_init();
1725 sun4u_pgprot_init();
1727 if (tlb_type
== cheetah_plus
||
1728 tlb_type
== hypervisor
)
1731 if (tlb_type
== hypervisor
) {
1732 sun4v_patch_tlb_handlers();
1738 /* Find available physical memory...
1740 * Read it twice in order to work around a bug in openfirmware.
1741 * The call to grab this table itself can cause openfirmware to
1742 * allocate memory, which in turn can take away some space from
1743 * the list of available memory. Reading it twice makes sure
1744 * we really do get the final value.
1746 read_obp_translations();
1747 read_obp_memory("reg", &pall
[0], &pall_ents
);
1748 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1749 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1751 phys_base
= 0xffffffffffffffffUL
;
1752 for (i
= 0; i
< pavail_ents
; i
++) {
1753 phys_base
= min(phys_base
, pavail
[i
].phys_addr
);
1754 lmb_add(pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
1757 lmb_reserve(kern_base
, kern_size
);
1759 find_ramdisk(phys_base
);
1761 lmb_enforce_memory_limit(cmdline_memory_size
);
1766 set_bit(0, mmu_context_bmap
);
1768 shift
= kern_base
+ PAGE_OFFSET
- ((unsigned long)KERNBASE
);
1770 real_end
= (unsigned long)_end
;
1771 num_kernel_image_mappings
= DIV_ROUND_UP(real_end
- KERNBASE
, 1 << 22);
1772 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1773 num_kernel_image_mappings
);
1775 /* Set kernel pgd to upper alias so physical page computations
1778 init_mm
.pgd
+= ((shift
) / (sizeof(pgd_t
)));
1780 memset(swapper_low_pmd_dir
, 0, sizeof(swapper_low_pmd_dir
));
1782 /* Now can init the kernel/bad page tables. */
1783 pud_set(pud_offset(&swapper_pg_dir
[0], 0),
1784 swapper_low_pmd_dir
+ (shift
/ sizeof(pgd_t
)));
1786 inherit_prom_mappings();
1790 /* Ok, we can use our TLB miss and window trap handlers safely. */
1795 if (tlb_type
== hypervisor
)
1796 sun4v_ktsb_register();
1798 prom_build_devicetree();
1799 of_populate_present_mask();
1801 of_fill_in_cpu_data();
1804 if (tlb_type
== hypervisor
) {
1806 mdesc_populate_present_mask(cpu_all_mask
);
1808 mdesc_fill_in_cpu_data(cpu_all_mask
);
1812 /* Once the OF device tree and MDESC have been setup, we know
1813 * the list of possible cpus. Therefore we can allocate the
1816 for_each_possible_cpu(i
) {
1817 /* XXX Use node local allocations... XXX */
1818 softirq_stack
[i
] = __va(lmb_alloc(THREAD_SIZE
, THREAD_SIZE
));
1819 hardirq_stack
[i
] = __va(lmb_alloc(THREAD_SIZE
, THREAD_SIZE
));
1822 /* Setup bootmem... */
1823 last_valid_pfn
= end_pfn
= bootmem_init(phys_base
);
1825 #ifndef CONFIG_NEED_MULTIPLE_NODES
1826 max_mapnr
= last_valid_pfn
;
1828 kernel_physical_mapping_init();
1831 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
1833 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
1835 max_zone_pfns
[ZONE_NORMAL
] = end_pfn
;
1837 free_area_init_nodes(max_zone_pfns
);
1840 printk("Booting Linux...\n");
1843 int __devinit
page_in_phys_avail(unsigned long paddr
)
1849 for (i
= 0; i
< pavail_ents
; i
++) {
1850 unsigned long start
, end
;
1852 start
= pavail
[i
].phys_addr
;
1853 end
= start
+ pavail
[i
].reg_size
;
1855 if (paddr
>= start
&& paddr
< end
)
1858 if (paddr
>= kern_base
&& paddr
< (kern_base
+ kern_size
))
1860 #ifdef CONFIG_BLK_DEV_INITRD
1861 if (paddr
>= __pa(initrd_start
) &&
1862 paddr
< __pa(PAGE_ALIGN(initrd_end
)))
1869 static struct linux_prom64_registers pavail_rescan
[MAX_BANKS
] __initdata
;
1870 static int pavail_rescan_ents __initdata
;
1872 /* Certain OBP calls, such as fetching "available" properties, can
1873 * claim physical memory. So, along with initializing the valid
1874 * address bitmap, what we do here is refetch the physical available
1875 * memory list again, and make sure it provides at least as much
1876 * memory as 'pavail' does.
1878 static void __init
setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap
)
1882 read_obp_memory("available", &pavail_rescan
[0], &pavail_rescan_ents
);
1884 for (i
= 0; i
< pavail_ents
; i
++) {
1885 unsigned long old_start
, old_end
;
1887 old_start
= pavail
[i
].phys_addr
;
1888 old_end
= old_start
+ pavail
[i
].reg_size
;
1889 while (old_start
< old_end
) {
1892 for (n
= 0; n
< pavail_rescan_ents
; n
++) {
1893 unsigned long new_start
, new_end
;
1895 new_start
= pavail_rescan
[n
].phys_addr
;
1896 new_end
= new_start
+
1897 pavail_rescan
[n
].reg_size
;
1899 if (new_start
<= old_start
&&
1900 new_end
>= (old_start
+ PAGE_SIZE
)) {
1901 set_bit(old_start
>> 22, bitmap
);
1906 prom_printf("mem_init: Lost memory in pavail\n");
1907 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1908 pavail
[i
].phys_addr
,
1909 pavail
[i
].reg_size
);
1910 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1911 pavail_rescan
[i
].phys_addr
,
1912 pavail_rescan
[i
].reg_size
);
1913 prom_printf("mem_init: Cannot continue, aborting.\n");
1917 old_start
+= PAGE_SIZE
;
1922 static void __init
patch_tlb_miss_handler_bitmap(void)
1924 extern unsigned int valid_addr_bitmap_insn
[];
1925 extern unsigned int valid_addr_bitmap_patch
[];
1927 valid_addr_bitmap_insn
[1] = valid_addr_bitmap_patch
[1];
1929 valid_addr_bitmap_insn
[0] = valid_addr_bitmap_patch
[0];
1930 flushi(&valid_addr_bitmap_insn
[0]);
1933 void __init
mem_init(void)
1935 unsigned long codepages
, datapages
, initpages
;
1936 unsigned long addr
, last
;
1938 addr
= PAGE_OFFSET
+ kern_base
;
1939 last
= PAGE_ALIGN(kern_size
) + addr
;
1940 while (addr
< last
) {
1941 set_bit(__pa(addr
) >> 22, sparc64_valid_addr_bitmap
);
1945 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap
);
1946 patch_tlb_miss_handler_bitmap();
1948 high_memory
= __va(last_valid_pfn
<< PAGE_SHIFT
);
1950 #ifdef CONFIG_NEED_MULTIPLE_NODES
1953 for_each_online_node(i
) {
1954 if (NODE_DATA(i
)->node_spanned_pages
!= 0) {
1956 free_all_bootmem_node(NODE_DATA(i
));
1961 totalram_pages
= free_all_bootmem();
1964 /* We subtract one to account for the mem_map_zero page
1967 totalram_pages
-= 1;
1968 num_physpages
= totalram_pages
;
1971 * Set up the zero page, mark it reserved, so that page count
1972 * is not manipulated when freeing the page from user ptes.
1974 mem_map_zero
= alloc_pages(GFP_KERNEL
|__GFP_ZERO
, 0);
1975 if (mem_map_zero
== NULL
) {
1976 prom_printf("paging_init: Cannot alloc zero page.\n");
1979 SetPageReserved(mem_map_zero
);
1981 codepages
= (((unsigned long) _etext
) - ((unsigned long) _start
));
1982 codepages
= PAGE_ALIGN(codepages
) >> PAGE_SHIFT
;
1983 datapages
= (((unsigned long) _edata
) - ((unsigned long) _etext
));
1984 datapages
= PAGE_ALIGN(datapages
) >> PAGE_SHIFT
;
1985 initpages
= (((unsigned long) __init_end
) - ((unsigned long) __init_begin
));
1986 initpages
= PAGE_ALIGN(initpages
) >> PAGE_SHIFT
;
1988 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1989 nr_free_pages() << (PAGE_SHIFT
-10),
1990 codepages
<< (PAGE_SHIFT
-10),
1991 datapages
<< (PAGE_SHIFT
-10),
1992 initpages
<< (PAGE_SHIFT
-10),
1993 PAGE_OFFSET
, (last_valid_pfn
<< PAGE_SHIFT
));
1995 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
1996 cheetah_ecache_flush_init();
1999 void free_initmem(void)
2001 unsigned long addr
, initend
;
2004 /* If the physical memory maps were trimmed by kernel command
2005 * line options, don't even try freeing this initmem stuff up.
2006 * The kernel image could have been in the trimmed out region
2007 * and if so the freeing below will free invalid page structs.
2009 if (cmdline_memory_size
)
2013 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2015 addr
= PAGE_ALIGN((unsigned long)(__init_begin
));
2016 initend
= (unsigned long)(__init_end
) & PAGE_MASK
;
2017 for (; addr
< initend
; addr
+= PAGE_SIZE
) {
2022 ((unsigned long) __va(kern_base
)) -
2023 ((unsigned long) KERNBASE
));
2024 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
2027 p
= virt_to_page(page
);
2029 ClearPageReserved(p
);
2038 #ifdef CONFIG_BLK_DEV_INITRD
2039 void free_initrd_mem(unsigned long start
, unsigned long end
)
2042 printk ("Freeing initrd memory: %ldk freed\n", (end
- start
) >> 10);
2043 for (; start
< end
; start
+= PAGE_SIZE
) {
2044 struct page
*p
= virt_to_page(start
);
2046 ClearPageReserved(p
);
2055 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2056 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2057 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2058 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2059 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2060 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2062 pgprot_t PAGE_KERNEL __read_mostly
;
2063 EXPORT_SYMBOL(PAGE_KERNEL
);
2065 pgprot_t PAGE_KERNEL_LOCKED __read_mostly
;
2066 pgprot_t PAGE_COPY __read_mostly
;
2068 pgprot_t PAGE_SHARED __read_mostly
;
2069 EXPORT_SYMBOL(PAGE_SHARED
);
2071 unsigned long pg_iobits __read_mostly
;
2073 unsigned long _PAGE_IE __read_mostly
;
2074 EXPORT_SYMBOL(_PAGE_IE
);
2076 unsigned long _PAGE_E __read_mostly
;
2077 EXPORT_SYMBOL(_PAGE_E
);
2079 unsigned long _PAGE_CACHE __read_mostly
;
2080 EXPORT_SYMBOL(_PAGE_CACHE
);
2082 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2083 unsigned long vmemmap_table
[VMEMMAP_SIZE
];
2085 int __meminit
vmemmap_populate(struct page
*start
, unsigned long nr
, int node
)
2087 unsigned long vstart
= (unsigned long) start
;
2088 unsigned long vend
= (unsigned long) (start
+ nr
);
2089 unsigned long phys_start
= (vstart
- VMEMMAP_BASE
);
2090 unsigned long phys_end
= (vend
- VMEMMAP_BASE
);
2091 unsigned long addr
= phys_start
& VMEMMAP_CHUNK_MASK
;
2092 unsigned long end
= VMEMMAP_ALIGN(phys_end
);
2093 unsigned long pte_base
;
2095 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2096 _PAGE_CP_4U
| _PAGE_CV_4U
|
2097 _PAGE_P_4U
| _PAGE_W_4U
);
2098 if (tlb_type
== hypervisor
)
2099 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2100 _PAGE_CP_4V
| _PAGE_CV_4V
|
2101 _PAGE_P_4V
| _PAGE_W_4V
);
2103 for (; addr
< end
; addr
+= VMEMMAP_CHUNK
) {
2104 unsigned long *vmem_pp
=
2105 vmemmap_table
+ (addr
>> VMEMMAP_CHUNK_SHIFT
);
2108 if (!(*vmem_pp
& _PAGE_VALID
)) {
2109 block
= vmemmap_alloc_block(1UL << 22, node
);
2113 *vmem_pp
= pte_base
| __pa(block
);
2115 printk(KERN_INFO
"[%p-%p] page_structs=%lu "
2116 "node=%d entry=%lu/%lu\n", start
, block
, nr
,
2118 addr
>> VMEMMAP_CHUNK_SHIFT
,
2119 VMEMMAP_SIZE
>> VMEMMAP_CHUNK_SHIFT
);
2124 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2126 static void prot_init_common(unsigned long page_none
,
2127 unsigned long page_shared
,
2128 unsigned long page_copy
,
2129 unsigned long page_readonly
,
2130 unsigned long page_exec_bit
)
2132 PAGE_COPY
= __pgprot(page_copy
);
2133 PAGE_SHARED
= __pgprot(page_shared
);
2135 protection_map
[0x0] = __pgprot(page_none
);
2136 protection_map
[0x1] = __pgprot(page_readonly
& ~page_exec_bit
);
2137 protection_map
[0x2] = __pgprot(page_copy
& ~page_exec_bit
);
2138 protection_map
[0x3] = __pgprot(page_copy
& ~page_exec_bit
);
2139 protection_map
[0x4] = __pgprot(page_readonly
);
2140 protection_map
[0x5] = __pgprot(page_readonly
);
2141 protection_map
[0x6] = __pgprot(page_copy
);
2142 protection_map
[0x7] = __pgprot(page_copy
);
2143 protection_map
[0x8] = __pgprot(page_none
);
2144 protection_map
[0x9] = __pgprot(page_readonly
& ~page_exec_bit
);
2145 protection_map
[0xa] = __pgprot(page_shared
& ~page_exec_bit
);
2146 protection_map
[0xb] = __pgprot(page_shared
& ~page_exec_bit
);
2147 protection_map
[0xc] = __pgprot(page_readonly
);
2148 protection_map
[0xd] = __pgprot(page_readonly
);
2149 protection_map
[0xe] = __pgprot(page_shared
);
2150 protection_map
[0xf] = __pgprot(page_shared
);
2153 static void __init
sun4u_pgprot_init(void)
2155 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2156 unsigned long page_exec_bit
;
2158 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2159 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2160 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2162 PAGE_KERNEL_LOCKED
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2163 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2164 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2165 _PAGE_EXEC_4U
| _PAGE_L_4U
);
2167 _PAGE_IE
= _PAGE_IE_4U
;
2168 _PAGE_E
= _PAGE_E_4U
;
2169 _PAGE_CACHE
= _PAGE_CACHE_4U
;
2171 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| __DIRTY_BITS_4U
|
2172 __ACCESS_BITS_4U
| _PAGE_E_4U
);
2174 #ifdef CONFIG_DEBUG_PAGEALLOC
2175 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZBITS_4U
) ^
2176 0xfffff80000000000UL
;
2178 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4U
) ^
2179 0xfffff80000000000UL
;
2181 kern_linear_pte_xor
[0] |= (_PAGE_CP_4U
| _PAGE_CV_4U
|
2182 _PAGE_P_4U
| _PAGE_W_4U
);
2184 /* XXX Should use 256MB on Panther. XXX */
2185 kern_linear_pte_xor
[1] = kern_linear_pte_xor
[0];
2187 _PAGE_SZBITS
= _PAGE_SZBITS_4U
;
2188 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ4MB_4U
| _PAGE_SZ512K_4U
|
2189 _PAGE_SZ64K_4U
| _PAGE_SZ8K_4U
|
2190 _PAGE_SZ32MB_4U
| _PAGE_SZ256MB_4U
);
2193 page_none
= _PAGE_PRESENT_4U
| _PAGE_ACCESSED_4U
| _PAGE_CACHE_4U
;
2194 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2195 __ACCESS_BITS_4U
| _PAGE_WRITE_4U
| _PAGE_EXEC_4U
);
2196 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2197 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2198 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2199 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2201 page_exec_bit
= _PAGE_EXEC_4U
;
2203 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2207 static void __init
sun4v_pgprot_init(void)
2209 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2210 unsigned long page_exec_bit
;
2212 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4V
| _PAGE_VALID
|
2213 _PAGE_CACHE_4V
| _PAGE_P_4V
|
2214 __ACCESS_BITS_4V
| __DIRTY_BITS_4V
|
2216 PAGE_KERNEL_LOCKED
= PAGE_KERNEL
;
2218 _PAGE_IE
= _PAGE_IE_4V
;
2219 _PAGE_E
= _PAGE_E_4V
;
2220 _PAGE_CACHE
= _PAGE_CACHE_4V
;
2222 #ifdef CONFIG_DEBUG_PAGEALLOC
2223 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZBITS_4V
) ^
2224 0xfffff80000000000UL
;
2226 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4V
) ^
2227 0xfffff80000000000UL
;
2229 kern_linear_pte_xor
[0] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
2230 _PAGE_P_4V
| _PAGE_W_4V
);
2232 #ifdef CONFIG_DEBUG_PAGEALLOC
2233 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZBITS_4V
) ^
2234 0xfffff80000000000UL
;
2236 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZ256MB_4V
) ^
2237 0xfffff80000000000UL
;
2239 kern_linear_pte_xor
[1] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
2240 _PAGE_P_4V
| _PAGE_W_4V
);
2242 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| __DIRTY_BITS_4V
|
2243 __ACCESS_BITS_4V
| _PAGE_E_4V
);
2245 _PAGE_SZBITS
= _PAGE_SZBITS_4V
;
2246 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ16GB_4V
| _PAGE_SZ2GB_4V
|
2247 _PAGE_SZ256MB_4V
| _PAGE_SZ32MB_4V
|
2248 _PAGE_SZ4MB_4V
| _PAGE_SZ512K_4V
|
2249 _PAGE_SZ64K_4V
| _PAGE_SZ8K_4V
);
2251 page_none
= _PAGE_PRESENT_4V
| _PAGE_ACCESSED_4V
| _PAGE_CACHE_4V
;
2252 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2253 __ACCESS_BITS_4V
| _PAGE_WRITE_4V
| _PAGE_EXEC_4V
);
2254 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2255 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2256 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2257 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2259 page_exec_bit
= _PAGE_EXEC_4V
;
2261 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2265 unsigned long pte_sz_bits(unsigned long sz
)
2267 if (tlb_type
== hypervisor
) {
2271 return _PAGE_SZ8K_4V
;
2273 return _PAGE_SZ64K_4V
;
2275 return _PAGE_SZ512K_4V
;
2276 case 4 * 1024 * 1024:
2277 return _PAGE_SZ4MB_4V
;
2283 return _PAGE_SZ8K_4U
;
2285 return _PAGE_SZ64K_4U
;
2287 return _PAGE_SZ512K_4U
;
2288 case 4 * 1024 * 1024:
2289 return _PAGE_SZ4MB_4U
;
2294 pte_t
mk_pte_io(unsigned long page
, pgprot_t prot
, int space
, unsigned long page_size
)
2298 pte_val(pte
) = page
| pgprot_val(pgprot_noncached(prot
));
2299 pte_val(pte
) |= (((unsigned long)space
) << 32);
2300 pte_val(pte
) |= pte_sz_bits(page_size
);
2305 static unsigned long kern_large_tte(unsigned long paddr
)
2309 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2310 _PAGE_CP_4U
| _PAGE_CV_4U
| _PAGE_P_4U
|
2311 _PAGE_EXEC_4U
| _PAGE_L_4U
| _PAGE_W_4U
);
2312 if (tlb_type
== hypervisor
)
2313 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2314 _PAGE_CP_4V
| _PAGE_CV_4V
| _PAGE_P_4V
|
2315 _PAGE_EXEC_4V
| _PAGE_W_4V
);
2320 /* If not locked, zap it. */
2321 void __flush_tlb_all(void)
2323 unsigned long pstate
;
2326 __asm__
__volatile__("flushw\n\t"
2327 "rdpr %%pstate, %0\n\t"
2328 "wrpr %0, %1, %%pstate"
2331 if (tlb_type
== hypervisor
) {
2332 sun4v_mmu_demap_all();
2333 } else if (tlb_type
== spitfire
) {
2334 for (i
= 0; i
< 64; i
++) {
2335 /* Spitfire Errata #32 workaround */
2336 /* NOTE: Always runs on spitfire, so no
2337 * cheetah+ page size encodings.
2339 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2343 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2345 if (!(spitfire_get_dtlb_data(i
) & _PAGE_L_4U
)) {
2346 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2349 : "r" (TLB_TAG_ACCESS
), "i" (ASI_DMMU
));
2350 spitfire_put_dtlb_data(i
, 0x0UL
);
2353 /* Spitfire Errata #32 workaround */
2354 /* NOTE: Always runs on spitfire, so no
2355 * cheetah+ page size encodings.
2357 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2361 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2363 if (!(spitfire_get_itlb_data(i
) & _PAGE_L_4U
)) {
2364 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2367 : "r" (TLB_TAG_ACCESS
), "i" (ASI_IMMU
));
2368 spitfire_put_itlb_data(i
, 0x0UL
);
2371 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
2372 cheetah_flush_dtlb_all();
2373 cheetah_flush_itlb_all();
2375 __asm__
__volatile__("wrpr %0, 0, %%pstate"