2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
42 #include "transaction.h"
43 #include "btrfs_inode.h"
45 #include "print-tree.h"
47 #include "ordered-data.h"
50 #include "compression.h"
53 struct btrfs_iget_args
{
55 struct btrfs_root
*root
;
58 static const struct inode_operations btrfs_dir_inode_operations
;
59 static const struct inode_operations btrfs_symlink_inode_operations
;
60 static const struct inode_operations btrfs_dir_ro_inode_operations
;
61 static const struct inode_operations btrfs_special_inode_operations
;
62 static const struct inode_operations btrfs_file_inode_operations
;
63 static const struct address_space_operations btrfs_aops
;
64 static const struct address_space_operations btrfs_symlink_aops
;
65 static const struct file_operations btrfs_dir_file_operations
;
66 static struct extent_io_ops btrfs_extent_io_ops
;
68 static struct kmem_cache
*btrfs_inode_cachep
;
69 struct kmem_cache
*btrfs_trans_handle_cachep
;
70 struct kmem_cache
*btrfs_transaction_cachep
;
71 struct kmem_cache
*btrfs_path_cachep
;
74 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
75 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
76 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
77 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
78 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
79 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
80 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
81 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
84 static void btrfs_truncate(struct inode
*inode
);
85 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
86 static noinline
int cow_file_range(struct inode
*inode
,
87 struct page
*locked_page
,
88 u64 start
, u64 end
, int *page_started
,
89 unsigned long *nr_written
, int unlock
);
91 static int btrfs_init_inode_security(struct inode
*inode
, struct inode
*dir
)
95 err
= btrfs_init_acl(inode
, dir
);
97 err
= btrfs_xattr_security_init(inode
, dir
);
102 * this does all the hard work for inserting an inline extent into
103 * the btree. The caller should have done a btrfs_drop_extents so that
104 * no overlapping inline items exist in the btree
106 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
107 struct btrfs_root
*root
, struct inode
*inode
,
108 u64 start
, size_t size
, size_t compressed_size
,
109 struct page
**compressed_pages
)
111 struct btrfs_key key
;
112 struct btrfs_path
*path
;
113 struct extent_buffer
*leaf
;
114 struct page
*page
= NULL
;
117 struct btrfs_file_extent_item
*ei
;
120 size_t cur_size
= size
;
122 unsigned long offset
;
123 int use_compress
= 0;
125 if (compressed_size
&& compressed_pages
) {
127 cur_size
= compressed_size
;
130 path
= btrfs_alloc_path();
134 path
->leave_spinning
= 1;
135 btrfs_set_trans_block_group(trans
, inode
);
137 key
.objectid
= inode
->i_ino
;
139 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
140 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
142 inode_add_bytes(inode
, size
);
143 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
150 leaf
= path
->nodes
[0];
151 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
152 struct btrfs_file_extent_item
);
153 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
154 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
155 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
156 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
157 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
158 ptr
= btrfs_file_extent_inline_start(ei
);
163 while (compressed_size
> 0) {
164 cpage
= compressed_pages
[i
];
165 cur_size
= min_t(unsigned long, compressed_size
,
168 kaddr
= kmap_atomic(cpage
, KM_USER0
);
169 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
170 kunmap_atomic(kaddr
, KM_USER0
);
174 compressed_size
-= cur_size
;
176 btrfs_set_file_extent_compression(leaf
, ei
,
177 BTRFS_COMPRESS_ZLIB
);
179 page
= find_get_page(inode
->i_mapping
,
180 start
>> PAGE_CACHE_SHIFT
);
181 btrfs_set_file_extent_compression(leaf
, ei
, 0);
182 kaddr
= kmap_atomic(page
, KM_USER0
);
183 offset
= start
& (PAGE_CACHE_SIZE
- 1);
184 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
185 kunmap_atomic(kaddr
, KM_USER0
);
186 page_cache_release(page
);
188 btrfs_mark_buffer_dirty(leaf
);
189 btrfs_free_path(path
);
191 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
192 btrfs_update_inode(trans
, root
, inode
);
195 btrfs_free_path(path
);
201 * conditionally insert an inline extent into the file. This
202 * does the checks required to make sure the data is small enough
203 * to fit as an inline extent.
205 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
206 struct btrfs_root
*root
,
207 struct inode
*inode
, u64 start
, u64 end
,
208 size_t compressed_size
,
209 struct page
**compressed_pages
)
211 u64 isize
= i_size_read(inode
);
212 u64 actual_end
= min(end
+ 1, isize
);
213 u64 inline_len
= actual_end
- start
;
214 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
215 ~((u64
)root
->sectorsize
- 1);
217 u64 data_len
= inline_len
;
221 data_len
= compressed_size
;
224 actual_end
>= PAGE_CACHE_SIZE
||
225 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
227 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
229 data_len
> root
->fs_info
->max_inline
) {
233 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
234 aligned_end
, aligned_end
, start
,
238 if (isize
> actual_end
)
239 inline_len
= min_t(u64
, isize
, actual_end
);
240 ret
= insert_inline_extent(trans
, root
, inode
, start
,
241 inline_len
, compressed_size
,
244 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
248 struct async_extent
{
253 unsigned long nr_pages
;
254 struct list_head list
;
259 struct btrfs_root
*root
;
260 struct page
*locked_page
;
263 struct list_head extents
;
264 struct btrfs_work work
;
267 static noinline
int add_async_extent(struct async_cow
*cow
,
268 u64 start
, u64 ram_size
,
271 unsigned long nr_pages
)
273 struct async_extent
*async_extent
;
275 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
276 async_extent
->start
= start
;
277 async_extent
->ram_size
= ram_size
;
278 async_extent
->compressed_size
= compressed_size
;
279 async_extent
->pages
= pages
;
280 async_extent
->nr_pages
= nr_pages
;
281 list_add_tail(&async_extent
->list
, &cow
->extents
);
286 * we create compressed extents in two phases. The first
287 * phase compresses a range of pages that have already been
288 * locked (both pages and state bits are locked).
290 * This is done inside an ordered work queue, and the compression
291 * is spread across many cpus. The actual IO submission is step
292 * two, and the ordered work queue takes care of making sure that
293 * happens in the same order things were put onto the queue by
294 * writepages and friends.
296 * If this code finds it can't get good compression, it puts an
297 * entry onto the work queue to write the uncompressed bytes. This
298 * makes sure that both compressed inodes and uncompressed inodes
299 * are written in the same order that pdflush sent them down.
301 static noinline
int compress_file_range(struct inode
*inode
,
302 struct page
*locked_page
,
304 struct async_cow
*async_cow
,
307 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
308 struct btrfs_trans_handle
*trans
;
312 u64 blocksize
= root
->sectorsize
;
314 u64 isize
= i_size_read(inode
);
316 struct page
**pages
= NULL
;
317 unsigned long nr_pages
;
318 unsigned long nr_pages_ret
= 0;
319 unsigned long total_compressed
= 0;
320 unsigned long total_in
= 0;
321 unsigned long max_compressed
= 128 * 1024;
322 unsigned long max_uncompressed
= 128 * 1024;
328 actual_end
= min_t(u64
, isize
, end
+ 1);
331 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
332 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
335 * we don't want to send crud past the end of i_size through
336 * compression, that's just a waste of CPU time. So, if the
337 * end of the file is before the start of our current
338 * requested range of bytes, we bail out to the uncompressed
339 * cleanup code that can deal with all of this.
341 * It isn't really the fastest way to fix things, but this is a
342 * very uncommon corner.
344 if (actual_end
<= start
)
345 goto cleanup_and_bail_uncompressed
;
347 total_compressed
= actual_end
- start
;
349 /* we want to make sure that amount of ram required to uncompress
350 * an extent is reasonable, so we limit the total size in ram
351 * of a compressed extent to 128k. This is a crucial number
352 * because it also controls how easily we can spread reads across
353 * cpus for decompression.
355 * We also want to make sure the amount of IO required to do
356 * a random read is reasonably small, so we limit the size of
357 * a compressed extent to 128k.
359 total_compressed
= min(total_compressed
, max_uncompressed
);
360 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
361 num_bytes
= max(blocksize
, num_bytes
);
362 disk_num_bytes
= num_bytes
;
367 * we do compression for mount -o compress and when the
368 * inode has not been flagged as nocompress. This flag can
369 * change at any time if we discover bad compression ratios.
371 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
372 btrfs_test_opt(root
, COMPRESS
)) {
374 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
376 ret
= btrfs_zlib_compress_pages(inode
->i_mapping
, start
,
377 total_compressed
, pages
,
378 nr_pages
, &nr_pages_ret
,
384 unsigned long offset
= total_compressed
&
385 (PAGE_CACHE_SIZE
- 1);
386 struct page
*page
= pages
[nr_pages_ret
- 1];
389 /* zero the tail end of the last page, we might be
390 * sending it down to disk
393 kaddr
= kmap_atomic(page
, KM_USER0
);
394 memset(kaddr
+ offset
, 0,
395 PAGE_CACHE_SIZE
- offset
);
396 kunmap_atomic(kaddr
, KM_USER0
);
402 trans
= btrfs_join_transaction(root
, 1);
404 btrfs_set_trans_block_group(trans
, inode
);
406 /* lets try to make an inline extent */
407 if (ret
|| total_in
< (actual_end
- start
)) {
408 /* we didn't compress the entire range, try
409 * to make an uncompressed inline extent.
411 ret
= cow_file_range_inline(trans
, root
, inode
,
412 start
, end
, 0, NULL
);
414 /* try making a compressed inline extent */
415 ret
= cow_file_range_inline(trans
, root
, inode
,
417 total_compressed
, pages
);
419 btrfs_end_transaction(trans
, root
);
422 * inline extent creation worked, we don't need
423 * to create any more async work items. Unlock
424 * and free up our temp pages.
426 extent_clear_unlock_delalloc(inode
,
427 &BTRFS_I(inode
)->io_tree
,
429 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
430 EXTENT_CLEAR_DELALLOC
|
431 EXTENT_CLEAR_ACCOUNTING
|
432 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
440 * we aren't doing an inline extent round the compressed size
441 * up to a block size boundary so the allocator does sane
444 total_compressed
= (total_compressed
+ blocksize
- 1) &
448 * one last check to make sure the compression is really a
449 * win, compare the page count read with the blocks on disk
451 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
452 ~(PAGE_CACHE_SIZE
- 1);
453 if (total_compressed
>= total_in
) {
456 disk_num_bytes
= total_compressed
;
457 num_bytes
= total_in
;
460 if (!will_compress
&& pages
) {
462 * the compression code ran but failed to make things smaller,
463 * free any pages it allocated and our page pointer array
465 for (i
= 0; i
< nr_pages_ret
; i
++) {
466 WARN_ON(pages
[i
]->mapping
);
467 page_cache_release(pages
[i
]);
471 total_compressed
= 0;
474 /* flag the file so we don't compress in the future */
475 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
480 /* the async work queues will take care of doing actual
481 * allocation on disk for these compressed pages,
482 * and will submit them to the elevator.
484 add_async_extent(async_cow
, start
, num_bytes
,
485 total_compressed
, pages
, nr_pages_ret
);
487 if (start
+ num_bytes
< end
&& start
+ num_bytes
< actual_end
) {
494 cleanup_and_bail_uncompressed
:
496 * No compression, but we still need to write the pages in
497 * the file we've been given so far. redirty the locked
498 * page if it corresponds to our extent and set things up
499 * for the async work queue to run cow_file_range to do
500 * the normal delalloc dance
502 if (page_offset(locked_page
) >= start
&&
503 page_offset(locked_page
) <= end
) {
504 __set_page_dirty_nobuffers(locked_page
);
505 /* unlocked later on in the async handlers */
507 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0);
515 for (i
= 0; i
< nr_pages_ret
; i
++) {
516 WARN_ON(pages
[i
]->mapping
);
517 page_cache_release(pages
[i
]);
525 * phase two of compressed writeback. This is the ordered portion
526 * of the code, which only gets called in the order the work was
527 * queued. We walk all the async extents created by compress_file_range
528 * and send them down to the disk.
530 static noinline
int submit_compressed_extents(struct inode
*inode
,
531 struct async_cow
*async_cow
)
533 struct async_extent
*async_extent
;
535 struct btrfs_trans_handle
*trans
;
536 struct btrfs_key ins
;
537 struct extent_map
*em
;
538 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
539 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
540 struct extent_io_tree
*io_tree
;
543 if (list_empty(&async_cow
->extents
))
546 trans
= btrfs_join_transaction(root
, 1);
548 while (!list_empty(&async_cow
->extents
)) {
549 async_extent
= list_entry(async_cow
->extents
.next
,
550 struct async_extent
, list
);
551 list_del(&async_extent
->list
);
553 io_tree
= &BTRFS_I(inode
)->io_tree
;
555 /* did the compression code fall back to uncompressed IO? */
556 if (!async_extent
->pages
) {
557 int page_started
= 0;
558 unsigned long nr_written
= 0;
560 lock_extent(io_tree
, async_extent
->start
,
561 async_extent
->start
+
562 async_extent
->ram_size
- 1, GFP_NOFS
);
564 /* allocate blocks */
565 cow_file_range(inode
, async_cow
->locked_page
,
567 async_extent
->start
+
568 async_extent
->ram_size
- 1,
569 &page_started
, &nr_written
, 0);
572 * if page_started, cow_file_range inserted an
573 * inline extent and took care of all the unlocking
574 * and IO for us. Otherwise, we need to submit
575 * all those pages down to the drive.
578 extent_write_locked_range(io_tree
,
579 inode
, async_extent
->start
,
580 async_extent
->start
+
581 async_extent
->ram_size
- 1,
589 lock_extent(io_tree
, async_extent
->start
,
590 async_extent
->start
+ async_extent
->ram_size
- 1,
593 * here we're doing allocation and writeback of the
596 btrfs_drop_extent_cache(inode
, async_extent
->start
,
597 async_extent
->start
+
598 async_extent
->ram_size
- 1, 0);
600 ret
= btrfs_reserve_extent(trans
, root
,
601 async_extent
->compressed_size
,
602 async_extent
->compressed_size
,
606 em
= alloc_extent_map(GFP_NOFS
);
607 em
->start
= async_extent
->start
;
608 em
->len
= async_extent
->ram_size
;
609 em
->orig_start
= em
->start
;
611 em
->block_start
= ins
.objectid
;
612 em
->block_len
= ins
.offset
;
613 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
614 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
615 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
618 write_lock(&em_tree
->lock
);
619 ret
= add_extent_mapping(em_tree
, em
);
620 write_unlock(&em_tree
->lock
);
621 if (ret
!= -EEXIST
) {
625 btrfs_drop_extent_cache(inode
, async_extent
->start
,
626 async_extent
->start
+
627 async_extent
->ram_size
- 1, 0);
630 ret
= btrfs_add_ordered_extent(inode
, async_extent
->start
,
632 async_extent
->ram_size
,
634 BTRFS_ORDERED_COMPRESSED
);
637 btrfs_end_transaction(trans
, root
);
640 * clear dirty, set writeback and unlock the pages.
642 extent_clear_unlock_delalloc(inode
,
643 &BTRFS_I(inode
)->io_tree
,
645 async_extent
->start
+
646 async_extent
->ram_size
- 1,
647 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
648 EXTENT_CLEAR_UNLOCK
|
649 EXTENT_CLEAR_DELALLOC
|
650 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
652 ret
= btrfs_submit_compressed_write(inode
,
654 async_extent
->ram_size
,
656 ins
.offset
, async_extent
->pages
,
657 async_extent
->nr_pages
);
660 trans
= btrfs_join_transaction(root
, 1);
661 alloc_hint
= ins
.objectid
+ ins
.offset
;
666 btrfs_end_transaction(trans
, root
);
671 * when extent_io.c finds a delayed allocation range in the file,
672 * the call backs end up in this code. The basic idea is to
673 * allocate extents on disk for the range, and create ordered data structs
674 * in ram to track those extents.
676 * locked_page is the page that writepage had locked already. We use
677 * it to make sure we don't do extra locks or unlocks.
679 * *page_started is set to one if we unlock locked_page and do everything
680 * required to start IO on it. It may be clean and already done with
683 static noinline
int cow_file_range(struct inode
*inode
,
684 struct page
*locked_page
,
685 u64 start
, u64 end
, int *page_started
,
686 unsigned long *nr_written
,
689 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
690 struct btrfs_trans_handle
*trans
;
693 unsigned long ram_size
;
696 u64 blocksize
= root
->sectorsize
;
698 u64 isize
= i_size_read(inode
);
699 struct btrfs_key ins
;
700 struct extent_map
*em
;
701 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
704 trans
= btrfs_join_transaction(root
, 1);
706 btrfs_set_trans_block_group(trans
, inode
);
708 actual_end
= min_t(u64
, isize
, end
+ 1);
710 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
711 num_bytes
= max(blocksize
, num_bytes
);
712 disk_num_bytes
= num_bytes
;
716 /* lets try to make an inline extent */
717 ret
= cow_file_range_inline(trans
, root
, inode
,
718 start
, end
, 0, NULL
);
720 extent_clear_unlock_delalloc(inode
,
721 &BTRFS_I(inode
)->io_tree
,
723 EXTENT_CLEAR_UNLOCK_PAGE
|
724 EXTENT_CLEAR_UNLOCK
|
725 EXTENT_CLEAR_DELALLOC
|
726 EXTENT_CLEAR_ACCOUNTING
|
728 EXTENT_SET_WRITEBACK
|
729 EXTENT_END_WRITEBACK
);
730 *nr_written
= *nr_written
+
731 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
738 BUG_ON(disk_num_bytes
>
739 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
742 read_lock(&BTRFS_I(inode
)->extent_tree
.lock
);
743 em
= search_extent_mapping(&BTRFS_I(inode
)->extent_tree
,
746 alloc_hint
= em
->block_start
;
749 read_unlock(&BTRFS_I(inode
)->extent_tree
.lock
);
750 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
752 while (disk_num_bytes
> 0) {
755 cur_alloc_size
= min(disk_num_bytes
, root
->fs_info
->max_extent
);
756 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
757 root
->sectorsize
, 0, alloc_hint
,
761 em
= alloc_extent_map(GFP_NOFS
);
763 em
->orig_start
= em
->start
;
764 ram_size
= ins
.offset
;
765 em
->len
= ins
.offset
;
767 em
->block_start
= ins
.objectid
;
768 em
->block_len
= ins
.offset
;
769 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
770 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
773 write_lock(&em_tree
->lock
);
774 ret
= add_extent_mapping(em_tree
, em
);
775 write_unlock(&em_tree
->lock
);
776 if (ret
!= -EEXIST
) {
780 btrfs_drop_extent_cache(inode
, start
,
781 start
+ ram_size
- 1, 0);
784 cur_alloc_size
= ins
.offset
;
785 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
786 ram_size
, cur_alloc_size
, 0);
789 if (root
->root_key
.objectid
==
790 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
791 ret
= btrfs_reloc_clone_csums(inode
, start
,
796 if (disk_num_bytes
< cur_alloc_size
)
799 /* we're not doing compressed IO, don't unlock the first
800 * page (which the caller expects to stay locked), don't
801 * clear any dirty bits and don't set any writeback bits
803 * Do set the Private2 bit so we know this page was properly
804 * setup for writepage
806 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
807 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
810 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
811 start
, start
+ ram_size
- 1,
813 disk_num_bytes
-= cur_alloc_size
;
814 num_bytes
-= cur_alloc_size
;
815 alloc_hint
= ins
.objectid
+ ins
.offset
;
816 start
+= cur_alloc_size
;
820 btrfs_end_transaction(trans
, root
);
826 * work queue call back to started compression on a file and pages
828 static noinline
void async_cow_start(struct btrfs_work
*work
)
830 struct async_cow
*async_cow
;
832 async_cow
= container_of(work
, struct async_cow
, work
);
834 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
835 async_cow
->start
, async_cow
->end
, async_cow
,
838 async_cow
->inode
= NULL
;
842 * work queue call back to submit previously compressed pages
844 static noinline
void async_cow_submit(struct btrfs_work
*work
)
846 struct async_cow
*async_cow
;
847 struct btrfs_root
*root
;
848 unsigned long nr_pages
;
850 async_cow
= container_of(work
, struct async_cow
, work
);
852 root
= async_cow
->root
;
853 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
856 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
858 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
860 waitqueue_active(&root
->fs_info
->async_submit_wait
))
861 wake_up(&root
->fs_info
->async_submit_wait
);
863 if (async_cow
->inode
)
864 submit_compressed_extents(async_cow
->inode
, async_cow
);
867 static noinline
void async_cow_free(struct btrfs_work
*work
)
869 struct async_cow
*async_cow
;
870 async_cow
= container_of(work
, struct async_cow
, work
);
874 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
875 u64 start
, u64 end
, int *page_started
,
876 unsigned long *nr_written
)
878 struct async_cow
*async_cow
;
879 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
880 unsigned long nr_pages
;
882 int limit
= 10 * 1024 * 1042;
884 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
885 1, 0, NULL
, GFP_NOFS
);
886 while (start
< end
) {
887 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
888 async_cow
->inode
= inode
;
889 async_cow
->root
= root
;
890 async_cow
->locked_page
= locked_page
;
891 async_cow
->start
= start
;
893 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
896 cur_end
= min(end
, start
+ 512 * 1024 - 1);
898 async_cow
->end
= cur_end
;
899 INIT_LIST_HEAD(&async_cow
->extents
);
901 async_cow
->work
.func
= async_cow_start
;
902 async_cow
->work
.ordered_func
= async_cow_submit
;
903 async_cow
->work
.ordered_free
= async_cow_free
;
904 async_cow
->work
.flags
= 0;
906 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
908 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
910 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
913 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
914 wait_event(root
->fs_info
->async_submit_wait
,
915 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
919 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
920 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
921 wait_event(root
->fs_info
->async_submit_wait
,
922 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
926 *nr_written
+= nr_pages
;
933 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
934 u64 bytenr
, u64 num_bytes
)
937 struct btrfs_ordered_sum
*sums
;
940 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
941 bytenr
+ num_bytes
- 1, &list
);
942 if (ret
== 0 && list_empty(&list
))
945 while (!list_empty(&list
)) {
946 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
947 list_del(&sums
->list
);
954 * when nowcow writeback call back. This checks for snapshots or COW copies
955 * of the extents that exist in the file, and COWs the file as required.
957 * If no cow copies or snapshots exist, we write directly to the existing
960 static noinline
int run_delalloc_nocow(struct inode
*inode
,
961 struct page
*locked_page
,
962 u64 start
, u64 end
, int *page_started
, int force
,
963 unsigned long *nr_written
)
965 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
966 struct btrfs_trans_handle
*trans
;
967 struct extent_buffer
*leaf
;
968 struct btrfs_path
*path
;
969 struct btrfs_file_extent_item
*fi
;
970 struct btrfs_key found_key
;
983 path
= btrfs_alloc_path();
985 trans
= btrfs_join_transaction(root
, 1);
991 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
994 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
995 leaf
= path
->nodes
[0];
996 btrfs_item_key_to_cpu(leaf
, &found_key
,
998 if (found_key
.objectid
== inode
->i_ino
&&
999 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1004 leaf
= path
->nodes
[0];
1005 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1006 ret
= btrfs_next_leaf(root
, path
);
1011 leaf
= path
->nodes
[0];
1017 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1019 if (found_key
.objectid
> inode
->i_ino
||
1020 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1021 found_key
.offset
> end
)
1024 if (found_key
.offset
> cur_offset
) {
1025 extent_end
= found_key
.offset
;
1030 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1031 struct btrfs_file_extent_item
);
1032 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1034 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1035 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1036 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1037 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1038 extent_end
= found_key
.offset
+
1039 btrfs_file_extent_num_bytes(leaf
, fi
);
1040 if (extent_end
<= start
) {
1044 if (disk_bytenr
== 0)
1046 if (btrfs_file_extent_compression(leaf
, fi
) ||
1047 btrfs_file_extent_encryption(leaf
, fi
) ||
1048 btrfs_file_extent_other_encoding(leaf
, fi
))
1050 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1052 if (btrfs_extent_readonly(root
, disk_bytenr
))
1054 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
1056 extent_offset
, disk_bytenr
))
1058 disk_bytenr
+= extent_offset
;
1059 disk_bytenr
+= cur_offset
- found_key
.offset
;
1060 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1062 * force cow if csum exists in the range.
1063 * this ensure that csum for a given extent are
1064 * either valid or do not exist.
1066 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1069 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1070 extent_end
= found_key
.offset
+
1071 btrfs_file_extent_inline_len(leaf
, fi
);
1072 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1077 if (extent_end
<= start
) {
1082 if (cow_start
== (u64
)-1)
1083 cow_start
= cur_offset
;
1084 cur_offset
= extent_end
;
1085 if (cur_offset
> end
)
1091 btrfs_release_path(root
, path
);
1092 if (cow_start
!= (u64
)-1) {
1093 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1094 found_key
.offset
- 1, page_started
,
1097 cow_start
= (u64
)-1;
1100 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1101 struct extent_map
*em
;
1102 struct extent_map_tree
*em_tree
;
1103 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1104 em
= alloc_extent_map(GFP_NOFS
);
1105 em
->start
= cur_offset
;
1106 em
->orig_start
= em
->start
;
1107 em
->len
= num_bytes
;
1108 em
->block_len
= num_bytes
;
1109 em
->block_start
= disk_bytenr
;
1110 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1111 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1113 write_lock(&em_tree
->lock
);
1114 ret
= add_extent_mapping(em_tree
, em
);
1115 write_unlock(&em_tree
->lock
);
1116 if (ret
!= -EEXIST
) {
1117 free_extent_map(em
);
1120 btrfs_drop_extent_cache(inode
, em
->start
,
1121 em
->start
+ em
->len
- 1, 0);
1123 type
= BTRFS_ORDERED_PREALLOC
;
1125 type
= BTRFS_ORDERED_NOCOW
;
1128 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1129 num_bytes
, num_bytes
, type
);
1132 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1133 cur_offset
, cur_offset
+ num_bytes
- 1,
1134 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1135 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1136 EXTENT_SET_PRIVATE2
);
1137 cur_offset
= extent_end
;
1138 if (cur_offset
> end
)
1141 btrfs_release_path(root
, path
);
1143 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1144 cow_start
= cur_offset
;
1145 if (cow_start
!= (u64
)-1) {
1146 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1147 page_started
, nr_written
, 1);
1151 ret
= btrfs_end_transaction(trans
, root
);
1153 btrfs_free_path(path
);
1158 * extent_io.c call back to do delayed allocation processing
1160 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1161 u64 start
, u64 end
, int *page_started
,
1162 unsigned long *nr_written
)
1165 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1167 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1168 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1169 page_started
, 1, nr_written
);
1170 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1171 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1172 page_started
, 0, nr_written
);
1173 else if (!btrfs_test_opt(root
, COMPRESS
))
1174 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1175 page_started
, nr_written
, 1);
1177 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1178 page_started
, nr_written
);
1182 static int btrfs_split_extent_hook(struct inode
*inode
,
1183 struct extent_state
*orig
, u64 split
)
1185 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1188 if (!(orig
->state
& EXTENT_DELALLOC
))
1191 size
= orig
->end
- orig
->start
+ 1;
1192 if (size
> root
->fs_info
->max_extent
) {
1196 new_size
= orig
->end
- split
+ 1;
1197 num_extents
= div64_u64(size
+ root
->fs_info
->max_extent
- 1,
1198 root
->fs_info
->max_extent
);
1201 * if we break a large extent up then leave oustanding_extents
1202 * be, since we've already accounted for the large extent.
1204 if (div64_u64(new_size
+ root
->fs_info
->max_extent
- 1,
1205 root
->fs_info
->max_extent
) < num_extents
)
1209 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
1210 BTRFS_I(inode
)->outstanding_extents
++;
1211 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
1217 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1218 * extents so we can keep track of new extents that are just merged onto old
1219 * extents, such as when we are doing sequential writes, so we can properly
1220 * account for the metadata space we'll need.
1222 static int btrfs_merge_extent_hook(struct inode
*inode
,
1223 struct extent_state
*new,
1224 struct extent_state
*other
)
1226 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1227 u64 new_size
, old_size
;
1230 /* not delalloc, ignore it */
1231 if (!(other
->state
& EXTENT_DELALLOC
))
1234 old_size
= other
->end
- other
->start
+ 1;
1235 if (new->start
< other
->start
)
1236 new_size
= other
->end
- new->start
+ 1;
1238 new_size
= new->end
- other
->start
+ 1;
1240 /* we're not bigger than the max, unreserve the space and go */
1241 if (new_size
<= root
->fs_info
->max_extent
) {
1242 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
1243 BTRFS_I(inode
)->outstanding_extents
--;
1244 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
1249 * If we grew by another max_extent, just return, we want to keep that
1252 num_extents
= div64_u64(old_size
+ root
->fs_info
->max_extent
- 1,
1253 root
->fs_info
->max_extent
);
1254 if (div64_u64(new_size
+ root
->fs_info
->max_extent
- 1,
1255 root
->fs_info
->max_extent
) > num_extents
)
1258 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
1259 BTRFS_I(inode
)->outstanding_extents
--;
1260 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
1266 * extent_io.c set_bit_hook, used to track delayed allocation
1267 * bytes in this file, and to maintain the list of inodes that
1268 * have pending delalloc work to be done.
1270 static int btrfs_set_bit_hook(struct inode
*inode
, u64 start
, u64 end
,
1271 unsigned long old
, unsigned long bits
)
1275 * set_bit and clear bit hooks normally require _irqsave/restore
1276 * but in this case, we are only testeing for the DELALLOC
1277 * bit, which is only set or cleared with irqs on
1279 if (!(old
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1280 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1282 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
1283 BTRFS_I(inode
)->outstanding_extents
++;
1284 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
1285 btrfs_delalloc_reserve_space(root
, inode
, end
- start
+ 1);
1286 spin_lock(&root
->fs_info
->delalloc_lock
);
1287 BTRFS_I(inode
)->delalloc_bytes
+= end
- start
+ 1;
1288 root
->fs_info
->delalloc_bytes
+= end
- start
+ 1;
1289 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1290 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1291 &root
->fs_info
->delalloc_inodes
);
1293 spin_unlock(&root
->fs_info
->delalloc_lock
);
1299 * extent_io.c clear_bit_hook, see set_bit_hook for why
1301 static int btrfs_clear_bit_hook(struct inode
*inode
,
1302 struct extent_state
*state
, unsigned long bits
)
1305 * set_bit and clear bit hooks normally require _irqsave/restore
1306 * but in this case, we are only testeing for the DELALLOC
1307 * bit, which is only set or cleared with irqs on
1309 if ((state
->state
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1310 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1312 if (bits
& EXTENT_DO_ACCOUNTING
) {
1313 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
1314 BTRFS_I(inode
)->outstanding_extents
--;
1315 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
1316 btrfs_unreserve_metadata_for_delalloc(root
, inode
, 1);
1319 spin_lock(&root
->fs_info
->delalloc_lock
);
1320 if (state
->end
- state
->start
+ 1 >
1321 root
->fs_info
->delalloc_bytes
) {
1322 printk(KERN_INFO
"btrfs warning: delalloc account "
1324 (unsigned long long)
1325 state
->end
- state
->start
+ 1,
1326 (unsigned long long)
1327 root
->fs_info
->delalloc_bytes
);
1328 btrfs_delalloc_free_space(root
, inode
, (u64
)-1);
1329 root
->fs_info
->delalloc_bytes
= 0;
1330 BTRFS_I(inode
)->delalloc_bytes
= 0;
1332 btrfs_delalloc_free_space(root
, inode
,
1335 root
->fs_info
->delalloc_bytes
-= state
->end
-
1337 BTRFS_I(inode
)->delalloc_bytes
-= state
->end
-
1340 if (BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1341 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1342 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1344 spin_unlock(&root
->fs_info
->delalloc_lock
);
1350 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1351 * we don't create bios that span stripes or chunks
1353 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1354 size_t size
, struct bio
*bio
,
1355 unsigned long bio_flags
)
1357 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1358 struct btrfs_mapping_tree
*map_tree
;
1359 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1364 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1367 length
= bio
->bi_size
;
1368 map_tree
= &root
->fs_info
->mapping_tree
;
1369 map_length
= length
;
1370 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1371 &map_length
, NULL
, 0);
1373 if (map_length
< length
+ size
)
1379 * in order to insert checksums into the metadata in large chunks,
1380 * we wait until bio submission time. All the pages in the bio are
1381 * checksummed and sums are attached onto the ordered extent record.
1383 * At IO completion time the cums attached on the ordered extent record
1384 * are inserted into the btree
1386 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1387 struct bio
*bio
, int mirror_num
,
1388 unsigned long bio_flags
)
1390 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1393 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1399 * in order to insert checksums into the metadata in large chunks,
1400 * we wait until bio submission time. All the pages in the bio are
1401 * checksummed and sums are attached onto the ordered extent record.
1403 * At IO completion time the cums attached on the ordered extent record
1404 * are inserted into the btree
1406 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1407 int mirror_num
, unsigned long bio_flags
)
1409 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1410 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1414 * extent_io.c submission hook. This does the right thing for csum calculation
1415 * on write, or reading the csums from the tree before a read
1417 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1418 int mirror_num
, unsigned long bio_flags
)
1420 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1424 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1426 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1429 if (!(rw
& (1 << BIO_RW
))) {
1430 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1431 return btrfs_submit_compressed_read(inode
, bio
,
1432 mirror_num
, bio_flags
);
1433 } else if (!skip_sum
)
1434 btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1436 } else if (!skip_sum
) {
1437 /* csum items have already been cloned */
1438 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1440 /* we're doing a write, do the async checksumming */
1441 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1442 inode
, rw
, bio
, mirror_num
,
1443 bio_flags
, __btrfs_submit_bio_start
,
1444 __btrfs_submit_bio_done
);
1448 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1452 * given a list of ordered sums record them in the inode. This happens
1453 * at IO completion time based on sums calculated at bio submission time.
1455 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1456 struct inode
*inode
, u64 file_offset
,
1457 struct list_head
*list
)
1459 struct btrfs_ordered_sum
*sum
;
1461 btrfs_set_trans_block_group(trans
, inode
);
1463 list_for_each_entry(sum
, list
, list
) {
1464 btrfs_csum_file_blocks(trans
,
1465 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1470 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
)
1472 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1474 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1478 /* see btrfs_writepage_start_hook for details on why this is required */
1479 struct btrfs_writepage_fixup
{
1481 struct btrfs_work work
;
1484 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1486 struct btrfs_writepage_fixup
*fixup
;
1487 struct btrfs_ordered_extent
*ordered
;
1489 struct inode
*inode
;
1493 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1497 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1498 ClearPageChecked(page
);
1502 inode
= page
->mapping
->host
;
1503 page_start
= page_offset(page
);
1504 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1506 lock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, GFP_NOFS
);
1508 /* already ordered? We're done */
1509 if (PagePrivate2(page
))
1512 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1514 unlock_extent(&BTRFS_I(inode
)->io_tree
, page_start
,
1515 page_end
, GFP_NOFS
);
1517 btrfs_start_ordered_extent(inode
, ordered
, 1);
1521 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
1522 ClearPageChecked(page
);
1524 unlock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, GFP_NOFS
);
1527 page_cache_release(page
);
1531 * There are a few paths in the higher layers of the kernel that directly
1532 * set the page dirty bit without asking the filesystem if it is a
1533 * good idea. This causes problems because we want to make sure COW
1534 * properly happens and the data=ordered rules are followed.
1536 * In our case any range that doesn't have the ORDERED bit set
1537 * hasn't been properly setup for IO. We kick off an async process
1538 * to fix it up. The async helper will wait for ordered extents, set
1539 * the delalloc bit and make it safe to write the page.
1541 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1543 struct inode
*inode
= page
->mapping
->host
;
1544 struct btrfs_writepage_fixup
*fixup
;
1545 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1547 /* this page is properly in the ordered list */
1548 if (TestClearPagePrivate2(page
))
1551 if (PageChecked(page
))
1554 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1558 SetPageChecked(page
);
1559 page_cache_get(page
);
1560 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1562 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1566 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1567 struct inode
*inode
, u64 file_pos
,
1568 u64 disk_bytenr
, u64 disk_num_bytes
,
1569 u64 num_bytes
, u64 ram_bytes
,
1571 u8 compression
, u8 encryption
,
1572 u16 other_encoding
, int extent_type
)
1574 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1575 struct btrfs_file_extent_item
*fi
;
1576 struct btrfs_path
*path
;
1577 struct extent_buffer
*leaf
;
1578 struct btrfs_key ins
;
1582 path
= btrfs_alloc_path();
1585 path
->leave_spinning
= 1;
1588 * we may be replacing one extent in the tree with another.
1589 * The new extent is pinned in the extent map, and we don't want
1590 * to drop it from the cache until it is completely in the btree.
1592 * So, tell btrfs_drop_extents to leave this extent in the cache.
1593 * the caller is expected to unpin it and allow it to be merged
1596 ret
= btrfs_drop_extents(trans
, root
, inode
, file_pos
,
1597 file_pos
+ num_bytes
, locked_end
,
1598 file_pos
, &hint
, 0);
1601 ins
.objectid
= inode
->i_ino
;
1602 ins
.offset
= file_pos
;
1603 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1604 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1606 leaf
= path
->nodes
[0];
1607 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1608 struct btrfs_file_extent_item
);
1609 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1610 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1611 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1612 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1613 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1614 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1615 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1616 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1617 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1618 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1620 btrfs_unlock_up_safe(path
, 1);
1621 btrfs_set_lock_blocking(leaf
);
1623 btrfs_mark_buffer_dirty(leaf
);
1625 inode_add_bytes(inode
, num_bytes
);
1627 ins
.objectid
= disk_bytenr
;
1628 ins
.offset
= disk_num_bytes
;
1629 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1630 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1631 root
->root_key
.objectid
,
1632 inode
->i_ino
, file_pos
, &ins
);
1634 btrfs_free_path(path
);
1640 * helper function for btrfs_finish_ordered_io, this
1641 * just reads in some of the csum leaves to prime them into ram
1642 * before we start the transaction. It limits the amount of btree
1643 * reads required while inside the transaction.
1645 static noinline
void reada_csum(struct btrfs_root
*root
,
1646 struct btrfs_path
*path
,
1647 struct btrfs_ordered_extent
*ordered_extent
)
1649 struct btrfs_ordered_sum
*sum
;
1652 sum
= list_entry(ordered_extent
->list
.next
, struct btrfs_ordered_sum
,
1654 bytenr
= sum
->sums
[0].bytenr
;
1657 * we don't care about the results, the point of this search is
1658 * just to get the btree leaves into ram
1660 btrfs_lookup_csum(NULL
, root
->fs_info
->csum_root
, path
, bytenr
, 0);
1663 /* as ordered data IO finishes, this gets called so we can finish
1664 * an ordered extent if the range of bytes in the file it covers are
1667 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1669 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1670 struct btrfs_trans_handle
*trans
;
1671 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1672 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1673 struct btrfs_path
*path
;
1677 ret
= btrfs_dec_test_ordered_pending(inode
, start
, end
- start
+ 1);
1682 * before we join the transaction, try to do some of our IO.
1683 * This will limit the amount of IO that we have to do with
1684 * the transaction running. We're unlikely to need to do any
1685 * IO if the file extents are new, the disk_i_size checks
1686 * covers the most common case.
1688 if (start
< BTRFS_I(inode
)->disk_i_size
) {
1689 path
= btrfs_alloc_path();
1691 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
1694 ordered_extent
= btrfs_lookup_ordered_extent(inode
,
1696 if (!list_empty(&ordered_extent
->list
)) {
1697 btrfs_release_path(root
, path
);
1698 reada_csum(root
, path
, ordered_extent
);
1700 btrfs_free_path(path
);
1704 trans
= btrfs_join_transaction(root
, 1);
1706 if (!ordered_extent
)
1707 ordered_extent
= btrfs_lookup_ordered_extent(inode
, start
);
1708 BUG_ON(!ordered_extent
);
1709 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
))
1712 lock_extent(io_tree
, ordered_extent
->file_offset
,
1713 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1716 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1718 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1720 ret
= btrfs_mark_extent_written(trans
, root
, inode
,
1721 ordered_extent
->file_offset
,
1722 ordered_extent
->file_offset
+
1723 ordered_extent
->len
);
1726 ret
= insert_reserved_file_extent(trans
, inode
,
1727 ordered_extent
->file_offset
,
1728 ordered_extent
->start
,
1729 ordered_extent
->disk_len
,
1730 ordered_extent
->len
,
1731 ordered_extent
->len
,
1732 ordered_extent
->file_offset
+
1733 ordered_extent
->len
,
1735 BTRFS_FILE_EXTENT_REG
);
1736 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1737 ordered_extent
->file_offset
,
1738 ordered_extent
->len
);
1741 unlock_extent(io_tree
, ordered_extent
->file_offset
,
1742 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1745 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1746 &ordered_extent
->list
);
1748 mutex_lock(&BTRFS_I(inode
)->extent_mutex
);
1749 btrfs_ordered_update_i_size(inode
, ordered_extent
);
1750 btrfs_update_inode(trans
, root
, inode
);
1751 btrfs_remove_ordered_extent(inode
, ordered_extent
);
1752 mutex_unlock(&BTRFS_I(inode
)->extent_mutex
);
1755 btrfs_put_ordered_extent(ordered_extent
);
1756 /* once for the tree */
1757 btrfs_put_ordered_extent(ordered_extent
);
1759 btrfs_end_transaction(trans
, root
);
1763 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1764 struct extent_state
*state
, int uptodate
)
1766 ClearPagePrivate2(page
);
1767 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1771 * When IO fails, either with EIO or csum verification fails, we
1772 * try other mirrors that might have a good copy of the data. This
1773 * io_failure_record is used to record state as we go through all the
1774 * mirrors. If another mirror has good data, the page is set up to date
1775 * and things continue. If a good mirror can't be found, the original
1776 * bio end_io callback is called to indicate things have failed.
1778 struct io_failure_record
{
1783 unsigned long bio_flags
;
1787 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1788 struct page
*page
, u64 start
, u64 end
,
1789 struct extent_state
*state
)
1791 struct io_failure_record
*failrec
= NULL
;
1793 struct extent_map
*em
;
1794 struct inode
*inode
= page
->mapping
->host
;
1795 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1796 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1803 ret
= get_state_private(failure_tree
, start
, &private);
1805 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1808 failrec
->start
= start
;
1809 failrec
->len
= end
- start
+ 1;
1810 failrec
->last_mirror
= 0;
1811 failrec
->bio_flags
= 0;
1813 read_lock(&em_tree
->lock
);
1814 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1815 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1816 free_extent_map(em
);
1819 read_unlock(&em_tree
->lock
);
1821 if (!em
|| IS_ERR(em
)) {
1825 logical
= start
- em
->start
;
1826 logical
= em
->block_start
+ logical
;
1827 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1828 logical
= em
->block_start
;
1829 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1831 failrec
->logical
= logical
;
1832 free_extent_map(em
);
1833 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1834 EXTENT_DIRTY
, GFP_NOFS
);
1835 set_state_private(failure_tree
, start
,
1836 (u64
)(unsigned long)failrec
);
1838 failrec
= (struct io_failure_record
*)(unsigned long)private;
1840 num_copies
= btrfs_num_copies(
1841 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1842 failrec
->logical
, failrec
->len
);
1843 failrec
->last_mirror
++;
1845 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1846 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1849 if (state
&& state
->start
!= failrec
->start
)
1851 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1853 if (!state
|| failrec
->last_mirror
> num_copies
) {
1854 set_state_private(failure_tree
, failrec
->start
, 0);
1855 clear_extent_bits(failure_tree
, failrec
->start
,
1856 failrec
->start
+ failrec
->len
- 1,
1857 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1861 bio
= bio_alloc(GFP_NOFS
, 1);
1862 bio
->bi_private
= state
;
1863 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1864 bio
->bi_sector
= failrec
->logical
>> 9;
1865 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1868 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1869 if (failed_bio
->bi_rw
& (1 << BIO_RW
))
1874 BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1875 failrec
->last_mirror
,
1876 failrec
->bio_flags
);
1881 * each time an IO finishes, we do a fast check in the IO failure tree
1882 * to see if we need to process or clean up an io_failure_record
1884 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1887 u64 private_failure
;
1888 struct io_failure_record
*failure
;
1892 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1893 (u64
)-1, 1, EXTENT_DIRTY
)) {
1894 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1895 start
, &private_failure
);
1897 failure
= (struct io_failure_record
*)(unsigned long)
1899 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1901 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1903 failure
->start
+ failure
->len
- 1,
1904 EXTENT_DIRTY
| EXTENT_LOCKED
,
1913 * when reads are done, we need to check csums to verify the data is correct
1914 * if there's a match, we allow the bio to finish. If not, we go through
1915 * the io_failure_record routines to find good copies
1917 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1918 struct extent_state
*state
)
1920 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1921 struct inode
*inode
= page
->mapping
->host
;
1922 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1924 u64
private = ~(u32
)0;
1926 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1929 if (PageChecked(page
)) {
1930 ClearPageChecked(page
);
1934 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1937 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1938 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
1939 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1944 if (state
&& state
->start
== start
) {
1945 private = state
->private;
1948 ret
= get_state_private(io_tree
, start
, &private);
1950 kaddr
= kmap_atomic(page
, KM_USER0
);
1954 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1955 btrfs_csum_final(csum
, (char *)&csum
);
1956 if (csum
!= private)
1959 kunmap_atomic(kaddr
, KM_USER0
);
1961 /* if the io failure tree for this inode is non-empty,
1962 * check to see if we've recovered from a failed IO
1964 btrfs_clean_io_failures(inode
, start
);
1968 if (printk_ratelimit()) {
1969 printk(KERN_INFO
"btrfs csum failed ino %lu off %llu csum %u "
1970 "private %llu\n", page
->mapping
->host
->i_ino
,
1971 (unsigned long long)start
, csum
,
1972 (unsigned long long)private);
1974 memset(kaddr
+ offset
, 1, end
- start
+ 1);
1975 flush_dcache_page(page
);
1976 kunmap_atomic(kaddr
, KM_USER0
);
1983 * This creates an orphan entry for the given inode in case something goes
1984 * wrong in the middle of an unlink/truncate.
1986 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
1988 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1991 spin_lock(&root
->list_lock
);
1993 /* already on the orphan list, we're good */
1994 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
1995 spin_unlock(&root
->list_lock
);
1999 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2001 spin_unlock(&root
->list_lock
);
2004 * insert an orphan item to track this unlinked/truncated file
2006 ret
= btrfs_insert_orphan_item(trans
, root
, inode
->i_ino
);
2012 * We have done the truncate/delete so we can go ahead and remove the orphan
2013 * item for this particular inode.
2015 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2017 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2020 spin_lock(&root
->list_lock
);
2022 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2023 spin_unlock(&root
->list_lock
);
2027 list_del_init(&BTRFS_I(inode
)->i_orphan
);
2029 spin_unlock(&root
->list_lock
);
2033 spin_unlock(&root
->list_lock
);
2035 ret
= btrfs_del_orphan_item(trans
, root
, inode
->i_ino
);
2041 * this cleans up any orphans that may be left on the list from the last use
2044 void btrfs_orphan_cleanup(struct btrfs_root
*root
)
2046 struct btrfs_path
*path
;
2047 struct extent_buffer
*leaf
;
2048 struct btrfs_item
*item
;
2049 struct btrfs_key key
, found_key
;
2050 struct btrfs_trans_handle
*trans
;
2051 struct inode
*inode
;
2052 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2054 path
= btrfs_alloc_path();
2059 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2060 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2061 key
.offset
= (u64
)-1;
2065 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2067 printk(KERN_ERR
"Error searching slot for orphan: %d"
2073 * if ret == 0 means we found what we were searching for, which
2074 * is weird, but possible, so only screw with path if we didnt
2075 * find the key and see if we have stuff that matches
2078 if (path
->slots
[0] == 0)
2083 /* pull out the item */
2084 leaf
= path
->nodes
[0];
2085 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
2086 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2088 /* make sure the item matches what we want */
2089 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2091 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2094 /* release the path since we're done with it */
2095 btrfs_release_path(root
, path
);
2098 * this is where we are basically btrfs_lookup, without the
2099 * crossing root thing. we store the inode number in the
2100 * offset of the orphan item.
2102 found_key
.objectid
= found_key
.offset
;
2103 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2104 found_key
.offset
= 0;
2105 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
);
2110 * add this inode to the orphan list so btrfs_orphan_del does
2111 * the proper thing when we hit it
2113 spin_lock(&root
->list_lock
);
2114 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2115 spin_unlock(&root
->list_lock
);
2118 * if this is a bad inode, means we actually succeeded in
2119 * removing the inode, but not the orphan record, which means
2120 * we need to manually delete the orphan since iput will just
2121 * do a destroy_inode
2123 if (is_bad_inode(inode
)) {
2124 trans
= btrfs_start_transaction(root
, 1);
2125 btrfs_orphan_del(trans
, inode
);
2126 btrfs_end_transaction(trans
, root
);
2131 /* if we have links, this was a truncate, lets do that */
2132 if (inode
->i_nlink
) {
2134 btrfs_truncate(inode
);
2139 /* this will do delete_inode and everything for us */
2144 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2146 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2148 btrfs_free_path(path
);
2152 * very simple check to peek ahead in the leaf looking for xattrs. If we
2153 * don't find any xattrs, we know there can't be any acls.
2155 * slot is the slot the inode is in, objectid is the objectid of the inode
2157 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2158 int slot
, u64 objectid
)
2160 u32 nritems
= btrfs_header_nritems(leaf
);
2161 struct btrfs_key found_key
;
2165 while (slot
< nritems
) {
2166 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2168 /* we found a different objectid, there must not be acls */
2169 if (found_key
.objectid
!= objectid
)
2172 /* we found an xattr, assume we've got an acl */
2173 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2177 * we found a key greater than an xattr key, there can't
2178 * be any acls later on
2180 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2187 * it goes inode, inode backrefs, xattrs, extents,
2188 * so if there are a ton of hard links to an inode there can
2189 * be a lot of backrefs. Don't waste time searching too hard,
2190 * this is just an optimization
2195 /* we hit the end of the leaf before we found an xattr or
2196 * something larger than an xattr. We have to assume the inode
2203 * read an inode from the btree into the in-memory inode
2205 static void btrfs_read_locked_inode(struct inode
*inode
)
2207 struct btrfs_path
*path
;
2208 struct extent_buffer
*leaf
;
2209 struct btrfs_inode_item
*inode_item
;
2210 struct btrfs_timespec
*tspec
;
2211 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2212 struct btrfs_key location
;
2214 u64 alloc_group_block
;
2218 path
= btrfs_alloc_path();
2220 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2222 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2226 leaf
= path
->nodes
[0];
2227 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2228 struct btrfs_inode_item
);
2230 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2231 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
2232 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2233 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2234 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2236 tspec
= btrfs_inode_atime(inode_item
);
2237 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2238 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2240 tspec
= btrfs_inode_mtime(inode_item
);
2241 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2242 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2244 tspec
= btrfs_inode_ctime(inode_item
);
2245 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2246 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2248 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2249 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2250 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2251 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2253 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2255 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2256 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2258 alloc_group_block
= btrfs_inode_block_group(leaf
, inode_item
);
2261 * try to precache a NULL acl entry for files that don't have
2262 * any xattrs or acls
2264 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0], inode
->i_ino
);
2266 cache_no_acl(inode
);
2268 BTRFS_I(inode
)->block_group
= btrfs_find_block_group(root
, 0,
2269 alloc_group_block
, 0);
2270 btrfs_free_path(path
);
2273 switch (inode
->i_mode
& S_IFMT
) {
2275 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2276 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2277 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2278 inode
->i_fop
= &btrfs_file_operations
;
2279 inode
->i_op
= &btrfs_file_inode_operations
;
2282 inode
->i_fop
= &btrfs_dir_file_operations
;
2283 if (root
== root
->fs_info
->tree_root
)
2284 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2286 inode
->i_op
= &btrfs_dir_inode_operations
;
2289 inode
->i_op
= &btrfs_symlink_inode_operations
;
2290 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2291 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2294 inode
->i_op
= &btrfs_special_inode_operations
;
2295 init_special_inode(inode
, inode
->i_mode
, rdev
);
2299 btrfs_update_iflags(inode
);
2303 btrfs_free_path(path
);
2304 make_bad_inode(inode
);
2308 * given a leaf and an inode, copy the inode fields into the leaf
2310 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2311 struct extent_buffer
*leaf
,
2312 struct btrfs_inode_item
*item
,
2313 struct inode
*inode
)
2315 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2316 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2317 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2318 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2319 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2321 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2322 inode
->i_atime
.tv_sec
);
2323 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2324 inode
->i_atime
.tv_nsec
);
2326 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2327 inode
->i_mtime
.tv_sec
);
2328 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2329 inode
->i_mtime
.tv_nsec
);
2331 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2332 inode
->i_ctime
.tv_sec
);
2333 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2334 inode
->i_ctime
.tv_nsec
);
2336 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2337 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2338 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2339 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2340 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2341 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2342 btrfs_set_inode_block_group(leaf
, item
, BTRFS_I(inode
)->block_group
);
2346 * copy everything in the in-memory inode into the btree.
2348 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2349 struct btrfs_root
*root
, struct inode
*inode
)
2351 struct btrfs_inode_item
*inode_item
;
2352 struct btrfs_path
*path
;
2353 struct extent_buffer
*leaf
;
2356 path
= btrfs_alloc_path();
2358 path
->leave_spinning
= 1;
2359 ret
= btrfs_lookup_inode(trans
, root
, path
,
2360 &BTRFS_I(inode
)->location
, 1);
2367 btrfs_unlock_up_safe(path
, 1);
2368 leaf
= path
->nodes
[0];
2369 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2370 struct btrfs_inode_item
);
2372 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2373 btrfs_mark_buffer_dirty(leaf
);
2374 btrfs_set_inode_last_trans(trans
, inode
);
2377 btrfs_free_path(path
);
2383 * unlink helper that gets used here in inode.c and in the tree logging
2384 * recovery code. It remove a link in a directory with a given name, and
2385 * also drops the back refs in the inode to the directory
2387 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2388 struct btrfs_root
*root
,
2389 struct inode
*dir
, struct inode
*inode
,
2390 const char *name
, int name_len
)
2392 struct btrfs_path
*path
;
2394 struct extent_buffer
*leaf
;
2395 struct btrfs_dir_item
*di
;
2396 struct btrfs_key key
;
2399 path
= btrfs_alloc_path();
2405 path
->leave_spinning
= 1;
2406 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2407 name
, name_len
, -1);
2416 leaf
= path
->nodes
[0];
2417 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2418 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2421 btrfs_release_path(root
, path
);
2423 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
2425 dir
->i_ino
, &index
);
2427 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2428 "inode %lu parent %lu\n", name_len
, name
,
2429 inode
->i_ino
, dir
->i_ino
);
2433 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2434 index
, name
, name_len
, -1);
2443 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2444 btrfs_release_path(root
, path
);
2446 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2448 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2450 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2454 btrfs_free_path(path
);
2458 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2459 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2460 btrfs_update_inode(trans
, root
, dir
);
2461 btrfs_drop_nlink(inode
);
2462 ret
= btrfs_update_inode(trans
, root
, inode
);
2467 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2469 struct btrfs_root
*root
;
2470 struct btrfs_trans_handle
*trans
;
2471 struct inode
*inode
= dentry
->d_inode
;
2473 unsigned long nr
= 0;
2475 root
= BTRFS_I(dir
)->root
;
2477 trans
= btrfs_start_transaction(root
, 1);
2479 btrfs_set_trans_block_group(trans
, dir
);
2481 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2483 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2484 dentry
->d_name
.name
, dentry
->d_name
.len
);
2486 if (inode
->i_nlink
== 0)
2487 ret
= btrfs_orphan_add(trans
, inode
);
2489 nr
= trans
->blocks_used
;
2491 btrfs_end_transaction_throttle(trans
, root
);
2492 btrfs_btree_balance_dirty(root
, nr
);
2496 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
2497 struct btrfs_root
*root
,
2498 struct inode
*dir
, u64 objectid
,
2499 const char *name
, int name_len
)
2501 struct btrfs_path
*path
;
2502 struct extent_buffer
*leaf
;
2503 struct btrfs_dir_item
*di
;
2504 struct btrfs_key key
;
2508 path
= btrfs_alloc_path();
2512 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2513 name
, name_len
, -1);
2514 BUG_ON(!di
|| IS_ERR(di
));
2516 leaf
= path
->nodes
[0];
2517 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2518 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
2519 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2521 btrfs_release_path(root
, path
);
2523 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
2524 objectid
, root
->root_key
.objectid
,
2525 dir
->i_ino
, &index
, name
, name_len
);
2527 BUG_ON(ret
!= -ENOENT
);
2528 di
= btrfs_search_dir_index_item(root
, path
, dir
->i_ino
,
2530 BUG_ON(!di
|| IS_ERR(di
));
2532 leaf
= path
->nodes
[0];
2533 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2534 btrfs_release_path(root
, path
);
2538 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2539 index
, name
, name_len
, -1);
2540 BUG_ON(!di
|| IS_ERR(di
));
2542 leaf
= path
->nodes
[0];
2543 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2544 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
2545 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2547 btrfs_release_path(root
, path
);
2549 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2550 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2551 ret
= btrfs_update_inode(trans
, root
, dir
);
2553 dir
->i_sb
->s_dirt
= 1;
2555 btrfs_free_path(path
);
2559 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2561 struct inode
*inode
= dentry
->d_inode
;
2564 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2565 struct btrfs_trans_handle
*trans
;
2566 unsigned long nr
= 0;
2568 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
2569 inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
2572 trans
= btrfs_start_transaction(root
, 1);
2573 btrfs_set_trans_block_group(trans
, dir
);
2575 if (unlikely(inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
2576 err
= btrfs_unlink_subvol(trans
, root
, dir
,
2577 BTRFS_I(inode
)->location
.objectid
,
2578 dentry
->d_name
.name
,
2579 dentry
->d_name
.len
);
2583 err
= btrfs_orphan_add(trans
, inode
);
2587 /* now the directory is empty */
2588 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2589 dentry
->d_name
.name
, dentry
->d_name
.len
);
2591 btrfs_i_size_write(inode
, 0);
2593 nr
= trans
->blocks_used
;
2594 ret
= btrfs_end_transaction_throttle(trans
, root
);
2595 btrfs_btree_balance_dirty(root
, nr
);
2604 * when truncating bytes in a file, it is possible to avoid reading
2605 * the leaves that contain only checksum items. This can be the
2606 * majority of the IO required to delete a large file, but it must
2607 * be done carefully.
2609 * The keys in the level just above the leaves are checked to make sure
2610 * the lowest key in a given leaf is a csum key, and starts at an offset
2611 * after the new size.
2613 * Then the key for the next leaf is checked to make sure it also has
2614 * a checksum item for the same file. If it does, we know our target leaf
2615 * contains only checksum items, and it can be safely freed without reading
2618 * This is just an optimization targeted at large files. It may do
2619 * nothing. It will return 0 unless things went badly.
2621 static noinline
int drop_csum_leaves(struct btrfs_trans_handle
*trans
,
2622 struct btrfs_root
*root
,
2623 struct btrfs_path
*path
,
2624 struct inode
*inode
, u64 new_size
)
2626 struct btrfs_key key
;
2629 struct btrfs_key found_key
;
2630 struct btrfs_key other_key
;
2631 struct btrfs_leaf_ref
*ref
;
2635 path
->lowest_level
= 1;
2636 key
.objectid
= inode
->i_ino
;
2637 key
.type
= BTRFS_CSUM_ITEM_KEY
;
2638 key
.offset
= new_size
;
2640 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2644 if (path
->nodes
[1] == NULL
) {
2649 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, path
->slots
[1]);
2650 nritems
= btrfs_header_nritems(path
->nodes
[1]);
2655 if (path
->slots
[1] >= nritems
)
2658 /* did we find a key greater than anything we want to delete? */
2659 if (found_key
.objectid
> inode
->i_ino
||
2660 (found_key
.objectid
== inode
->i_ino
&& found_key
.type
> key
.type
))
2663 /* we check the next key in the node to make sure the leave contains
2664 * only checksum items. This comparison doesn't work if our
2665 * leaf is the last one in the node
2667 if (path
->slots
[1] + 1 >= nritems
) {
2669 /* search forward from the last key in the node, this
2670 * will bring us into the next node in the tree
2672 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, nritems
- 1);
2674 /* unlikely, but we inc below, so check to be safe */
2675 if (found_key
.offset
== (u64
)-1)
2678 /* search_forward needs a path with locks held, do the
2679 * search again for the original key. It is possible
2680 * this will race with a balance and return a path that
2681 * we could modify, but this drop is just an optimization
2682 * and is allowed to miss some leaves.
2684 btrfs_release_path(root
, path
);
2687 /* setup a max key for search_forward */
2688 other_key
.offset
= (u64
)-1;
2689 other_key
.type
= key
.type
;
2690 other_key
.objectid
= key
.objectid
;
2692 path
->keep_locks
= 1;
2693 ret
= btrfs_search_forward(root
, &found_key
, &other_key
,
2695 path
->keep_locks
= 0;
2696 if (ret
|| found_key
.objectid
!= key
.objectid
||
2697 found_key
.type
!= key
.type
) {
2702 key
.offset
= found_key
.offset
;
2703 btrfs_release_path(root
, path
);
2708 /* we know there's one more slot after us in the tree,
2709 * read that key so we can verify it is also a checksum item
2711 btrfs_node_key_to_cpu(path
->nodes
[1], &other_key
, path
->slots
[1] + 1);
2713 if (found_key
.objectid
< inode
->i_ino
)
2716 if (found_key
.type
!= key
.type
|| found_key
.offset
< new_size
)
2720 * if the key for the next leaf isn't a csum key from this objectid,
2721 * we can't be sure there aren't good items inside this leaf.
2724 if (other_key
.objectid
!= inode
->i_ino
|| other_key
.type
!= key
.type
)
2727 leaf_start
= btrfs_node_blockptr(path
->nodes
[1], path
->slots
[1]);
2728 leaf_gen
= btrfs_node_ptr_generation(path
->nodes
[1], path
->slots
[1]);
2730 * it is safe to delete this leaf, it contains only
2731 * csum items from this inode at an offset >= new_size
2733 ret
= btrfs_del_leaf(trans
, root
, path
, leaf_start
);
2736 if (root
->ref_cows
&& leaf_gen
< trans
->transid
) {
2737 ref
= btrfs_alloc_leaf_ref(root
, 0);
2739 ref
->root_gen
= root
->root_key
.offset
;
2740 ref
->bytenr
= leaf_start
;
2742 ref
->generation
= leaf_gen
;
2745 btrfs_sort_leaf_ref(ref
);
2747 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
2749 btrfs_free_leaf_ref(root
, ref
);
2755 btrfs_release_path(root
, path
);
2757 if (other_key
.objectid
== inode
->i_ino
&&
2758 other_key
.type
== key
.type
&& other_key
.offset
> key
.offset
) {
2759 key
.offset
= other_key
.offset
;
2765 /* fixup any changes we've made to the path */
2766 path
->lowest_level
= 0;
2767 path
->keep_locks
= 0;
2768 btrfs_release_path(root
, path
);
2775 * this can truncate away extent items, csum items and directory items.
2776 * It starts at a high offset and removes keys until it can't find
2777 * any higher than new_size
2779 * csum items that cross the new i_size are truncated to the new size
2782 * min_type is the minimum key type to truncate down to. If set to 0, this
2783 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2785 noinline
int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
2786 struct btrfs_root
*root
,
2787 struct inode
*inode
,
2788 u64 new_size
, u32 min_type
)
2791 struct btrfs_path
*path
;
2792 struct btrfs_key key
;
2793 struct btrfs_key found_key
;
2794 u32 found_type
= (u8
)-1;
2795 struct extent_buffer
*leaf
;
2796 struct btrfs_file_extent_item
*fi
;
2797 u64 extent_start
= 0;
2798 u64 extent_num_bytes
= 0;
2799 u64 extent_offset
= 0;
2803 int pending_del_nr
= 0;
2804 int pending_del_slot
= 0;
2805 int extent_type
= -1;
2807 u64 mask
= root
->sectorsize
- 1;
2810 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
2811 path
= btrfs_alloc_path();
2815 /* FIXME, add redo link to tree so we don't leak on crash */
2816 key
.objectid
= inode
->i_ino
;
2817 key
.offset
= (u64
)-1;
2821 path
->leave_spinning
= 1;
2822 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2827 /* there are no items in the tree for us to truncate, we're
2830 if (path
->slots
[0] == 0) {
2839 leaf
= path
->nodes
[0];
2840 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2841 found_type
= btrfs_key_type(&found_key
);
2844 if (found_key
.objectid
!= inode
->i_ino
)
2847 if (found_type
< min_type
)
2850 item_end
= found_key
.offset
;
2851 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
2852 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2853 struct btrfs_file_extent_item
);
2854 extent_type
= btrfs_file_extent_type(leaf
, fi
);
2855 encoding
= btrfs_file_extent_compression(leaf
, fi
);
2856 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
2857 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
2859 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2861 btrfs_file_extent_num_bytes(leaf
, fi
);
2862 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2863 item_end
+= btrfs_file_extent_inline_len(leaf
,
2868 if (item_end
< new_size
) {
2869 if (found_type
== BTRFS_DIR_ITEM_KEY
)
2870 found_type
= BTRFS_INODE_ITEM_KEY
;
2871 else if (found_type
== BTRFS_EXTENT_ITEM_KEY
)
2872 found_type
= BTRFS_EXTENT_DATA_KEY
;
2873 else if (found_type
== BTRFS_EXTENT_DATA_KEY
)
2874 found_type
= BTRFS_XATTR_ITEM_KEY
;
2875 else if (found_type
== BTRFS_XATTR_ITEM_KEY
)
2876 found_type
= BTRFS_INODE_REF_KEY
;
2877 else if (found_type
)
2881 btrfs_set_key_type(&key
, found_type
);
2884 if (found_key
.offset
>= new_size
)
2890 /* FIXME, shrink the extent if the ref count is only 1 */
2891 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
2894 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2896 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
2897 if (!del_item
&& !encoding
) {
2898 u64 orig_num_bytes
=
2899 btrfs_file_extent_num_bytes(leaf
, fi
);
2900 extent_num_bytes
= new_size
-
2901 found_key
.offset
+ root
->sectorsize
- 1;
2902 extent_num_bytes
= extent_num_bytes
&
2903 ~((u64
)root
->sectorsize
- 1);
2904 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2906 num_dec
= (orig_num_bytes
-
2908 if (root
->ref_cows
&& extent_start
!= 0)
2909 inode_sub_bytes(inode
, num_dec
);
2910 btrfs_mark_buffer_dirty(leaf
);
2913 btrfs_file_extent_disk_num_bytes(leaf
,
2915 extent_offset
= found_key
.offset
-
2916 btrfs_file_extent_offset(leaf
, fi
);
2918 /* FIXME blocksize != 4096 */
2919 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
2920 if (extent_start
!= 0) {
2923 inode_sub_bytes(inode
, num_dec
);
2926 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2928 * we can't truncate inline items that have had
2932 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
2933 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
2934 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
2935 u32 size
= new_size
- found_key
.offset
;
2937 if (root
->ref_cows
) {
2938 inode_sub_bytes(inode
, item_end
+ 1 -
2942 btrfs_file_extent_calc_inline_size(size
);
2943 ret
= btrfs_truncate_item(trans
, root
, path
,
2946 } else if (root
->ref_cows
) {
2947 inode_sub_bytes(inode
, item_end
+ 1 -
2953 if (!pending_del_nr
) {
2954 /* no pending yet, add ourselves */
2955 pending_del_slot
= path
->slots
[0];
2957 } else if (pending_del_nr
&&
2958 path
->slots
[0] + 1 == pending_del_slot
) {
2959 /* hop on the pending chunk */
2961 pending_del_slot
= path
->slots
[0];
2968 if (found_extent
&& root
->ref_cows
) {
2969 btrfs_set_path_blocking(path
);
2970 ret
= btrfs_free_extent(trans
, root
, extent_start
,
2971 extent_num_bytes
, 0,
2972 btrfs_header_owner(leaf
),
2973 inode
->i_ino
, extent_offset
);
2977 if (path
->slots
[0] == 0) {
2980 btrfs_release_path(root
, path
);
2981 if (found_type
== BTRFS_INODE_ITEM_KEY
)
2987 if (pending_del_nr
&&
2988 path
->slots
[0] + 1 != pending_del_slot
) {
2989 struct btrfs_key debug
;
2991 btrfs_item_key_to_cpu(path
->nodes
[0], &debug
,
2993 ret
= btrfs_del_items(trans
, root
, path
,
2998 btrfs_release_path(root
, path
);
2999 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3006 if (pending_del_nr
) {
3007 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3010 btrfs_free_path(path
);
3015 * taken from block_truncate_page, but does cow as it zeros out
3016 * any bytes left in the last page in the file.
3018 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
3020 struct inode
*inode
= mapping
->host
;
3021 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3022 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3023 struct btrfs_ordered_extent
*ordered
;
3025 u32 blocksize
= root
->sectorsize
;
3026 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3027 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3033 if ((offset
& (blocksize
- 1)) == 0)
3035 ret
= btrfs_check_data_free_space(root
, inode
, PAGE_CACHE_SIZE
);
3039 ret
= btrfs_reserve_metadata_for_delalloc(root
, inode
, 1);
3045 page
= grab_cache_page(mapping
, index
);
3047 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
3048 btrfs_unreserve_metadata_for_delalloc(root
, inode
, 1);
3052 page_start
= page_offset(page
);
3053 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3055 if (!PageUptodate(page
)) {
3056 ret
= btrfs_readpage(NULL
, page
);
3058 if (page
->mapping
!= mapping
) {
3060 page_cache_release(page
);
3063 if (!PageUptodate(page
)) {
3068 wait_on_page_writeback(page
);
3070 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
3071 set_page_extent_mapped(page
);
3073 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3075 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
3077 page_cache_release(page
);
3078 btrfs_start_ordered_extent(inode
, ordered
, 1);
3079 btrfs_put_ordered_extent(ordered
);
3083 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3084 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
3087 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
3089 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
3094 if (offset
!= PAGE_CACHE_SIZE
) {
3096 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
3097 flush_dcache_page(page
);
3100 ClearPageChecked(page
);
3101 set_page_dirty(page
);
3102 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
3106 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
3107 btrfs_unreserve_metadata_for_delalloc(root
, inode
, 1);
3109 page_cache_release(page
);
3114 int btrfs_cont_expand(struct inode
*inode
, loff_t size
)
3116 struct btrfs_trans_handle
*trans
;
3117 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3118 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3119 struct extent_map
*em
;
3120 u64 mask
= root
->sectorsize
- 1;
3121 u64 hole_start
= (inode
->i_size
+ mask
) & ~mask
;
3122 u64 block_end
= (size
+ mask
) & ~mask
;
3128 if (size
<= hole_start
)
3131 err
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
3136 struct btrfs_ordered_extent
*ordered
;
3137 btrfs_wait_ordered_range(inode
, hole_start
,
3138 block_end
- hole_start
);
3139 lock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
3140 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3143 unlock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
3144 btrfs_put_ordered_extent(ordered
);
3147 trans
= btrfs_start_transaction(root
, 1);
3148 btrfs_set_trans_block_group(trans
, inode
);
3150 cur_offset
= hole_start
;
3152 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3153 block_end
- cur_offset
, 0);
3154 BUG_ON(IS_ERR(em
) || !em
);
3155 last_byte
= min(extent_map_end(em
), block_end
);
3156 last_byte
= (last_byte
+ mask
) & ~mask
;
3157 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
3159 hole_size
= last_byte
- cur_offset
;
3160 err
= btrfs_drop_extents(trans
, root
, inode
,
3162 cur_offset
+ hole_size
,
3164 cur_offset
, &hint_byte
, 1);
3168 err
= btrfs_reserve_metadata_space(root
, 1);
3172 err
= btrfs_insert_file_extent(trans
, root
,
3173 inode
->i_ino
, cur_offset
, 0,
3174 0, hole_size
, 0, hole_size
,
3176 btrfs_drop_extent_cache(inode
, hole_start
,
3178 btrfs_unreserve_metadata_space(root
, 1);
3180 free_extent_map(em
);
3181 cur_offset
= last_byte
;
3182 if (err
|| cur_offset
>= block_end
)
3186 btrfs_end_transaction(trans
, root
);
3187 unlock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
3191 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3193 struct inode
*inode
= dentry
->d_inode
;
3196 err
= inode_change_ok(inode
, attr
);
3200 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3201 if (attr
->ia_size
> inode
->i_size
) {
3202 err
= btrfs_cont_expand(inode
, attr
->ia_size
);
3205 } else if (inode
->i_size
> 0 &&
3206 attr
->ia_size
== 0) {
3208 /* we're truncating a file that used to have good
3209 * data down to zero. Make sure it gets into
3210 * the ordered flush list so that any new writes
3211 * get down to disk quickly.
3213 BTRFS_I(inode
)->ordered_data_close
= 1;
3217 err
= inode_setattr(inode
, attr
);
3219 if (!err
&& ((attr
->ia_valid
& ATTR_MODE
)))
3220 err
= btrfs_acl_chmod(inode
);
3224 void btrfs_delete_inode(struct inode
*inode
)
3226 struct btrfs_trans_handle
*trans
;
3227 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3231 truncate_inode_pages(&inode
->i_data
, 0);
3232 if (is_bad_inode(inode
)) {
3233 btrfs_orphan_del(NULL
, inode
);
3236 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3238 if (inode
->i_nlink
> 0) {
3239 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3243 btrfs_i_size_write(inode
, 0);
3244 trans
= btrfs_join_transaction(root
, 1);
3246 btrfs_set_trans_block_group(trans
, inode
);
3247 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, inode
->i_size
, 0);
3249 btrfs_orphan_del(NULL
, inode
);
3250 goto no_delete_lock
;
3253 btrfs_orphan_del(trans
, inode
);
3255 nr
= trans
->blocks_used
;
3258 btrfs_end_transaction(trans
, root
);
3259 btrfs_btree_balance_dirty(root
, nr
);
3263 nr
= trans
->blocks_used
;
3264 btrfs_end_transaction(trans
, root
);
3265 btrfs_btree_balance_dirty(root
, nr
);
3271 * this returns the key found in the dir entry in the location pointer.
3272 * If no dir entries were found, location->objectid is 0.
3274 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3275 struct btrfs_key
*location
)
3277 const char *name
= dentry
->d_name
.name
;
3278 int namelen
= dentry
->d_name
.len
;
3279 struct btrfs_dir_item
*di
;
3280 struct btrfs_path
*path
;
3281 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3284 path
= btrfs_alloc_path();
3287 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir
->i_ino
, name
,
3292 if (!di
|| IS_ERR(di
))
3295 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3297 btrfs_free_path(path
);
3300 location
->objectid
= 0;
3305 * when we hit a tree root in a directory, the btrfs part of the inode
3306 * needs to be changed to reflect the root directory of the tree root. This
3307 * is kind of like crossing a mount point.
3309 static int fixup_tree_root_location(struct btrfs_root
*root
,
3311 struct dentry
*dentry
,
3312 struct btrfs_key
*location
,
3313 struct btrfs_root
**sub_root
)
3315 struct btrfs_path
*path
;
3316 struct btrfs_root
*new_root
;
3317 struct btrfs_root_ref
*ref
;
3318 struct extent_buffer
*leaf
;
3322 path
= btrfs_alloc_path();
3329 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3330 BTRFS_I(dir
)->root
->root_key
.objectid
,
3331 location
->objectid
);
3338 leaf
= path
->nodes
[0];
3339 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
3340 if (btrfs_root_ref_dirid(leaf
, ref
) != dir
->i_ino
||
3341 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
3344 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
3345 (unsigned long)(ref
+ 1),
3346 dentry
->d_name
.len
);
3350 btrfs_release_path(root
->fs_info
->tree_root
, path
);
3352 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
3353 if (IS_ERR(new_root
)) {
3354 err
= PTR_ERR(new_root
);
3358 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
3363 *sub_root
= new_root
;
3364 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
3365 location
->type
= BTRFS_INODE_ITEM_KEY
;
3366 location
->offset
= 0;
3369 btrfs_free_path(path
);
3373 static void inode_tree_add(struct inode
*inode
)
3375 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3376 struct btrfs_inode
*entry
;
3378 struct rb_node
*parent
;
3380 p
= &root
->inode_tree
.rb_node
;
3383 if (hlist_unhashed(&inode
->i_hash
))
3386 spin_lock(&root
->inode_lock
);
3389 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3391 if (inode
->i_ino
< entry
->vfs_inode
.i_ino
)
3392 p
= &parent
->rb_left
;
3393 else if (inode
->i_ino
> entry
->vfs_inode
.i_ino
)
3394 p
= &parent
->rb_right
;
3396 WARN_ON(!(entry
->vfs_inode
.i_state
&
3397 (I_WILL_FREE
| I_FREEING
| I_CLEAR
)));
3398 rb_erase(parent
, &root
->inode_tree
);
3399 RB_CLEAR_NODE(parent
);
3400 spin_unlock(&root
->inode_lock
);
3404 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3405 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3406 spin_unlock(&root
->inode_lock
);
3409 static void inode_tree_del(struct inode
*inode
)
3411 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3414 spin_lock(&root
->inode_lock
);
3415 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3416 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3417 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3418 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3420 spin_unlock(&root
->inode_lock
);
3422 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
3423 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
3424 spin_lock(&root
->inode_lock
);
3425 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3426 spin_unlock(&root
->inode_lock
);
3428 btrfs_add_dead_root(root
);
3432 int btrfs_invalidate_inodes(struct btrfs_root
*root
)
3434 struct rb_node
*node
;
3435 struct rb_node
*prev
;
3436 struct btrfs_inode
*entry
;
3437 struct inode
*inode
;
3440 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
3442 spin_lock(&root
->inode_lock
);
3444 node
= root
->inode_tree
.rb_node
;
3448 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3450 if (objectid
< entry
->vfs_inode
.i_ino
)
3451 node
= node
->rb_left
;
3452 else if (objectid
> entry
->vfs_inode
.i_ino
)
3453 node
= node
->rb_right
;
3459 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
3460 if (objectid
<= entry
->vfs_inode
.i_ino
) {
3464 prev
= rb_next(prev
);
3468 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3469 objectid
= entry
->vfs_inode
.i_ino
+ 1;
3470 inode
= igrab(&entry
->vfs_inode
);
3472 spin_unlock(&root
->inode_lock
);
3473 if (atomic_read(&inode
->i_count
) > 1)
3474 d_prune_aliases(inode
);
3476 * btrfs_drop_inode will remove it from
3477 * the inode cache when its usage count
3482 spin_lock(&root
->inode_lock
);
3486 if (cond_resched_lock(&root
->inode_lock
))
3489 node
= rb_next(node
);
3491 spin_unlock(&root
->inode_lock
);
3495 static noinline
void init_btrfs_i(struct inode
*inode
)
3497 struct btrfs_inode
*bi
= BTRFS_I(inode
);
3502 bi
->last_sub_trans
= 0;
3503 bi
->logged_trans
= 0;
3504 bi
->delalloc_bytes
= 0;
3505 bi
->reserved_bytes
= 0;
3506 bi
->disk_i_size
= 0;
3508 bi
->index_cnt
= (u64
)-1;
3509 bi
->last_unlink_trans
= 0;
3510 bi
->ordered_data_close
= 0;
3511 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
, GFP_NOFS
);
3512 extent_io_tree_init(&BTRFS_I(inode
)->io_tree
,
3513 inode
->i_mapping
, GFP_NOFS
);
3514 extent_io_tree_init(&BTRFS_I(inode
)->io_failure_tree
,
3515 inode
->i_mapping
, GFP_NOFS
);
3516 INIT_LIST_HEAD(&BTRFS_I(inode
)->delalloc_inodes
);
3517 INIT_LIST_HEAD(&BTRFS_I(inode
)->ordered_operations
);
3518 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3519 btrfs_ordered_inode_tree_init(&BTRFS_I(inode
)->ordered_tree
);
3520 mutex_init(&BTRFS_I(inode
)->extent_mutex
);
3521 mutex_init(&BTRFS_I(inode
)->log_mutex
);
3524 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
3526 struct btrfs_iget_args
*args
= p
;
3527 inode
->i_ino
= args
->ino
;
3528 init_btrfs_i(inode
);
3529 BTRFS_I(inode
)->root
= args
->root
;
3530 btrfs_set_inode_space_info(args
->root
, inode
);
3534 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
3536 struct btrfs_iget_args
*args
= opaque
;
3537 return args
->ino
== inode
->i_ino
&&
3538 args
->root
== BTRFS_I(inode
)->root
;
3541 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
3543 struct btrfs_root
*root
)
3545 struct inode
*inode
;
3546 struct btrfs_iget_args args
;
3547 args
.ino
= objectid
;
3550 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
3551 btrfs_init_locked_inode
,
3556 /* Get an inode object given its location and corresponding root.
3557 * Returns in *is_new if the inode was read from disk
3559 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
3560 struct btrfs_root
*root
)
3562 struct inode
*inode
;
3564 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
3566 return ERR_PTR(-ENOMEM
);
3568 if (inode
->i_state
& I_NEW
) {
3569 BTRFS_I(inode
)->root
= root
;
3570 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
3571 btrfs_read_locked_inode(inode
);
3573 inode_tree_add(inode
);
3574 unlock_new_inode(inode
);
3580 static struct inode
*new_simple_dir(struct super_block
*s
,
3581 struct btrfs_key
*key
,
3582 struct btrfs_root
*root
)
3584 struct inode
*inode
= new_inode(s
);
3587 return ERR_PTR(-ENOMEM
);
3589 init_btrfs_i(inode
);
3591 BTRFS_I(inode
)->root
= root
;
3592 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
3593 BTRFS_I(inode
)->dummy_inode
= 1;
3595 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
3596 inode
->i_op
= &simple_dir_inode_operations
;
3597 inode
->i_fop
= &simple_dir_operations
;
3598 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
3599 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
3604 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
3606 struct inode
*inode
;
3607 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3608 struct btrfs_root
*sub_root
= root
;
3609 struct btrfs_key location
;
3613 dentry
->d_op
= &btrfs_dentry_operations
;
3615 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3616 return ERR_PTR(-ENAMETOOLONG
);
3618 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
3621 return ERR_PTR(ret
);
3623 if (location
.objectid
== 0)
3626 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
3627 inode
= btrfs_iget(dir
->i_sb
, &location
, root
);
3631 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
3633 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
3634 ret
= fixup_tree_root_location(root
, dir
, dentry
,
3635 &location
, &sub_root
);
3638 inode
= ERR_PTR(ret
);
3640 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
3642 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
);
3644 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
3649 static int btrfs_dentry_delete(struct dentry
*dentry
)
3651 struct btrfs_root
*root
;
3653 if (!dentry
->d_inode
&& !IS_ROOT(dentry
))
3654 dentry
= dentry
->d_parent
;
3656 if (dentry
->d_inode
) {
3657 root
= BTRFS_I(dentry
->d_inode
)->root
;
3658 if (btrfs_root_refs(&root
->root_item
) == 0)
3664 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
3665 struct nameidata
*nd
)
3667 struct inode
*inode
;
3669 inode
= btrfs_lookup_dentry(dir
, dentry
);
3671 return ERR_CAST(inode
);
3673 return d_splice_alias(inode
, dentry
);
3676 static unsigned char btrfs_filetype_table
[] = {
3677 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
3680 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
3683 struct inode
*inode
= filp
->f_dentry
->d_inode
;
3684 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3685 struct btrfs_item
*item
;
3686 struct btrfs_dir_item
*di
;
3687 struct btrfs_key key
;
3688 struct btrfs_key found_key
;
3689 struct btrfs_path
*path
;
3692 struct extent_buffer
*leaf
;
3695 unsigned char d_type
;
3700 int key_type
= BTRFS_DIR_INDEX_KEY
;
3705 /* FIXME, use a real flag for deciding about the key type */
3706 if (root
->fs_info
->tree_root
== root
)
3707 key_type
= BTRFS_DIR_ITEM_KEY
;
3709 /* special case for "." */
3710 if (filp
->f_pos
== 0) {
3711 over
= filldir(dirent
, ".", 1,
3718 /* special case for .., just use the back ref */
3719 if (filp
->f_pos
== 1) {
3720 u64 pino
= parent_ino(filp
->f_path
.dentry
);
3721 over
= filldir(dirent
, "..", 2,
3727 path
= btrfs_alloc_path();
3730 btrfs_set_key_type(&key
, key_type
);
3731 key
.offset
= filp
->f_pos
;
3732 key
.objectid
= inode
->i_ino
;
3734 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3740 leaf
= path
->nodes
[0];
3741 nritems
= btrfs_header_nritems(leaf
);
3742 slot
= path
->slots
[0];
3743 if (advance
|| slot
>= nritems
) {
3744 if (slot
>= nritems
- 1) {
3745 ret
= btrfs_next_leaf(root
, path
);
3748 leaf
= path
->nodes
[0];
3749 nritems
= btrfs_header_nritems(leaf
);
3750 slot
= path
->slots
[0];
3758 item
= btrfs_item_nr(leaf
, slot
);
3759 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3761 if (found_key
.objectid
!= key
.objectid
)
3763 if (btrfs_key_type(&found_key
) != key_type
)
3765 if (found_key
.offset
< filp
->f_pos
)
3768 filp
->f_pos
= found_key
.offset
;
3770 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
3772 di_total
= btrfs_item_size(leaf
, item
);
3774 while (di_cur
< di_total
) {
3775 struct btrfs_key location
;
3777 name_len
= btrfs_dir_name_len(leaf
, di
);
3778 if (name_len
<= sizeof(tmp_name
)) {
3779 name_ptr
= tmp_name
;
3781 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
3787 read_extent_buffer(leaf
, name_ptr
,
3788 (unsigned long)(di
+ 1), name_len
);
3790 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
3791 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
3793 /* is this a reference to our own snapshot? If so
3796 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
3797 location
.objectid
== root
->root_key
.objectid
) {
3801 over
= filldir(dirent
, name_ptr
, name_len
,
3802 found_key
.offset
, location
.objectid
,
3806 if (name_ptr
!= tmp_name
)
3811 di_len
= btrfs_dir_name_len(leaf
, di
) +
3812 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
3814 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
3818 /* Reached end of directory/root. Bump pos past the last item. */
3819 if (key_type
== BTRFS_DIR_INDEX_KEY
)
3820 filp
->f_pos
= INT_LIMIT(off_t
);
3826 btrfs_free_path(path
);
3830 int btrfs_write_inode(struct inode
*inode
, int wait
)
3832 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3833 struct btrfs_trans_handle
*trans
;
3836 if (root
->fs_info
->btree_inode
== inode
)
3840 trans
= btrfs_join_transaction(root
, 1);
3841 btrfs_set_trans_block_group(trans
, inode
);
3842 ret
= btrfs_commit_transaction(trans
, root
);
3848 * This is somewhat expensive, updating the tree every time the
3849 * inode changes. But, it is most likely to find the inode in cache.
3850 * FIXME, needs more benchmarking...there are no reasons other than performance
3851 * to keep or drop this code.
3853 void btrfs_dirty_inode(struct inode
*inode
)
3855 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3856 struct btrfs_trans_handle
*trans
;
3858 trans
= btrfs_join_transaction(root
, 1);
3859 btrfs_set_trans_block_group(trans
, inode
);
3860 btrfs_update_inode(trans
, root
, inode
);
3861 btrfs_end_transaction(trans
, root
);
3865 * find the highest existing sequence number in a directory
3866 * and then set the in-memory index_cnt variable to reflect
3867 * free sequence numbers
3869 static int btrfs_set_inode_index_count(struct inode
*inode
)
3871 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3872 struct btrfs_key key
, found_key
;
3873 struct btrfs_path
*path
;
3874 struct extent_buffer
*leaf
;
3877 key
.objectid
= inode
->i_ino
;
3878 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
3879 key
.offset
= (u64
)-1;
3881 path
= btrfs_alloc_path();
3885 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3888 /* FIXME: we should be able to handle this */
3894 * MAGIC NUMBER EXPLANATION:
3895 * since we search a directory based on f_pos we have to start at 2
3896 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3897 * else has to start at 2
3899 if (path
->slots
[0] == 0) {
3900 BTRFS_I(inode
)->index_cnt
= 2;
3906 leaf
= path
->nodes
[0];
3907 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3909 if (found_key
.objectid
!= inode
->i_ino
||
3910 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
3911 BTRFS_I(inode
)->index_cnt
= 2;
3915 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
3917 btrfs_free_path(path
);
3922 * helper to find a free sequence number in a given directory. This current
3923 * code is very simple, later versions will do smarter things in the btree
3925 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
3929 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
3930 ret
= btrfs_set_inode_index_count(dir
);
3935 *index
= BTRFS_I(dir
)->index_cnt
;
3936 BTRFS_I(dir
)->index_cnt
++;
3941 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
3942 struct btrfs_root
*root
,
3944 const char *name
, int name_len
,
3945 u64 ref_objectid
, u64 objectid
,
3946 u64 alloc_hint
, int mode
, u64
*index
)
3948 struct inode
*inode
;
3949 struct btrfs_inode_item
*inode_item
;
3950 struct btrfs_key
*location
;
3951 struct btrfs_path
*path
;
3952 struct btrfs_inode_ref
*ref
;
3953 struct btrfs_key key
[2];
3959 path
= btrfs_alloc_path();
3962 inode
= new_inode(root
->fs_info
->sb
);
3964 return ERR_PTR(-ENOMEM
);
3967 ret
= btrfs_set_inode_index(dir
, index
);
3970 return ERR_PTR(ret
);
3974 * index_cnt is ignored for everything but a dir,
3975 * btrfs_get_inode_index_count has an explanation for the magic
3978 init_btrfs_i(inode
);
3979 BTRFS_I(inode
)->index_cnt
= 2;
3980 BTRFS_I(inode
)->root
= root
;
3981 BTRFS_I(inode
)->generation
= trans
->transid
;
3982 btrfs_set_inode_space_info(root
, inode
);
3988 BTRFS_I(inode
)->block_group
=
3989 btrfs_find_block_group(root
, 0, alloc_hint
, owner
);
3991 key
[0].objectid
= objectid
;
3992 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
3995 key
[1].objectid
= objectid
;
3996 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
3997 key
[1].offset
= ref_objectid
;
3999 sizes
[0] = sizeof(struct btrfs_inode_item
);
4000 sizes
[1] = name_len
+ sizeof(*ref
);
4002 path
->leave_spinning
= 1;
4003 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4007 inode
->i_uid
= current_fsuid();
4009 if (dir
&& (dir
->i_mode
& S_ISGID
)) {
4010 inode
->i_gid
= dir
->i_gid
;
4014 inode
->i_gid
= current_fsgid();
4016 inode
->i_mode
= mode
;
4017 inode
->i_ino
= objectid
;
4018 inode_set_bytes(inode
, 0);
4019 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4020 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4021 struct btrfs_inode_item
);
4022 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4024 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4025 struct btrfs_inode_ref
);
4026 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4027 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4028 ptr
= (unsigned long)(ref
+ 1);
4029 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4031 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4032 btrfs_free_path(path
);
4034 location
= &BTRFS_I(inode
)->location
;
4035 location
->objectid
= objectid
;
4036 location
->offset
= 0;
4037 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4039 btrfs_inherit_iflags(inode
, dir
);
4041 if ((mode
& S_IFREG
)) {
4042 if (btrfs_test_opt(root
, NODATASUM
))
4043 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4044 if (btrfs_test_opt(root
, NODATACOW
))
4045 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4048 insert_inode_hash(inode
);
4049 inode_tree_add(inode
);
4053 BTRFS_I(dir
)->index_cnt
--;
4054 btrfs_free_path(path
);
4056 return ERR_PTR(ret
);
4059 static inline u8
btrfs_inode_type(struct inode
*inode
)
4061 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4065 * utility function to add 'inode' into 'parent_inode' with
4066 * a give name and a given sequence number.
4067 * if 'add_backref' is true, also insert a backref from the
4068 * inode to the parent directory.
4070 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4071 struct inode
*parent_inode
, struct inode
*inode
,
4072 const char *name
, int name_len
, int add_backref
, u64 index
)
4075 struct btrfs_key key
;
4076 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4078 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4079 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4081 key
.objectid
= inode
->i_ino
;
4082 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4086 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4087 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4088 key
.objectid
, root
->root_key
.objectid
,
4089 parent_inode
->i_ino
,
4090 index
, name
, name_len
);
4091 } else if (add_backref
) {
4092 ret
= btrfs_insert_inode_ref(trans
, root
,
4093 name
, name_len
, inode
->i_ino
,
4094 parent_inode
->i_ino
, index
);
4098 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4099 parent_inode
->i_ino
, &key
,
4100 btrfs_inode_type(inode
), index
);
4103 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4105 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4106 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4111 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4112 struct dentry
*dentry
, struct inode
*inode
,
4113 int backref
, u64 index
)
4115 int err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
4116 inode
, dentry
->d_name
.name
,
4117 dentry
->d_name
.len
, backref
, index
);
4119 d_instantiate(dentry
, inode
);
4127 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4128 int mode
, dev_t rdev
)
4130 struct btrfs_trans_handle
*trans
;
4131 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4132 struct inode
*inode
= NULL
;
4136 unsigned long nr
= 0;
4139 if (!new_valid_dev(rdev
))
4143 * 2 for inode item and ref
4145 * 1 for xattr if selinux is on
4147 err
= btrfs_reserve_metadata_space(root
, 5);
4151 trans
= btrfs_start_transaction(root
, 1);
4154 btrfs_set_trans_block_group(trans
, dir
);
4156 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
4162 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4164 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
4165 BTRFS_I(dir
)->block_group
, mode
, &index
);
4166 err
= PTR_ERR(inode
);
4170 err
= btrfs_init_inode_security(inode
, dir
);
4176 btrfs_set_trans_block_group(trans
, inode
);
4177 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
4181 inode
->i_op
= &btrfs_special_inode_operations
;
4182 init_special_inode(inode
, inode
->i_mode
, rdev
);
4183 btrfs_update_inode(trans
, root
, inode
);
4185 btrfs_update_inode_block_group(trans
, inode
);
4186 btrfs_update_inode_block_group(trans
, dir
);
4188 nr
= trans
->blocks_used
;
4189 btrfs_end_transaction_throttle(trans
, root
);
4191 btrfs_unreserve_metadata_space(root
, 5);
4193 inode_dec_link_count(inode
);
4196 btrfs_btree_balance_dirty(root
, nr
);
4200 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4201 int mode
, struct nameidata
*nd
)
4203 struct btrfs_trans_handle
*trans
;
4204 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4205 struct inode
*inode
= NULL
;
4208 unsigned long nr
= 0;
4213 * 2 for inode item and ref
4215 * 1 for xattr if selinux is on
4217 err
= btrfs_reserve_metadata_space(root
, 5);
4221 trans
= btrfs_start_transaction(root
, 1);
4224 btrfs_set_trans_block_group(trans
, dir
);
4226 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
4232 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4234 dentry
->d_parent
->d_inode
->i_ino
,
4235 objectid
, BTRFS_I(dir
)->block_group
, mode
,
4237 err
= PTR_ERR(inode
);
4241 err
= btrfs_init_inode_security(inode
, dir
);
4247 btrfs_set_trans_block_group(trans
, inode
);
4248 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
4252 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4253 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4254 inode
->i_fop
= &btrfs_file_operations
;
4255 inode
->i_op
= &btrfs_file_inode_operations
;
4256 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4258 btrfs_update_inode_block_group(trans
, inode
);
4259 btrfs_update_inode_block_group(trans
, dir
);
4261 nr
= trans
->blocks_used
;
4262 btrfs_end_transaction_throttle(trans
, root
);
4264 btrfs_unreserve_metadata_space(root
, 5);
4266 inode_dec_link_count(inode
);
4269 btrfs_btree_balance_dirty(root
, nr
);
4273 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
4274 struct dentry
*dentry
)
4276 struct btrfs_trans_handle
*trans
;
4277 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4278 struct inode
*inode
= old_dentry
->d_inode
;
4280 unsigned long nr
= 0;
4284 if (inode
->i_nlink
== 0)
4288 * 1 item for inode ref
4289 * 2 items for dir items
4291 err
= btrfs_reserve_metadata_space(root
, 3);
4295 btrfs_inc_nlink(inode
);
4297 err
= btrfs_set_inode_index(dir
, &index
);
4301 trans
= btrfs_start_transaction(root
, 1);
4303 btrfs_set_trans_block_group(trans
, dir
);
4304 atomic_inc(&inode
->i_count
);
4306 err
= btrfs_add_nondir(trans
, dentry
, inode
, 1, index
);
4311 btrfs_update_inode_block_group(trans
, dir
);
4312 err
= btrfs_update_inode(trans
, root
, inode
);
4314 btrfs_log_new_name(trans
, inode
, NULL
, dentry
->d_parent
);
4317 nr
= trans
->blocks_used
;
4318 btrfs_end_transaction_throttle(trans
, root
);
4320 btrfs_unreserve_metadata_space(root
, 3);
4322 inode_dec_link_count(inode
);
4325 btrfs_btree_balance_dirty(root
, nr
);
4329 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
4331 struct inode
*inode
= NULL
;
4332 struct btrfs_trans_handle
*trans
;
4333 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4335 int drop_on_err
= 0;
4338 unsigned long nr
= 1;
4341 * 2 items for inode and ref
4342 * 2 items for dir items
4343 * 1 for xattr if selinux is on
4345 err
= btrfs_reserve_metadata_space(root
, 5);
4349 trans
= btrfs_start_transaction(root
, 1);
4354 btrfs_set_trans_block_group(trans
, dir
);
4356 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
4362 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4364 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
4365 BTRFS_I(dir
)->block_group
, S_IFDIR
| mode
,
4367 if (IS_ERR(inode
)) {
4368 err
= PTR_ERR(inode
);
4374 err
= btrfs_init_inode_security(inode
, dir
);
4378 inode
->i_op
= &btrfs_dir_inode_operations
;
4379 inode
->i_fop
= &btrfs_dir_file_operations
;
4380 btrfs_set_trans_block_group(trans
, inode
);
4382 btrfs_i_size_write(inode
, 0);
4383 err
= btrfs_update_inode(trans
, root
, inode
);
4387 err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
4388 inode
, dentry
->d_name
.name
,
4389 dentry
->d_name
.len
, 0, index
);
4393 d_instantiate(dentry
, inode
);
4395 btrfs_update_inode_block_group(trans
, inode
);
4396 btrfs_update_inode_block_group(trans
, dir
);
4399 nr
= trans
->blocks_used
;
4400 btrfs_end_transaction_throttle(trans
, root
);
4403 btrfs_unreserve_metadata_space(root
, 5);
4406 btrfs_btree_balance_dirty(root
, nr
);
4410 /* helper for btfs_get_extent. Given an existing extent in the tree,
4411 * and an extent that you want to insert, deal with overlap and insert
4412 * the new extent into the tree.
4414 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
4415 struct extent_map
*existing
,
4416 struct extent_map
*em
,
4417 u64 map_start
, u64 map_len
)
4421 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
4422 start_diff
= map_start
- em
->start
;
4423 em
->start
= map_start
;
4425 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
4426 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
4427 em
->block_start
+= start_diff
;
4428 em
->block_len
-= start_diff
;
4430 return add_extent_mapping(em_tree
, em
);
4433 static noinline
int uncompress_inline(struct btrfs_path
*path
,
4434 struct inode
*inode
, struct page
*page
,
4435 size_t pg_offset
, u64 extent_offset
,
4436 struct btrfs_file_extent_item
*item
)
4439 struct extent_buffer
*leaf
= path
->nodes
[0];
4442 unsigned long inline_size
;
4445 WARN_ON(pg_offset
!= 0);
4446 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
4447 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
4448 btrfs_item_nr(leaf
, path
->slots
[0]));
4449 tmp
= kmalloc(inline_size
, GFP_NOFS
);
4450 ptr
= btrfs_file_extent_inline_start(item
);
4452 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
4454 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
4455 ret
= btrfs_zlib_decompress(tmp
, page
, extent_offset
,
4456 inline_size
, max_size
);
4458 char *kaddr
= kmap_atomic(page
, KM_USER0
);
4459 unsigned long copy_size
= min_t(u64
,
4460 PAGE_CACHE_SIZE
- pg_offset
,
4461 max_size
- extent_offset
);
4462 memset(kaddr
+ pg_offset
, 0, copy_size
);
4463 kunmap_atomic(kaddr
, KM_USER0
);
4470 * a bit scary, this does extent mapping from logical file offset to the disk.
4471 * the ugly parts come from merging extents from the disk with the in-ram
4472 * representation. This gets more complex because of the data=ordered code,
4473 * where the in-ram extents might be locked pending data=ordered completion.
4475 * This also copies inline extents directly into the page.
4478 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
4479 size_t pg_offset
, u64 start
, u64 len
,
4485 u64 extent_start
= 0;
4487 u64 objectid
= inode
->i_ino
;
4489 struct btrfs_path
*path
= NULL
;
4490 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4491 struct btrfs_file_extent_item
*item
;
4492 struct extent_buffer
*leaf
;
4493 struct btrfs_key found_key
;
4494 struct extent_map
*em
= NULL
;
4495 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4496 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4497 struct btrfs_trans_handle
*trans
= NULL
;
4501 read_lock(&em_tree
->lock
);
4502 em
= lookup_extent_mapping(em_tree
, start
, len
);
4504 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4505 read_unlock(&em_tree
->lock
);
4508 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
4509 free_extent_map(em
);
4510 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
4511 free_extent_map(em
);
4515 em
= alloc_extent_map(GFP_NOFS
);
4520 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4521 em
->start
= EXTENT_MAP_HOLE
;
4522 em
->orig_start
= EXTENT_MAP_HOLE
;
4524 em
->block_len
= (u64
)-1;
4527 path
= btrfs_alloc_path();
4531 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
4532 objectid
, start
, trans
!= NULL
);
4539 if (path
->slots
[0] == 0)
4544 leaf
= path
->nodes
[0];
4545 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4546 struct btrfs_file_extent_item
);
4547 /* are we inside the extent that was found? */
4548 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4549 found_type
= btrfs_key_type(&found_key
);
4550 if (found_key
.objectid
!= objectid
||
4551 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4555 found_type
= btrfs_file_extent_type(leaf
, item
);
4556 extent_start
= found_key
.offset
;
4557 compressed
= btrfs_file_extent_compression(leaf
, item
);
4558 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4559 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4560 extent_end
= extent_start
+
4561 btrfs_file_extent_num_bytes(leaf
, item
);
4562 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4564 size
= btrfs_file_extent_inline_len(leaf
, item
);
4565 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
4566 ~((u64
)root
->sectorsize
- 1);
4569 if (start
>= extent_end
) {
4571 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
4572 ret
= btrfs_next_leaf(root
, path
);
4579 leaf
= path
->nodes
[0];
4581 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4582 if (found_key
.objectid
!= objectid
||
4583 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
4585 if (start
+ len
<= found_key
.offset
)
4588 em
->len
= found_key
.offset
- start
;
4592 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4593 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4594 em
->start
= extent_start
;
4595 em
->len
= extent_end
- extent_start
;
4596 em
->orig_start
= extent_start
-
4597 btrfs_file_extent_offset(leaf
, item
);
4598 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
4600 em
->block_start
= EXTENT_MAP_HOLE
;
4604 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4605 em
->block_start
= bytenr
;
4606 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
4609 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
4610 em
->block_start
= bytenr
;
4611 em
->block_len
= em
->len
;
4612 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
4613 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
4616 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4620 size_t extent_offset
;
4623 em
->block_start
= EXTENT_MAP_INLINE
;
4624 if (!page
|| create
) {
4625 em
->start
= extent_start
;
4626 em
->len
= extent_end
- extent_start
;
4630 size
= btrfs_file_extent_inline_len(leaf
, item
);
4631 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
4632 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
4633 size
- extent_offset
);
4634 em
->start
= extent_start
+ extent_offset
;
4635 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
4636 ~((u64
)root
->sectorsize
- 1);
4637 em
->orig_start
= EXTENT_MAP_INLINE
;
4639 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4640 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
4641 if (create
== 0 && !PageUptodate(page
)) {
4642 if (btrfs_file_extent_compression(leaf
, item
) ==
4643 BTRFS_COMPRESS_ZLIB
) {
4644 ret
= uncompress_inline(path
, inode
, page
,
4646 extent_offset
, item
);
4650 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4652 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
4653 memset(map
+ pg_offset
+ copy_size
, 0,
4654 PAGE_CACHE_SIZE
- pg_offset
-
4659 flush_dcache_page(page
);
4660 } else if (create
&& PageUptodate(page
)) {
4663 free_extent_map(em
);
4665 btrfs_release_path(root
, path
);
4666 trans
= btrfs_join_transaction(root
, 1);
4670 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4673 btrfs_mark_buffer_dirty(leaf
);
4675 set_extent_uptodate(io_tree
, em
->start
,
4676 extent_map_end(em
) - 1, GFP_NOFS
);
4679 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
4686 em
->block_start
= EXTENT_MAP_HOLE
;
4687 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
4689 btrfs_release_path(root
, path
);
4690 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
4691 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
4692 "[%llu %llu]\n", (unsigned long long)em
->start
,
4693 (unsigned long long)em
->len
,
4694 (unsigned long long)start
,
4695 (unsigned long long)len
);
4701 write_lock(&em_tree
->lock
);
4702 ret
= add_extent_mapping(em_tree
, em
);
4703 /* it is possible that someone inserted the extent into the tree
4704 * while we had the lock dropped. It is also possible that
4705 * an overlapping map exists in the tree
4707 if (ret
== -EEXIST
) {
4708 struct extent_map
*existing
;
4712 existing
= lookup_extent_mapping(em_tree
, start
, len
);
4713 if (existing
&& (existing
->start
> start
||
4714 existing
->start
+ existing
->len
<= start
)) {
4715 free_extent_map(existing
);
4719 existing
= lookup_extent_mapping(em_tree
, em
->start
,
4722 err
= merge_extent_mapping(em_tree
, existing
,
4725 free_extent_map(existing
);
4727 free_extent_map(em
);
4732 free_extent_map(em
);
4736 free_extent_map(em
);
4741 write_unlock(&em_tree
->lock
);
4744 btrfs_free_path(path
);
4746 ret
= btrfs_end_transaction(trans
, root
);
4751 free_extent_map(em
);
4752 return ERR_PTR(err
);
4757 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
4758 const struct iovec
*iov
, loff_t offset
,
4759 unsigned long nr_segs
)
4764 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4765 __u64 start
, __u64 len
)
4767 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent
);
4770 int btrfs_readpage(struct file
*file
, struct page
*page
)
4772 struct extent_io_tree
*tree
;
4773 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4774 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
4777 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
4779 struct extent_io_tree
*tree
;
4782 if (current
->flags
& PF_MEMALLOC
) {
4783 redirty_page_for_writepage(wbc
, page
);
4787 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4788 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
4791 int btrfs_writepages(struct address_space
*mapping
,
4792 struct writeback_control
*wbc
)
4794 struct extent_io_tree
*tree
;
4796 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4797 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
4801 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
4802 struct list_head
*pages
, unsigned nr_pages
)
4804 struct extent_io_tree
*tree
;
4805 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4806 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
4809 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4811 struct extent_io_tree
*tree
;
4812 struct extent_map_tree
*map
;
4815 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4816 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
4817 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
4819 ClearPagePrivate(page
);
4820 set_page_private(page
, 0);
4821 page_cache_release(page
);
4826 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4828 if (PageWriteback(page
) || PageDirty(page
))
4830 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
4833 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
4835 struct extent_io_tree
*tree
;
4836 struct btrfs_ordered_extent
*ordered
;
4837 u64 page_start
= page_offset(page
);
4838 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4842 * we have the page locked, so new writeback can't start,
4843 * and the dirty bit won't be cleared while we are here.
4845 * Wait for IO on this page so that we can safely clear
4846 * the PagePrivate2 bit and do ordered accounting
4848 wait_on_page_writeback(page
);
4850 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4852 btrfs_releasepage(page
, GFP_NOFS
);
4855 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
4856 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
4860 * IO on this page will never be started, so we need
4861 * to account for any ordered extents now
4863 clear_extent_bit(tree
, page_start
, page_end
,
4864 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4865 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
, 1, 0,
4868 * whoever cleared the private bit is responsible
4869 * for the finish_ordered_io
4871 if (TestClearPagePrivate2(page
)) {
4872 btrfs_finish_ordered_io(page
->mapping
->host
,
4873 page_start
, page_end
);
4875 btrfs_put_ordered_extent(ordered
);
4876 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
4878 clear_extent_bit(tree
, page_start
, page_end
,
4879 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
4880 EXTENT_DO_ACCOUNTING
, 1, 1, NULL
, GFP_NOFS
);
4881 __btrfs_releasepage(page
, GFP_NOFS
);
4883 ClearPageChecked(page
);
4884 if (PagePrivate(page
)) {
4885 ClearPagePrivate(page
);
4886 set_page_private(page
, 0);
4887 page_cache_release(page
);
4892 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4893 * called from a page fault handler when a page is first dirtied. Hence we must
4894 * be careful to check for EOF conditions here. We set the page up correctly
4895 * for a written page which means we get ENOSPC checking when writing into
4896 * holes and correct delalloc and unwritten extent mapping on filesystems that
4897 * support these features.
4899 * We are not allowed to take the i_mutex here so we have to play games to
4900 * protect against truncate races as the page could now be beyond EOF. Because
4901 * vmtruncate() writes the inode size before removing pages, once we have the
4902 * page lock we can determine safely if the page is beyond EOF. If it is not
4903 * beyond EOF, then the page is guaranteed safe against truncation until we
4906 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4908 struct page
*page
= vmf
->page
;
4909 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
4910 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4911 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4912 struct btrfs_ordered_extent
*ordered
;
4914 unsigned long zero_start
;
4920 ret
= btrfs_check_data_free_space(root
, inode
, PAGE_CACHE_SIZE
);
4924 else /* -ENOSPC, -EIO, etc */
4925 ret
= VM_FAULT_SIGBUS
;
4929 ret
= btrfs_reserve_metadata_for_delalloc(root
, inode
, 1);
4931 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
4932 ret
= VM_FAULT_SIGBUS
;
4936 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
4939 size
= i_size_read(inode
);
4940 page_start
= page_offset(page
);
4941 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4943 if ((page
->mapping
!= inode
->i_mapping
) ||
4944 (page_start
>= size
)) {
4945 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
4946 /* page got truncated out from underneath us */
4949 wait_on_page_writeback(page
);
4951 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4952 set_page_extent_mapped(page
);
4955 * we can't set the delalloc bits if there are pending ordered
4956 * extents. Drop our locks and wait for them to finish
4958 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
4960 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4962 btrfs_start_ordered_extent(inode
, ordered
, 1);
4963 btrfs_put_ordered_extent(ordered
);
4968 * XXX - page_mkwrite gets called every time the page is dirtied, even
4969 * if it was already dirty, so for space accounting reasons we need to
4970 * clear any delalloc bits for the range we are fixing to save. There
4971 * is probably a better way to do this, but for now keep consistent with
4972 * prepare_pages in the normal write path.
4974 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
4975 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
4978 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
4980 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4981 ret
= VM_FAULT_SIGBUS
;
4982 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
4987 /* page is wholly or partially inside EOF */
4988 if (page_start
+ PAGE_CACHE_SIZE
> size
)
4989 zero_start
= size
& ~PAGE_CACHE_MASK
;
4991 zero_start
= PAGE_CACHE_SIZE
;
4993 if (zero_start
!= PAGE_CACHE_SIZE
) {
4995 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
4996 flush_dcache_page(page
);
4999 ClearPageChecked(page
);
5000 set_page_dirty(page
);
5001 SetPageUptodate(page
);
5003 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
5004 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
5006 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5009 btrfs_unreserve_metadata_for_delalloc(root
, inode
, 1);
5011 return VM_FAULT_LOCKED
;
5017 static void btrfs_truncate(struct inode
*inode
)
5019 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5021 struct btrfs_trans_handle
*trans
;
5023 u64 mask
= root
->sectorsize
- 1;
5025 if (!S_ISREG(inode
->i_mode
))
5027 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
5030 ret
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
5033 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
5035 trans
= btrfs_start_transaction(root
, 1);
5038 * setattr is responsible for setting the ordered_data_close flag,
5039 * but that is only tested during the last file release. That
5040 * could happen well after the next commit, leaving a great big
5041 * window where new writes may get lost if someone chooses to write
5042 * to this file after truncating to zero
5044 * The inode doesn't have any dirty data here, and so if we commit
5045 * this is a noop. If someone immediately starts writing to the inode
5046 * it is very likely we'll catch some of their writes in this
5047 * transaction, and the commit will find this file on the ordered
5048 * data list with good things to send down.
5050 * This is a best effort solution, there is still a window where
5051 * using truncate to replace the contents of the file will
5052 * end up with a zero length file after a crash.
5054 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
5055 btrfs_add_ordered_operation(trans
, root
, inode
);
5057 btrfs_set_trans_block_group(trans
, inode
);
5058 btrfs_i_size_write(inode
, inode
->i_size
);
5060 ret
= btrfs_orphan_add(trans
, inode
);
5063 /* FIXME, add redo link to tree so we don't leak on crash */
5064 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, inode
->i_size
,
5065 BTRFS_EXTENT_DATA_KEY
);
5066 btrfs_update_inode(trans
, root
, inode
);
5068 ret
= btrfs_orphan_del(trans
, inode
);
5072 nr
= trans
->blocks_used
;
5073 ret
= btrfs_end_transaction_throttle(trans
, root
);
5075 btrfs_btree_balance_dirty(root
, nr
);
5079 * create a new subvolume directory/inode (helper for the ioctl).
5081 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
5082 struct btrfs_root
*new_root
,
5083 u64 new_dirid
, u64 alloc_hint
)
5085 struct inode
*inode
;
5089 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
5090 new_dirid
, alloc_hint
, S_IFDIR
| 0700, &index
);
5092 return PTR_ERR(inode
);
5093 inode
->i_op
= &btrfs_dir_inode_operations
;
5094 inode
->i_fop
= &btrfs_dir_file_operations
;
5097 btrfs_i_size_write(inode
, 0);
5099 err
= btrfs_update_inode(trans
, new_root
, inode
);
5106 /* helper function for file defrag and space balancing. This
5107 * forces readahead on a given range of bytes in an inode
5109 unsigned long btrfs_force_ra(struct address_space
*mapping
,
5110 struct file_ra_state
*ra
, struct file
*file
,
5111 pgoff_t offset
, pgoff_t last_index
)
5113 pgoff_t req_size
= last_index
- offset
+ 1;
5115 page_cache_sync_readahead(mapping
, ra
, file
, offset
, req_size
);
5116 return offset
+ req_size
;
5119 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
5121 struct btrfs_inode
*ei
;
5123 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
5127 ei
->last_sub_trans
= 0;
5128 ei
->logged_trans
= 0;
5129 ei
->outstanding_extents
= 0;
5130 ei
->reserved_extents
= 0;
5131 spin_lock_init(&ei
->accounting_lock
);
5132 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
5133 INIT_LIST_HEAD(&ei
->i_orphan
);
5134 INIT_LIST_HEAD(&ei
->ordered_operations
);
5135 return &ei
->vfs_inode
;
5138 void btrfs_destroy_inode(struct inode
*inode
)
5140 struct btrfs_ordered_extent
*ordered
;
5141 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5143 WARN_ON(!list_empty(&inode
->i_dentry
));
5144 WARN_ON(inode
->i_data
.nrpages
);
5147 * Make sure we're properly removed from the ordered operation
5151 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
5152 spin_lock(&root
->fs_info
->ordered_extent_lock
);
5153 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
5154 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
5157 spin_lock(&root
->list_lock
);
5158 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
5159 printk(KERN_ERR
"BTRFS: inode %lu: inode still on the orphan"
5160 " list\n", inode
->i_ino
);
5163 spin_unlock(&root
->list_lock
);
5166 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
5170 printk(KERN_ERR
"btrfs found ordered "
5171 "extent %llu %llu on inode cleanup\n",
5172 (unsigned long long)ordered
->file_offset
,
5173 (unsigned long long)ordered
->len
);
5174 btrfs_remove_ordered_extent(inode
, ordered
);
5175 btrfs_put_ordered_extent(ordered
);
5176 btrfs_put_ordered_extent(ordered
);
5179 inode_tree_del(inode
);
5180 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
5181 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
5184 void btrfs_drop_inode(struct inode
*inode
)
5186 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5188 if (inode
->i_nlink
> 0 && btrfs_root_refs(&root
->root_item
) == 0)
5189 generic_delete_inode(inode
);
5191 generic_drop_inode(inode
);
5194 static void init_once(void *foo
)
5196 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
5198 inode_init_once(&ei
->vfs_inode
);
5201 void btrfs_destroy_cachep(void)
5203 if (btrfs_inode_cachep
)
5204 kmem_cache_destroy(btrfs_inode_cachep
);
5205 if (btrfs_trans_handle_cachep
)
5206 kmem_cache_destroy(btrfs_trans_handle_cachep
);
5207 if (btrfs_transaction_cachep
)
5208 kmem_cache_destroy(btrfs_transaction_cachep
);
5209 if (btrfs_path_cachep
)
5210 kmem_cache_destroy(btrfs_path_cachep
);
5213 int btrfs_init_cachep(void)
5215 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
5216 sizeof(struct btrfs_inode
), 0,
5217 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
5218 if (!btrfs_inode_cachep
)
5221 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
5222 sizeof(struct btrfs_trans_handle
), 0,
5223 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
5224 if (!btrfs_trans_handle_cachep
)
5227 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
5228 sizeof(struct btrfs_transaction
), 0,
5229 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
5230 if (!btrfs_transaction_cachep
)
5233 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
5234 sizeof(struct btrfs_path
), 0,
5235 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
5236 if (!btrfs_path_cachep
)
5241 btrfs_destroy_cachep();
5245 static int btrfs_getattr(struct vfsmount
*mnt
,
5246 struct dentry
*dentry
, struct kstat
*stat
)
5248 struct inode
*inode
= dentry
->d_inode
;
5249 generic_fillattr(inode
, stat
);
5250 stat
->dev
= BTRFS_I(inode
)->root
->anon_super
.s_dev
;
5251 stat
->blksize
= PAGE_CACHE_SIZE
;
5252 stat
->blocks
= (inode_get_bytes(inode
) +
5253 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
5257 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
5258 struct inode
*new_dir
, struct dentry
*new_dentry
)
5260 struct btrfs_trans_handle
*trans
;
5261 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
5262 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
5263 struct inode
*new_inode
= new_dentry
->d_inode
;
5264 struct inode
*old_inode
= old_dentry
->d_inode
;
5265 struct timespec ctime
= CURRENT_TIME
;
5270 if (new_dir
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5273 /* we only allow rename subvolume link between subvolumes */
5274 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
5277 if (old_inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
5278 (new_inode
&& new_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
))
5281 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
5282 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
5286 * 2 items for dir items
5287 * 1 item for orphan entry
5290 ret
= btrfs_reserve_metadata_space(root
, 4);
5295 * we're using rename to replace one file with another.
5296 * and the replacement file is large. Start IO on it now so
5297 * we don't add too much work to the end of the transaction
5299 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
5300 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
5301 filemap_flush(old_inode
->i_mapping
);
5303 /* close the racy window with snapshot create/destroy ioctl */
5304 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
5305 down_read(&root
->fs_info
->subvol_sem
);
5307 trans
= btrfs_start_transaction(root
, 1);
5308 btrfs_set_trans_block_group(trans
, new_dir
);
5311 btrfs_record_root_in_trans(trans
, dest
);
5313 ret
= btrfs_set_inode_index(new_dir
, &index
);
5317 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5318 /* force full log commit if subvolume involved. */
5319 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
5321 ret
= btrfs_insert_inode_ref(trans
, dest
,
5322 new_dentry
->d_name
.name
,
5323 new_dentry
->d_name
.len
,
5325 new_dir
->i_ino
, index
);
5329 * this is an ugly little race, but the rename is required
5330 * to make sure that if we crash, the inode is either at the
5331 * old name or the new one. pinning the log transaction lets
5332 * us make sure we don't allow a log commit to come in after
5333 * we unlink the name but before we add the new name back in.
5335 btrfs_pin_log_trans(root
);
5338 * make sure the inode gets flushed if it is replacing
5341 if (new_inode
&& new_inode
->i_size
&&
5342 old_inode
&& S_ISREG(old_inode
->i_mode
)) {
5343 btrfs_add_ordered_operation(trans
, root
, old_inode
);
5346 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
5347 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
5348 old_inode
->i_ctime
= ctime
;
5350 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
5351 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
5353 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5354 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
5355 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
5356 old_dentry
->d_name
.name
,
5357 old_dentry
->d_name
.len
);
5359 btrfs_inc_nlink(old_dentry
->d_inode
);
5360 ret
= btrfs_unlink_inode(trans
, root
, old_dir
,
5361 old_dentry
->d_inode
,
5362 old_dentry
->d_name
.name
,
5363 old_dentry
->d_name
.len
);
5368 new_inode
->i_ctime
= CURRENT_TIME
;
5369 if (unlikely(new_inode
->i_ino
==
5370 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
5371 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
5372 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
5374 new_dentry
->d_name
.name
,
5375 new_dentry
->d_name
.len
);
5376 BUG_ON(new_inode
->i_nlink
== 0);
5378 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
5379 new_dentry
->d_inode
,
5380 new_dentry
->d_name
.name
,
5381 new_dentry
->d_name
.len
);
5384 if (new_inode
->i_nlink
== 0) {
5385 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
5390 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
5391 new_dentry
->d_name
.name
,
5392 new_dentry
->d_name
.len
, 0, index
);
5395 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
5396 btrfs_log_new_name(trans
, old_inode
, old_dir
,
5397 new_dentry
->d_parent
);
5398 btrfs_end_log_trans(root
);
5401 btrfs_end_transaction_throttle(trans
, root
);
5403 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
5404 up_read(&root
->fs_info
->subvol_sem
);
5406 btrfs_unreserve_metadata_space(root
, 4);
5411 * some fairly slow code that needs optimization. This walks the list
5412 * of all the inodes with pending delalloc and forces them to disk.
5414 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
)
5416 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
5417 struct btrfs_inode
*binode
;
5418 struct inode
*inode
;
5420 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
5423 spin_lock(&root
->fs_info
->delalloc_lock
);
5424 while (!list_empty(head
)) {
5425 binode
= list_entry(head
->next
, struct btrfs_inode
,
5427 inode
= igrab(&binode
->vfs_inode
);
5429 list_del_init(&binode
->delalloc_inodes
);
5430 spin_unlock(&root
->fs_info
->delalloc_lock
);
5432 filemap_flush(inode
->i_mapping
);
5436 spin_lock(&root
->fs_info
->delalloc_lock
);
5438 spin_unlock(&root
->fs_info
->delalloc_lock
);
5440 /* the filemap_flush will queue IO into the worker threads, but
5441 * we have to make sure the IO is actually started and that
5442 * ordered extents get created before we return
5444 atomic_inc(&root
->fs_info
->async_submit_draining
);
5445 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
5446 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
5447 wait_event(root
->fs_info
->async_submit_wait
,
5448 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
5449 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
5451 atomic_dec(&root
->fs_info
->async_submit_draining
);
5455 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
5456 const char *symname
)
5458 struct btrfs_trans_handle
*trans
;
5459 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5460 struct btrfs_path
*path
;
5461 struct btrfs_key key
;
5462 struct inode
*inode
= NULL
;
5470 struct btrfs_file_extent_item
*ei
;
5471 struct extent_buffer
*leaf
;
5472 unsigned long nr
= 0;
5474 name_len
= strlen(symname
) + 1;
5475 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
5476 return -ENAMETOOLONG
;
5479 * 2 items for inode item and ref
5480 * 2 items for dir items
5481 * 1 item for xattr if selinux is on
5483 err
= btrfs_reserve_metadata_space(root
, 5);
5487 trans
= btrfs_start_transaction(root
, 1);
5490 btrfs_set_trans_block_group(trans
, dir
);
5492 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
5498 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5500 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
5501 BTRFS_I(dir
)->block_group
, S_IFLNK
|S_IRWXUGO
,
5503 err
= PTR_ERR(inode
);
5507 err
= btrfs_init_inode_security(inode
, dir
);
5513 btrfs_set_trans_block_group(trans
, inode
);
5514 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
5518 inode
->i_mapping
->a_ops
= &btrfs_aops
;
5519 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
5520 inode
->i_fop
= &btrfs_file_operations
;
5521 inode
->i_op
= &btrfs_file_inode_operations
;
5522 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
5524 btrfs_update_inode_block_group(trans
, inode
);
5525 btrfs_update_inode_block_group(trans
, dir
);
5529 path
= btrfs_alloc_path();
5531 key
.objectid
= inode
->i_ino
;
5533 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
5534 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
5535 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
5541 leaf
= path
->nodes
[0];
5542 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
5543 struct btrfs_file_extent_item
);
5544 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
5545 btrfs_set_file_extent_type(leaf
, ei
,
5546 BTRFS_FILE_EXTENT_INLINE
);
5547 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
5548 btrfs_set_file_extent_compression(leaf
, ei
, 0);
5549 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
5550 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
5552 ptr
= btrfs_file_extent_inline_start(ei
);
5553 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
5554 btrfs_mark_buffer_dirty(leaf
);
5555 btrfs_free_path(path
);
5557 inode
->i_op
= &btrfs_symlink_inode_operations
;
5558 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
5559 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
5560 inode_set_bytes(inode
, name_len
);
5561 btrfs_i_size_write(inode
, name_len
- 1);
5562 err
= btrfs_update_inode(trans
, root
, inode
);
5567 nr
= trans
->blocks_used
;
5568 btrfs_end_transaction_throttle(trans
, root
);
5570 btrfs_unreserve_metadata_space(root
, 5);
5572 inode_dec_link_count(inode
);
5575 btrfs_btree_balance_dirty(root
, nr
);
5579 static int prealloc_file_range(struct btrfs_trans_handle
*trans
,
5580 struct inode
*inode
, u64 start
, u64 end
,
5581 u64 locked_end
, u64 alloc_hint
, int mode
)
5583 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5584 struct btrfs_key ins
;
5586 u64 cur_offset
= start
;
5587 u64 num_bytes
= end
- start
;
5590 while (num_bytes
> 0) {
5591 alloc_size
= min(num_bytes
, root
->fs_info
->max_extent
);
5593 ret
= btrfs_reserve_metadata_space(root
, 1);
5597 ret
= btrfs_reserve_extent(trans
, root
, alloc_size
,
5598 root
->sectorsize
, 0, alloc_hint
,
5604 ret
= insert_reserved_file_extent(trans
, inode
,
5605 cur_offset
, ins
.objectid
,
5606 ins
.offset
, ins
.offset
,
5607 ins
.offset
, locked_end
,
5609 BTRFS_FILE_EXTENT_PREALLOC
);
5611 btrfs_drop_extent_cache(inode
, cur_offset
,
5612 cur_offset
+ ins
.offset
-1, 0);
5613 num_bytes
-= ins
.offset
;
5614 cur_offset
+= ins
.offset
;
5615 alloc_hint
= ins
.objectid
+ ins
.offset
;
5616 btrfs_unreserve_metadata_space(root
, 1);
5619 if (cur_offset
> start
) {
5620 inode
->i_ctime
= CURRENT_TIME
;
5621 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
5622 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
5623 cur_offset
> i_size_read(inode
))
5624 btrfs_i_size_write(inode
, cur_offset
);
5625 ret
= btrfs_update_inode(trans
, root
, inode
);
5632 static long btrfs_fallocate(struct inode
*inode
, int mode
,
5633 loff_t offset
, loff_t len
)
5641 u64 mask
= BTRFS_I(inode
)->root
->sectorsize
- 1;
5642 struct extent_map
*em
;
5643 struct btrfs_trans_handle
*trans
;
5644 struct btrfs_root
*root
;
5647 alloc_start
= offset
& ~mask
;
5648 alloc_end
= (offset
+ len
+ mask
) & ~mask
;
5651 * wait for ordered IO before we have any locks. We'll loop again
5652 * below with the locks held.
5654 btrfs_wait_ordered_range(inode
, alloc_start
, alloc_end
- alloc_start
);
5656 mutex_lock(&inode
->i_mutex
);
5657 if (alloc_start
> inode
->i_size
) {
5658 ret
= btrfs_cont_expand(inode
, alloc_start
);
5663 root
= BTRFS_I(inode
)->root
;
5665 ret
= btrfs_check_data_free_space(root
, inode
,
5666 alloc_end
- alloc_start
);
5670 locked_end
= alloc_end
- 1;
5672 struct btrfs_ordered_extent
*ordered
;
5674 trans
= btrfs_start_transaction(BTRFS_I(inode
)->root
, 1);
5680 /* the extent lock is ordered inside the running
5683 lock_extent(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
5685 ordered
= btrfs_lookup_first_ordered_extent(inode
,
5688 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
5689 ordered
->file_offset
< alloc_end
) {
5690 btrfs_put_ordered_extent(ordered
);
5691 unlock_extent(&BTRFS_I(inode
)->io_tree
,
5692 alloc_start
, locked_end
, GFP_NOFS
);
5693 btrfs_end_transaction(trans
, BTRFS_I(inode
)->root
);
5696 * we can't wait on the range with the transaction
5697 * running or with the extent lock held
5699 btrfs_wait_ordered_range(inode
, alloc_start
,
5700 alloc_end
- alloc_start
);
5703 btrfs_put_ordered_extent(ordered
);
5708 cur_offset
= alloc_start
;
5710 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
5711 alloc_end
- cur_offset
, 0);
5712 BUG_ON(IS_ERR(em
) || !em
);
5713 last_byte
= min(extent_map_end(em
), alloc_end
);
5714 last_byte
= (last_byte
+ mask
) & ~mask
;
5715 if (em
->block_start
== EXTENT_MAP_HOLE
) {
5716 ret
= prealloc_file_range(trans
, inode
, cur_offset
,
5717 last_byte
, locked_end
+ 1,
5720 free_extent_map(em
);
5724 if (em
->block_start
<= EXTENT_MAP_LAST_BYTE
)
5725 alloc_hint
= em
->block_start
;
5726 free_extent_map(em
);
5728 cur_offset
= last_byte
;
5729 if (cur_offset
>= alloc_end
) {
5734 unlock_extent(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
5737 btrfs_end_transaction(trans
, BTRFS_I(inode
)->root
);
5739 btrfs_free_reserved_data_space(root
, inode
, alloc_end
- alloc_start
);
5741 mutex_unlock(&inode
->i_mutex
);
5745 static int btrfs_set_page_dirty(struct page
*page
)
5747 return __set_page_dirty_nobuffers(page
);
5750 static int btrfs_permission(struct inode
*inode
, int mask
)
5752 if ((BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
) && (mask
& MAY_WRITE
))
5754 return generic_permission(inode
, mask
, btrfs_check_acl
);
5757 static const struct inode_operations btrfs_dir_inode_operations
= {
5758 .getattr
= btrfs_getattr
,
5759 .lookup
= btrfs_lookup
,
5760 .create
= btrfs_create
,
5761 .unlink
= btrfs_unlink
,
5763 .mkdir
= btrfs_mkdir
,
5764 .rmdir
= btrfs_rmdir
,
5765 .rename
= btrfs_rename
,
5766 .symlink
= btrfs_symlink
,
5767 .setattr
= btrfs_setattr
,
5768 .mknod
= btrfs_mknod
,
5769 .setxattr
= btrfs_setxattr
,
5770 .getxattr
= btrfs_getxattr
,
5771 .listxattr
= btrfs_listxattr
,
5772 .removexattr
= btrfs_removexattr
,
5773 .permission
= btrfs_permission
,
5775 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
5776 .lookup
= btrfs_lookup
,
5777 .permission
= btrfs_permission
,
5780 static const struct file_operations btrfs_dir_file_operations
= {
5781 .llseek
= generic_file_llseek
,
5782 .read
= generic_read_dir
,
5783 .readdir
= btrfs_real_readdir
,
5784 .unlocked_ioctl
= btrfs_ioctl
,
5785 #ifdef CONFIG_COMPAT
5786 .compat_ioctl
= btrfs_ioctl
,
5788 .release
= btrfs_release_file
,
5789 .fsync
= btrfs_sync_file
,
5792 static struct extent_io_ops btrfs_extent_io_ops
= {
5793 .fill_delalloc
= run_delalloc_range
,
5794 .submit_bio_hook
= btrfs_submit_bio_hook
,
5795 .merge_bio_hook
= btrfs_merge_bio_hook
,
5796 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
5797 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
5798 .writepage_start_hook
= btrfs_writepage_start_hook
,
5799 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
5800 .set_bit_hook
= btrfs_set_bit_hook
,
5801 .clear_bit_hook
= btrfs_clear_bit_hook
,
5802 .merge_extent_hook
= btrfs_merge_extent_hook
,
5803 .split_extent_hook
= btrfs_split_extent_hook
,
5807 * btrfs doesn't support the bmap operation because swapfiles
5808 * use bmap to make a mapping of extents in the file. They assume
5809 * these extents won't change over the life of the file and they
5810 * use the bmap result to do IO directly to the drive.
5812 * the btrfs bmap call would return logical addresses that aren't
5813 * suitable for IO and they also will change frequently as COW
5814 * operations happen. So, swapfile + btrfs == corruption.
5816 * For now we're avoiding this by dropping bmap.
5818 static const struct address_space_operations btrfs_aops
= {
5819 .readpage
= btrfs_readpage
,
5820 .writepage
= btrfs_writepage
,
5821 .writepages
= btrfs_writepages
,
5822 .readpages
= btrfs_readpages
,
5823 .sync_page
= block_sync_page
,
5824 .direct_IO
= btrfs_direct_IO
,
5825 .invalidatepage
= btrfs_invalidatepage
,
5826 .releasepage
= btrfs_releasepage
,
5827 .set_page_dirty
= btrfs_set_page_dirty
,
5828 .error_remove_page
= generic_error_remove_page
,
5831 static const struct address_space_operations btrfs_symlink_aops
= {
5832 .readpage
= btrfs_readpage
,
5833 .writepage
= btrfs_writepage
,
5834 .invalidatepage
= btrfs_invalidatepage
,
5835 .releasepage
= btrfs_releasepage
,
5838 static const struct inode_operations btrfs_file_inode_operations
= {
5839 .truncate
= btrfs_truncate
,
5840 .getattr
= btrfs_getattr
,
5841 .setattr
= btrfs_setattr
,
5842 .setxattr
= btrfs_setxattr
,
5843 .getxattr
= btrfs_getxattr
,
5844 .listxattr
= btrfs_listxattr
,
5845 .removexattr
= btrfs_removexattr
,
5846 .permission
= btrfs_permission
,
5847 .fallocate
= btrfs_fallocate
,
5848 .fiemap
= btrfs_fiemap
,
5850 static const struct inode_operations btrfs_special_inode_operations
= {
5851 .getattr
= btrfs_getattr
,
5852 .setattr
= btrfs_setattr
,
5853 .permission
= btrfs_permission
,
5854 .setxattr
= btrfs_setxattr
,
5855 .getxattr
= btrfs_getxattr
,
5856 .listxattr
= btrfs_listxattr
,
5857 .removexattr
= btrfs_removexattr
,
5859 static const struct inode_operations btrfs_symlink_inode_operations
= {
5860 .readlink
= generic_readlink
,
5861 .follow_link
= page_follow_link_light
,
5862 .put_link
= page_put_link
,
5863 .permission
= btrfs_permission
,
5864 .setxattr
= btrfs_setxattr
,
5865 .getxattr
= btrfs_getxattr
,
5866 .listxattr
= btrfs_listxattr
,
5867 .removexattr
= btrfs_removexattr
,
5870 const struct dentry_operations btrfs_dentry_operations
= {
5871 .d_delete
= btrfs_dentry_delete
,