omap_hsmmc: Flush posted write to IRQ
[linux-ginger.git] / arch / mips / kernel / i8253.c
blob689719e34f085db04c1c09f8d18b89f1b9da91cd
1 /*
2 * i8253.c 8253/PIT functions
4 */
5 #include <linux/clockchips.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/spinlock.h>
12 #include <asm/delay.h>
13 #include <asm/i8253.h>
14 #include <asm/io.h>
15 #include <asm/time.h>
17 DEFINE_SPINLOCK(i8253_lock);
18 EXPORT_SYMBOL(i8253_lock);
21 * Initialize the PIT timer.
23 * This is also called after resume to bring the PIT into operation again.
25 static void init_pit_timer(enum clock_event_mode mode,
26 struct clock_event_device *evt)
28 spin_lock(&i8253_lock);
30 switch(mode) {
31 case CLOCK_EVT_MODE_PERIODIC:
32 /* binary, mode 2, LSB/MSB, ch 0 */
33 outb_p(0x34, PIT_MODE);
34 outb_p(LATCH & 0xff , PIT_CH0); /* LSB */
35 outb(LATCH >> 8 , PIT_CH0); /* MSB */
36 break;
38 case CLOCK_EVT_MODE_SHUTDOWN:
39 case CLOCK_EVT_MODE_UNUSED:
40 if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
41 evt->mode == CLOCK_EVT_MODE_ONESHOT) {
42 outb_p(0x30, PIT_MODE);
43 outb_p(0, PIT_CH0);
44 outb_p(0, PIT_CH0);
46 break;
48 case CLOCK_EVT_MODE_ONESHOT:
49 /* One shot setup */
50 outb_p(0x38, PIT_MODE);
51 break;
53 case CLOCK_EVT_MODE_RESUME:
54 /* Nothing to do here */
55 break;
57 spin_unlock(&i8253_lock);
61 * Program the next event in oneshot mode
63 * Delta is given in PIT ticks
65 static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
67 spin_lock(&i8253_lock);
68 outb_p(delta & 0xff , PIT_CH0); /* LSB */
69 outb(delta >> 8 , PIT_CH0); /* MSB */
70 spin_unlock(&i8253_lock);
72 return 0;
76 * On UP the PIT can serve all of the possible timer functions. On SMP systems
77 * it can be solely used for the global tick.
79 * The profiling and update capabilites are switched off once the local apic is
80 * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
81 * !using_apic_timer decisions in do_timer_interrupt_hook()
83 static struct clock_event_device pit_clockevent = {
84 .name = "pit",
85 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
86 .set_mode = init_pit_timer,
87 .set_next_event = pit_next_event,
88 .irq = 0,
91 static irqreturn_t timer_interrupt(int irq, void *dev_id)
93 pit_clockevent.event_handler(&pit_clockevent);
95 return IRQ_HANDLED;
98 static struct irqaction irq0 = {
99 .handler = timer_interrupt,
100 .flags = IRQF_DISABLED | IRQF_NOBALANCING,
101 .name = "timer"
105 * Initialize the conversion factor and the min/max deltas of the clock event
106 * structure and register the clock event source with the framework.
108 void __init setup_pit_timer(void)
110 struct clock_event_device *cd = &pit_clockevent;
111 unsigned int cpu = smp_processor_id();
114 * Start pit with the boot cpu mask and make it global after the
115 * IO_APIC has been initialized.
117 cd->cpumask = cpumask_of(cpu);
118 clockevent_set_clock(cd, CLOCK_TICK_RATE);
119 cd->max_delta_ns = clockevent_delta2ns(0x7FFF, cd);
120 cd->min_delta_ns = clockevent_delta2ns(0xF, cd);
121 clockevents_register_device(cd);
123 setup_irq(0, &irq0);
127 * Since the PIT overflows every tick, its not very useful
128 * to just read by itself. So use jiffies to emulate a free
129 * running counter:
131 static cycle_t pit_read(void)
133 unsigned long flags;
134 int count;
135 u32 jifs;
136 static int old_count;
137 static u32 old_jifs;
139 spin_lock_irqsave(&i8253_lock, flags);
141 * Although our caller may have the read side of xtime_lock,
142 * this is now a seqlock, and we are cheating in this routine
143 * by having side effects on state that we cannot undo if
144 * there is a collision on the seqlock and our caller has to
145 * retry. (Namely, old_jifs and old_count.) So we must treat
146 * jiffies as volatile despite the lock. We read jiffies
147 * before latching the timer count to guarantee that although
148 * the jiffies value might be older than the count (that is,
149 * the counter may underflow between the last point where
150 * jiffies was incremented and the point where we latch the
151 * count), it cannot be newer.
153 jifs = jiffies;
154 outb_p(0x00, PIT_MODE); /* latch the count ASAP */
155 count = inb_p(PIT_CH0); /* read the latched count */
156 count |= inb_p(PIT_CH0) << 8;
158 /* VIA686a test code... reset the latch if count > max + 1 */
159 if (count > LATCH) {
160 outb_p(0x34, PIT_MODE);
161 outb_p(LATCH & 0xff, PIT_CH0);
162 outb(LATCH >> 8, PIT_CH0);
163 count = LATCH - 1;
167 * It's possible for count to appear to go the wrong way for a
168 * couple of reasons:
170 * 1. The timer counter underflows, but we haven't handled the
171 * resulting interrupt and incremented jiffies yet.
172 * 2. Hardware problem with the timer, not giving us continuous time,
173 * the counter does small "jumps" upwards on some Pentium systems,
174 * (see c't 95/10 page 335 for Neptun bug.)
176 * Previous attempts to handle these cases intelligently were
177 * buggy, so we just do the simple thing now.
179 if (count > old_count && jifs == old_jifs) {
180 count = old_count;
182 old_count = count;
183 old_jifs = jifs;
185 spin_unlock_irqrestore(&i8253_lock, flags);
187 count = (LATCH - 1) - count;
189 return (cycle_t)(jifs * LATCH) + count;
192 static struct clocksource clocksource_pit = {
193 .name = "pit",
194 .rating = 110,
195 .read = pit_read,
196 .mask = CLOCKSOURCE_MASK(32),
197 .mult = 0,
198 .shift = 20,
201 static int __init init_pit_clocksource(void)
203 if (num_possible_cpus() > 1) /* PIT does not scale! */
204 return 0;
206 clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
207 return clocksource_register(&clocksource_pit);
209 arch_initcall(init_pit_clocksource);