2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
33 #include "transaction.h"
34 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
39 #include "ref-cache.h"
42 static struct extent_io_ops btree_extent_io_ops
;
43 static void end_workqueue_fn(struct btrfs_work
*work
);
46 * end_io_wq structs are used to do processing in task context when an IO is
47 * complete. This is used during reads to verify checksums, and it is used
48 * by writes to insert metadata for new file extents after IO is complete.
54 struct btrfs_fs_info
*info
;
57 struct list_head list
;
58 struct btrfs_work work
;
62 * async submit bios are used to offload expensive checksumming
63 * onto the worker threads. They checksum file and metadata bios
64 * just before they are sent down the IO stack.
66 struct async_submit_bio
{
69 struct list_head list
;
70 extent_submit_bio_hook_t
*submit_bio_start
;
71 extent_submit_bio_hook_t
*submit_bio_done
;
74 unsigned long bio_flags
;
75 struct btrfs_work work
;
78 /* These are used to set the lockdep class on the extent buffer locks.
79 * The class is set by the readpage_end_io_hook after the buffer has
80 * passed csum validation but before the pages are unlocked.
82 * The lockdep class is also set by btrfs_init_new_buffer on freshly
85 * The class is based on the level in the tree block, which allows lockdep
86 * to know that lower nodes nest inside the locks of higher nodes.
88 * We also add a check to make sure the highest level of the tree is
89 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
90 * code needs update as well.
92 #ifdef CONFIG_DEBUG_LOCK_ALLOC
93 # if BTRFS_MAX_LEVEL != 8
96 static struct lock_class_key btrfs_eb_class
[BTRFS_MAX_LEVEL
+ 1];
97 static const char *btrfs_eb_name
[BTRFS_MAX_LEVEL
+ 1] = {
107 /* highest possible level */
113 * extents on the btree inode are pretty simple, there's one extent
114 * that covers the entire device
116 static struct extent_map
*btree_get_extent(struct inode
*inode
,
117 struct page
*page
, size_t page_offset
, u64 start
, u64 len
,
120 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
121 struct extent_map
*em
;
124 spin_lock(&em_tree
->lock
);
125 em
= lookup_extent_mapping(em_tree
, start
, len
);
128 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
129 spin_unlock(&em_tree
->lock
);
132 spin_unlock(&em_tree
->lock
);
134 em
= alloc_extent_map(GFP_NOFS
);
136 em
= ERR_PTR(-ENOMEM
);
141 em
->block_len
= (u64
)-1;
143 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
145 spin_lock(&em_tree
->lock
);
146 ret
= add_extent_mapping(em_tree
, em
);
147 if (ret
== -EEXIST
) {
148 u64 failed_start
= em
->start
;
149 u64 failed_len
= em
->len
;
152 em
= lookup_extent_mapping(em_tree
, start
, len
);
156 em
= lookup_extent_mapping(em_tree
, failed_start
,
164 spin_unlock(&em_tree
->lock
);
172 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
174 return btrfs_crc32c(seed
, data
, len
);
177 void btrfs_csum_final(u32 crc
, char *result
)
179 *(__le32
*)result
= ~cpu_to_le32(crc
);
183 * compute the csum for a btree block, and either verify it or write it
184 * into the csum field of the block.
186 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
190 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
193 unsigned long cur_len
;
194 unsigned long offset
= BTRFS_CSUM_SIZE
;
195 char *map_token
= NULL
;
197 unsigned long map_start
;
198 unsigned long map_len
;
201 unsigned long inline_result
;
203 len
= buf
->len
- offset
;
205 err
= map_private_extent_buffer(buf
, offset
, 32,
207 &map_start
, &map_len
, KM_USER0
);
210 cur_len
= min(len
, map_len
- (offset
- map_start
));
211 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
215 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
217 if (csum_size
> sizeof(inline_result
)) {
218 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
222 result
= (char *)&inline_result
;
225 btrfs_csum_final(crc
, result
);
228 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
231 memcpy(&found
, result
, csum_size
);
233 read_extent_buffer(buf
, &val
, 0, csum_size
);
234 printk(KERN_INFO
"btrfs: %s checksum verify failed "
235 "on %llu wanted %X found %X level %d\n",
236 root
->fs_info
->sb
->s_id
,
237 buf
->start
, val
, found
, btrfs_header_level(buf
));
238 if (result
!= (char *)&inline_result
)
243 write_extent_buffer(buf
, result
, 0, csum_size
);
245 if (result
!= (char *)&inline_result
)
251 * we can't consider a given block up to date unless the transid of the
252 * block matches the transid in the parent node's pointer. This is how we
253 * detect blocks that either didn't get written at all or got written
254 * in the wrong place.
256 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
257 struct extent_buffer
*eb
, u64 parent_transid
)
261 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
264 lock_extent(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1, GFP_NOFS
);
265 if (extent_buffer_uptodate(io_tree
, eb
) &&
266 btrfs_header_generation(eb
) == parent_transid
) {
270 printk("parent transid verify failed on %llu wanted %llu found %llu\n",
271 (unsigned long long)eb
->start
,
272 (unsigned long long)parent_transid
,
273 (unsigned long long)btrfs_header_generation(eb
));
275 clear_extent_buffer_uptodate(io_tree
, eb
);
277 unlock_extent(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
283 * helper to read a given tree block, doing retries as required when
284 * the checksums don't match and we have alternate mirrors to try.
286 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
287 struct extent_buffer
*eb
,
288 u64 start
, u64 parent_transid
)
290 struct extent_io_tree
*io_tree
;
295 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
297 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
298 btree_get_extent
, mirror_num
);
300 !verify_parent_transid(io_tree
, eb
, parent_transid
))
303 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
309 if (mirror_num
> num_copies
)
316 * checksum a dirty tree block before IO. This has extra checks to make sure
317 * we only fill in the checksum field in the first page of a multi-page block
320 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
322 struct extent_io_tree
*tree
;
323 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
327 struct extent_buffer
*eb
;
330 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
332 if (page
->private == EXTENT_PAGE_PRIVATE
)
336 len
= page
->private >> 2;
339 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
340 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
341 btrfs_header_generation(eb
));
343 found_start
= btrfs_header_bytenr(eb
);
344 if (found_start
!= start
) {
348 if (eb
->first_page
!= page
) {
352 if (!PageUptodate(page
)) {
356 found_level
= btrfs_header_level(eb
);
358 csum_tree_block(root
, eb
, 0);
360 free_extent_buffer(eb
);
365 static int check_tree_block_fsid(struct btrfs_root
*root
,
366 struct extent_buffer
*eb
)
368 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
369 u8 fsid
[BTRFS_UUID_SIZE
];
372 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
375 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
379 fs_devices
= fs_devices
->seed
;
384 #ifdef CONFIG_DEBUG_LOCK_ALLOC
385 void btrfs_set_buffer_lockdep_class(struct extent_buffer
*eb
, int level
)
387 lockdep_set_class_and_name(&eb
->lock
,
388 &btrfs_eb_class
[level
],
389 btrfs_eb_name
[level
]);
393 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
394 struct extent_state
*state
)
396 struct extent_io_tree
*tree
;
400 struct extent_buffer
*eb
;
401 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
404 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
405 if (page
->private == EXTENT_PAGE_PRIVATE
)
410 len
= page
->private >> 2;
413 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
415 found_start
= btrfs_header_bytenr(eb
);
416 if (found_start
!= start
) {
417 printk(KERN_INFO
"btrfs bad tree block start %llu %llu\n",
418 (unsigned long long)found_start
,
419 (unsigned long long)eb
->start
);
423 if (eb
->first_page
!= page
) {
424 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
425 eb
->first_page
->index
, page
->index
);
430 if (check_tree_block_fsid(root
, eb
)) {
431 printk(KERN_INFO
"btrfs bad fsid on block %llu\n",
432 (unsigned long long)eb
->start
);
436 found_level
= btrfs_header_level(eb
);
438 btrfs_set_buffer_lockdep_class(eb
, found_level
);
440 ret
= csum_tree_block(root
, eb
, 1);
444 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
445 end
= eb
->start
+ end
- 1;
447 free_extent_buffer(eb
);
452 static void end_workqueue_bio(struct bio
*bio
, int err
)
454 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
455 struct btrfs_fs_info
*fs_info
;
457 fs_info
= end_io_wq
->info
;
458 end_io_wq
->error
= err
;
459 end_io_wq
->work
.func
= end_workqueue_fn
;
460 end_io_wq
->work
.flags
= 0;
462 if (bio
->bi_rw
& (1 << BIO_RW
)) {
463 if (end_io_wq
->metadata
)
464 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
467 btrfs_queue_worker(&fs_info
->endio_write_workers
,
470 if (end_io_wq
->metadata
)
471 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
474 btrfs_queue_worker(&fs_info
->endio_workers
,
479 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
482 struct end_io_wq
*end_io_wq
;
483 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
487 end_io_wq
->private = bio
->bi_private
;
488 end_io_wq
->end_io
= bio
->bi_end_io
;
489 end_io_wq
->info
= info
;
490 end_io_wq
->error
= 0;
491 end_io_wq
->bio
= bio
;
492 end_io_wq
->metadata
= metadata
;
494 bio
->bi_private
= end_io_wq
;
495 bio
->bi_end_io
= end_workqueue_bio
;
499 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
501 unsigned long limit
= min_t(unsigned long,
502 info
->workers
.max_workers
,
503 info
->fs_devices
->open_devices
);
507 int btrfs_congested_async(struct btrfs_fs_info
*info
, int iodone
)
509 return atomic_read(&info
->nr_async_bios
) >
510 btrfs_async_submit_limit(info
);
513 static void run_one_async_start(struct btrfs_work
*work
)
515 struct btrfs_fs_info
*fs_info
;
516 struct async_submit_bio
*async
;
518 async
= container_of(work
, struct async_submit_bio
, work
);
519 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
520 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
521 async
->mirror_num
, async
->bio_flags
);
524 static void run_one_async_done(struct btrfs_work
*work
)
526 struct btrfs_fs_info
*fs_info
;
527 struct async_submit_bio
*async
;
530 async
= container_of(work
, struct async_submit_bio
, work
);
531 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
533 limit
= btrfs_async_submit_limit(fs_info
);
534 limit
= limit
* 2 / 3;
536 atomic_dec(&fs_info
->nr_async_submits
);
538 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
539 waitqueue_active(&fs_info
->async_submit_wait
))
540 wake_up(&fs_info
->async_submit_wait
);
542 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
543 async
->mirror_num
, async
->bio_flags
);
546 static void run_one_async_free(struct btrfs_work
*work
)
548 struct async_submit_bio
*async
;
550 async
= container_of(work
, struct async_submit_bio
, work
);
554 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
555 int rw
, struct bio
*bio
, int mirror_num
,
556 unsigned long bio_flags
,
557 extent_submit_bio_hook_t
*submit_bio_start
,
558 extent_submit_bio_hook_t
*submit_bio_done
)
560 struct async_submit_bio
*async
;
562 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
566 async
->inode
= inode
;
569 async
->mirror_num
= mirror_num
;
570 async
->submit_bio_start
= submit_bio_start
;
571 async
->submit_bio_done
= submit_bio_done
;
573 async
->work
.func
= run_one_async_start
;
574 async
->work
.ordered_func
= run_one_async_done
;
575 async
->work
.ordered_free
= run_one_async_free
;
577 async
->work
.flags
= 0;
578 async
->bio_flags
= bio_flags
;
580 atomic_inc(&fs_info
->nr_async_submits
);
581 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
583 int limit
= btrfs_async_submit_limit(fs_info
);
584 if (atomic_read(&fs_info
->nr_async_submits
) > limit
) {
585 wait_event_timeout(fs_info
->async_submit_wait
,
586 (atomic_read(&fs_info
->nr_async_submits
) < limit
),
589 wait_event_timeout(fs_info
->async_submit_wait
,
590 (atomic_read(&fs_info
->nr_async_bios
) < limit
),
594 while (atomic_read(&fs_info
->async_submit_draining
) &&
595 atomic_read(&fs_info
->nr_async_submits
)) {
596 wait_event(fs_info
->async_submit_wait
,
597 (atomic_read(&fs_info
->nr_async_submits
) == 0));
603 static int btree_csum_one_bio(struct bio
*bio
)
605 struct bio_vec
*bvec
= bio
->bi_io_vec
;
607 struct btrfs_root
*root
;
609 WARN_ON(bio
->bi_vcnt
<= 0);
610 while (bio_index
< bio
->bi_vcnt
) {
611 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
612 csum_dirty_buffer(root
, bvec
->bv_page
);
619 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
620 struct bio
*bio
, int mirror_num
,
621 unsigned long bio_flags
)
624 * when we're called for a write, we're already in the async
625 * submission context. Just jump into btrfs_map_bio
627 btree_csum_one_bio(bio
);
631 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
632 int mirror_num
, unsigned long bio_flags
)
635 * when we're called for a write, we're already in the async
636 * submission context. Just jump into btrfs_map_bio
638 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
641 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
642 int mirror_num
, unsigned long bio_flags
)
646 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
650 if (!(rw
& (1 << BIO_RW
))) {
652 * called for a read, do the setup so that checksum validation
653 * can happen in the async kernel threads
655 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
659 * kthread helpers are used to submit writes so that checksumming
660 * can happen in parallel across all CPUs
662 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
663 inode
, rw
, bio
, mirror_num
, 0,
664 __btree_submit_bio_start
,
665 __btree_submit_bio_done
);
668 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
670 struct extent_io_tree
*tree
;
671 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
672 struct extent_buffer
*eb
;
675 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
676 if (!(current
->flags
& PF_MEMALLOC
)) {
677 return extent_write_full_page(tree
, page
,
678 btree_get_extent
, wbc
);
681 redirty_page_for_writepage(wbc
, page
);
682 eb
= btrfs_find_tree_block(root
, page_offset(page
),
686 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
688 spin_lock(&root
->fs_info
->delalloc_lock
);
689 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
690 spin_unlock(&root
->fs_info
->delalloc_lock
);
692 free_extent_buffer(eb
);
698 static int btree_writepages(struct address_space
*mapping
,
699 struct writeback_control
*wbc
)
701 struct extent_io_tree
*tree
;
702 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
703 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
704 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
706 unsigned long thresh
= 32 * 1024 * 1024;
708 if (wbc
->for_kupdate
)
711 /* this is a bit racy, but that's ok */
712 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
713 if (num_dirty
< thresh
)
716 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
719 static int btree_readpage(struct file
*file
, struct page
*page
)
721 struct extent_io_tree
*tree
;
722 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
723 return extent_read_full_page(tree
, page
, btree_get_extent
);
726 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
728 struct extent_io_tree
*tree
;
729 struct extent_map_tree
*map
;
732 if (PageWriteback(page
) || PageDirty(page
))
735 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
736 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
738 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
742 ret
= try_release_extent_buffer(tree
, page
);
744 ClearPagePrivate(page
);
745 set_page_private(page
, 0);
746 page_cache_release(page
);
752 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
754 struct extent_io_tree
*tree
;
755 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
756 extent_invalidatepage(tree
, page
, offset
);
757 btree_releasepage(page
, GFP_NOFS
);
758 if (PagePrivate(page
)) {
759 printk(KERN_WARNING
"btrfs warning page private not zero "
760 "on page %llu\n", (unsigned long long)page_offset(page
));
761 ClearPagePrivate(page
);
762 set_page_private(page
, 0);
763 page_cache_release(page
);
768 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
770 struct buffer_head
*bh
;
771 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
772 struct buffer_head
*head
;
773 if (!page_has_buffers(page
)) {
774 create_empty_buffers(page
, root
->fs_info
->sb
->s_blocksize
,
775 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
777 head
= page_buffers(page
);
780 if (buffer_dirty(bh
))
781 csum_tree_block(root
, bh
, 0);
782 bh
= bh
->b_this_page
;
783 } while (bh
!= head
);
784 return block_write_full_page(page
, btree_get_block
, wbc
);
788 static struct address_space_operations btree_aops
= {
789 .readpage
= btree_readpage
,
790 .writepage
= btree_writepage
,
791 .writepages
= btree_writepages
,
792 .releasepage
= btree_releasepage
,
793 .invalidatepage
= btree_invalidatepage
,
794 .sync_page
= block_sync_page
,
797 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
800 struct extent_buffer
*buf
= NULL
;
801 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
804 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
807 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
808 buf
, 0, 0, btree_get_extent
, 0);
809 free_extent_buffer(buf
);
813 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
814 u64 bytenr
, u32 blocksize
)
816 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
817 struct extent_buffer
*eb
;
818 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
819 bytenr
, blocksize
, GFP_NOFS
);
823 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
824 u64 bytenr
, u32 blocksize
)
826 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
827 struct extent_buffer
*eb
;
829 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
830 bytenr
, blocksize
, NULL
, GFP_NOFS
);
835 int btrfs_write_tree_block(struct extent_buffer
*buf
)
837 return btrfs_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
838 buf
->start
+ buf
->len
- 1, WB_SYNC_ALL
);
841 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
843 return btrfs_wait_on_page_writeback_range(buf
->first_page
->mapping
,
844 buf
->start
, buf
->start
+ buf
->len
- 1);
847 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
848 u32 blocksize
, u64 parent_transid
)
850 struct extent_buffer
*buf
= NULL
;
851 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
852 struct extent_io_tree
*io_tree
;
855 io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
857 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
861 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
864 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
871 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
872 struct extent_buffer
*buf
)
874 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
875 if (btrfs_header_generation(buf
) ==
876 root
->fs_info
->running_transaction
->transid
) {
877 btrfs_assert_tree_locked(buf
);
879 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
880 spin_lock(&root
->fs_info
->delalloc_lock
);
881 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
882 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
885 spin_unlock(&root
->fs_info
->delalloc_lock
);
888 /* ugh, clear_extent_buffer_dirty needs to lock the page */
889 btrfs_set_lock_blocking(buf
);
890 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
896 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
897 u32 stripesize
, struct btrfs_root
*root
,
898 struct btrfs_fs_info
*fs_info
,
902 root
->commit_root
= NULL
;
903 root
->ref_tree
= NULL
;
904 root
->sectorsize
= sectorsize
;
905 root
->nodesize
= nodesize
;
906 root
->leafsize
= leafsize
;
907 root
->stripesize
= stripesize
;
909 root
->track_dirty
= 0;
911 root
->fs_info
= fs_info
;
912 root
->objectid
= objectid
;
913 root
->last_trans
= 0;
914 root
->highest_inode
= 0;
915 root
->last_inode_alloc
= 0;
919 INIT_LIST_HEAD(&root
->dirty_list
);
920 INIT_LIST_HEAD(&root
->orphan_list
);
921 INIT_LIST_HEAD(&root
->dead_list
);
922 spin_lock_init(&root
->node_lock
);
923 spin_lock_init(&root
->list_lock
);
924 mutex_init(&root
->objectid_mutex
);
925 mutex_init(&root
->log_mutex
);
926 init_waitqueue_head(&root
->log_writer_wait
);
927 init_waitqueue_head(&root
->log_commit_wait
[0]);
928 init_waitqueue_head(&root
->log_commit_wait
[1]);
929 atomic_set(&root
->log_commit
[0], 0);
930 atomic_set(&root
->log_commit
[1], 0);
931 atomic_set(&root
->log_writers
, 0);
933 root
->log_transid
= 0;
934 extent_io_tree_init(&root
->dirty_log_pages
,
935 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
937 btrfs_leaf_ref_tree_init(&root
->ref_tree_struct
);
938 root
->ref_tree
= &root
->ref_tree_struct
;
940 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
941 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
942 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
943 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
944 root
->defrag_trans_start
= fs_info
->generation
;
945 init_completion(&root
->kobj_unregister
);
946 root
->defrag_running
= 0;
947 root
->defrag_level
= 0;
948 root
->root_key
.objectid
= objectid
;
949 root
->anon_super
.s_root
= NULL
;
950 root
->anon_super
.s_dev
= 0;
951 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
952 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
953 init_rwsem(&root
->anon_super
.s_umount
);
958 static int find_and_setup_root(struct btrfs_root
*tree_root
,
959 struct btrfs_fs_info
*fs_info
,
961 struct btrfs_root
*root
)
967 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
968 tree_root
->sectorsize
, tree_root
->stripesize
,
969 root
, fs_info
, objectid
);
970 ret
= btrfs_find_last_root(tree_root
, objectid
,
971 &root
->root_item
, &root
->root_key
);
974 generation
= btrfs_root_generation(&root
->root_item
);
975 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
976 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
977 blocksize
, generation
);
982 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
983 struct btrfs_fs_info
*fs_info
)
985 struct extent_buffer
*eb
;
986 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
995 ret
= find_first_extent_bit(&log_root_tree
->dirty_log_pages
,
996 0, &start
, &end
, EXTENT_DIRTY
);
1000 clear_extent_dirty(&log_root_tree
->dirty_log_pages
,
1001 start
, end
, GFP_NOFS
);
1003 eb
= fs_info
->log_root_tree
->node
;
1005 WARN_ON(btrfs_header_level(eb
) != 0);
1006 WARN_ON(btrfs_header_nritems(eb
) != 0);
1008 ret
= btrfs_free_reserved_extent(fs_info
->tree_root
,
1009 eb
->start
, eb
->len
);
1012 free_extent_buffer(eb
);
1013 kfree(fs_info
->log_root_tree
);
1014 fs_info
->log_root_tree
= NULL
;
1018 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1019 struct btrfs_fs_info
*fs_info
)
1021 struct btrfs_root
*root
;
1022 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1023 struct extent_buffer
*leaf
;
1025 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1027 return ERR_PTR(-ENOMEM
);
1029 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1030 tree_root
->sectorsize
, tree_root
->stripesize
,
1031 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1033 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1034 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1035 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1037 * log trees do not get reference counted because they go away
1038 * before a real commit is actually done. They do store pointers
1039 * to file data extents, and those reference counts still get
1040 * updated (along with back refs to the log tree).
1044 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
1045 0, BTRFS_TREE_LOG_OBJECTID
,
1046 trans
->transid
, 0, 0, 0);
1049 return ERR_CAST(leaf
);
1053 btrfs_set_header_nritems(root
->node
, 0);
1054 btrfs_set_header_level(root
->node
, 0);
1055 btrfs_set_header_bytenr(root
->node
, root
->node
->start
);
1056 btrfs_set_header_generation(root
->node
, trans
->transid
);
1057 btrfs_set_header_owner(root
->node
, BTRFS_TREE_LOG_OBJECTID
);
1059 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1060 (unsigned long)btrfs_header_fsid(root
->node
),
1062 btrfs_mark_buffer_dirty(root
->node
);
1063 btrfs_tree_unlock(root
->node
);
1067 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1068 struct btrfs_fs_info
*fs_info
)
1070 struct btrfs_root
*log_root
;
1072 log_root
= alloc_log_tree(trans
, fs_info
);
1073 if (IS_ERR(log_root
))
1074 return PTR_ERR(log_root
);
1075 WARN_ON(fs_info
->log_root_tree
);
1076 fs_info
->log_root_tree
= log_root
;
1080 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1081 struct btrfs_root
*root
)
1083 struct btrfs_root
*log_root
;
1084 struct btrfs_inode_item
*inode_item
;
1086 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1087 if (IS_ERR(log_root
))
1088 return PTR_ERR(log_root
);
1090 log_root
->last_trans
= trans
->transid
;
1091 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1093 inode_item
= &log_root
->root_item
.inode
;
1094 inode_item
->generation
= cpu_to_le64(1);
1095 inode_item
->size
= cpu_to_le64(3);
1096 inode_item
->nlink
= cpu_to_le32(1);
1097 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1098 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1100 btrfs_set_root_bytenr(&log_root
->root_item
, log_root
->node
->start
);
1101 btrfs_set_root_generation(&log_root
->root_item
, trans
->transid
);
1103 WARN_ON(root
->log_root
);
1104 root
->log_root
= log_root
;
1105 root
->log_transid
= 0;
1109 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1110 struct btrfs_key
*location
)
1112 struct btrfs_root
*root
;
1113 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1114 struct btrfs_path
*path
;
1115 struct extent_buffer
*l
;
1121 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1123 return ERR_PTR(-ENOMEM
);
1124 if (location
->offset
== (u64
)-1) {
1125 ret
= find_and_setup_root(tree_root
, fs_info
,
1126 location
->objectid
, root
);
1129 return ERR_PTR(ret
);
1134 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1135 tree_root
->sectorsize
, tree_root
->stripesize
,
1136 root
, fs_info
, location
->objectid
);
1138 path
= btrfs_alloc_path();
1140 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1147 read_extent_buffer(l
, &root
->root_item
,
1148 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1149 sizeof(root
->root_item
));
1150 memcpy(&root
->root_key
, location
, sizeof(*location
));
1153 btrfs_release_path(root
, path
);
1154 btrfs_free_path(path
);
1157 return ERR_PTR(ret
);
1159 generation
= btrfs_root_generation(&root
->root_item
);
1160 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1161 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1162 blocksize
, generation
);
1163 BUG_ON(!root
->node
);
1165 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1167 ret
= btrfs_find_highest_inode(root
, &highest_inode
);
1169 root
->highest_inode
= highest_inode
;
1170 root
->last_inode_alloc
= highest_inode
;
1176 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1179 struct btrfs_root
*root
;
1181 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1182 return fs_info
->tree_root
;
1183 if (root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1184 return fs_info
->extent_root
;
1186 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1187 (unsigned long)root_objectid
);
1191 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1192 struct btrfs_key
*location
)
1194 struct btrfs_root
*root
;
1197 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1198 return fs_info
->tree_root
;
1199 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1200 return fs_info
->extent_root
;
1201 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1202 return fs_info
->chunk_root
;
1203 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1204 return fs_info
->dev_root
;
1205 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1206 return fs_info
->csum_root
;
1208 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1209 (unsigned long)location
->objectid
);
1213 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1217 set_anon_super(&root
->anon_super
, NULL
);
1219 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1220 (unsigned long)root
->root_key
.objectid
,
1223 free_extent_buffer(root
->node
);
1225 return ERR_PTR(ret
);
1227 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
1228 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1229 root
->root_key
.objectid
, root
);
1231 btrfs_orphan_cleanup(root
);
1236 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_fs_info
*fs_info
,
1237 struct btrfs_key
*location
,
1238 const char *name
, int namelen
)
1240 struct btrfs_root
*root
;
1243 root
= btrfs_read_fs_root_no_name(fs_info
, location
);
1250 ret
= btrfs_set_root_name(root
, name
, namelen
);
1252 free_extent_buffer(root
->node
);
1254 return ERR_PTR(ret
);
1257 ret
= btrfs_sysfs_add_root(root
);
1259 free_extent_buffer(root
->node
);
1262 return ERR_PTR(ret
);
1269 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1271 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1273 struct btrfs_device
*device
;
1274 struct backing_dev_info
*bdi
;
1276 if ((bdi_bits
& (1 << BDI_write_congested
)) &&
1277 btrfs_congested_async(info
, 0))
1280 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1283 bdi
= blk_get_backing_dev_info(device
->bdev
);
1284 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1293 * this unplugs every device on the box, and it is only used when page
1296 static void __unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1298 struct btrfs_device
*device
;
1299 struct btrfs_fs_info
*info
;
1301 info
= (struct btrfs_fs_info
*)bdi
->unplug_io_data
;
1302 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1306 bdi
= blk_get_backing_dev_info(device
->bdev
);
1307 if (bdi
->unplug_io_fn
)
1308 bdi
->unplug_io_fn(bdi
, page
);
1312 static void btrfs_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1314 struct inode
*inode
;
1315 struct extent_map_tree
*em_tree
;
1316 struct extent_map
*em
;
1317 struct address_space
*mapping
;
1320 /* the generic O_DIRECT read code does this */
1322 __unplug_io_fn(bdi
, page
);
1327 * page->mapping may change at any time. Get a consistent copy
1328 * and use that for everything below
1331 mapping
= page
->mapping
;
1335 inode
= mapping
->host
;
1338 * don't do the expensive searching for a small number of
1341 if (BTRFS_I(inode
)->root
->fs_info
->fs_devices
->open_devices
<= 2) {
1342 __unplug_io_fn(bdi
, page
);
1346 offset
= page_offset(page
);
1348 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1349 spin_lock(&em_tree
->lock
);
1350 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
1351 spin_unlock(&em_tree
->lock
);
1353 __unplug_io_fn(bdi
, page
);
1357 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1358 free_extent_map(em
);
1359 __unplug_io_fn(bdi
, page
);
1362 offset
= offset
- em
->start
;
1363 btrfs_unplug_page(&BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1364 em
->block_start
+ offset
, page
);
1365 free_extent_map(em
);
1368 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1371 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1373 bdi
->capabilities
= default_backing_dev_info
.capabilities
;
1374 bdi
->unplug_io_fn
= btrfs_unplug_io_fn
;
1375 bdi
->unplug_io_data
= info
;
1376 bdi
->congested_fn
= btrfs_congested_fn
;
1377 bdi
->congested_data
= info
;
1381 static int bio_ready_for_csum(struct bio
*bio
)
1387 struct extent_io_tree
*io_tree
= NULL
;
1388 struct btrfs_fs_info
*info
= NULL
;
1389 struct bio_vec
*bvec
;
1393 bio_for_each_segment(bvec
, bio
, i
) {
1394 page
= bvec
->bv_page
;
1395 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1396 length
+= bvec
->bv_len
;
1399 if (!page
->private) {
1400 length
+= bvec
->bv_len
;
1403 length
= bvec
->bv_len
;
1404 buf_len
= page
->private >> 2;
1405 start
= page_offset(page
) + bvec
->bv_offset
;
1406 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1407 info
= BTRFS_I(page
->mapping
->host
)->root
->fs_info
;
1409 /* are we fully contained in this bio? */
1410 if (buf_len
<= length
)
1413 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1414 start
+ buf_len
- 1);
1421 * called by the kthread helper functions to finally call the bio end_io
1422 * functions. This is where read checksum verification actually happens
1424 static void end_workqueue_fn(struct btrfs_work
*work
)
1427 struct end_io_wq
*end_io_wq
;
1428 struct btrfs_fs_info
*fs_info
;
1431 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1432 bio
= end_io_wq
->bio
;
1433 fs_info
= end_io_wq
->info
;
1435 /* metadata bio reads are special because the whole tree block must
1436 * be checksummed at once. This makes sure the entire block is in
1437 * ram and up to date before trying to verify things. For
1438 * blocksize <= pagesize, it is basically a noop
1440 if (!(bio
->bi_rw
& (1 << BIO_RW
)) && end_io_wq
->metadata
&&
1441 !bio_ready_for_csum(bio
)) {
1442 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1446 error
= end_io_wq
->error
;
1447 bio
->bi_private
= end_io_wq
->private;
1448 bio
->bi_end_io
= end_io_wq
->end_io
;
1450 bio_endio(bio
, error
);
1453 static int cleaner_kthread(void *arg
)
1455 struct btrfs_root
*root
= arg
;
1459 if (root
->fs_info
->closing
)
1462 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1463 mutex_lock(&root
->fs_info
->cleaner_mutex
);
1464 btrfs_clean_old_snapshots(root
);
1465 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1467 if (freezing(current
)) {
1471 if (root
->fs_info
->closing
)
1473 set_current_state(TASK_INTERRUPTIBLE
);
1475 __set_current_state(TASK_RUNNING
);
1477 } while (!kthread_should_stop());
1481 static int transaction_kthread(void *arg
)
1483 struct btrfs_root
*root
= arg
;
1484 struct btrfs_trans_handle
*trans
;
1485 struct btrfs_transaction
*cur
;
1487 unsigned long delay
;
1492 if (root
->fs_info
->closing
)
1496 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1497 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1499 mutex_lock(&root
->fs_info
->trans_mutex
);
1500 cur
= root
->fs_info
->running_transaction
;
1502 mutex_unlock(&root
->fs_info
->trans_mutex
);
1506 now
= get_seconds();
1507 if (now
< cur
->start_time
|| now
- cur
->start_time
< 30) {
1508 mutex_unlock(&root
->fs_info
->trans_mutex
);
1512 mutex_unlock(&root
->fs_info
->trans_mutex
);
1513 trans
= btrfs_start_transaction(root
, 1);
1514 ret
= btrfs_commit_transaction(trans
, root
);
1517 wake_up_process(root
->fs_info
->cleaner_kthread
);
1518 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1520 if (freezing(current
)) {
1523 if (root
->fs_info
->closing
)
1525 set_current_state(TASK_INTERRUPTIBLE
);
1526 schedule_timeout(delay
);
1527 __set_current_state(TASK_RUNNING
);
1529 } while (!kthread_should_stop());
1533 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1534 struct btrfs_fs_devices
*fs_devices
,
1544 struct btrfs_key location
;
1545 struct buffer_head
*bh
;
1546 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1548 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1550 struct btrfs_root
*tree_root
= kzalloc(sizeof(struct btrfs_root
),
1552 struct btrfs_fs_info
*fs_info
= kzalloc(sizeof(*fs_info
),
1554 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1556 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1558 struct btrfs_root
*log_tree_root
;
1563 struct btrfs_super_block
*disk_super
;
1565 if (!extent_root
|| !tree_root
|| !fs_info
||
1566 !chunk_root
|| !dev_root
|| !csum_root
) {
1570 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_NOFS
);
1571 INIT_LIST_HEAD(&fs_info
->trans_list
);
1572 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1573 INIT_LIST_HEAD(&fs_info
->hashers
);
1574 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1575 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1576 spin_lock_init(&fs_info
->delalloc_lock
);
1577 spin_lock_init(&fs_info
->new_trans_lock
);
1578 spin_lock_init(&fs_info
->ref_cache_lock
);
1580 init_completion(&fs_info
->kobj_unregister
);
1581 fs_info
->tree_root
= tree_root
;
1582 fs_info
->extent_root
= extent_root
;
1583 fs_info
->csum_root
= csum_root
;
1584 fs_info
->chunk_root
= chunk_root
;
1585 fs_info
->dev_root
= dev_root
;
1586 fs_info
->fs_devices
= fs_devices
;
1587 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1588 INIT_LIST_HEAD(&fs_info
->space_info
);
1589 btrfs_mapping_init(&fs_info
->mapping_tree
);
1590 atomic_set(&fs_info
->nr_async_submits
, 0);
1591 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1592 atomic_set(&fs_info
->async_submit_draining
, 0);
1593 atomic_set(&fs_info
->nr_async_bios
, 0);
1594 atomic_set(&fs_info
->throttles
, 0);
1595 atomic_set(&fs_info
->throttle_gen
, 0);
1597 fs_info
->max_extent
= (u64
)-1;
1598 fs_info
->max_inline
= 8192 * 1024;
1599 setup_bdi(fs_info
, &fs_info
->bdi
);
1600 fs_info
->btree_inode
= new_inode(sb
);
1601 fs_info
->btree_inode
->i_ino
= 1;
1602 fs_info
->btree_inode
->i_nlink
= 1;
1604 fs_info
->thread_pool_size
= min_t(unsigned long,
1605 num_online_cpus() + 2, 8);
1607 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1608 spin_lock_init(&fs_info
->ordered_extent_lock
);
1610 sb
->s_blocksize
= 4096;
1611 sb
->s_blocksize_bits
= blksize_bits(4096);
1614 * we set the i_size on the btree inode to the max possible int.
1615 * the real end of the address space is determined by all of
1616 * the devices in the system
1618 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1619 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1620 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1622 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1623 fs_info
->btree_inode
->i_mapping
,
1625 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
,
1628 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1630 spin_lock_init(&fs_info
->block_group_cache_lock
);
1631 fs_info
->block_group_cache_tree
.rb_node
= NULL
;
1633 extent_io_tree_init(&fs_info
->pinned_extents
,
1634 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1635 fs_info
->do_barriers
= 1;
1637 INIT_LIST_HEAD(&fs_info
->dead_reloc_roots
);
1638 btrfs_leaf_ref_tree_init(&fs_info
->reloc_ref_tree
);
1639 btrfs_leaf_ref_tree_init(&fs_info
->shared_ref_tree
);
1641 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1642 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1643 sizeof(struct btrfs_key
));
1644 insert_inode_hash(fs_info
->btree_inode
);
1646 mutex_init(&fs_info
->trans_mutex
);
1647 mutex_init(&fs_info
->ordered_operations_mutex
);
1648 mutex_init(&fs_info
->tree_log_mutex
);
1649 mutex_init(&fs_info
->drop_mutex
);
1650 mutex_init(&fs_info
->pinned_mutex
);
1651 mutex_init(&fs_info
->chunk_mutex
);
1652 mutex_init(&fs_info
->transaction_kthread_mutex
);
1653 mutex_init(&fs_info
->cleaner_mutex
);
1654 mutex_init(&fs_info
->volume_mutex
);
1655 mutex_init(&fs_info
->tree_reloc_mutex
);
1656 init_waitqueue_head(&fs_info
->transaction_throttle
);
1657 init_waitqueue_head(&fs_info
->transaction_wait
);
1658 init_waitqueue_head(&fs_info
->async_submit_wait
);
1660 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1661 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1664 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1668 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1669 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1670 sizeof(fs_info
->super_for_commit
));
1673 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1675 disk_super
= &fs_info
->super_copy
;
1676 if (!btrfs_super_root(disk_super
))
1679 ret
= btrfs_parse_options(tree_root
, options
);
1685 features
= btrfs_super_incompat_flags(disk_super
) &
1686 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1688 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1689 "unsupported optional features (%Lx).\n",
1695 features
= btrfs_super_compat_ro_flags(disk_super
) &
1696 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1697 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1698 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1699 "unsupported option features (%Lx).\n",
1706 * we need to start all the end_io workers up front because the
1707 * queue work function gets called at interrupt time, and so it
1708 * cannot dynamically grow.
1710 btrfs_init_workers(&fs_info
->workers
, "worker",
1711 fs_info
->thread_pool_size
);
1713 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1714 fs_info
->thread_pool_size
);
1716 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1717 min_t(u64
, fs_devices
->num_devices
,
1718 fs_info
->thread_pool_size
));
1720 /* a higher idle thresh on the submit workers makes it much more
1721 * likely that bios will be send down in a sane order to the
1724 fs_info
->submit_workers
.idle_thresh
= 64;
1726 fs_info
->workers
.idle_thresh
= 16;
1727 fs_info
->workers
.ordered
= 1;
1729 fs_info
->delalloc_workers
.idle_thresh
= 2;
1730 fs_info
->delalloc_workers
.ordered
= 1;
1732 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1);
1733 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1734 fs_info
->thread_pool_size
);
1735 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1736 fs_info
->thread_pool_size
);
1737 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1738 "endio-meta-write", fs_info
->thread_pool_size
);
1739 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1740 fs_info
->thread_pool_size
);
1743 * endios are largely parallel and should have a very
1746 fs_info
->endio_workers
.idle_thresh
= 4;
1747 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1749 fs_info
->endio_write_workers
.idle_thresh
= 64;
1750 fs_info
->endio_meta_write_workers
.idle_thresh
= 64;
1752 btrfs_start_workers(&fs_info
->workers
, 1);
1753 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1754 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1755 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1756 btrfs_start_workers(&fs_info
->endio_workers
, fs_info
->thread_pool_size
);
1757 btrfs_start_workers(&fs_info
->endio_meta_workers
,
1758 fs_info
->thread_pool_size
);
1759 btrfs_start_workers(&fs_info
->endio_meta_write_workers
,
1760 fs_info
->thread_pool_size
);
1761 btrfs_start_workers(&fs_info
->endio_write_workers
,
1762 fs_info
->thread_pool_size
);
1764 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1765 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1766 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1768 nodesize
= btrfs_super_nodesize(disk_super
);
1769 leafsize
= btrfs_super_leafsize(disk_super
);
1770 sectorsize
= btrfs_super_sectorsize(disk_super
);
1771 stripesize
= btrfs_super_stripesize(disk_super
);
1772 tree_root
->nodesize
= nodesize
;
1773 tree_root
->leafsize
= leafsize
;
1774 tree_root
->sectorsize
= sectorsize
;
1775 tree_root
->stripesize
= stripesize
;
1777 sb
->s_blocksize
= sectorsize
;
1778 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1780 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1781 sizeof(disk_super
->magic
))) {
1782 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1783 goto fail_sb_buffer
;
1786 mutex_lock(&fs_info
->chunk_mutex
);
1787 ret
= btrfs_read_sys_array(tree_root
);
1788 mutex_unlock(&fs_info
->chunk_mutex
);
1790 printk(KERN_WARNING
"btrfs: failed to read the system "
1791 "array on %s\n", sb
->s_id
);
1792 goto fail_sys_array
;
1795 blocksize
= btrfs_level_size(tree_root
,
1796 btrfs_super_chunk_root_level(disk_super
));
1797 generation
= btrfs_super_chunk_root_generation(disk_super
);
1799 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1800 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1802 chunk_root
->node
= read_tree_block(chunk_root
,
1803 btrfs_super_chunk_root(disk_super
),
1804 blocksize
, generation
);
1805 BUG_ON(!chunk_root
->node
);
1807 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1808 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1811 mutex_lock(&fs_info
->chunk_mutex
);
1812 ret
= btrfs_read_chunk_tree(chunk_root
);
1813 mutex_unlock(&fs_info
->chunk_mutex
);
1815 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1817 goto fail_chunk_root
;
1820 btrfs_close_extra_devices(fs_devices
);
1822 blocksize
= btrfs_level_size(tree_root
,
1823 btrfs_super_root_level(disk_super
));
1824 generation
= btrfs_super_generation(disk_super
);
1826 tree_root
->node
= read_tree_block(tree_root
,
1827 btrfs_super_root(disk_super
),
1828 blocksize
, generation
);
1829 if (!tree_root
->node
)
1830 goto fail_chunk_root
;
1833 ret
= find_and_setup_root(tree_root
, fs_info
,
1834 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1836 goto fail_tree_root
;
1837 extent_root
->track_dirty
= 1;
1839 ret
= find_and_setup_root(tree_root
, fs_info
,
1840 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1841 dev_root
->track_dirty
= 1;
1843 goto fail_extent_root
;
1845 ret
= find_and_setup_root(tree_root
, fs_info
,
1846 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1848 goto fail_extent_root
;
1850 csum_root
->track_dirty
= 1;
1852 btrfs_read_block_groups(extent_root
);
1854 fs_info
->generation
= generation
;
1855 fs_info
->last_trans_committed
= generation
;
1856 fs_info
->data_alloc_profile
= (u64
)-1;
1857 fs_info
->metadata_alloc_profile
= (u64
)-1;
1858 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
1859 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
1861 if (IS_ERR(fs_info
->cleaner_kthread
))
1862 goto fail_csum_root
;
1864 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
1866 "btrfs-transaction");
1867 if (IS_ERR(fs_info
->transaction_kthread
))
1870 if (btrfs_super_log_root(disk_super
) != 0) {
1871 u64 bytenr
= btrfs_super_log_root(disk_super
);
1873 if (fs_devices
->rw_devices
== 0) {
1874 printk(KERN_WARNING
"Btrfs log replay required "
1877 goto fail_trans_kthread
;
1880 btrfs_level_size(tree_root
,
1881 btrfs_super_log_root_level(disk_super
));
1883 log_tree_root
= kzalloc(sizeof(struct btrfs_root
),
1886 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1887 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1889 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
1892 ret
= btrfs_recover_log_trees(log_tree_root
);
1895 if (sb
->s_flags
& MS_RDONLY
) {
1896 ret
= btrfs_commit_super(tree_root
);
1901 if (!(sb
->s_flags
& MS_RDONLY
)) {
1902 ret
= btrfs_cleanup_reloc_trees(tree_root
);
1906 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
1907 location
.type
= BTRFS_ROOT_ITEM_KEY
;
1908 location
.offset
= (u64
)-1;
1910 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
1911 if (!fs_info
->fs_root
)
1912 goto fail_trans_kthread
;
1916 kthread_stop(fs_info
->transaction_kthread
);
1918 kthread_stop(fs_info
->cleaner_kthread
);
1921 * make sure we're done with the btree inode before we stop our
1924 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
1925 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
1928 free_extent_buffer(csum_root
->node
);
1930 free_extent_buffer(extent_root
->node
);
1932 free_extent_buffer(tree_root
->node
);
1934 free_extent_buffer(chunk_root
->node
);
1936 free_extent_buffer(dev_root
->node
);
1938 btrfs_stop_workers(&fs_info
->fixup_workers
);
1939 btrfs_stop_workers(&fs_info
->delalloc_workers
);
1940 btrfs_stop_workers(&fs_info
->workers
);
1941 btrfs_stop_workers(&fs_info
->endio_workers
);
1942 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
1943 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
1944 btrfs_stop_workers(&fs_info
->endio_write_workers
);
1945 btrfs_stop_workers(&fs_info
->submit_workers
);
1947 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
1948 iput(fs_info
->btree_inode
);
1950 btrfs_close_devices(fs_info
->fs_devices
);
1951 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
1952 bdi_destroy(&fs_info
->bdi
);
1961 return ERR_PTR(err
);
1964 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
1966 char b
[BDEVNAME_SIZE
];
1969 set_buffer_uptodate(bh
);
1971 if (!buffer_eopnotsupp(bh
) && printk_ratelimit()) {
1972 printk(KERN_WARNING
"lost page write due to "
1973 "I/O error on %s\n",
1974 bdevname(bh
->b_bdev
, b
));
1976 /* note, we dont' set_buffer_write_io_error because we have
1977 * our own ways of dealing with the IO errors
1979 clear_buffer_uptodate(bh
);
1985 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
1987 struct buffer_head
*bh
;
1988 struct buffer_head
*latest
= NULL
;
1989 struct btrfs_super_block
*super
;
1994 /* we would like to check all the supers, but that would make
1995 * a btrfs mount succeed after a mkfs from a different FS.
1996 * So, we need to add a special mount option to scan for
1997 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1999 for (i
= 0; i
< 1; i
++) {
2000 bytenr
= btrfs_sb_offset(i
);
2001 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2003 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2007 super
= (struct btrfs_super_block
*)bh
->b_data
;
2008 if (btrfs_super_bytenr(super
) != bytenr
||
2009 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2010 sizeof(super
->magic
))) {
2015 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2018 transid
= btrfs_super_generation(super
);
2026 static int write_dev_supers(struct btrfs_device
*device
,
2027 struct btrfs_super_block
*sb
,
2028 int do_barriers
, int wait
, int max_mirrors
)
2030 struct buffer_head
*bh
;
2036 int last_barrier
= 0;
2038 if (max_mirrors
== 0)
2039 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2041 /* make sure only the last submit_bh does a barrier */
2043 for (i
= 0; i
< max_mirrors
; i
++) {
2044 bytenr
= btrfs_sb_offset(i
);
2045 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2046 device
->total_bytes
)
2052 for (i
= 0; i
< max_mirrors
; i
++) {
2053 bytenr
= btrfs_sb_offset(i
);
2054 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2058 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2059 BTRFS_SUPER_INFO_SIZE
);
2063 if (buffer_uptodate(bh
)) {
2068 btrfs_set_super_bytenr(sb
, bytenr
);
2071 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2072 BTRFS_CSUM_SIZE
, crc
,
2073 BTRFS_SUPER_INFO_SIZE
-
2075 btrfs_csum_final(crc
, sb
->csum
);
2077 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2078 BTRFS_SUPER_INFO_SIZE
);
2079 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2081 set_buffer_uptodate(bh
);
2084 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2087 if (i
== last_barrier
&& do_barriers
&& device
->barriers
) {
2088 ret
= submit_bh(WRITE_BARRIER
, bh
);
2089 if (ret
== -EOPNOTSUPP
) {
2090 printk("btrfs: disabling barriers on dev %s\n",
2092 set_buffer_uptodate(bh
);
2093 device
->barriers
= 0;
2096 ret
= submit_bh(WRITE
, bh
);
2099 ret
= submit_bh(WRITE
, bh
);
2104 if (!buffer_uptodate(bh
))
2112 return errors
< i
? 0 : -1;
2115 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2117 struct list_head
*head
= &root
->fs_info
->fs_devices
->devices
;
2118 struct btrfs_device
*dev
;
2119 struct btrfs_super_block
*sb
;
2120 struct btrfs_dev_item
*dev_item
;
2124 int total_errors
= 0;
2127 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2128 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2130 sb
= &root
->fs_info
->super_for_commit
;
2131 dev_item
= &sb
->dev_item
;
2132 list_for_each_entry(dev
, head
, dev_list
) {
2137 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2140 btrfs_set_stack_device_generation(dev_item
, 0);
2141 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2142 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2143 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2144 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2145 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2146 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2147 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2148 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2149 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2151 flags
= btrfs_super_flags(sb
);
2152 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2154 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2158 if (total_errors
> max_errors
) {
2159 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2165 list_for_each_entry(dev
, head
, dev_list
) {
2168 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2171 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2175 if (total_errors
> max_errors
) {
2176 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2183 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2184 struct btrfs_root
*root
, int max_mirrors
)
2188 ret
= write_all_supers(root
, max_mirrors
);
2192 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2194 radix_tree_delete(&fs_info
->fs_roots_radix
,
2195 (unsigned long)root
->root_key
.objectid
);
2196 if (root
->anon_super
.s_dev
) {
2197 down_write(&root
->anon_super
.s_umount
);
2198 kill_anon_super(&root
->anon_super
);
2201 free_extent_buffer(root
->node
);
2202 if (root
->commit_root
)
2203 free_extent_buffer(root
->commit_root
);
2209 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2212 struct btrfs_root
*gang
[8];
2216 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2221 for (i
= 0; i
< ret
; i
++)
2222 btrfs_free_fs_root(fs_info
, gang
[i
]);
2227 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2229 u64 root_objectid
= 0;
2230 struct btrfs_root
*gang
[8];
2235 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2236 (void **)gang
, root_objectid
,
2240 for (i
= 0; i
< ret
; i
++) {
2241 root_objectid
= gang
[i
]->root_key
.objectid
;
2242 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
2243 root_objectid
, gang
[i
]);
2245 btrfs_orphan_cleanup(gang
[i
]);
2252 int btrfs_commit_super(struct btrfs_root
*root
)
2254 struct btrfs_trans_handle
*trans
;
2257 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2258 btrfs_clean_old_snapshots(root
);
2259 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2260 trans
= btrfs_start_transaction(root
, 1);
2261 ret
= btrfs_commit_transaction(trans
, root
);
2263 /* run commit again to drop the original snapshot */
2264 trans
= btrfs_start_transaction(root
, 1);
2265 btrfs_commit_transaction(trans
, root
);
2266 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2269 ret
= write_ctree_super(NULL
, root
, 0);
2273 int close_ctree(struct btrfs_root
*root
)
2275 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2278 fs_info
->closing
= 1;
2281 kthread_stop(root
->fs_info
->transaction_kthread
);
2282 kthread_stop(root
->fs_info
->cleaner_kthread
);
2284 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2285 ret
= btrfs_commit_super(root
);
2287 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2290 if (fs_info
->delalloc_bytes
) {
2291 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2292 fs_info
->delalloc_bytes
);
2294 if (fs_info
->total_ref_cache_size
) {
2295 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2296 (unsigned long long)fs_info
->total_ref_cache_size
);
2299 if (fs_info
->extent_root
->node
)
2300 free_extent_buffer(fs_info
->extent_root
->node
);
2302 if (fs_info
->tree_root
->node
)
2303 free_extent_buffer(fs_info
->tree_root
->node
);
2305 if (root
->fs_info
->chunk_root
->node
)
2306 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2308 if (root
->fs_info
->dev_root
->node
)
2309 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2311 if (root
->fs_info
->csum_root
->node
)
2312 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2314 btrfs_free_block_groups(root
->fs_info
);
2316 del_fs_roots(fs_info
);
2318 iput(fs_info
->btree_inode
);
2320 btrfs_stop_workers(&fs_info
->fixup_workers
);
2321 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2322 btrfs_stop_workers(&fs_info
->workers
);
2323 btrfs_stop_workers(&fs_info
->endio_workers
);
2324 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2325 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2326 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2327 btrfs_stop_workers(&fs_info
->submit_workers
);
2330 while (!list_empty(&fs_info
->hashers
)) {
2331 struct btrfs_hasher
*hasher
;
2332 hasher
= list_entry(fs_info
->hashers
.next
, struct btrfs_hasher
,
2334 list_del(&hasher
->hashers
);
2335 crypto_free_hash(&fs_info
->hash_tfm
);
2339 btrfs_close_devices(fs_info
->fs_devices
);
2340 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2342 bdi_destroy(&fs_info
->bdi
);
2344 kfree(fs_info
->extent_root
);
2345 kfree(fs_info
->tree_root
);
2346 kfree(fs_info
->chunk_root
);
2347 kfree(fs_info
->dev_root
);
2348 kfree(fs_info
->csum_root
);
2352 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2355 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2357 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
);
2361 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2366 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2368 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2369 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2373 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2375 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2376 u64 transid
= btrfs_header_generation(buf
);
2377 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2380 btrfs_assert_tree_locked(buf
);
2381 if (transid
!= root
->fs_info
->generation
) {
2382 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2383 "found %llu running %llu\n",
2384 (unsigned long long)buf
->start
,
2385 (unsigned long long)transid
,
2386 (unsigned long long)root
->fs_info
->generation
);
2389 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2392 spin_lock(&root
->fs_info
->delalloc_lock
);
2393 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2394 spin_unlock(&root
->fs_info
->delalloc_lock
);
2398 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2401 * looks as though older kernels can get into trouble with
2402 * this code, they end up stuck in balance_dirty_pages forever
2404 struct extent_io_tree
*tree
;
2407 unsigned long thresh
= 32 * 1024 * 1024;
2408 tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
2410 if (current
->flags
& PF_MEMALLOC
)
2413 num_dirty
= count_range_bits(tree
, &start
, (u64
)-1,
2414 thresh
, EXTENT_DIRTY
);
2415 if (num_dirty
> thresh
) {
2416 balance_dirty_pages_ratelimited_nr(
2417 root
->fs_info
->btree_inode
->i_mapping
, 1);
2422 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2424 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2426 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2428 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2432 int btree_lock_page_hook(struct page
*page
)
2434 struct inode
*inode
= page
->mapping
->host
;
2435 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2436 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2437 struct extent_buffer
*eb
;
2439 u64 bytenr
= page_offset(page
);
2441 if (page
->private == EXTENT_PAGE_PRIVATE
)
2444 len
= page
->private >> 2;
2445 eb
= find_extent_buffer(io_tree
, bytenr
, len
, GFP_NOFS
);
2449 btrfs_tree_lock(eb
);
2450 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2452 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2453 spin_lock(&root
->fs_info
->delalloc_lock
);
2454 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2455 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2458 spin_unlock(&root
->fs_info
->delalloc_lock
);
2461 btrfs_tree_unlock(eb
);
2462 free_extent_buffer(eb
);
2468 static struct extent_io_ops btree_extent_io_ops
= {
2469 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
2470 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
2471 .submit_bio_hook
= btree_submit_bio_hook
,
2472 /* note we're sharing with inode.c for the merge bio hook */
2473 .merge_bio_hook
= btrfs_merge_bio_hook
,