2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/gfp.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/writeback.h>
23 #include <linux/pagevec.h>
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "extent_io.h"
29 static u64
entry_end(struct btrfs_ordered_extent
*entry
)
31 if (entry
->file_offset
+ entry
->len
< entry
->file_offset
)
33 return entry
->file_offset
+ entry
->len
;
36 /* returns NULL if the insertion worked, or it returns the node it did find
39 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 file_offset
,
42 struct rb_node
**p
= &root
->rb_node
;
43 struct rb_node
*parent
= NULL
;
44 struct btrfs_ordered_extent
*entry
;
48 entry
= rb_entry(parent
, struct btrfs_ordered_extent
, rb_node
);
50 if (file_offset
< entry
->file_offset
)
52 else if (file_offset
>= entry_end(entry
))
58 rb_link_node(node
, parent
, p
);
59 rb_insert_color(node
, root
);
64 * look for a given offset in the tree, and if it can't be found return the
67 static struct rb_node
*__tree_search(struct rb_root
*root
, u64 file_offset
,
68 struct rb_node
**prev_ret
)
70 struct rb_node
*n
= root
->rb_node
;
71 struct rb_node
*prev
= NULL
;
73 struct btrfs_ordered_extent
*entry
;
74 struct btrfs_ordered_extent
*prev_entry
= NULL
;
77 entry
= rb_entry(n
, struct btrfs_ordered_extent
, rb_node
);
81 if (file_offset
< entry
->file_offset
)
83 else if (file_offset
>= entry_end(entry
))
91 while (prev
&& file_offset
>= entry_end(prev_entry
)) {
95 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
97 if (file_offset
< entry_end(prev_entry
))
103 prev_entry
= rb_entry(prev
, struct btrfs_ordered_extent
,
105 while (prev
&& file_offset
< entry_end(prev_entry
)) {
106 test
= rb_prev(prev
);
109 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
118 * helper to check if a given offset is inside a given entry
120 static int offset_in_entry(struct btrfs_ordered_extent
*entry
, u64 file_offset
)
122 if (file_offset
< entry
->file_offset
||
123 entry
->file_offset
+ entry
->len
<= file_offset
)
129 * look find the first ordered struct that has this offset, otherwise
130 * the first one less than this offset
132 static inline struct rb_node
*tree_search(struct btrfs_ordered_inode_tree
*tree
,
135 struct rb_root
*root
= &tree
->tree
;
136 struct rb_node
*prev
;
138 struct btrfs_ordered_extent
*entry
;
141 entry
= rb_entry(tree
->last
, struct btrfs_ordered_extent
,
143 if (offset_in_entry(entry
, file_offset
))
146 ret
= __tree_search(root
, file_offset
, &prev
);
154 /* allocate and add a new ordered_extent into the per-inode tree.
155 * file_offset is the logical offset in the file
157 * start is the disk block number of an extent already reserved in the
158 * extent allocation tree
160 * len is the length of the extent
162 * This also sets the EXTENT_ORDERED bit on the range in the inode.
164 * The tree is given a single reference on the ordered extent that was
167 int btrfs_add_ordered_extent(struct inode
*inode
, u64 file_offset
,
168 u64 start
, u64 len
, u64 disk_len
, int type
)
170 struct btrfs_ordered_inode_tree
*tree
;
171 struct rb_node
*node
;
172 struct btrfs_ordered_extent
*entry
;
174 tree
= &BTRFS_I(inode
)->ordered_tree
;
175 entry
= kzalloc(sizeof(*entry
), GFP_NOFS
);
179 mutex_lock(&tree
->mutex
);
180 entry
->file_offset
= file_offset
;
181 entry
->start
= start
;
183 entry
->disk_len
= disk_len
;
184 entry
->inode
= inode
;
185 if (type
!= BTRFS_ORDERED_IO_DONE
&& type
!= BTRFS_ORDERED_COMPLETE
)
186 set_bit(type
, &entry
->flags
);
188 /* one ref for the tree */
189 atomic_set(&entry
->refs
, 1);
190 init_waitqueue_head(&entry
->wait
);
191 INIT_LIST_HEAD(&entry
->list
);
192 INIT_LIST_HEAD(&entry
->root_extent_list
);
194 node
= tree_insert(&tree
->tree
, file_offset
,
198 set_extent_ordered(&BTRFS_I(inode
)->io_tree
, file_offset
,
199 entry_end(entry
) - 1, GFP_NOFS
);
201 spin_lock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
202 list_add_tail(&entry
->root_extent_list
,
203 &BTRFS_I(inode
)->root
->fs_info
->ordered_extents
);
204 spin_unlock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
206 mutex_unlock(&tree
->mutex
);
212 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
213 * when an ordered extent is finished. If the list covers more than one
214 * ordered extent, it is split across multiples.
216 int btrfs_add_ordered_sum(struct inode
*inode
,
217 struct btrfs_ordered_extent
*entry
,
218 struct btrfs_ordered_sum
*sum
)
220 struct btrfs_ordered_inode_tree
*tree
;
222 tree
= &BTRFS_I(inode
)->ordered_tree
;
223 mutex_lock(&tree
->mutex
);
224 list_add_tail(&sum
->list
, &entry
->list
);
225 mutex_unlock(&tree
->mutex
);
230 * this is used to account for finished IO across a given range
231 * of the file. The IO should not span ordered extents. If
232 * a given ordered_extent is completely done, 1 is returned, otherwise
235 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
236 * to make sure this function only returns 1 once for a given ordered extent.
238 int btrfs_dec_test_ordered_pending(struct inode
*inode
,
239 u64 file_offset
, u64 io_size
)
241 struct btrfs_ordered_inode_tree
*tree
;
242 struct rb_node
*node
;
243 struct btrfs_ordered_extent
*entry
;
244 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
247 tree
= &BTRFS_I(inode
)->ordered_tree
;
248 mutex_lock(&tree
->mutex
);
249 clear_extent_ordered(io_tree
, file_offset
, file_offset
+ io_size
- 1,
251 node
= tree_search(tree
, file_offset
);
257 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
258 if (!offset_in_entry(entry
, file_offset
)) {
263 ret
= test_range_bit(io_tree
, entry
->file_offset
,
264 entry
->file_offset
+ entry
->len
- 1,
267 ret
= test_and_set_bit(BTRFS_ORDERED_IO_DONE
, &entry
->flags
);
269 mutex_unlock(&tree
->mutex
);
274 * used to drop a reference on an ordered extent. This will free
275 * the extent if the last reference is dropped
277 int btrfs_put_ordered_extent(struct btrfs_ordered_extent
*entry
)
279 struct list_head
*cur
;
280 struct btrfs_ordered_sum
*sum
;
282 if (atomic_dec_and_test(&entry
->refs
)) {
283 while (!list_empty(&entry
->list
)) {
284 cur
= entry
->list
.next
;
285 sum
= list_entry(cur
, struct btrfs_ordered_sum
, list
);
286 list_del(&sum
->list
);
295 * remove an ordered extent from the tree. No references are dropped
296 * but, anyone waiting on this extent is woken up.
298 int btrfs_remove_ordered_extent(struct inode
*inode
,
299 struct btrfs_ordered_extent
*entry
)
301 struct btrfs_ordered_inode_tree
*tree
;
302 struct rb_node
*node
;
304 tree
= &BTRFS_I(inode
)->ordered_tree
;
305 mutex_lock(&tree
->mutex
);
306 node
= &entry
->rb_node
;
307 rb_erase(node
, &tree
->tree
);
309 set_bit(BTRFS_ORDERED_COMPLETE
, &entry
->flags
);
311 spin_lock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
312 list_del_init(&entry
->root_extent_list
);
315 * we have no more ordered extents for this inode and
316 * no dirty pages. We can safely remove it from the
317 * list of ordered extents
319 if (RB_EMPTY_ROOT(&tree
->tree
) &&
320 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
321 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
323 spin_unlock(&BTRFS_I(inode
)->root
->fs_info
->ordered_extent_lock
);
325 mutex_unlock(&tree
->mutex
);
326 wake_up(&entry
->wait
);
331 * wait for all the ordered extents in a root. This is done when balancing
332 * space between drives.
334 int btrfs_wait_ordered_extents(struct btrfs_root
*root
, int nocow_only
)
336 struct list_head splice
;
337 struct list_head
*cur
;
338 struct btrfs_ordered_extent
*ordered
;
341 INIT_LIST_HEAD(&splice
);
343 spin_lock(&root
->fs_info
->ordered_extent_lock
);
344 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
345 while (!list_empty(&splice
)) {
347 ordered
= list_entry(cur
, struct btrfs_ordered_extent
,
350 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
) &&
351 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
352 list_move(&ordered
->root_extent_list
,
353 &root
->fs_info
->ordered_extents
);
354 cond_resched_lock(&root
->fs_info
->ordered_extent_lock
);
358 list_del_init(&ordered
->root_extent_list
);
359 atomic_inc(&ordered
->refs
);
362 * the inode may be getting freed (in sys_unlink path).
364 inode
= igrab(ordered
->inode
);
366 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
369 btrfs_start_ordered_extent(inode
, ordered
, 1);
370 btrfs_put_ordered_extent(ordered
);
373 btrfs_put_ordered_extent(ordered
);
376 spin_lock(&root
->fs_info
->ordered_extent_lock
);
378 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
383 * this is used during transaction commit to write all the inodes
384 * added to the ordered operation list. These files must be fully on
385 * disk before the transaction commits.
387 * we have two modes here, one is to just start the IO via filemap_flush
388 * and the other is to wait for all the io. When we wait, we have an
389 * extra check to make sure the ordered operation list really is empty
392 int btrfs_run_ordered_operations(struct btrfs_root
*root
, int wait
)
394 struct btrfs_inode
*btrfs_inode
;
396 struct list_head splice
;
398 INIT_LIST_HEAD(&splice
);
400 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
401 spin_lock(&root
->fs_info
->ordered_extent_lock
);
403 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
405 while (!list_empty(&splice
)) {
406 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
409 inode
= &btrfs_inode
->vfs_inode
;
411 list_del_init(&btrfs_inode
->ordered_operations
);
414 * the inode may be getting freed (in sys_unlink path).
416 inode
= igrab(inode
);
418 if (!wait
&& inode
) {
419 list_add_tail(&BTRFS_I(inode
)->ordered_operations
,
420 &root
->fs_info
->ordered_operations
);
422 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
426 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
428 filemap_flush(inode
->i_mapping
);
433 spin_lock(&root
->fs_info
->ordered_extent_lock
);
435 if (wait
&& !list_empty(&root
->fs_info
->ordered_operations
))
438 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
439 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
445 * Used to start IO or wait for a given ordered extent to finish.
447 * If wait is one, this effectively waits on page writeback for all the pages
448 * in the extent, and it waits on the io completion code to insert
449 * metadata into the btree corresponding to the extent
451 void btrfs_start_ordered_extent(struct inode
*inode
,
452 struct btrfs_ordered_extent
*entry
,
455 u64 start
= entry
->file_offset
;
456 u64 end
= start
+ entry
->len
- 1;
459 * pages in the range can be dirty, clean or writeback. We
460 * start IO on any dirty ones so the wait doesn't stall waiting
461 * for pdflush to find them
463 btrfs_fdatawrite_range(inode
->i_mapping
, start
, end
, WB_SYNC_ALL
);
465 wait_event(entry
->wait
, test_bit(BTRFS_ORDERED_COMPLETE
,
471 * Used to wait on ordered extents across a large range of bytes.
473 int btrfs_wait_ordered_range(struct inode
*inode
, u64 start
, u64 len
)
478 struct btrfs_ordered_extent
*ordered
;
480 if (start
+ len
< start
) {
481 orig_end
= INT_LIMIT(loff_t
);
483 orig_end
= start
+ len
- 1;
484 if (orig_end
> INT_LIMIT(loff_t
))
485 orig_end
= INT_LIMIT(loff_t
);
489 /* start IO across the range first to instantiate any delalloc
492 btrfs_fdatawrite_range(inode
->i_mapping
, start
, orig_end
, WB_SYNC_NONE
);
494 /* The compression code will leave pages locked but return from
495 * writepage without setting the page writeback. Starting again
496 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
498 btrfs_fdatawrite_range(inode
->i_mapping
, start
, orig_end
, WB_SYNC_ALL
);
500 btrfs_wait_on_page_writeback_range(inode
->i_mapping
,
501 start
>> PAGE_CACHE_SHIFT
,
502 orig_end
>> PAGE_CACHE_SHIFT
);
506 ordered
= btrfs_lookup_first_ordered_extent(inode
, end
);
509 if (ordered
->file_offset
> orig_end
) {
510 btrfs_put_ordered_extent(ordered
);
513 if (ordered
->file_offset
+ ordered
->len
< start
) {
514 btrfs_put_ordered_extent(ordered
);
517 btrfs_start_ordered_extent(inode
, ordered
, 1);
518 end
= ordered
->file_offset
;
519 btrfs_put_ordered_extent(ordered
);
520 if (end
== 0 || end
== start
)
524 if (test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, orig_end
,
525 EXTENT_ORDERED
| EXTENT_DELALLOC
, 0)) {
533 * find an ordered extent corresponding to file_offset. return NULL if
534 * nothing is found, otherwise take a reference on the extent and return it
536 struct btrfs_ordered_extent
*btrfs_lookup_ordered_extent(struct inode
*inode
,
539 struct btrfs_ordered_inode_tree
*tree
;
540 struct rb_node
*node
;
541 struct btrfs_ordered_extent
*entry
= NULL
;
543 tree
= &BTRFS_I(inode
)->ordered_tree
;
544 mutex_lock(&tree
->mutex
);
545 node
= tree_search(tree
, file_offset
);
549 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
550 if (!offset_in_entry(entry
, file_offset
))
553 atomic_inc(&entry
->refs
);
555 mutex_unlock(&tree
->mutex
);
560 * lookup and return any extent before 'file_offset'. NULL is returned
563 struct btrfs_ordered_extent
*
564 btrfs_lookup_first_ordered_extent(struct inode
*inode
, u64 file_offset
)
566 struct btrfs_ordered_inode_tree
*tree
;
567 struct rb_node
*node
;
568 struct btrfs_ordered_extent
*entry
= NULL
;
570 tree
= &BTRFS_I(inode
)->ordered_tree
;
571 mutex_lock(&tree
->mutex
);
572 node
= tree_search(tree
, file_offset
);
576 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
577 atomic_inc(&entry
->refs
);
579 mutex_unlock(&tree
->mutex
);
584 * After an extent is done, call this to conditionally update the on disk
585 * i_size. i_size is updated to cover any fully written part of the file.
587 int btrfs_ordered_update_i_size(struct inode
*inode
,
588 struct btrfs_ordered_extent
*ordered
)
590 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
591 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
595 struct rb_node
*node
;
596 struct btrfs_ordered_extent
*test
;
598 mutex_lock(&tree
->mutex
);
599 disk_i_size
= BTRFS_I(inode
)->disk_i_size
;
602 * if the disk i_size is already at the inode->i_size, or
603 * this ordered extent is inside the disk i_size, we're done
605 if (disk_i_size
>= inode
->i_size
||
606 ordered
->file_offset
+ ordered
->len
<= disk_i_size
) {
611 * we can't update the disk_isize if there are delalloc bytes
612 * between disk_i_size and this ordered extent
614 if (test_range_bit(io_tree
, disk_i_size
,
615 ordered
->file_offset
+ ordered
->len
- 1,
616 EXTENT_DELALLOC
, 0)) {
620 * walk backward from this ordered extent to disk_i_size.
621 * if we find an ordered extent then we can't update disk i_size
624 node
= &ordered
->rb_node
;
626 node
= rb_prev(node
);
629 test
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
630 if (test
->file_offset
+ test
->len
<= disk_i_size
)
632 if (test
->file_offset
>= inode
->i_size
)
634 if (test
->file_offset
>= disk_i_size
)
637 new_i_size
= min_t(u64
, entry_end(ordered
), i_size_read(inode
));
640 * at this point, we know we can safely update i_size to at least
641 * the offset from this ordered extent. But, we need to
642 * walk forward and see if ios from higher up in the file have
645 node
= rb_next(&ordered
->rb_node
);
649 * do we have an area where IO might have finished
650 * between our ordered extent and the next one.
652 test
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
653 if (test
->file_offset
> entry_end(ordered
))
654 i_size_test
= test
->file_offset
;
656 i_size_test
= i_size_read(inode
);
660 * i_size_test is the end of a region after this ordered
661 * extent where there are no ordered extents. As long as there
662 * are no delalloc bytes in this area, it is safe to update
663 * disk_i_size to the end of the region.
665 if (i_size_test
> entry_end(ordered
) &&
666 !test_range_bit(io_tree
, entry_end(ordered
), i_size_test
- 1,
667 EXTENT_DELALLOC
, 0)) {
668 new_i_size
= min_t(u64
, i_size_test
, i_size_read(inode
));
670 BTRFS_I(inode
)->disk_i_size
= new_i_size
;
672 mutex_unlock(&tree
->mutex
);
677 * search the ordered extents for one corresponding to 'offset' and
678 * try to find a checksum. This is used because we allow pages to
679 * be reclaimed before their checksum is actually put into the btree
681 int btrfs_find_ordered_sum(struct inode
*inode
, u64 offset
, u64 disk_bytenr
,
684 struct btrfs_ordered_sum
*ordered_sum
;
685 struct btrfs_sector_sum
*sector_sums
;
686 struct btrfs_ordered_extent
*ordered
;
687 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
688 unsigned long num_sectors
;
690 u32 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
693 ordered
= btrfs_lookup_ordered_extent(inode
, offset
);
697 mutex_lock(&tree
->mutex
);
698 list_for_each_entry_reverse(ordered_sum
, &ordered
->list
, list
) {
699 if (disk_bytenr
>= ordered_sum
->bytenr
) {
700 num_sectors
= ordered_sum
->len
/ sectorsize
;
701 sector_sums
= ordered_sum
->sums
;
702 for (i
= 0; i
< num_sectors
; i
++) {
703 if (sector_sums
[i
].bytenr
== disk_bytenr
) {
704 *sum
= sector_sums
[i
].sum
;
712 mutex_unlock(&tree
->mutex
);
713 btrfs_put_ordered_extent(ordered
);
719 * taken from mm/filemap.c because it isn't exported
721 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
722 * @mapping: address space structure to write
723 * @start: offset in bytes where the range starts
724 * @end: offset in bytes where the range ends (inclusive)
725 * @sync_mode: enable synchronous operation
727 * Start writeback against all of a mapping's dirty pages that lie
728 * within the byte offsets <start, end> inclusive.
730 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
731 * opposed to a regular memory cleansing writeback. The difference between
732 * these two operations is that if a dirty page/buffer is encountered, it must
733 * be waited upon, and not just skipped over.
735 int btrfs_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
736 loff_t end
, int sync_mode
)
738 struct writeback_control wbc
= {
739 .sync_mode
= sync_mode
,
740 .nr_to_write
= mapping
->nrpages
* 2,
741 .range_start
= start
,
745 return btrfs_writepages(mapping
, &wbc
);
749 * taken from mm/filemap.c because it isn't exported
751 * wait_on_page_writeback_range - wait for writeback to complete
752 * @mapping: target address_space
753 * @start: beginning page index
754 * @end: ending page index
756 * Wait for writeback to complete against pages indexed by start->end
759 int btrfs_wait_on_page_writeback_range(struct address_space
*mapping
,
760 pgoff_t start
, pgoff_t end
)
770 pagevec_init(&pvec
, 0);
772 while ((index
<= end
) &&
773 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
774 PAGECACHE_TAG_WRITEBACK
,
775 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
778 for (i
= 0; i
< nr_pages
; i
++) {
779 struct page
*page
= pvec
.pages
[i
];
781 /* until radix tree lookup accepts end_index */
782 if (page
->index
> end
)
785 wait_on_page_writeback(page
);
789 pagevec_release(&pvec
);
793 /* Check for outstanding write errors */
794 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
796 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
803 * add a given inode to the list of inodes that must be fully on
804 * disk before a transaction commit finishes.
806 * This basically gives us the ext3 style data=ordered mode, and it is mostly
807 * used to make sure renamed files are fully on disk.
809 * It is a noop if the inode is already fully on disk.
811 * If trans is not null, we'll do a friendly check for a transaction that
812 * is already flushing things and force the IO down ourselves.
814 int btrfs_add_ordered_operation(struct btrfs_trans_handle
*trans
,
815 struct btrfs_root
*root
,
820 last_mod
= max(BTRFS_I(inode
)->generation
, BTRFS_I(inode
)->last_trans
);
823 * if this file hasn't been changed since the last transaction
824 * commit, we can safely return without doing anything
826 if (last_mod
< root
->fs_info
->last_trans_committed
)
830 * the transaction is already committing. Just start the IO and
831 * don't bother with all of this list nonsense
833 if (trans
&& root
->fs_info
->running_transaction
->blocked
) {
834 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
838 spin_lock(&root
->fs_info
->ordered_extent_lock
);
839 if (list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
840 list_add_tail(&BTRFS_I(inode
)->ordered_operations
,
841 &root
->fs_info
->ordered_operations
);
843 spin_unlock(&root
->fs_info
->ordered_extent_lock
);