omap_hsmmc: Flush posted write to IRQ
[linux-ginger.git] / fs / btrfs / tree-log.c
blobfc9b87a7975bd38f76d7e22c84cfe010e3aafa42
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "locking.h"
24 #include "print-tree.h"
25 #include "compat.h"
26 #include "tree-log.h"
28 /* magic values for the inode_only field in btrfs_log_inode:
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
32 * during log replay
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
38 * directory trouble cases
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
89 #define LOG_WALK_PIN_ONLY 0
90 #define LOG_WALK_REPLAY_INODES 1
91 #define LOG_WALK_REPLAY_ALL 2
93 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
94 struct btrfs_root *root, struct inode *inode,
95 int inode_only);
96 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root,
98 struct btrfs_path *path, u64 objectid);
99 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
100 struct btrfs_root *root,
101 struct btrfs_root *log,
102 struct btrfs_path *path,
103 u64 dirid, int del_all);
106 * tree logging is a special write ahead log used to make sure that
107 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 * Full tree commits are expensive because they require commonly
110 * modified blocks to be recowed, creating many dirty pages in the
111 * extent tree an 4x-6x higher write load than ext3.
113 * Instead of doing a tree commit on every fsync, we use the
114 * key ranges and transaction ids to find items for a given file or directory
115 * that have changed in this transaction. Those items are copied into
116 * a special tree (one per subvolume root), that tree is written to disk
117 * and then the fsync is considered complete.
119 * After a crash, items are copied out of the log-tree back into the
120 * subvolume tree. Any file data extents found are recorded in the extent
121 * allocation tree, and the log-tree freed.
123 * The log tree is read three times, once to pin down all the extents it is
124 * using in ram and once, once to create all the inodes logged in the tree
125 * and once to do all the other items.
129 * start a sub transaction and setup the log tree
130 * this increments the log tree writer count to make the people
131 * syncing the tree wait for us to finish
133 static int start_log_trans(struct btrfs_trans_handle *trans,
134 struct btrfs_root *root)
136 int ret;
138 mutex_lock(&root->log_mutex);
139 if (root->log_root) {
140 root->log_batch++;
141 atomic_inc(&root->log_writers);
142 mutex_unlock(&root->log_mutex);
143 return 0;
145 mutex_lock(&root->fs_info->tree_log_mutex);
146 if (!root->fs_info->log_root_tree) {
147 ret = btrfs_init_log_root_tree(trans, root->fs_info);
148 BUG_ON(ret);
150 if (!root->log_root) {
151 ret = btrfs_add_log_tree(trans, root);
152 BUG_ON(ret);
154 mutex_unlock(&root->fs_info->tree_log_mutex);
155 root->log_batch++;
156 atomic_inc(&root->log_writers);
157 mutex_unlock(&root->log_mutex);
158 return 0;
162 * returns 0 if there was a log transaction running and we were able
163 * to join, or returns -ENOENT if there were not transactions
164 * in progress
166 static int join_running_log_trans(struct btrfs_root *root)
168 int ret = -ENOENT;
170 smp_mb();
171 if (!root->log_root)
172 return -ENOENT;
174 mutex_lock(&root->log_mutex);
175 if (root->log_root) {
176 ret = 0;
177 atomic_inc(&root->log_writers);
179 mutex_unlock(&root->log_mutex);
180 return ret;
184 * This either makes the current running log transaction wait
185 * until you call btrfs_end_log_trans() or it makes any future
186 * log transactions wait until you call btrfs_end_log_trans()
188 int btrfs_pin_log_trans(struct btrfs_root *root)
190 int ret = -ENOENT;
192 mutex_lock(&root->log_mutex);
193 atomic_inc(&root->log_writers);
194 mutex_unlock(&root->log_mutex);
195 return ret;
199 * indicate we're done making changes to the log tree
200 * and wake up anyone waiting to do a sync
202 int btrfs_end_log_trans(struct btrfs_root *root)
204 if (atomic_dec_and_test(&root->log_writers)) {
205 smp_mb();
206 if (waitqueue_active(&root->log_writer_wait))
207 wake_up(&root->log_writer_wait);
209 return 0;
214 * the walk control struct is used to pass state down the chain when
215 * processing the log tree. The stage field tells us which part
216 * of the log tree processing we are currently doing. The others
217 * are state fields used for that specific part
219 struct walk_control {
220 /* should we free the extent on disk when done? This is used
221 * at transaction commit time while freeing a log tree
223 int free;
225 /* should we write out the extent buffer? This is used
226 * while flushing the log tree to disk during a sync
228 int write;
230 /* should we wait for the extent buffer io to finish? Also used
231 * while flushing the log tree to disk for a sync
233 int wait;
235 /* pin only walk, we record which extents on disk belong to the
236 * log trees
238 int pin;
240 /* what stage of the replay code we're currently in */
241 int stage;
243 /* the root we are currently replaying */
244 struct btrfs_root *replay_dest;
246 /* the trans handle for the current replay */
247 struct btrfs_trans_handle *trans;
249 /* the function that gets used to process blocks we find in the
250 * tree. Note the extent_buffer might not be up to date when it is
251 * passed in, and it must be checked or read if you need the data
252 * inside it
254 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
255 struct walk_control *wc, u64 gen);
259 * process_func used to pin down extents, write them or wait on them
261 static int process_one_buffer(struct btrfs_root *log,
262 struct extent_buffer *eb,
263 struct walk_control *wc, u64 gen)
265 if (wc->pin) {
266 mutex_lock(&log->fs_info->pinned_mutex);
267 btrfs_update_pinned_extents(log->fs_info->extent_root,
268 eb->start, eb->len, 1);
271 if (btrfs_buffer_uptodate(eb, gen)) {
272 if (wc->write)
273 btrfs_write_tree_block(eb);
274 if (wc->wait)
275 btrfs_wait_tree_block_writeback(eb);
277 return 0;
281 * Item overwrite used by replay and tree logging. eb, slot and key all refer
282 * to the src data we are copying out.
284 * root is the tree we are copying into, and path is a scratch
285 * path for use in this function (it should be released on entry and
286 * will be released on exit).
288 * If the key is already in the destination tree the existing item is
289 * overwritten. If the existing item isn't big enough, it is extended.
290 * If it is too large, it is truncated.
292 * If the key isn't in the destination yet, a new item is inserted.
294 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
295 struct btrfs_root *root,
296 struct btrfs_path *path,
297 struct extent_buffer *eb, int slot,
298 struct btrfs_key *key)
300 int ret;
301 u32 item_size;
302 u64 saved_i_size = 0;
303 int save_old_i_size = 0;
304 unsigned long src_ptr;
305 unsigned long dst_ptr;
306 int overwrite_root = 0;
308 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
309 overwrite_root = 1;
311 item_size = btrfs_item_size_nr(eb, slot);
312 src_ptr = btrfs_item_ptr_offset(eb, slot);
314 /* look for the key in the destination tree */
315 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
316 if (ret == 0) {
317 char *src_copy;
318 char *dst_copy;
319 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
320 path->slots[0]);
321 if (dst_size != item_size)
322 goto insert;
324 if (item_size == 0) {
325 btrfs_release_path(root, path);
326 return 0;
328 dst_copy = kmalloc(item_size, GFP_NOFS);
329 src_copy = kmalloc(item_size, GFP_NOFS);
331 read_extent_buffer(eb, src_copy, src_ptr, item_size);
333 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
334 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
335 item_size);
336 ret = memcmp(dst_copy, src_copy, item_size);
338 kfree(dst_copy);
339 kfree(src_copy);
341 * they have the same contents, just return, this saves
342 * us from cowing blocks in the destination tree and doing
343 * extra writes that may not have been done by a previous
344 * sync
346 if (ret == 0) {
347 btrfs_release_path(root, path);
348 return 0;
352 insert:
353 btrfs_release_path(root, path);
354 /* try to insert the key into the destination tree */
355 ret = btrfs_insert_empty_item(trans, root, path,
356 key, item_size);
358 /* make sure any existing item is the correct size */
359 if (ret == -EEXIST) {
360 u32 found_size;
361 found_size = btrfs_item_size_nr(path->nodes[0],
362 path->slots[0]);
363 if (found_size > item_size) {
364 btrfs_truncate_item(trans, root, path, item_size, 1);
365 } else if (found_size < item_size) {
366 ret = btrfs_extend_item(trans, root, path,
367 item_size - found_size);
368 BUG_ON(ret);
370 } else if (ret) {
371 BUG();
373 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
374 path->slots[0]);
376 /* don't overwrite an existing inode if the generation number
377 * was logged as zero. This is done when the tree logging code
378 * is just logging an inode to make sure it exists after recovery.
380 * Also, don't overwrite i_size on directories during replay.
381 * log replay inserts and removes directory items based on the
382 * state of the tree found in the subvolume, and i_size is modified
383 * as it goes
385 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
386 struct btrfs_inode_item *src_item;
387 struct btrfs_inode_item *dst_item;
389 src_item = (struct btrfs_inode_item *)src_ptr;
390 dst_item = (struct btrfs_inode_item *)dst_ptr;
392 if (btrfs_inode_generation(eb, src_item) == 0)
393 goto no_copy;
395 if (overwrite_root &&
396 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
397 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
398 save_old_i_size = 1;
399 saved_i_size = btrfs_inode_size(path->nodes[0],
400 dst_item);
404 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
405 src_ptr, item_size);
407 if (save_old_i_size) {
408 struct btrfs_inode_item *dst_item;
409 dst_item = (struct btrfs_inode_item *)dst_ptr;
410 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
413 /* make sure the generation is filled in */
414 if (key->type == BTRFS_INODE_ITEM_KEY) {
415 struct btrfs_inode_item *dst_item;
416 dst_item = (struct btrfs_inode_item *)dst_ptr;
417 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
418 btrfs_set_inode_generation(path->nodes[0], dst_item,
419 trans->transid);
422 no_copy:
423 btrfs_mark_buffer_dirty(path->nodes[0]);
424 btrfs_release_path(root, path);
425 return 0;
429 * simple helper to read an inode off the disk from a given root
430 * This can only be called for subvolume roots and not for the log
432 static noinline struct inode *read_one_inode(struct btrfs_root *root,
433 u64 objectid)
435 struct inode *inode;
436 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
437 if (inode->i_state & I_NEW) {
438 BTRFS_I(inode)->root = root;
439 BTRFS_I(inode)->location.objectid = objectid;
440 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
441 BTRFS_I(inode)->location.offset = 0;
442 btrfs_read_locked_inode(inode);
443 unlock_new_inode(inode);
446 if (is_bad_inode(inode)) {
447 iput(inode);
448 inode = NULL;
450 return inode;
453 /* replays a single extent in 'eb' at 'slot' with 'key' into the
454 * subvolume 'root'. path is released on entry and should be released
455 * on exit.
457 * extents in the log tree have not been allocated out of the extent
458 * tree yet. So, this completes the allocation, taking a reference
459 * as required if the extent already exists or creating a new extent
460 * if it isn't in the extent allocation tree yet.
462 * The extent is inserted into the file, dropping any existing extents
463 * from the file that overlap the new one.
465 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
466 struct btrfs_root *root,
467 struct btrfs_path *path,
468 struct extent_buffer *eb, int slot,
469 struct btrfs_key *key)
471 int found_type;
472 u64 mask = root->sectorsize - 1;
473 u64 extent_end;
474 u64 alloc_hint;
475 u64 start = key->offset;
476 u64 saved_nbytes;
477 struct btrfs_file_extent_item *item;
478 struct inode *inode = NULL;
479 unsigned long size;
480 int ret = 0;
482 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
483 found_type = btrfs_file_extent_type(eb, item);
485 if (found_type == BTRFS_FILE_EXTENT_REG ||
486 found_type == BTRFS_FILE_EXTENT_PREALLOC)
487 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
488 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
489 size = btrfs_file_extent_inline_len(eb, item);
490 extent_end = (start + size + mask) & ~mask;
491 } else {
492 ret = 0;
493 goto out;
496 inode = read_one_inode(root, key->objectid);
497 if (!inode) {
498 ret = -EIO;
499 goto out;
503 * first check to see if we already have this extent in the
504 * file. This must be done before the btrfs_drop_extents run
505 * so we don't try to drop this extent.
507 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
508 start, 0);
510 if (ret == 0 &&
511 (found_type == BTRFS_FILE_EXTENT_REG ||
512 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
513 struct btrfs_file_extent_item cmp1;
514 struct btrfs_file_extent_item cmp2;
515 struct btrfs_file_extent_item *existing;
516 struct extent_buffer *leaf;
518 leaf = path->nodes[0];
519 existing = btrfs_item_ptr(leaf, path->slots[0],
520 struct btrfs_file_extent_item);
522 read_extent_buffer(eb, &cmp1, (unsigned long)item,
523 sizeof(cmp1));
524 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
525 sizeof(cmp2));
528 * we already have a pointer to this exact extent,
529 * we don't have to do anything
531 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
532 btrfs_release_path(root, path);
533 goto out;
536 btrfs_release_path(root, path);
538 saved_nbytes = inode_get_bytes(inode);
539 /* drop any overlapping extents */
540 ret = btrfs_drop_extents(trans, root, inode,
541 start, extent_end, start, &alloc_hint);
542 BUG_ON(ret);
544 if (found_type == BTRFS_FILE_EXTENT_REG ||
545 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
546 unsigned long dest_offset;
547 struct btrfs_key ins;
549 ret = btrfs_insert_empty_item(trans, root, path, key,
550 sizeof(*item));
551 BUG_ON(ret);
552 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
553 path->slots[0]);
554 copy_extent_buffer(path->nodes[0], eb, dest_offset,
555 (unsigned long)item, sizeof(*item));
557 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
558 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
559 ins.type = BTRFS_EXTENT_ITEM_KEY;
561 if (ins.objectid > 0) {
562 u64 csum_start;
563 u64 csum_end;
564 LIST_HEAD(ordered_sums);
566 * is this extent already allocated in the extent
567 * allocation tree? If so, just add a reference
569 ret = btrfs_lookup_extent(root, ins.objectid,
570 ins.offset);
571 if (ret == 0) {
572 ret = btrfs_inc_extent_ref(trans, root,
573 ins.objectid, ins.offset,
574 path->nodes[0]->start,
575 root->root_key.objectid,
576 trans->transid, key->objectid);
577 } else {
579 * insert the extent pointer in the extent
580 * allocation tree
582 ret = btrfs_alloc_logged_extent(trans, root,
583 path->nodes[0]->start,
584 root->root_key.objectid,
585 trans->transid, key->objectid,
586 &ins);
587 BUG_ON(ret);
589 btrfs_release_path(root, path);
591 if (btrfs_file_extent_compression(eb, item)) {
592 csum_start = ins.objectid;
593 csum_end = csum_start + ins.offset;
594 } else {
595 csum_start = ins.objectid +
596 btrfs_file_extent_offset(eb, item);
597 csum_end = csum_start +
598 btrfs_file_extent_num_bytes(eb, item);
601 ret = btrfs_lookup_csums_range(root->log_root,
602 csum_start, csum_end - 1,
603 &ordered_sums);
604 BUG_ON(ret);
605 while (!list_empty(&ordered_sums)) {
606 struct btrfs_ordered_sum *sums;
607 sums = list_entry(ordered_sums.next,
608 struct btrfs_ordered_sum,
609 list);
610 ret = btrfs_csum_file_blocks(trans,
611 root->fs_info->csum_root,
612 sums);
613 BUG_ON(ret);
614 list_del(&sums->list);
615 kfree(sums);
617 } else {
618 btrfs_release_path(root, path);
620 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
621 /* inline extents are easy, we just overwrite them */
622 ret = overwrite_item(trans, root, path, eb, slot, key);
623 BUG_ON(ret);
626 inode_set_bytes(inode, saved_nbytes);
627 btrfs_update_inode(trans, root, inode);
628 out:
629 if (inode)
630 iput(inode);
631 return ret;
635 * when cleaning up conflicts between the directory names in the
636 * subvolume, directory names in the log and directory names in the
637 * inode back references, we may have to unlink inodes from directories.
639 * This is a helper function to do the unlink of a specific directory
640 * item
642 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
643 struct btrfs_root *root,
644 struct btrfs_path *path,
645 struct inode *dir,
646 struct btrfs_dir_item *di)
648 struct inode *inode;
649 char *name;
650 int name_len;
651 struct extent_buffer *leaf;
652 struct btrfs_key location;
653 int ret;
655 leaf = path->nodes[0];
657 btrfs_dir_item_key_to_cpu(leaf, di, &location);
658 name_len = btrfs_dir_name_len(leaf, di);
659 name = kmalloc(name_len, GFP_NOFS);
660 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
661 btrfs_release_path(root, path);
663 inode = read_one_inode(root, location.objectid);
664 BUG_ON(!inode);
666 ret = link_to_fixup_dir(trans, root, path, location.objectid);
667 BUG_ON(ret);
669 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
670 BUG_ON(ret);
671 kfree(name);
673 iput(inode);
674 return ret;
678 * helper function to see if a given name and sequence number found
679 * in an inode back reference are already in a directory and correctly
680 * point to this inode
682 static noinline int inode_in_dir(struct btrfs_root *root,
683 struct btrfs_path *path,
684 u64 dirid, u64 objectid, u64 index,
685 const char *name, int name_len)
687 struct btrfs_dir_item *di;
688 struct btrfs_key location;
689 int match = 0;
691 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
692 index, name, name_len, 0);
693 if (di && !IS_ERR(di)) {
694 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
695 if (location.objectid != objectid)
696 goto out;
697 } else
698 goto out;
699 btrfs_release_path(root, path);
701 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
702 if (di && !IS_ERR(di)) {
703 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
704 if (location.objectid != objectid)
705 goto out;
706 } else
707 goto out;
708 match = 1;
709 out:
710 btrfs_release_path(root, path);
711 return match;
715 * helper function to check a log tree for a named back reference in
716 * an inode. This is used to decide if a back reference that is
717 * found in the subvolume conflicts with what we find in the log.
719 * inode backreferences may have multiple refs in a single item,
720 * during replay we process one reference at a time, and we don't
721 * want to delete valid links to a file from the subvolume if that
722 * link is also in the log.
724 static noinline int backref_in_log(struct btrfs_root *log,
725 struct btrfs_key *key,
726 char *name, int namelen)
728 struct btrfs_path *path;
729 struct btrfs_inode_ref *ref;
730 unsigned long ptr;
731 unsigned long ptr_end;
732 unsigned long name_ptr;
733 int found_name_len;
734 int item_size;
735 int ret;
736 int match = 0;
738 path = btrfs_alloc_path();
739 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
740 if (ret != 0)
741 goto out;
743 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
744 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
745 ptr_end = ptr + item_size;
746 while (ptr < ptr_end) {
747 ref = (struct btrfs_inode_ref *)ptr;
748 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
749 if (found_name_len == namelen) {
750 name_ptr = (unsigned long)(ref + 1);
751 ret = memcmp_extent_buffer(path->nodes[0], name,
752 name_ptr, namelen);
753 if (ret == 0) {
754 match = 1;
755 goto out;
758 ptr = (unsigned long)(ref + 1) + found_name_len;
760 out:
761 btrfs_free_path(path);
762 return match;
767 * replay one inode back reference item found in the log tree.
768 * eb, slot and key refer to the buffer and key found in the log tree.
769 * root is the destination we are replaying into, and path is for temp
770 * use by this function. (it should be released on return).
772 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
773 struct btrfs_root *root,
774 struct btrfs_root *log,
775 struct btrfs_path *path,
776 struct extent_buffer *eb, int slot,
777 struct btrfs_key *key)
779 struct inode *dir;
780 int ret;
781 struct btrfs_key location;
782 struct btrfs_inode_ref *ref;
783 struct btrfs_dir_item *di;
784 struct inode *inode;
785 char *name;
786 int namelen;
787 unsigned long ref_ptr;
788 unsigned long ref_end;
790 location.objectid = key->objectid;
791 location.type = BTRFS_INODE_ITEM_KEY;
792 location.offset = 0;
795 * it is possible that we didn't log all the parent directories
796 * for a given inode. If we don't find the dir, just don't
797 * copy the back ref in. The link count fixup code will take
798 * care of the rest
800 dir = read_one_inode(root, key->offset);
801 if (!dir)
802 return -ENOENT;
804 inode = read_one_inode(root, key->objectid);
805 BUG_ON(!dir);
807 ref_ptr = btrfs_item_ptr_offset(eb, slot);
808 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
810 again:
811 ref = (struct btrfs_inode_ref *)ref_ptr;
813 namelen = btrfs_inode_ref_name_len(eb, ref);
814 name = kmalloc(namelen, GFP_NOFS);
815 BUG_ON(!name);
817 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
819 /* if we already have a perfect match, we're done */
820 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
821 btrfs_inode_ref_index(eb, ref),
822 name, namelen)) {
823 goto out;
827 * look for a conflicting back reference in the metadata.
828 * if we find one we have to unlink that name of the file
829 * before we add our new link. Later on, we overwrite any
830 * existing back reference, and we don't want to create
831 * dangling pointers in the directory.
833 conflict_again:
834 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
835 if (ret == 0) {
836 char *victim_name;
837 int victim_name_len;
838 struct btrfs_inode_ref *victim_ref;
839 unsigned long ptr;
840 unsigned long ptr_end;
841 struct extent_buffer *leaf = path->nodes[0];
843 /* are we trying to overwrite a back ref for the root directory
844 * if so, just jump out, we're done
846 if (key->objectid == key->offset)
847 goto out_nowrite;
849 /* check all the names in this back reference to see
850 * if they are in the log. if so, we allow them to stay
851 * otherwise they must be unlinked as a conflict
853 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
854 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
855 while (ptr < ptr_end) {
856 victim_ref = (struct btrfs_inode_ref *)ptr;
857 victim_name_len = btrfs_inode_ref_name_len(leaf,
858 victim_ref);
859 victim_name = kmalloc(victim_name_len, GFP_NOFS);
860 BUG_ON(!victim_name);
862 read_extent_buffer(leaf, victim_name,
863 (unsigned long)(victim_ref + 1),
864 victim_name_len);
866 if (!backref_in_log(log, key, victim_name,
867 victim_name_len)) {
868 btrfs_inc_nlink(inode);
869 btrfs_release_path(root, path);
871 ret = btrfs_unlink_inode(trans, root, dir,
872 inode, victim_name,
873 victim_name_len);
874 kfree(victim_name);
875 btrfs_release_path(root, path);
876 goto conflict_again;
878 kfree(victim_name);
879 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
881 BUG_ON(ret);
883 btrfs_release_path(root, path);
885 /* look for a conflicting sequence number */
886 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
887 btrfs_inode_ref_index(eb, ref),
888 name, namelen, 0);
889 if (di && !IS_ERR(di)) {
890 ret = drop_one_dir_item(trans, root, path, dir, di);
891 BUG_ON(ret);
893 btrfs_release_path(root, path);
896 /* look for a conflicting name */
897 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
898 name, namelen, 0);
899 if (di && !IS_ERR(di)) {
900 ret = drop_one_dir_item(trans, root, path, dir, di);
901 BUG_ON(ret);
903 btrfs_release_path(root, path);
905 /* insert our name */
906 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
907 btrfs_inode_ref_index(eb, ref));
908 BUG_ON(ret);
910 btrfs_update_inode(trans, root, inode);
912 out:
913 ref_ptr = (unsigned long)(ref + 1) + namelen;
914 kfree(name);
915 if (ref_ptr < ref_end)
916 goto again;
918 /* finally write the back reference in the inode */
919 ret = overwrite_item(trans, root, path, eb, slot, key);
920 BUG_ON(ret);
922 out_nowrite:
923 btrfs_release_path(root, path);
924 iput(dir);
925 iput(inode);
926 return 0;
930 * There are a few corners where the link count of the file can't
931 * be properly maintained during replay. So, instead of adding
932 * lots of complexity to the log code, we just scan the backrefs
933 * for any file that has been through replay.
935 * The scan will update the link count on the inode to reflect the
936 * number of back refs found. If it goes down to zero, the iput
937 * will free the inode.
939 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
940 struct btrfs_root *root,
941 struct inode *inode)
943 struct btrfs_path *path;
944 int ret;
945 struct btrfs_key key;
946 u64 nlink = 0;
947 unsigned long ptr;
948 unsigned long ptr_end;
949 int name_len;
951 key.objectid = inode->i_ino;
952 key.type = BTRFS_INODE_REF_KEY;
953 key.offset = (u64)-1;
955 path = btrfs_alloc_path();
957 while (1) {
958 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
959 if (ret < 0)
960 break;
961 if (ret > 0) {
962 if (path->slots[0] == 0)
963 break;
964 path->slots[0]--;
966 btrfs_item_key_to_cpu(path->nodes[0], &key,
967 path->slots[0]);
968 if (key.objectid != inode->i_ino ||
969 key.type != BTRFS_INODE_REF_KEY)
970 break;
971 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
972 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
973 path->slots[0]);
974 while (ptr < ptr_end) {
975 struct btrfs_inode_ref *ref;
977 ref = (struct btrfs_inode_ref *)ptr;
978 name_len = btrfs_inode_ref_name_len(path->nodes[0],
979 ref);
980 ptr = (unsigned long)(ref + 1) + name_len;
981 nlink++;
984 if (key.offset == 0)
985 break;
986 key.offset--;
987 btrfs_release_path(root, path);
989 btrfs_release_path(root, path);
990 if (nlink != inode->i_nlink) {
991 inode->i_nlink = nlink;
992 btrfs_update_inode(trans, root, inode);
994 BTRFS_I(inode)->index_cnt = (u64)-1;
996 if (inode->i_nlink == 0 && S_ISDIR(inode->i_mode)) {
997 ret = replay_dir_deletes(trans, root, NULL, path,
998 inode->i_ino, 1);
999 BUG_ON(ret);
1001 btrfs_free_path(path);
1003 return 0;
1006 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1007 struct btrfs_root *root,
1008 struct btrfs_path *path)
1010 int ret;
1011 struct btrfs_key key;
1012 struct inode *inode;
1014 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1015 key.type = BTRFS_ORPHAN_ITEM_KEY;
1016 key.offset = (u64)-1;
1017 while (1) {
1018 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1019 if (ret < 0)
1020 break;
1022 if (ret == 1) {
1023 if (path->slots[0] == 0)
1024 break;
1025 path->slots[0]--;
1028 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1029 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1030 key.type != BTRFS_ORPHAN_ITEM_KEY)
1031 break;
1033 ret = btrfs_del_item(trans, root, path);
1034 BUG_ON(ret);
1036 btrfs_release_path(root, path);
1037 inode = read_one_inode(root, key.offset);
1038 BUG_ON(!inode);
1040 ret = fixup_inode_link_count(trans, root, inode);
1041 BUG_ON(ret);
1043 iput(inode);
1046 * fixup on a directory may create new entries,
1047 * make sure we always look for the highset possible
1048 * offset
1050 key.offset = (u64)-1;
1052 btrfs_release_path(root, path);
1053 return 0;
1058 * record a given inode in the fixup dir so we can check its link
1059 * count when replay is done. The link count is incremented here
1060 * so the inode won't go away until we check it
1062 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1063 struct btrfs_root *root,
1064 struct btrfs_path *path,
1065 u64 objectid)
1067 struct btrfs_key key;
1068 int ret = 0;
1069 struct inode *inode;
1071 inode = read_one_inode(root, objectid);
1072 BUG_ON(!inode);
1074 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1075 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1076 key.offset = objectid;
1078 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1080 btrfs_release_path(root, path);
1081 if (ret == 0) {
1082 btrfs_inc_nlink(inode);
1083 btrfs_update_inode(trans, root, inode);
1084 } else if (ret == -EEXIST) {
1085 ret = 0;
1086 } else {
1087 BUG();
1089 iput(inode);
1091 return ret;
1095 * when replaying the log for a directory, we only insert names
1096 * for inodes that actually exist. This means an fsync on a directory
1097 * does not implicitly fsync all the new files in it
1099 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1100 struct btrfs_root *root,
1101 struct btrfs_path *path,
1102 u64 dirid, u64 index,
1103 char *name, int name_len, u8 type,
1104 struct btrfs_key *location)
1106 struct inode *inode;
1107 struct inode *dir;
1108 int ret;
1110 inode = read_one_inode(root, location->objectid);
1111 if (!inode)
1112 return -ENOENT;
1114 dir = read_one_inode(root, dirid);
1115 if (!dir) {
1116 iput(inode);
1117 return -EIO;
1119 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1121 /* FIXME, put inode into FIXUP list */
1123 iput(inode);
1124 iput(dir);
1125 return ret;
1129 * take a single entry in a log directory item and replay it into
1130 * the subvolume.
1132 * if a conflicting item exists in the subdirectory already,
1133 * the inode it points to is unlinked and put into the link count
1134 * fix up tree.
1136 * If a name from the log points to a file or directory that does
1137 * not exist in the FS, it is skipped. fsyncs on directories
1138 * do not force down inodes inside that directory, just changes to the
1139 * names or unlinks in a directory.
1141 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1142 struct btrfs_root *root,
1143 struct btrfs_path *path,
1144 struct extent_buffer *eb,
1145 struct btrfs_dir_item *di,
1146 struct btrfs_key *key)
1148 char *name;
1149 int name_len;
1150 struct btrfs_dir_item *dst_di;
1151 struct btrfs_key found_key;
1152 struct btrfs_key log_key;
1153 struct inode *dir;
1154 u8 log_type;
1155 int exists;
1156 int ret;
1158 dir = read_one_inode(root, key->objectid);
1159 BUG_ON(!dir);
1161 name_len = btrfs_dir_name_len(eb, di);
1162 name = kmalloc(name_len, GFP_NOFS);
1163 log_type = btrfs_dir_type(eb, di);
1164 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1165 name_len);
1167 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1168 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1169 if (exists == 0)
1170 exists = 1;
1171 else
1172 exists = 0;
1173 btrfs_release_path(root, path);
1175 if (key->type == BTRFS_DIR_ITEM_KEY) {
1176 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1177 name, name_len, 1);
1178 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1179 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1180 key->objectid,
1181 key->offset, name,
1182 name_len, 1);
1183 } else {
1184 BUG();
1186 if (!dst_di || IS_ERR(dst_di)) {
1187 /* we need a sequence number to insert, so we only
1188 * do inserts for the BTRFS_DIR_INDEX_KEY types
1190 if (key->type != BTRFS_DIR_INDEX_KEY)
1191 goto out;
1192 goto insert;
1195 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1196 /* the existing item matches the logged item */
1197 if (found_key.objectid == log_key.objectid &&
1198 found_key.type == log_key.type &&
1199 found_key.offset == log_key.offset &&
1200 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1201 goto out;
1205 * don't drop the conflicting directory entry if the inode
1206 * for the new entry doesn't exist
1208 if (!exists)
1209 goto out;
1211 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1212 BUG_ON(ret);
1214 if (key->type == BTRFS_DIR_INDEX_KEY)
1215 goto insert;
1216 out:
1217 btrfs_release_path(root, path);
1218 kfree(name);
1219 iput(dir);
1220 return 0;
1222 insert:
1223 btrfs_release_path(root, path);
1224 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1225 name, name_len, log_type, &log_key);
1227 if (ret && ret != -ENOENT)
1228 BUG();
1229 goto out;
1233 * find all the names in a directory item and reconcile them into
1234 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1235 * one name in a directory item, but the same code gets used for
1236 * both directory index types
1238 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1239 struct btrfs_root *root,
1240 struct btrfs_path *path,
1241 struct extent_buffer *eb, int slot,
1242 struct btrfs_key *key)
1244 int ret;
1245 u32 item_size = btrfs_item_size_nr(eb, slot);
1246 struct btrfs_dir_item *di;
1247 int name_len;
1248 unsigned long ptr;
1249 unsigned long ptr_end;
1251 ptr = btrfs_item_ptr_offset(eb, slot);
1252 ptr_end = ptr + item_size;
1253 while (ptr < ptr_end) {
1254 di = (struct btrfs_dir_item *)ptr;
1255 name_len = btrfs_dir_name_len(eb, di);
1256 ret = replay_one_name(trans, root, path, eb, di, key);
1257 BUG_ON(ret);
1258 ptr = (unsigned long)(di + 1);
1259 ptr += name_len;
1261 return 0;
1265 * directory replay has two parts. There are the standard directory
1266 * items in the log copied from the subvolume, and range items
1267 * created in the log while the subvolume was logged.
1269 * The range items tell us which parts of the key space the log
1270 * is authoritative for. During replay, if a key in the subvolume
1271 * directory is in a logged range item, but not actually in the log
1272 * that means it was deleted from the directory before the fsync
1273 * and should be removed.
1275 static noinline int find_dir_range(struct btrfs_root *root,
1276 struct btrfs_path *path,
1277 u64 dirid, int key_type,
1278 u64 *start_ret, u64 *end_ret)
1280 struct btrfs_key key;
1281 u64 found_end;
1282 struct btrfs_dir_log_item *item;
1283 int ret;
1284 int nritems;
1286 if (*start_ret == (u64)-1)
1287 return 1;
1289 key.objectid = dirid;
1290 key.type = key_type;
1291 key.offset = *start_ret;
1293 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1294 if (ret < 0)
1295 goto out;
1296 if (ret > 0) {
1297 if (path->slots[0] == 0)
1298 goto out;
1299 path->slots[0]--;
1301 if (ret != 0)
1302 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1304 if (key.type != key_type || key.objectid != dirid) {
1305 ret = 1;
1306 goto next;
1308 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1309 struct btrfs_dir_log_item);
1310 found_end = btrfs_dir_log_end(path->nodes[0], item);
1312 if (*start_ret >= key.offset && *start_ret <= found_end) {
1313 ret = 0;
1314 *start_ret = key.offset;
1315 *end_ret = found_end;
1316 goto out;
1318 ret = 1;
1319 next:
1320 /* check the next slot in the tree to see if it is a valid item */
1321 nritems = btrfs_header_nritems(path->nodes[0]);
1322 if (path->slots[0] >= nritems) {
1323 ret = btrfs_next_leaf(root, path);
1324 if (ret)
1325 goto out;
1326 } else {
1327 path->slots[0]++;
1330 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1332 if (key.type != key_type || key.objectid != dirid) {
1333 ret = 1;
1334 goto out;
1336 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1337 struct btrfs_dir_log_item);
1338 found_end = btrfs_dir_log_end(path->nodes[0], item);
1339 *start_ret = key.offset;
1340 *end_ret = found_end;
1341 ret = 0;
1342 out:
1343 btrfs_release_path(root, path);
1344 return ret;
1348 * this looks for a given directory item in the log. If the directory
1349 * item is not in the log, the item is removed and the inode it points
1350 * to is unlinked
1352 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1353 struct btrfs_root *root,
1354 struct btrfs_root *log,
1355 struct btrfs_path *path,
1356 struct btrfs_path *log_path,
1357 struct inode *dir,
1358 struct btrfs_key *dir_key)
1360 int ret;
1361 struct extent_buffer *eb;
1362 int slot;
1363 u32 item_size;
1364 struct btrfs_dir_item *di;
1365 struct btrfs_dir_item *log_di;
1366 int name_len;
1367 unsigned long ptr;
1368 unsigned long ptr_end;
1369 char *name;
1370 struct inode *inode;
1371 struct btrfs_key location;
1373 again:
1374 eb = path->nodes[0];
1375 slot = path->slots[0];
1376 item_size = btrfs_item_size_nr(eb, slot);
1377 ptr = btrfs_item_ptr_offset(eb, slot);
1378 ptr_end = ptr + item_size;
1379 while (ptr < ptr_end) {
1380 di = (struct btrfs_dir_item *)ptr;
1381 name_len = btrfs_dir_name_len(eb, di);
1382 name = kmalloc(name_len, GFP_NOFS);
1383 if (!name) {
1384 ret = -ENOMEM;
1385 goto out;
1387 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1388 name_len);
1389 log_di = NULL;
1390 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1391 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1392 dir_key->objectid,
1393 name, name_len, 0);
1394 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1395 log_di = btrfs_lookup_dir_index_item(trans, log,
1396 log_path,
1397 dir_key->objectid,
1398 dir_key->offset,
1399 name, name_len, 0);
1401 if (!log_di || IS_ERR(log_di)) {
1402 btrfs_dir_item_key_to_cpu(eb, di, &location);
1403 btrfs_release_path(root, path);
1404 btrfs_release_path(log, log_path);
1405 inode = read_one_inode(root, location.objectid);
1406 BUG_ON(!inode);
1408 ret = link_to_fixup_dir(trans, root,
1409 path, location.objectid);
1410 BUG_ON(ret);
1411 btrfs_inc_nlink(inode);
1412 ret = btrfs_unlink_inode(trans, root, dir, inode,
1413 name, name_len);
1414 BUG_ON(ret);
1415 kfree(name);
1416 iput(inode);
1418 /* there might still be more names under this key
1419 * check and repeat if required
1421 ret = btrfs_search_slot(NULL, root, dir_key, path,
1422 0, 0);
1423 if (ret == 0)
1424 goto again;
1425 ret = 0;
1426 goto out;
1428 btrfs_release_path(log, log_path);
1429 kfree(name);
1431 ptr = (unsigned long)(di + 1);
1432 ptr += name_len;
1434 ret = 0;
1435 out:
1436 btrfs_release_path(root, path);
1437 btrfs_release_path(log, log_path);
1438 return ret;
1442 * deletion replay happens before we copy any new directory items
1443 * out of the log or out of backreferences from inodes. It
1444 * scans the log to find ranges of keys that log is authoritative for,
1445 * and then scans the directory to find items in those ranges that are
1446 * not present in the log.
1448 * Anything we don't find in the log is unlinked and removed from the
1449 * directory.
1451 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1452 struct btrfs_root *root,
1453 struct btrfs_root *log,
1454 struct btrfs_path *path,
1455 u64 dirid, int del_all)
1457 u64 range_start;
1458 u64 range_end;
1459 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1460 int ret = 0;
1461 struct btrfs_key dir_key;
1462 struct btrfs_key found_key;
1463 struct btrfs_path *log_path;
1464 struct inode *dir;
1466 dir_key.objectid = dirid;
1467 dir_key.type = BTRFS_DIR_ITEM_KEY;
1468 log_path = btrfs_alloc_path();
1469 if (!log_path)
1470 return -ENOMEM;
1472 dir = read_one_inode(root, dirid);
1473 /* it isn't an error if the inode isn't there, that can happen
1474 * because we replay the deletes before we copy in the inode item
1475 * from the log
1477 if (!dir) {
1478 btrfs_free_path(log_path);
1479 return 0;
1481 again:
1482 range_start = 0;
1483 range_end = 0;
1484 while (1) {
1485 if (del_all)
1486 range_end = (u64)-1;
1487 else {
1488 ret = find_dir_range(log, path, dirid, key_type,
1489 &range_start, &range_end);
1490 if (ret != 0)
1491 break;
1494 dir_key.offset = range_start;
1495 while (1) {
1496 int nritems;
1497 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1498 0, 0);
1499 if (ret < 0)
1500 goto out;
1502 nritems = btrfs_header_nritems(path->nodes[0]);
1503 if (path->slots[0] >= nritems) {
1504 ret = btrfs_next_leaf(root, path);
1505 if (ret)
1506 break;
1508 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1509 path->slots[0]);
1510 if (found_key.objectid != dirid ||
1511 found_key.type != dir_key.type)
1512 goto next_type;
1514 if (found_key.offset > range_end)
1515 break;
1517 ret = check_item_in_log(trans, root, log, path,
1518 log_path, dir,
1519 &found_key);
1520 BUG_ON(ret);
1521 if (found_key.offset == (u64)-1)
1522 break;
1523 dir_key.offset = found_key.offset + 1;
1525 btrfs_release_path(root, path);
1526 if (range_end == (u64)-1)
1527 break;
1528 range_start = range_end + 1;
1531 next_type:
1532 ret = 0;
1533 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1534 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1535 dir_key.type = BTRFS_DIR_INDEX_KEY;
1536 btrfs_release_path(root, path);
1537 goto again;
1539 out:
1540 btrfs_release_path(root, path);
1541 btrfs_free_path(log_path);
1542 iput(dir);
1543 return ret;
1547 * the process_func used to replay items from the log tree. This
1548 * gets called in two different stages. The first stage just looks
1549 * for inodes and makes sure they are all copied into the subvolume.
1551 * The second stage copies all the other item types from the log into
1552 * the subvolume. The two stage approach is slower, but gets rid of
1553 * lots of complexity around inodes referencing other inodes that exist
1554 * only in the log (references come from either directory items or inode
1555 * back refs).
1557 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1558 struct walk_control *wc, u64 gen)
1560 int nritems;
1561 struct btrfs_path *path;
1562 struct btrfs_root *root = wc->replay_dest;
1563 struct btrfs_key key;
1564 u32 item_size;
1565 int level;
1566 int i;
1567 int ret;
1569 btrfs_read_buffer(eb, gen);
1571 level = btrfs_header_level(eb);
1573 if (level != 0)
1574 return 0;
1576 path = btrfs_alloc_path();
1577 BUG_ON(!path);
1579 nritems = btrfs_header_nritems(eb);
1580 for (i = 0; i < nritems; i++) {
1581 btrfs_item_key_to_cpu(eb, &key, i);
1582 item_size = btrfs_item_size_nr(eb, i);
1584 /* inode keys are done during the first stage */
1585 if (key.type == BTRFS_INODE_ITEM_KEY &&
1586 wc->stage == LOG_WALK_REPLAY_INODES) {
1587 struct inode *inode;
1588 struct btrfs_inode_item *inode_item;
1589 u32 mode;
1591 inode_item = btrfs_item_ptr(eb, i,
1592 struct btrfs_inode_item);
1593 mode = btrfs_inode_mode(eb, inode_item);
1594 if (S_ISDIR(mode)) {
1595 ret = replay_dir_deletes(wc->trans,
1596 root, log, path, key.objectid, 0);
1597 BUG_ON(ret);
1599 ret = overwrite_item(wc->trans, root, path,
1600 eb, i, &key);
1601 BUG_ON(ret);
1603 /* for regular files, truncate away
1604 * extents past the new EOF
1606 if (S_ISREG(mode)) {
1607 inode = read_one_inode(root,
1608 key.objectid);
1609 BUG_ON(!inode);
1611 ret = btrfs_truncate_inode_items(wc->trans,
1612 root, inode, inode->i_size,
1613 BTRFS_EXTENT_DATA_KEY);
1614 BUG_ON(ret);
1616 /* if the nlink count is zero here, the iput
1617 * will free the inode. We bump it to make
1618 * sure it doesn't get freed until the link
1619 * count fixup is done
1621 if (inode->i_nlink == 0) {
1622 btrfs_inc_nlink(inode);
1623 btrfs_update_inode(wc->trans,
1624 root, inode);
1626 iput(inode);
1628 ret = link_to_fixup_dir(wc->trans, root,
1629 path, key.objectid);
1630 BUG_ON(ret);
1632 if (wc->stage < LOG_WALK_REPLAY_ALL)
1633 continue;
1635 /* these keys are simply copied */
1636 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1637 ret = overwrite_item(wc->trans, root, path,
1638 eb, i, &key);
1639 BUG_ON(ret);
1640 } else if (key.type == BTRFS_INODE_REF_KEY) {
1641 ret = add_inode_ref(wc->trans, root, log, path,
1642 eb, i, &key);
1643 BUG_ON(ret && ret != -ENOENT);
1644 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1645 ret = replay_one_extent(wc->trans, root, path,
1646 eb, i, &key);
1647 BUG_ON(ret);
1648 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1649 key.type == BTRFS_DIR_INDEX_KEY) {
1650 ret = replay_one_dir_item(wc->trans, root, path,
1651 eb, i, &key);
1652 BUG_ON(ret);
1655 btrfs_free_path(path);
1656 return 0;
1659 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1660 struct btrfs_root *root,
1661 struct btrfs_path *path, int *level,
1662 struct walk_control *wc)
1664 u64 root_owner;
1665 u64 root_gen;
1666 u64 bytenr;
1667 u64 ptr_gen;
1668 struct extent_buffer *next;
1669 struct extent_buffer *cur;
1670 struct extent_buffer *parent;
1671 u32 blocksize;
1672 int ret = 0;
1674 WARN_ON(*level < 0);
1675 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1677 while (*level > 0) {
1678 WARN_ON(*level < 0);
1679 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1680 cur = path->nodes[*level];
1682 if (btrfs_header_level(cur) != *level)
1683 WARN_ON(1);
1685 if (path->slots[*level] >=
1686 btrfs_header_nritems(cur))
1687 break;
1689 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1690 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1691 blocksize = btrfs_level_size(root, *level - 1);
1693 parent = path->nodes[*level];
1694 root_owner = btrfs_header_owner(parent);
1695 root_gen = btrfs_header_generation(parent);
1697 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1699 wc->process_func(root, next, wc, ptr_gen);
1701 if (*level == 1) {
1702 path->slots[*level]++;
1703 if (wc->free) {
1704 btrfs_read_buffer(next, ptr_gen);
1706 btrfs_tree_lock(next);
1707 clean_tree_block(trans, root, next);
1708 btrfs_set_lock_blocking(next);
1709 btrfs_wait_tree_block_writeback(next);
1710 btrfs_tree_unlock(next);
1712 ret = btrfs_drop_leaf_ref(trans, root, next);
1713 BUG_ON(ret);
1715 WARN_ON(root_owner !=
1716 BTRFS_TREE_LOG_OBJECTID);
1717 ret = btrfs_free_reserved_extent(root,
1718 bytenr, blocksize);
1719 BUG_ON(ret);
1721 free_extent_buffer(next);
1722 continue;
1724 btrfs_read_buffer(next, ptr_gen);
1726 WARN_ON(*level <= 0);
1727 if (path->nodes[*level-1])
1728 free_extent_buffer(path->nodes[*level-1]);
1729 path->nodes[*level-1] = next;
1730 *level = btrfs_header_level(next);
1731 path->slots[*level] = 0;
1732 cond_resched();
1734 WARN_ON(*level < 0);
1735 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1737 if (path->nodes[*level] == root->node)
1738 parent = path->nodes[*level];
1739 else
1740 parent = path->nodes[*level + 1];
1742 bytenr = path->nodes[*level]->start;
1744 blocksize = btrfs_level_size(root, *level);
1745 root_owner = btrfs_header_owner(parent);
1746 root_gen = btrfs_header_generation(parent);
1748 wc->process_func(root, path->nodes[*level], wc,
1749 btrfs_header_generation(path->nodes[*level]));
1751 if (wc->free) {
1752 next = path->nodes[*level];
1753 btrfs_tree_lock(next);
1754 clean_tree_block(trans, root, next);
1755 btrfs_set_lock_blocking(next);
1756 btrfs_wait_tree_block_writeback(next);
1757 btrfs_tree_unlock(next);
1759 if (*level == 0) {
1760 ret = btrfs_drop_leaf_ref(trans, root, next);
1761 BUG_ON(ret);
1763 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1764 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
1765 BUG_ON(ret);
1767 free_extent_buffer(path->nodes[*level]);
1768 path->nodes[*level] = NULL;
1769 *level += 1;
1771 cond_resched();
1772 return 0;
1775 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1776 struct btrfs_root *root,
1777 struct btrfs_path *path, int *level,
1778 struct walk_control *wc)
1780 u64 root_owner;
1781 u64 root_gen;
1782 int i;
1783 int slot;
1784 int ret;
1786 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1787 slot = path->slots[i];
1788 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1789 struct extent_buffer *node;
1790 node = path->nodes[i];
1791 path->slots[i]++;
1792 *level = i;
1793 WARN_ON(*level == 0);
1794 return 0;
1795 } else {
1796 struct extent_buffer *parent;
1797 if (path->nodes[*level] == root->node)
1798 parent = path->nodes[*level];
1799 else
1800 parent = path->nodes[*level + 1];
1802 root_owner = btrfs_header_owner(parent);
1803 root_gen = btrfs_header_generation(parent);
1804 wc->process_func(root, path->nodes[*level], wc,
1805 btrfs_header_generation(path->nodes[*level]));
1806 if (wc->free) {
1807 struct extent_buffer *next;
1809 next = path->nodes[*level];
1811 btrfs_tree_lock(next);
1812 clean_tree_block(trans, root, next);
1813 btrfs_set_lock_blocking(next);
1814 btrfs_wait_tree_block_writeback(next);
1815 btrfs_tree_unlock(next);
1817 if (*level == 0) {
1818 ret = btrfs_drop_leaf_ref(trans, root,
1819 next);
1820 BUG_ON(ret);
1823 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1824 ret = btrfs_free_reserved_extent(root,
1825 path->nodes[*level]->start,
1826 path->nodes[*level]->len);
1827 BUG_ON(ret);
1829 free_extent_buffer(path->nodes[*level]);
1830 path->nodes[*level] = NULL;
1831 *level = i + 1;
1834 return 1;
1838 * drop the reference count on the tree rooted at 'snap'. This traverses
1839 * the tree freeing any blocks that have a ref count of zero after being
1840 * decremented.
1842 static int walk_log_tree(struct btrfs_trans_handle *trans,
1843 struct btrfs_root *log, struct walk_control *wc)
1845 int ret = 0;
1846 int wret;
1847 int level;
1848 struct btrfs_path *path;
1849 int i;
1850 int orig_level;
1852 path = btrfs_alloc_path();
1853 BUG_ON(!path);
1855 level = btrfs_header_level(log->node);
1856 orig_level = level;
1857 path->nodes[level] = log->node;
1858 extent_buffer_get(log->node);
1859 path->slots[level] = 0;
1861 while (1) {
1862 wret = walk_down_log_tree(trans, log, path, &level, wc);
1863 if (wret > 0)
1864 break;
1865 if (wret < 0)
1866 ret = wret;
1868 wret = walk_up_log_tree(trans, log, path, &level, wc);
1869 if (wret > 0)
1870 break;
1871 if (wret < 0)
1872 ret = wret;
1875 /* was the root node processed? if not, catch it here */
1876 if (path->nodes[orig_level]) {
1877 wc->process_func(log, path->nodes[orig_level], wc,
1878 btrfs_header_generation(path->nodes[orig_level]));
1879 if (wc->free) {
1880 struct extent_buffer *next;
1882 next = path->nodes[orig_level];
1884 btrfs_tree_lock(next);
1885 clean_tree_block(trans, log, next);
1886 btrfs_set_lock_blocking(next);
1887 btrfs_wait_tree_block_writeback(next);
1888 btrfs_tree_unlock(next);
1890 if (orig_level == 0) {
1891 ret = btrfs_drop_leaf_ref(trans, log,
1892 next);
1893 BUG_ON(ret);
1895 WARN_ON(log->root_key.objectid !=
1896 BTRFS_TREE_LOG_OBJECTID);
1897 ret = btrfs_free_reserved_extent(log, next->start,
1898 next->len);
1899 BUG_ON(ret);
1903 for (i = 0; i <= orig_level; i++) {
1904 if (path->nodes[i]) {
1905 free_extent_buffer(path->nodes[i]);
1906 path->nodes[i] = NULL;
1909 btrfs_free_path(path);
1910 return ret;
1914 * helper function to update the item for a given subvolumes log root
1915 * in the tree of log roots
1917 static int update_log_root(struct btrfs_trans_handle *trans,
1918 struct btrfs_root *log)
1920 int ret;
1922 if (log->log_transid == 1) {
1923 /* insert root item on the first sync */
1924 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1925 &log->root_key, &log->root_item);
1926 } else {
1927 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1928 &log->root_key, &log->root_item);
1930 return ret;
1933 static int wait_log_commit(struct btrfs_trans_handle *trans,
1934 struct btrfs_root *root, unsigned long transid)
1936 DEFINE_WAIT(wait);
1937 int index = transid % 2;
1940 * we only allow two pending log transactions at a time,
1941 * so we know that if ours is more than 2 older than the
1942 * current transaction, we're done
1944 do {
1945 prepare_to_wait(&root->log_commit_wait[index],
1946 &wait, TASK_UNINTERRUPTIBLE);
1947 mutex_unlock(&root->log_mutex);
1949 if (root->fs_info->last_trans_log_full_commit !=
1950 trans->transid && root->log_transid < transid + 2 &&
1951 atomic_read(&root->log_commit[index]))
1952 schedule();
1954 finish_wait(&root->log_commit_wait[index], &wait);
1955 mutex_lock(&root->log_mutex);
1956 } while (root->log_transid < transid + 2 &&
1957 atomic_read(&root->log_commit[index]));
1958 return 0;
1961 static int wait_for_writer(struct btrfs_trans_handle *trans,
1962 struct btrfs_root *root)
1964 DEFINE_WAIT(wait);
1965 while (atomic_read(&root->log_writers)) {
1966 prepare_to_wait(&root->log_writer_wait,
1967 &wait, TASK_UNINTERRUPTIBLE);
1968 mutex_unlock(&root->log_mutex);
1969 if (root->fs_info->last_trans_log_full_commit !=
1970 trans->transid && atomic_read(&root->log_writers))
1971 schedule();
1972 mutex_lock(&root->log_mutex);
1973 finish_wait(&root->log_writer_wait, &wait);
1975 return 0;
1979 * btrfs_sync_log does sends a given tree log down to the disk and
1980 * updates the super blocks to record it. When this call is done,
1981 * you know that any inodes previously logged are safely on disk only
1982 * if it returns 0.
1984 * Any other return value means you need to call btrfs_commit_transaction.
1985 * Some of the edge cases for fsyncing directories that have had unlinks
1986 * or renames done in the past mean that sometimes the only safe
1987 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1988 * that has happened.
1990 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1991 struct btrfs_root *root)
1993 int index1;
1994 int index2;
1995 int ret;
1996 struct btrfs_root *log = root->log_root;
1997 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1999 mutex_lock(&root->log_mutex);
2000 index1 = root->log_transid % 2;
2001 if (atomic_read(&root->log_commit[index1])) {
2002 wait_log_commit(trans, root, root->log_transid);
2003 mutex_unlock(&root->log_mutex);
2004 return 0;
2006 atomic_set(&root->log_commit[index1], 1);
2008 /* wait for previous tree log sync to complete */
2009 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2010 wait_log_commit(trans, root, root->log_transid - 1);
2012 while (1) {
2013 unsigned long batch = root->log_batch;
2014 mutex_unlock(&root->log_mutex);
2015 schedule_timeout_uninterruptible(1);
2016 mutex_lock(&root->log_mutex);
2018 wait_for_writer(trans, root);
2019 if (batch == root->log_batch)
2020 break;
2023 /* bail out if we need to do a full commit */
2024 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2025 ret = -EAGAIN;
2026 mutex_unlock(&root->log_mutex);
2027 goto out;
2030 ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
2031 BUG_ON(ret);
2033 btrfs_set_root_bytenr(&log->root_item, log->node->start);
2034 btrfs_set_root_generation(&log->root_item, trans->transid);
2035 btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
2037 root->log_batch = 0;
2038 root->log_transid++;
2039 log->log_transid = root->log_transid;
2040 smp_mb();
2042 * log tree has been flushed to disk, new modifications of
2043 * the log will be written to new positions. so it's safe to
2044 * allow log writers to go in.
2046 mutex_unlock(&root->log_mutex);
2048 mutex_lock(&log_root_tree->log_mutex);
2049 log_root_tree->log_batch++;
2050 atomic_inc(&log_root_tree->log_writers);
2051 mutex_unlock(&log_root_tree->log_mutex);
2053 ret = update_log_root(trans, log);
2054 BUG_ON(ret);
2056 mutex_lock(&log_root_tree->log_mutex);
2057 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2058 smp_mb();
2059 if (waitqueue_active(&log_root_tree->log_writer_wait))
2060 wake_up(&log_root_tree->log_writer_wait);
2063 index2 = log_root_tree->log_transid % 2;
2064 if (atomic_read(&log_root_tree->log_commit[index2])) {
2065 wait_log_commit(trans, log_root_tree,
2066 log_root_tree->log_transid);
2067 mutex_unlock(&log_root_tree->log_mutex);
2068 goto out;
2070 atomic_set(&log_root_tree->log_commit[index2], 1);
2072 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2073 wait_log_commit(trans, log_root_tree,
2074 log_root_tree->log_transid - 1);
2077 wait_for_writer(trans, log_root_tree);
2080 * now that we've moved on to the tree of log tree roots,
2081 * check the full commit flag again
2083 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2084 mutex_unlock(&log_root_tree->log_mutex);
2085 ret = -EAGAIN;
2086 goto out_wake_log_root;
2089 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2090 &log_root_tree->dirty_log_pages);
2091 BUG_ON(ret);
2093 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2094 log_root_tree->node->start);
2095 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2096 btrfs_header_level(log_root_tree->node));
2098 log_root_tree->log_batch = 0;
2099 log_root_tree->log_transid++;
2100 smp_mb();
2102 mutex_unlock(&log_root_tree->log_mutex);
2105 * nobody else is going to jump in and write the the ctree
2106 * super here because the log_commit atomic below is protecting
2107 * us. We must be called with a transaction handle pinning
2108 * the running transaction open, so a full commit can't hop
2109 * in and cause problems either.
2111 write_ctree_super(trans, root->fs_info->tree_root, 2);
2112 ret = 0;
2114 out_wake_log_root:
2115 atomic_set(&log_root_tree->log_commit[index2], 0);
2116 smp_mb();
2117 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2118 wake_up(&log_root_tree->log_commit_wait[index2]);
2119 out:
2120 atomic_set(&root->log_commit[index1], 0);
2121 smp_mb();
2122 if (waitqueue_active(&root->log_commit_wait[index1]))
2123 wake_up(&root->log_commit_wait[index1]);
2124 return 0;
2128 * free all the extents used by the tree log. This should be called
2129 * at commit time of the full transaction
2131 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2133 int ret;
2134 struct btrfs_root *log;
2135 struct key;
2136 u64 start;
2137 u64 end;
2138 struct walk_control wc = {
2139 .free = 1,
2140 .process_func = process_one_buffer
2143 if (!root->log_root || root->fs_info->log_root_recovering)
2144 return 0;
2146 log = root->log_root;
2147 ret = walk_log_tree(trans, log, &wc);
2148 BUG_ON(ret);
2150 while (1) {
2151 ret = find_first_extent_bit(&log->dirty_log_pages,
2152 0, &start, &end, EXTENT_DIRTY);
2153 if (ret)
2154 break;
2156 clear_extent_dirty(&log->dirty_log_pages,
2157 start, end, GFP_NOFS);
2160 if (log->log_transid > 0) {
2161 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2162 &log->root_key);
2163 BUG_ON(ret);
2165 root->log_root = NULL;
2166 free_extent_buffer(log->node);
2167 kfree(log);
2168 return 0;
2172 * If both a file and directory are logged, and unlinks or renames are
2173 * mixed in, we have a few interesting corners:
2175 * create file X in dir Y
2176 * link file X to X.link in dir Y
2177 * fsync file X
2178 * unlink file X but leave X.link
2179 * fsync dir Y
2181 * After a crash we would expect only X.link to exist. But file X
2182 * didn't get fsync'd again so the log has back refs for X and X.link.
2184 * We solve this by removing directory entries and inode backrefs from the
2185 * log when a file that was logged in the current transaction is
2186 * unlinked. Any later fsync will include the updated log entries, and
2187 * we'll be able to reconstruct the proper directory items from backrefs.
2189 * This optimizations allows us to avoid relogging the entire inode
2190 * or the entire directory.
2192 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2193 struct btrfs_root *root,
2194 const char *name, int name_len,
2195 struct inode *dir, u64 index)
2197 struct btrfs_root *log;
2198 struct btrfs_dir_item *di;
2199 struct btrfs_path *path;
2200 int ret;
2201 int bytes_del = 0;
2203 if (BTRFS_I(dir)->logged_trans < trans->transid)
2204 return 0;
2206 ret = join_running_log_trans(root);
2207 if (ret)
2208 return 0;
2210 mutex_lock(&BTRFS_I(dir)->log_mutex);
2212 log = root->log_root;
2213 path = btrfs_alloc_path();
2214 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2215 name, name_len, -1);
2216 if (di && !IS_ERR(di)) {
2217 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2218 bytes_del += name_len;
2219 BUG_ON(ret);
2221 btrfs_release_path(log, path);
2222 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2223 index, name, name_len, -1);
2224 if (di && !IS_ERR(di)) {
2225 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2226 bytes_del += name_len;
2227 BUG_ON(ret);
2230 /* update the directory size in the log to reflect the names
2231 * we have removed
2233 if (bytes_del) {
2234 struct btrfs_key key;
2236 key.objectid = dir->i_ino;
2237 key.offset = 0;
2238 key.type = BTRFS_INODE_ITEM_KEY;
2239 btrfs_release_path(log, path);
2241 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2242 if (ret == 0) {
2243 struct btrfs_inode_item *item;
2244 u64 i_size;
2246 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2247 struct btrfs_inode_item);
2248 i_size = btrfs_inode_size(path->nodes[0], item);
2249 if (i_size > bytes_del)
2250 i_size -= bytes_del;
2251 else
2252 i_size = 0;
2253 btrfs_set_inode_size(path->nodes[0], item, i_size);
2254 btrfs_mark_buffer_dirty(path->nodes[0]);
2255 } else
2256 ret = 0;
2257 btrfs_release_path(log, path);
2260 btrfs_free_path(path);
2261 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2262 btrfs_end_log_trans(root);
2264 return 0;
2267 /* see comments for btrfs_del_dir_entries_in_log */
2268 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2269 struct btrfs_root *root,
2270 const char *name, int name_len,
2271 struct inode *inode, u64 dirid)
2273 struct btrfs_root *log;
2274 u64 index;
2275 int ret;
2277 if (BTRFS_I(inode)->logged_trans < trans->transid)
2278 return 0;
2280 ret = join_running_log_trans(root);
2281 if (ret)
2282 return 0;
2283 log = root->log_root;
2284 mutex_lock(&BTRFS_I(inode)->log_mutex);
2286 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2287 dirid, &index);
2288 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2289 btrfs_end_log_trans(root);
2291 return ret;
2295 * creates a range item in the log for 'dirid'. first_offset and
2296 * last_offset tell us which parts of the key space the log should
2297 * be considered authoritative for.
2299 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2300 struct btrfs_root *log,
2301 struct btrfs_path *path,
2302 int key_type, u64 dirid,
2303 u64 first_offset, u64 last_offset)
2305 int ret;
2306 struct btrfs_key key;
2307 struct btrfs_dir_log_item *item;
2309 key.objectid = dirid;
2310 key.offset = first_offset;
2311 if (key_type == BTRFS_DIR_ITEM_KEY)
2312 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2313 else
2314 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2315 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2316 BUG_ON(ret);
2318 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2319 struct btrfs_dir_log_item);
2320 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2321 btrfs_mark_buffer_dirty(path->nodes[0]);
2322 btrfs_release_path(log, path);
2323 return 0;
2327 * log all the items included in the current transaction for a given
2328 * directory. This also creates the range items in the log tree required
2329 * to replay anything deleted before the fsync
2331 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2332 struct btrfs_root *root, struct inode *inode,
2333 struct btrfs_path *path,
2334 struct btrfs_path *dst_path, int key_type,
2335 u64 min_offset, u64 *last_offset_ret)
2337 struct btrfs_key min_key;
2338 struct btrfs_key max_key;
2339 struct btrfs_root *log = root->log_root;
2340 struct extent_buffer *src;
2341 int ret;
2342 int i;
2343 int nritems;
2344 u64 first_offset = min_offset;
2345 u64 last_offset = (u64)-1;
2347 log = root->log_root;
2348 max_key.objectid = inode->i_ino;
2349 max_key.offset = (u64)-1;
2350 max_key.type = key_type;
2352 min_key.objectid = inode->i_ino;
2353 min_key.type = key_type;
2354 min_key.offset = min_offset;
2356 path->keep_locks = 1;
2358 ret = btrfs_search_forward(root, &min_key, &max_key,
2359 path, 0, trans->transid);
2362 * we didn't find anything from this transaction, see if there
2363 * is anything at all
2365 if (ret != 0 || min_key.objectid != inode->i_ino ||
2366 min_key.type != key_type) {
2367 min_key.objectid = inode->i_ino;
2368 min_key.type = key_type;
2369 min_key.offset = (u64)-1;
2370 btrfs_release_path(root, path);
2371 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2372 if (ret < 0) {
2373 btrfs_release_path(root, path);
2374 return ret;
2376 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2378 /* if ret == 0 there are items for this type,
2379 * create a range to tell us the last key of this type.
2380 * otherwise, there are no items in this directory after
2381 * *min_offset, and we create a range to indicate that.
2383 if (ret == 0) {
2384 struct btrfs_key tmp;
2385 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2386 path->slots[0]);
2387 if (key_type == tmp.type)
2388 first_offset = max(min_offset, tmp.offset) + 1;
2390 goto done;
2393 /* go backward to find any previous key */
2394 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2395 if (ret == 0) {
2396 struct btrfs_key tmp;
2397 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2398 if (key_type == tmp.type) {
2399 first_offset = tmp.offset;
2400 ret = overwrite_item(trans, log, dst_path,
2401 path->nodes[0], path->slots[0],
2402 &tmp);
2405 btrfs_release_path(root, path);
2407 /* find the first key from this transaction again */
2408 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2409 if (ret != 0) {
2410 WARN_ON(1);
2411 goto done;
2415 * we have a block from this transaction, log every item in it
2416 * from our directory
2418 while (1) {
2419 struct btrfs_key tmp;
2420 src = path->nodes[0];
2421 nritems = btrfs_header_nritems(src);
2422 for (i = path->slots[0]; i < nritems; i++) {
2423 btrfs_item_key_to_cpu(src, &min_key, i);
2425 if (min_key.objectid != inode->i_ino ||
2426 min_key.type != key_type)
2427 goto done;
2428 ret = overwrite_item(trans, log, dst_path, src, i,
2429 &min_key);
2430 BUG_ON(ret);
2432 path->slots[0] = nritems;
2435 * look ahead to the next item and see if it is also
2436 * from this directory and from this transaction
2438 ret = btrfs_next_leaf(root, path);
2439 if (ret == 1) {
2440 last_offset = (u64)-1;
2441 goto done;
2443 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2444 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2445 last_offset = (u64)-1;
2446 goto done;
2448 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2449 ret = overwrite_item(trans, log, dst_path,
2450 path->nodes[0], path->slots[0],
2451 &tmp);
2453 BUG_ON(ret);
2454 last_offset = tmp.offset;
2455 goto done;
2458 done:
2459 *last_offset_ret = last_offset;
2460 btrfs_release_path(root, path);
2461 btrfs_release_path(log, dst_path);
2463 /* insert the log range keys to indicate where the log is valid */
2464 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2465 first_offset, last_offset);
2466 BUG_ON(ret);
2467 return 0;
2471 * logging directories is very similar to logging inodes, We find all the items
2472 * from the current transaction and write them to the log.
2474 * The recovery code scans the directory in the subvolume, and if it finds a
2475 * key in the range logged that is not present in the log tree, then it means
2476 * that dir entry was unlinked during the transaction.
2478 * In order for that scan to work, we must include one key smaller than
2479 * the smallest logged by this transaction and one key larger than the largest
2480 * key logged by this transaction.
2482 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2483 struct btrfs_root *root, struct inode *inode,
2484 struct btrfs_path *path,
2485 struct btrfs_path *dst_path)
2487 u64 min_key;
2488 u64 max_key;
2489 int ret;
2490 int key_type = BTRFS_DIR_ITEM_KEY;
2492 again:
2493 min_key = 0;
2494 max_key = 0;
2495 while (1) {
2496 ret = log_dir_items(trans, root, inode, path,
2497 dst_path, key_type, min_key,
2498 &max_key);
2499 BUG_ON(ret);
2500 if (max_key == (u64)-1)
2501 break;
2502 min_key = max_key + 1;
2505 if (key_type == BTRFS_DIR_ITEM_KEY) {
2506 key_type = BTRFS_DIR_INDEX_KEY;
2507 goto again;
2509 return 0;
2513 * a helper function to drop items from the log before we relog an
2514 * inode. max_key_type indicates the highest item type to remove.
2515 * This cannot be run for file data extents because it does not
2516 * free the extents they point to.
2518 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2519 struct btrfs_root *log,
2520 struct btrfs_path *path,
2521 u64 objectid, int max_key_type)
2523 int ret;
2524 struct btrfs_key key;
2525 struct btrfs_key found_key;
2527 key.objectid = objectid;
2528 key.type = max_key_type;
2529 key.offset = (u64)-1;
2531 while (1) {
2532 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2534 if (ret != 1)
2535 break;
2537 if (path->slots[0] == 0)
2538 break;
2540 path->slots[0]--;
2541 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2542 path->slots[0]);
2544 if (found_key.objectid != objectid)
2545 break;
2547 ret = btrfs_del_item(trans, log, path);
2548 BUG_ON(ret);
2549 btrfs_release_path(log, path);
2551 btrfs_release_path(log, path);
2552 return 0;
2555 static noinline int copy_items(struct btrfs_trans_handle *trans,
2556 struct btrfs_root *log,
2557 struct btrfs_path *dst_path,
2558 struct extent_buffer *src,
2559 int start_slot, int nr, int inode_only)
2561 unsigned long src_offset;
2562 unsigned long dst_offset;
2563 struct btrfs_file_extent_item *extent;
2564 struct btrfs_inode_item *inode_item;
2565 int ret;
2566 struct btrfs_key *ins_keys;
2567 u32 *ins_sizes;
2568 char *ins_data;
2569 int i;
2570 struct list_head ordered_sums;
2572 INIT_LIST_HEAD(&ordered_sums);
2574 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2575 nr * sizeof(u32), GFP_NOFS);
2576 ins_sizes = (u32 *)ins_data;
2577 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2579 for (i = 0; i < nr; i++) {
2580 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2581 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2583 ret = btrfs_insert_empty_items(trans, log, dst_path,
2584 ins_keys, ins_sizes, nr);
2585 BUG_ON(ret);
2587 for (i = 0; i < nr; i++) {
2588 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2589 dst_path->slots[0]);
2591 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2593 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2594 src_offset, ins_sizes[i]);
2596 if (inode_only == LOG_INODE_EXISTS &&
2597 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2598 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2599 dst_path->slots[0],
2600 struct btrfs_inode_item);
2601 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2603 /* set the generation to zero so the recover code
2604 * can tell the difference between an logging
2605 * just to say 'this inode exists' and a logging
2606 * to say 'update this inode with these values'
2608 btrfs_set_inode_generation(dst_path->nodes[0],
2609 inode_item, 0);
2611 /* take a reference on file data extents so that truncates
2612 * or deletes of this inode don't have to relog the inode
2613 * again
2615 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2616 int found_type;
2617 extent = btrfs_item_ptr(src, start_slot + i,
2618 struct btrfs_file_extent_item);
2620 found_type = btrfs_file_extent_type(src, extent);
2621 if (found_type == BTRFS_FILE_EXTENT_REG ||
2622 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2623 u64 ds = btrfs_file_extent_disk_bytenr(src,
2624 extent);
2625 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2626 extent);
2627 u64 cs = btrfs_file_extent_offset(src, extent);
2628 u64 cl = btrfs_file_extent_num_bytes(src,
2629 extent);;
2630 if (btrfs_file_extent_compression(src,
2631 extent)) {
2632 cs = 0;
2633 cl = dl;
2635 /* ds == 0 is a hole */
2636 if (ds != 0) {
2637 ret = btrfs_inc_extent_ref(trans, log,
2638 ds, dl,
2639 dst_path->nodes[0]->start,
2640 BTRFS_TREE_LOG_OBJECTID,
2641 trans->transid,
2642 ins_keys[i].objectid);
2643 BUG_ON(ret);
2644 ret = btrfs_lookup_csums_range(
2645 log->fs_info->csum_root,
2646 ds + cs, ds + cs + cl - 1,
2647 &ordered_sums);
2648 BUG_ON(ret);
2652 dst_path->slots[0]++;
2655 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2656 btrfs_release_path(log, dst_path);
2657 kfree(ins_data);
2660 * we have to do this after the loop above to avoid changing the
2661 * log tree while trying to change the log tree.
2663 while (!list_empty(&ordered_sums)) {
2664 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2665 struct btrfs_ordered_sum,
2666 list);
2667 ret = btrfs_csum_file_blocks(trans, log, sums);
2668 BUG_ON(ret);
2669 list_del(&sums->list);
2670 kfree(sums);
2672 return 0;
2675 /* log a single inode in the tree log.
2676 * At least one parent directory for this inode must exist in the tree
2677 * or be logged already.
2679 * Any items from this inode changed by the current transaction are copied
2680 * to the log tree. An extra reference is taken on any extents in this
2681 * file, allowing us to avoid a whole pile of corner cases around logging
2682 * blocks that have been removed from the tree.
2684 * See LOG_INODE_ALL and related defines for a description of what inode_only
2685 * does.
2687 * This handles both files and directories.
2689 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2690 struct btrfs_root *root, struct inode *inode,
2691 int inode_only)
2693 struct btrfs_path *path;
2694 struct btrfs_path *dst_path;
2695 struct btrfs_key min_key;
2696 struct btrfs_key max_key;
2697 struct btrfs_root *log = root->log_root;
2698 struct extent_buffer *src = NULL;
2699 u32 size;
2700 int ret;
2701 int nritems;
2702 int ins_start_slot = 0;
2703 int ins_nr;
2705 log = root->log_root;
2707 path = btrfs_alloc_path();
2708 dst_path = btrfs_alloc_path();
2710 min_key.objectid = inode->i_ino;
2711 min_key.type = BTRFS_INODE_ITEM_KEY;
2712 min_key.offset = 0;
2714 max_key.objectid = inode->i_ino;
2716 /* today the code can only do partial logging of directories */
2717 if (!S_ISDIR(inode->i_mode))
2718 inode_only = LOG_INODE_ALL;
2720 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2721 max_key.type = BTRFS_XATTR_ITEM_KEY;
2722 else
2723 max_key.type = (u8)-1;
2724 max_key.offset = (u64)-1;
2726 mutex_lock(&BTRFS_I(inode)->log_mutex);
2729 * a brute force approach to making sure we get the most uptodate
2730 * copies of everything.
2732 if (S_ISDIR(inode->i_mode)) {
2733 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2735 if (inode_only == LOG_INODE_EXISTS)
2736 max_key_type = BTRFS_XATTR_ITEM_KEY;
2737 ret = drop_objectid_items(trans, log, path,
2738 inode->i_ino, max_key_type);
2739 } else {
2740 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2742 BUG_ON(ret);
2743 path->keep_locks = 1;
2745 while (1) {
2746 ins_nr = 0;
2747 ret = btrfs_search_forward(root, &min_key, &max_key,
2748 path, 0, trans->transid);
2749 if (ret != 0)
2750 break;
2751 again:
2752 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2753 if (min_key.objectid != inode->i_ino)
2754 break;
2755 if (min_key.type > max_key.type)
2756 break;
2758 src = path->nodes[0];
2759 size = btrfs_item_size_nr(src, path->slots[0]);
2760 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2761 ins_nr++;
2762 goto next_slot;
2763 } else if (!ins_nr) {
2764 ins_start_slot = path->slots[0];
2765 ins_nr = 1;
2766 goto next_slot;
2769 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2770 ins_nr, inode_only);
2771 BUG_ON(ret);
2772 ins_nr = 1;
2773 ins_start_slot = path->slots[0];
2774 next_slot:
2776 nritems = btrfs_header_nritems(path->nodes[0]);
2777 path->slots[0]++;
2778 if (path->slots[0] < nritems) {
2779 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2780 path->slots[0]);
2781 goto again;
2783 if (ins_nr) {
2784 ret = copy_items(trans, log, dst_path, src,
2785 ins_start_slot,
2786 ins_nr, inode_only);
2787 BUG_ON(ret);
2788 ins_nr = 0;
2790 btrfs_release_path(root, path);
2792 if (min_key.offset < (u64)-1)
2793 min_key.offset++;
2794 else if (min_key.type < (u8)-1)
2795 min_key.type++;
2796 else if (min_key.objectid < (u64)-1)
2797 min_key.objectid++;
2798 else
2799 break;
2801 if (ins_nr) {
2802 ret = copy_items(trans, log, dst_path, src,
2803 ins_start_slot,
2804 ins_nr, inode_only);
2805 BUG_ON(ret);
2806 ins_nr = 0;
2808 WARN_ON(ins_nr);
2809 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2810 btrfs_release_path(root, path);
2811 btrfs_release_path(log, dst_path);
2812 ret = log_directory_changes(trans, root, inode, path, dst_path);
2813 BUG_ON(ret);
2815 BTRFS_I(inode)->logged_trans = trans->transid;
2816 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2818 btrfs_free_path(path);
2819 btrfs_free_path(dst_path);
2820 return 0;
2824 * follow the dentry parent pointers up the chain and see if any
2825 * of the directories in it require a full commit before they can
2826 * be logged. Returns zero if nothing special needs to be done or 1 if
2827 * a full commit is required.
2829 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2830 struct inode *inode,
2831 struct dentry *parent,
2832 struct super_block *sb,
2833 u64 last_committed)
2835 int ret = 0;
2836 struct btrfs_root *root;
2839 * for regular files, if its inode is already on disk, we don't
2840 * have to worry about the parents at all. This is because
2841 * we can use the last_unlink_trans field to record renames
2842 * and other fun in this file.
2844 if (S_ISREG(inode->i_mode) &&
2845 BTRFS_I(inode)->generation <= last_committed &&
2846 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2847 goto out;
2849 if (!S_ISDIR(inode->i_mode)) {
2850 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2851 goto out;
2852 inode = parent->d_inode;
2855 while (1) {
2856 BTRFS_I(inode)->logged_trans = trans->transid;
2857 smp_mb();
2859 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2860 root = BTRFS_I(inode)->root;
2863 * make sure any commits to the log are forced
2864 * to be full commits
2866 root->fs_info->last_trans_log_full_commit =
2867 trans->transid;
2868 ret = 1;
2869 break;
2872 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2873 break;
2875 if (parent == sb->s_root)
2876 break;
2878 parent = parent->d_parent;
2879 inode = parent->d_inode;
2882 out:
2883 return ret;
2887 * helper function around btrfs_log_inode to make sure newly created
2888 * parent directories also end up in the log. A minimal inode and backref
2889 * only logging is done of any parent directories that are older than
2890 * the last committed transaction
2892 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2893 struct btrfs_root *root, struct inode *inode,
2894 struct dentry *parent, int exists_only)
2896 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
2897 struct super_block *sb;
2898 int ret = 0;
2899 u64 last_committed = root->fs_info->last_trans_committed;
2901 sb = inode->i_sb;
2903 if (root->fs_info->last_trans_log_full_commit >
2904 root->fs_info->last_trans_committed) {
2905 ret = 1;
2906 goto end_no_trans;
2909 ret = check_parent_dirs_for_sync(trans, inode, parent,
2910 sb, last_committed);
2911 if (ret)
2912 goto end_no_trans;
2914 start_log_trans(trans, root);
2916 ret = btrfs_log_inode(trans, root, inode, inode_only);
2917 BUG_ON(ret);
2920 * for regular files, if its inode is already on disk, we don't
2921 * have to worry about the parents at all. This is because
2922 * we can use the last_unlink_trans field to record renames
2923 * and other fun in this file.
2925 if (S_ISREG(inode->i_mode) &&
2926 BTRFS_I(inode)->generation <= last_committed &&
2927 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2928 goto no_parent;
2930 inode_only = LOG_INODE_EXISTS;
2931 while (1) {
2932 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2933 break;
2935 inode = parent->d_inode;
2936 if (BTRFS_I(inode)->generation >
2937 root->fs_info->last_trans_committed) {
2938 ret = btrfs_log_inode(trans, root, inode, inode_only);
2939 BUG_ON(ret);
2941 if (parent == sb->s_root)
2942 break;
2944 parent = parent->d_parent;
2946 no_parent:
2947 ret = 0;
2948 btrfs_end_log_trans(root);
2949 end_no_trans:
2950 return ret;
2954 * it is not safe to log dentry if the chunk root has added new
2955 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2956 * If this returns 1, you must commit the transaction to safely get your
2957 * data on disk.
2959 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2960 struct btrfs_root *root, struct dentry *dentry)
2962 return btrfs_log_inode_parent(trans, root, dentry->d_inode,
2963 dentry->d_parent, 0);
2967 * should be called during mount to recover any replay any log trees
2968 * from the FS
2970 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2972 int ret;
2973 struct btrfs_path *path;
2974 struct btrfs_trans_handle *trans;
2975 struct btrfs_key key;
2976 struct btrfs_key found_key;
2977 struct btrfs_key tmp_key;
2978 struct btrfs_root *log;
2979 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
2980 u64 highest_inode;
2981 struct walk_control wc = {
2982 .process_func = process_one_buffer,
2983 .stage = 0,
2986 fs_info->log_root_recovering = 1;
2987 path = btrfs_alloc_path();
2988 BUG_ON(!path);
2990 trans = btrfs_start_transaction(fs_info->tree_root, 1);
2992 wc.trans = trans;
2993 wc.pin = 1;
2995 walk_log_tree(trans, log_root_tree, &wc);
2997 again:
2998 key.objectid = BTRFS_TREE_LOG_OBJECTID;
2999 key.offset = (u64)-1;
3000 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3002 while (1) {
3003 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3004 if (ret < 0)
3005 break;
3006 if (ret > 0) {
3007 if (path->slots[0] == 0)
3008 break;
3009 path->slots[0]--;
3011 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3012 path->slots[0]);
3013 btrfs_release_path(log_root_tree, path);
3014 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3015 break;
3017 log = btrfs_read_fs_root_no_radix(log_root_tree,
3018 &found_key);
3019 BUG_ON(!log);
3022 tmp_key.objectid = found_key.offset;
3023 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3024 tmp_key.offset = (u64)-1;
3026 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3027 BUG_ON(!wc.replay_dest);
3029 wc.replay_dest->log_root = log;
3030 mutex_lock(&fs_info->trans_mutex);
3031 btrfs_record_root_in_trans(wc.replay_dest);
3032 mutex_unlock(&fs_info->trans_mutex);
3033 ret = walk_log_tree(trans, log, &wc);
3034 BUG_ON(ret);
3036 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3037 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3038 path);
3039 BUG_ON(ret);
3041 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
3042 if (ret == 0) {
3043 wc.replay_dest->highest_inode = highest_inode;
3044 wc.replay_dest->last_inode_alloc = highest_inode;
3047 key.offset = found_key.offset - 1;
3048 wc.replay_dest->log_root = NULL;
3049 free_extent_buffer(log->node);
3050 kfree(log);
3052 if (found_key.offset == 0)
3053 break;
3055 btrfs_release_path(log_root_tree, path);
3057 /* step one is to pin it all, step two is to replay just inodes */
3058 if (wc.pin) {
3059 wc.pin = 0;
3060 wc.process_func = replay_one_buffer;
3061 wc.stage = LOG_WALK_REPLAY_INODES;
3062 goto again;
3064 /* step three is to replay everything */
3065 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3066 wc.stage++;
3067 goto again;
3070 btrfs_free_path(path);
3072 free_extent_buffer(log_root_tree->node);
3073 log_root_tree->log_root = NULL;
3074 fs_info->log_root_recovering = 0;
3076 /* step 4: commit the transaction, which also unpins the blocks */
3077 btrfs_commit_transaction(trans, fs_info->tree_root);
3079 kfree(log_root_tree);
3080 return 0;
3084 * there are some corner cases where we want to force a full
3085 * commit instead of allowing a directory to be logged.
3087 * They revolve around files there were unlinked from the directory, and
3088 * this function updates the parent directory so that a full commit is
3089 * properly done if it is fsync'd later after the unlinks are done.
3091 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3092 struct inode *dir, struct inode *inode,
3093 int for_rename)
3096 * when we're logging a file, if it hasn't been renamed
3097 * or unlinked, and its inode is fully committed on disk,
3098 * we don't have to worry about walking up the directory chain
3099 * to log its parents.
3101 * So, we use the last_unlink_trans field to put this transid
3102 * into the file. When the file is logged we check it and
3103 * don't log the parents if the file is fully on disk.
3105 if (S_ISREG(inode->i_mode))
3106 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3109 * if this directory was already logged any new
3110 * names for this file/dir will get recorded
3112 smp_mb();
3113 if (BTRFS_I(dir)->logged_trans == trans->transid)
3114 return;
3117 * if the inode we're about to unlink was logged,
3118 * the log will be properly updated for any new names
3120 if (BTRFS_I(inode)->logged_trans == trans->transid)
3121 return;
3124 * when renaming files across directories, if the directory
3125 * there we're unlinking from gets fsync'd later on, there's
3126 * no way to find the destination directory later and fsync it
3127 * properly. So, we have to be conservative and force commits
3128 * so the new name gets discovered.
3130 if (for_rename)
3131 goto record;
3133 /* we can safely do the unlink without any special recording */
3134 return;
3136 record:
3137 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3141 * Call this after adding a new name for a file and it will properly
3142 * update the log to reflect the new name.
3144 * It will return zero if all goes well, and it will return 1 if a
3145 * full transaction commit is required.
3147 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3148 struct inode *inode, struct inode *old_dir,
3149 struct dentry *parent)
3151 struct btrfs_root * root = BTRFS_I(inode)->root;
3154 * this will force the logging code to walk the dentry chain
3155 * up for the file
3157 if (S_ISREG(inode->i_mode))
3158 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3161 * if this inode hasn't been logged and directory we're renaming it
3162 * from hasn't been logged, we don't need to log it
3164 if (BTRFS_I(inode)->logged_trans <=
3165 root->fs_info->last_trans_committed &&
3166 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3167 root->fs_info->last_trans_committed))
3168 return 0;
3170 return btrfs_log_inode_parent(trans, root, inode, parent, 1);