2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
66 MODULE_VERSION("3.6.26");
67 MODULE_LICENSE("GPL");
69 static int cciss_allow_hpsa
;
70 module_param(cciss_allow_hpsa
, int, S_IRUGO
|S_IWUSR
);
71 MODULE_PARM_DESC(cciss_allow_hpsa
,
72 "Prevent cciss driver from accessing hardware known to be "
73 " supported by the hpsa driver");
75 #include "cciss_cmd.h"
77 #include <linux/cciss_ioctl.h>
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id cciss_pci_device_id
[] = {
81 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISS
, 0x0E11, 0x4070},
82 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4080},
83 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4082},
84 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4083},
85 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x4091},
86 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409A},
87 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409B},
88 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409C},
89 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409D},
90 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSA
, 0x103C, 0x3225},
91 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3223},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3234},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3235},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3211},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3212},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3213},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3214},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3215},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3237},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x323D},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3250},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3251},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3252},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3253},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3254},
116 MODULE_DEVICE_TABLE(pci
, cciss_pci_device_id
);
118 /* board_id = Subsystem Device ID & Vendor ID
119 * product = Marketing Name for the board
120 * access = Address of the struct of function pointers
122 static struct board_type products
[] = {
123 {0x40700E11, "Smart Array 5300", &SA5_access
},
124 {0x40800E11, "Smart Array 5i", &SA5B_access
},
125 {0x40820E11, "Smart Array 532", &SA5B_access
},
126 {0x40830E11, "Smart Array 5312", &SA5B_access
},
127 {0x409A0E11, "Smart Array 641", &SA5_access
},
128 {0x409B0E11, "Smart Array 642", &SA5_access
},
129 {0x409C0E11, "Smart Array 6400", &SA5_access
},
130 {0x409D0E11, "Smart Array 6400 EM", &SA5_access
},
131 {0x40910E11, "Smart Array 6i", &SA5_access
},
132 {0x3225103C, "Smart Array P600", &SA5_access
},
133 {0x3235103C, "Smart Array P400i", &SA5_access
},
134 {0x3211103C, "Smart Array E200i", &SA5_access
},
135 {0x3212103C, "Smart Array E200", &SA5_access
},
136 {0x3213103C, "Smart Array E200i", &SA5_access
},
137 {0x3214103C, "Smart Array E200i", &SA5_access
},
138 {0x3215103C, "Smart Array E200i", &SA5_access
},
139 {0x3237103C, "Smart Array E500", &SA5_access
},
140 /* controllers below this line are also supported by the hpsa driver. */
141 #define HPSA_BOUNDARY 0x3223103C
142 {0x3223103C, "Smart Array P800", &SA5_access
},
143 {0x3234103C, "Smart Array P400", &SA5_access
},
144 {0x323D103C, "Smart Array P700m", &SA5_access
},
145 {0x3241103C, "Smart Array P212", &SA5_access
},
146 {0x3243103C, "Smart Array P410", &SA5_access
},
147 {0x3245103C, "Smart Array P410i", &SA5_access
},
148 {0x3247103C, "Smart Array P411", &SA5_access
},
149 {0x3249103C, "Smart Array P812", &SA5_access
},
150 {0x324A103C, "Smart Array P712m", &SA5_access
},
151 {0x324B103C, "Smart Array P711m", &SA5_access
},
152 {0x3250103C, "Smart Array", &SA5_access
},
153 {0x3251103C, "Smart Array", &SA5_access
},
154 {0x3252103C, "Smart Array", &SA5_access
},
155 {0x3253103C, "Smart Array", &SA5_access
},
156 {0x3254103C, "Smart Array", &SA5_access
},
159 /* How long to wait (in milliseconds) for board to go into simple mode */
160 #define MAX_CONFIG_WAIT 30000
161 #define MAX_IOCTL_CONFIG_WAIT 1000
163 /*define how many times we will try a command because of bus resets */
164 #define MAX_CMD_RETRIES 3
168 /* Originally cciss driver only supports 8 major numbers */
169 #define MAX_CTLR_ORIG 8
171 static ctlr_info_t
*hba
[MAX_CTLR
];
173 static struct task_struct
*cciss_scan_thread
;
174 static DEFINE_MUTEX(scan_mutex
);
175 static LIST_HEAD(scan_q
);
177 static void do_cciss_request(struct request_queue
*q
);
178 static irqreturn_t
do_cciss_intx(int irq
, void *dev_id
);
179 static irqreturn_t
do_cciss_msix_intr(int irq
, void *dev_id
);
180 static int cciss_open(struct block_device
*bdev
, fmode_t mode
);
181 static int cciss_unlocked_open(struct block_device
*bdev
, fmode_t mode
);
182 static int cciss_release(struct gendisk
*disk
, fmode_t mode
);
183 static int do_ioctl(struct block_device
*bdev
, fmode_t mode
,
184 unsigned int cmd
, unsigned long arg
);
185 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
186 unsigned int cmd
, unsigned long arg
);
187 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
);
189 static int cciss_revalidate(struct gendisk
*disk
);
190 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
, int via_ioctl
);
191 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
192 int clear_all
, int via_ioctl
);
194 static void cciss_read_capacity(ctlr_info_t
*h
, int logvol
,
195 sector_t
*total_size
, unsigned int *block_size
);
196 static void cciss_read_capacity_16(ctlr_info_t
*h
, int logvol
,
197 sector_t
*total_size
, unsigned int *block_size
);
198 static void cciss_geometry_inquiry(ctlr_info_t
*h
, int logvol
,
200 unsigned int block_size
, InquiryData_struct
*inq_buff
,
201 drive_info_struct
*drv
);
202 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*);
203 static void start_io(ctlr_info_t
*h
);
204 static int sendcmd_withirq(ctlr_info_t
*h
, __u8 cmd
, void *buff
, size_t size
,
205 __u8 page_code
, unsigned char scsi3addr
[],
207 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
209 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
);
211 static int add_to_scan_list(struct ctlr_info
*h
);
212 static int scan_thread(void *data
);
213 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
);
214 static void cciss_hba_release(struct device
*dev
);
215 static void cciss_device_release(struct device
*dev
);
216 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
);
217 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
);
218 static inline u32
next_command(ctlr_info_t
*h
);
219 static int __devinit
cciss_find_cfg_addrs(struct pci_dev
*pdev
,
220 void __iomem
*vaddr
, u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
222 static int __devinit
cciss_pci_find_memory_BAR(struct pci_dev
*pdev
,
223 unsigned long *memory_bar
);
226 /* performant mode helper functions */
227 static void calc_bucket_map(int *bucket
, int num_buckets
, int nsgs
,
229 static void cciss_put_controller_into_performant_mode(ctlr_info_t
*h
);
231 #ifdef CONFIG_PROC_FS
232 static void cciss_procinit(ctlr_info_t
*h
);
234 static void cciss_procinit(ctlr_info_t
*h
)
237 #endif /* CONFIG_PROC_FS */
240 static int cciss_compat_ioctl(struct block_device
*, fmode_t
,
241 unsigned, unsigned long);
244 static const struct block_device_operations cciss_fops
= {
245 .owner
= THIS_MODULE
,
246 .open
= cciss_unlocked_open
,
247 .release
= cciss_release
,
249 .getgeo
= cciss_getgeo
,
251 .compat_ioctl
= cciss_compat_ioctl
,
253 .revalidate_disk
= cciss_revalidate
,
256 /* set_performant_mode: Modify the tag for cciss performant
257 * set bit 0 for pull model, bits 3-1 for block fetch
260 static void set_performant_mode(ctlr_info_t
*h
, CommandList_struct
*c
)
262 if (likely(h
->transMethod
== CFGTBL_Trans_Performant
))
263 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
267 * Enqueuing and dequeuing functions for cmdlists.
269 static inline void addQ(struct hlist_head
*list
, CommandList_struct
*c
)
271 hlist_add_head(&c
->list
, list
);
274 static inline void removeQ(CommandList_struct
*c
)
277 * After kexec/dump some commands might still
278 * be in flight, which the firmware will try
279 * to complete. Resetting the firmware doesn't work
280 * with old fw revisions, so we have to mark
281 * them off as 'stale' to prevent the driver from
284 if (WARN_ON(hlist_unhashed(&c
->list
))) {
285 c
->cmd_type
= CMD_MSG_STALE
;
289 hlist_del_init(&c
->list
);
292 static void enqueue_cmd_and_start_io(ctlr_info_t
*h
,
293 CommandList_struct
*c
)
296 set_performant_mode(h
, c
);
297 spin_lock_irqsave(&h
->lock
, flags
);
300 if (h
->Qdepth
> h
->maxQsinceinit
)
301 h
->maxQsinceinit
= h
->Qdepth
;
303 spin_unlock_irqrestore(&h
->lock
, flags
);
306 static void cciss_free_sg_chain_blocks(SGDescriptor_struct
**cmd_sg_list
,
313 for (i
= 0; i
< nr_cmds
; i
++) {
314 kfree(cmd_sg_list
[i
]);
315 cmd_sg_list
[i
] = NULL
;
320 static SGDescriptor_struct
**cciss_allocate_sg_chain_blocks(
321 ctlr_info_t
*h
, int chainsize
, int nr_cmds
)
324 SGDescriptor_struct
**cmd_sg_list
;
329 cmd_sg_list
= kmalloc(sizeof(*cmd_sg_list
) * nr_cmds
, GFP_KERNEL
);
333 /* Build up chain blocks for each command */
334 for (j
= 0; j
< nr_cmds
; j
++) {
335 /* Need a block of chainsized s/g elements. */
336 cmd_sg_list
[j
] = kmalloc((chainsize
*
337 sizeof(*cmd_sg_list
[j
])), GFP_KERNEL
);
338 if (!cmd_sg_list
[j
]) {
339 dev_err(&h
->pdev
->dev
, "Cannot get memory "
340 "for s/g chains.\n");
346 cciss_free_sg_chain_blocks(cmd_sg_list
, nr_cmds
);
350 static void cciss_unmap_sg_chain_block(ctlr_info_t
*h
, CommandList_struct
*c
)
352 SGDescriptor_struct
*chain_sg
;
355 if (c
->Header
.SGTotal
<= h
->max_cmd_sgentries
)
358 chain_sg
= &c
->SG
[h
->max_cmd_sgentries
- 1];
359 temp64
.val32
.lower
= chain_sg
->Addr
.lower
;
360 temp64
.val32
.upper
= chain_sg
->Addr
.upper
;
361 pci_unmap_single(h
->pdev
, temp64
.val
, chain_sg
->Len
, PCI_DMA_TODEVICE
);
364 static void cciss_map_sg_chain_block(ctlr_info_t
*h
, CommandList_struct
*c
,
365 SGDescriptor_struct
*chain_block
, int len
)
367 SGDescriptor_struct
*chain_sg
;
370 chain_sg
= &c
->SG
[h
->max_cmd_sgentries
- 1];
371 chain_sg
->Ext
= CCISS_SG_CHAIN
;
373 temp64
.val
= pci_map_single(h
->pdev
, chain_block
, len
,
375 chain_sg
->Addr
.lower
= temp64
.val32
.lower
;
376 chain_sg
->Addr
.upper
= temp64
.val32
.upper
;
379 #include "cciss_scsi.c" /* For SCSI tape support */
381 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
384 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
386 #ifdef CONFIG_PROC_FS
389 * Report information about this controller.
391 #define ENG_GIG 1000000000
392 #define ENG_GIG_FACTOR (ENG_GIG/512)
393 #define ENGAGE_SCSI "engage scsi"
395 static struct proc_dir_entry
*proc_cciss
;
397 static void cciss_seq_show_header(struct seq_file
*seq
)
399 ctlr_info_t
*h
= seq
->private;
401 seq_printf(seq
, "%s: HP %s Controller\n"
402 "Board ID: 0x%08lx\n"
403 "Firmware Version: %c%c%c%c\n"
405 "Logical drives: %d\n"
406 "Current Q depth: %d\n"
407 "Current # commands on controller: %d\n"
408 "Max Q depth since init: %d\n"
409 "Max # commands on controller since init: %d\n"
410 "Max SG entries since init: %d\n",
413 (unsigned long)h
->board_id
,
414 h
->firm_ver
[0], h
->firm_ver
[1], h
->firm_ver
[2],
415 h
->firm_ver
[3], (unsigned int)h
->intr
[PERF_MODE_INT
],
417 h
->Qdepth
, h
->commands_outstanding
,
418 h
->maxQsinceinit
, h
->max_outstanding
, h
->maxSG
);
420 #ifdef CONFIG_CISS_SCSI_TAPE
421 cciss_seq_tape_report(seq
, h
);
422 #endif /* CONFIG_CISS_SCSI_TAPE */
425 static void *cciss_seq_start(struct seq_file
*seq
, loff_t
*pos
)
427 ctlr_info_t
*h
= seq
->private;
430 /* prevent displaying bogus info during configuration
431 * or deconfiguration of a logical volume
433 spin_lock_irqsave(&h
->lock
, flags
);
434 if (h
->busy_configuring
) {
435 spin_unlock_irqrestore(&h
->lock
, flags
);
436 return ERR_PTR(-EBUSY
);
438 h
->busy_configuring
= 1;
439 spin_unlock_irqrestore(&h
->lock
, flags
);
442 cciss_seq_show_header(seq
);
447 static int cciss_seq_show(struct seq_file
*seq
, void *v
)
449 sector_t vol_sz
, vol_sz_frac
;
450 ctlr_info_t
*h
= seq
->private;
451 unsigned ctlr
= h
->ctlr
;
453 drive_info_struct
*drv
= h
->drv
[*pos
];
455 if (*pos
> h
->highest_lun
)
458 if (drv
== NULL
) /* it's possible for h->drv[] to have holes. */
464 vol_sz
= drv
->nr_blocks
;
465 vol_sz_frac
= sector_div(vol_sz
, ENG_GIG_FACTOR
);
467 sector_div(vol_sz_frac
, ENG_GIG_FACTOR
);
469 if (drv
->raid_level
< 0 || drv
->raid_level
> RAID_UNKNOWN
)
470 drv
->raid_level
= RAID_UNKNOWN
;
471 seq_printf(seq
, "cciss/c%dd%d:"
472 "\t%4u.%02uGB\tRAID %s\n",
473 ctlr
, (int) *pos
, (int)vol_sz
, (int)vol_sz_frac
,
474 raid_label
[drv
->raid_level
]);
478 static void *cciss_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
480 ctlr_info_t
*h
= seq
->private;
482 if (*pos
> h
->highest_lun
)
489 static void cciss_seq_stop(struct seq_file
*seq
, void *v
)
491 ctlr_info_t
*h
= seq
->private;
493 /* Only reset h->busy_configuring if we succeeded in setting
494 * it during cciss_seq_start. */
495 if (v
== ERR_PTR(-EBUSY
))
498 h
->busy_configuring
= 0;
501 static const struct seq_operations cciss_seq_ops
= {
502 .start
= cciss_seq_start
,
503 .show
= cciss_seq_show
,
504 .next
= cciss_seq_next
,
505 .stop
= cciss_seq_stop
,
508 static int cciss_seq_open(struct inode
*inode
, struct file
*file
)
510 int ret
= seq_open(file
, &cciss_seq_ops
);
511 struct seq_file
*seq
= file
->private_data
;
514 seq
->private = PDE(inode
)->data
;
520 cciss_proc_write(struct file
*file
, const char __user
*buf
,
521 size_t length
, loff_t
*ppos
)
526 #ifndef CONFIG_CISS_SCSI_TAPE
530 if (!buf
|| length
> PAGE_SIZE
- 1)
533 buffer
= (char *)__get_free_page(GFP_KERNEL
);
538 if (copy_from_user(buffer
, buf
, length
))
540 buffer
[length
] = '\0';
542 #ifdef CONFIG_CISS_SCSI_TAPE
543 if (strncmp(ENGAGE_SCSI
, buffer
, sizeof ENGAGE_SCSI
- 1) == 0) {
544 struct seq_file
*seq
= file
->private_data
;
545 ctlr_info_t
*h
= seq
->private;
547 err
= cciss_engage_scsi(h
);
551 #endif /* CONFIG_CISS_SCSI_TAPE */
553 /* might be nice to have "disengage" too, but it's not
554 safely possible. (only 1 module use count, lock issues.) */
557 free_page((unsigned long)buffer
);
561 static const struct file_operations cciss_proc_fops
= {
562 .owner
= THIS_MODULE
,
563 .open
= cciss_seq_open
,
566 .release
= seq_release
,
567 .write
= cciss_proc_write
,
570 static void __devinit
cciss_procinit(ctlr_info_t
*h
)
572 struct proc_dir_entry
*pde
;
574 if (proc_cciss
== NULL
)
575 proc_cciss
= proc_mkdir("driver/cciss", NULL
);
578 pde
= proc_create_data(h
->devname
, S_IWUSR
| S_IRUSR
| S_IRGRP
|
580 &cciss_proc_fops
, h
);
582 #endif /* CONFIG_PROC_FS */
584 #define MAX_PRODUCT_NAME_LEN 19
586 #define to_hba(n) container_of(n, struct ctlr_info, dev)
587 #define to_drv(n) container_of(n, drive_info_struct, dev)
589 static ssize_t
host_store_rescan(struct device
*dev
,
590 struct device_attribute
*attr
,
591 const char *buf
, size_t count
)
593 struct ctlr_info
*h
= to_hba(dev
);
596 wake_up_process(cciss_scan_thread
);
597 wait_for_completion_interruptible(&h
->scan_wait
);
601 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
603 static ssize_t
dev_show_unique_id(struct device
*dev
,
604 struct device_attribute
*attr
,
607 drive_info_struct
*drv
= to_drv(dev
);
608 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
613 spin_lock_irqsave(&h
->lock
, flags
);
614 if (h
->busy_configuring
)
617 memcpy(sn
, drv
->serial_no
, sizeof(sn
));
618 spin_unlock_irqrestore(&h
->lock
, flags
);
623 return snprintf(buf
, 16 * 2 + 2,
624 "%02X%02X%02X%02X%02X%02X%02X%02X"
625 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
626 sn
[0], sn
[1], sn
[2], sn
[3],
627 sn
[4], sn
[5], sn
[6], sn
[7],
628 sn
[8], sn
[9], sn
[10], sn
[11],
629 sn
[12], sn
[13], sn
[14], sn
[15]);
631 static DEVICE_ATTR(unique_id
, S_IRUGO
, dev_show_unique_id
, NULL
);
633 static ssize_t
dev_show_vendor(struct device
*dev
,
634 struct device_attribute
*attr
,
637 drive_info_struct
*drv
= to_drv(dev
);
638 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
639 char vendor
[VENDOR_LEN
+ 1];
643 spin_lock_irqsave(&h
->lock
, flags
);
644 if (h
->busy_configuring
)
647 memcpy(vendor
, drv
->vendor
, VENDOR_LEN
+ 1);
648 spin_unlock_irqrestore(&h
->lock
, flags
);
653 return snprintf(buf
, sizeof(vendor
) + 1, "%s\n", drv
->vendor
);
655 static DEVICE_ATTR(vendor
, S_IRUGO
, dev_show_vendor
, NULL
);
657 static ssize_t
dev_show_model(struct device
*dev
,
658 struct device_attribute
*attr
,
661 drive_info_struct
*drv
= to_drv(dev
);
662 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
663 char model
[MODEL_LEN
+ 1];
667 spin_lock_irqsave(&h
->lock
, flags
);
668 if (h
->busy_configuring
)
671 memcpy(model
, drv
->model
, MODEL_LEN
+ 1);
672 spin_unlock_irqrestore(&h
->lock
, flags
);
677 return snprintf(buf
, sizeof(model
) + 1, "%s\n", drv
->model
);
679 static DEVICE_ATTR(model
, S_IRUGO
, dev_show_model
, NULL
);
681 static ssize_t
dev_show_rev(struct device
*dev
,
682 struct device_attribute
*attr
,
685 drive_info_struct
*drv
= to_drv(dev
);
686 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
687 char rev
[REV_LEN
+ 1];
691 spin_lock_irqsave(&h
->lock
, flags
);
692 if (h
->busy_configuring
)
695 memcpy(rev
, drv
->rev
, REV_LEN
+ 1);
696 spin_unlock_irqrestore(&h
->lock
, flags
);
701 return snprintf(buf
, sizeof(rev
) + 1, "%s\n", drv
->rev
);
703 static DEVICE_ATTR(rev
, S_IRUGO
, dev_show_rev
, NULL
);
705 static ssize_t
cciss_show_lunid(struct device
*dev
,
706 struct device_attribute
*attr
, char *buf
)
708 drive_info_struct
*drv
= to_drv(dev
);
709 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
711 unsigned char lunid
[8];
713 spin_lock_irqsave(&h
->lock
, flags
);
714 if (h
->busy_configuring
) {
715 spin_unlock_irqrestore(&h
->lock
, flags
);
719 spin_unlock_irqrestore(&h
->lock
, flags
);
722 memcpy(lunid
, drv
->LunID
, sizeof(lunid
));
723 spin_unlock_irqrestore(&h
->lock
, flags
);
724 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
725 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
726 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
728 static DEVICE_ATTR(lunid
, S_IRUGO
, cciss_show_lunid
, NULL
);
730 static ssize_t
cciss_show_raid_level(struct device
*dev
,
731 struct device_attribute
*attr
, char *buf
)
733 drive_info_struct
*drv
= to_drv(dev
);
734 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
738 spin_lock_irqsave(&h
->lock
, flags
);
739 if (h
->busy_configuring
) {
740 spin_unlock_irqrestore(&h
->lock
, flags
);
743 raid
= drv
->raid_level
;
744 spin_unlock_irqrestore(&h
->lock
, flags
);
745 if (raid
< 0 || raid
> RAID_UNKNOWN
)
748 return snprintf(buf
, strlen(raid_label
[raid
]) + 7, "RAID %s\n",
751 static DEVICE_ATTR(raid_level
, S_IRUGO
, cciss_show_raid_level
, NULL
);
753 static ssize_t
cciss_show_usage_count(struct device
*dev
,
754 struct device_attribute
*attr
, char *buf
)
756 drive_info_struct
*drv
= to_drv(dev
);
757 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
761 spin_lock_irqsave(&h
->lock
, flags
);
762 if (h
->busy_configuring
) {
763 spin_unlock_irqrestore(&h
->lock
, flags
);
766 count
= drv
->usage_count
;
767 spin_unlock_irqrestore(&h
->lock
, flags
);
768 return snprintf(buf
, 20, "%d\n", count
);
770 static DEVICE_ATTR(usage_count
, S_IRUGO
, cciss_show_usage_count
, NULL
);
772 static struct attribute
*cciss_host_attrs
[] = {
773 &dev_attr_rescan
.attr
,
777 static struct attribute_group cciss_host_attr_group
= {
778 .attrs
= cciss_host_attrs
,
781 static const struct attribute_group
*cciss_host_attr_groups
[] = {
782 &cciss_host_attr_group
,
786 static struct device_type cciss_host_type
= {
787 .name
= "cciss_host",
788 .groups
= cciss_host_attr_groups
,
789 .release
= cciss_hba_release
,
792 static struct attribute
*cciss_dev_attrs
[] = {
793 &dev_attr_unique_id
.attr
,
794 &dev_attr_model
.attr
,
795 &dev_attr_vendor
.attr
,
797 &dev_attr_lunid
.attr
,
798 &dev_attr_raid_level
.attr
,
799 &dev_attr_usage_count
.attr
,
803 static struct attribute_group cciss_dev_attr_group
= {
804 .attrs
= cciss_dev_attrs
,
807 static const struct attribute_group
*cciss_dev_attr_groups
[] = {
808 &cciss_dev_attr_group
,
812 static struct device_type cciss_dev_type
= {
813 .name
= "cciss_device",
814 .groups
= cciss_dev_attr_groups
,
815 .release
= cciss_device_release
,
818 static struct bus_type cciss_bus_type
= {
823 * cciss_hba_release is called when the reference count
824 * of h->dev goes to zero.
826 static void cciss_hba_release(struct device
*dev
)
829 * nothing to do, but need this to avoid a warning
830 * about not having a release handler from lib/kref.c.
835 * Initialize sysfs entry for each controller. This sets up and registers
836 * the 'cciss#' directory for each individual controller under
837 * /sys/bus/pci/devices/<dev>/.
839 static int cciss_create_hba_sysfs_entry(struct ctlr_info
*h
)
841 device_initialize(&h
->dev
);
842 h
->dev
.type
= &cciss_host_type
;
843 h
->dev
.bus
= &cciss_bus_type
;
844 dev_set_name(&h
->dev
, "%s", h
->devname
);
845 h
->dev
.parent
= &h
->pdev
->dev
;
847 return device_add(&h
->dev
);
851 * Remove sysfs entries for an hba.
853 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info
*h
)
856 put_device(&h
->dev
); /* final put. */
859 /* cciss_device_release is called when the reference count
860 * of h->drv[x]dev goes to zero.
862 static void cciss_device_release(struct device
*dev
)
864 drive_info_struct
*drv
= to_drv(dev
);
869 * Initialize sysfs for each logical drive. This sets up and registers
870 * the 'c#d#' directory for each individual logical drive under
871 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
872 * /sys/block/cciss!c#d# to this entry.
874 static long cciss_create_ld_sysfs_entry(struct ctlr_info
*h
,
879 if (h
->drv
[drv_index
]->device_initialized
)
882 dev
= &h
->drv
[drv_index
]->dev
;
883 device_initialize(dev
);
884 dev
->type
= &cciss_dev_type
;
885 dev
->bus
= &cciss_bus_type
;
886 dev_set_name(dev
, "c%dd%d", h
->ctlr
, drv_index
);
887 dev
->parent
= &h
->dev
;
888 h
->drv
[drv_index
]->device_initialized
= 1;
889 return device_add(dev
);
893 * Remove sysfs entries for a logical drive.
895 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info
*h
, int drv_index
,
898 struct device
*dev
= &h
->drv
[drv_index
]->dev
;
900 /* special case for c*d0, we only destroy it on controller exit */
901 if (drv_index
== 0 && !ctlr_exiting
)
905 put_device(dev
); /* the "final" put. */
906 h
->drv
[drv_index
] = NULL
;
910 * For operations that cannot sleep, a command block is allocated at init,
911 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
912 * which ones are free or in use.
914 static CommandList_struct
*cmd_alloc(ctlr_info_t
*h
)
916 CommandList_struct
*c
;
919 dma_addr_t cmd_dma_handle
, err_dma_handle
;
922 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
925 } while (test_and_set_bit(i
& (BITS_PER_LONG
- 1),
926 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
)) != 0);
928 memset(c
, 0, sizeof(CommandList_struct
));
929 cmd_dma_handle
= h
->cmd_pool_dhandle
+ i
* sizeof(CommandList_struct
);
930 c
->err_info
= h
->errinfo_pool
+ i
;
931 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
932 err_dma_handle
= h
->errinfo_pool_dhandle
933 + i
* sizeof(ErrorInfo_struct
);
938 INIT_HLIST_NODE(&c
->list
);
939 c
->busaddr
= (__u32
) cmd_dma_handle
;
940 temp64
.val
= (__u64
) err_dma_handle
;
941 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
942 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
943 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
949 /* allocate a command using pci_alloc_consistent, used for ioctls,
950 * etc., not for the main i/o path.
952 static CommandList_struct
*cmd_special_alloc(ctlr_info_t
*h
)
954 CommandList_struct
*c
;
956 dma_addr_t cmd_dma_handle
, err_dma_handle
;
958 c
= (CommandList_struct
*) pci_alloc_consistent(h
->pdev
,
959 sizeof(CommandList_struct
), &cmd_dma_handle
);
962 memset(c
, 0, sizeof(CommandList_struct
));
966 c
->err_info
= (ErrorInfo_struct
*)
967 pci_alloc_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
970 if (c
->err_info
== NULL
) {
971 pci_free_consistent(h
->pdev
,
972 sizeof(CommandList_struct
), c
, cmd_dma_handle
);
975 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
977 INIT_HLIST_NODE(&c
->list
);
978 c
->busaddr
= (__u32
) cmd_dma_handle
;
979 temp64
.val
= (__u64
) err_dma_handle
;
980 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
981 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
982 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
988 static void cmd_free(ctlr_info_t
*h
, CommandList_struct
*c
)
993 clear_bit(i
& (BITS_PER_LONG
- 1),
994 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
998 static void cmd_special_free(ctlr_info_t
*h
, CommandList_struct
*c
)
1002 temp64
.val32
.lower
= c
->ErrDesc
.Addr
.lower
;
1003 temp64
.val32
.upper
= c
->ErrDesc
.Addr
.upper
;
1004 pci_free_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
1005 c
->err_info
, (dma_addr_t
) temp64
.val
);
1006 pci_free_consistent(h
->pdev
, sizeof(CommandList_struct
),
1007 c
, (dma_addr_t
) c
->busaddr
);
1010 static inline ctlr_info_t
*get_host(struct gendisk
*disk
)
1012 return disk
->queue
->queuedata
;
1015 static inline drive_info_struct
*get_drv(struct gendisk
*disk
)
1017 return disk
->private_data
;
1021 * Open. Make sure the device is really there.
1023 static int cciss_open(struct block_device
*bdev
, fmode_t mode
)
1025 ctlr_info_t
*h
= get_host(bdev
->bd_disk
);
1026 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
1028 dev_dbg(&h
->pdev
->dev
, "cciss_open %s\n", bdev
->bd_disk
->disk_name
);
1029 if (drv
->busy_configuring
)
1032 * Root is allowed to open raw volume zero even if it's not configured
1033 * so array config can still work. Root is also allowed to open any
1034 * volume that has a LUN ID, so it can issue IOCTL to reread the
1035 * disk information. I don't think I really like this
1036 * but I'm already using way to many device nodes to claim another one
1037 * for "raw controller".
1039 if (drv
->heads
== 0) {
1040 if (MINOR(bdev
->bd_dev
) != 0) { /* not node 0? */
1041 /* if not node 0 make sure it is a partition = 0 */
1042 if (MINOR(bdev
->bd_dev
) & 0x0f) {
1044 /* if it is, make sure we have a LUN ID */
1045 } else if (memcmp(drv
->LunID
, CTLR_LUNID
,
1046 sizeof(drv
->LunID
))) {
1050 if (!capable(CAP_SYS_ADMIN
))
1058 static int cciss_unlocked_open(struct block_device
*bdev
, fmode_t mode
)
1063 ret
= cciss_open(bdev
, mode
);
1070 * Close. Sync first.
1072 static int cciss_release(struct gendisk
*disk
, fmode_t mode
)
1075 drive_info_struct
*drv
;
1079 drv
= get_drv(disk
);
1080 dev_dbg(&h
->pdev
->dev
, "cciss_release %s\n", disk
->disk_name
);
1087 static int do_ioctl(struct block_device
*bdev
, fmode_t mode
,
1088 unsigned cmd
, unsigned long arg
)
1092 ret
= cciss_ioctl(bdev
, mode
, cmd
, arg
);
1097 #ifdef CONFIG_COMPAT
1099 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
1100 unsigned cmd
, unsigned long arg
);
1101 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1102 unsigned cmd
, unsigned long arg
);
1104 static int cciss_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1105 unsigned cmd
, unsigned long arg
)
1108 case CCISS_GETPCIINFO
:
1109 case CCISS_GETINTINFO
:
1110 case CCISS_SETINTINFO
:
1111 case CCISS_GETNODENAME
:
1112 case CCISS_SETNODENAME
:
1113 case CCISS_GETHEARTBEAT
:
1114 case CCISS_GETBUSTYPES
:
1115 case CCISS_GETFIRMVER
:
1116 case CCISS_GETDRIVVER
:
1117 case CCISS_REVALIDVOLS
:
1118 case CCISS_DEREGDISK
:
1119 case CCISS_REGNEWDISK
:
1121 case CCISS_RESCANDISK
:
1122 case CCISS_GETLUNINFO
:
1123 return do_ioctl(bdev
, mode
, cmd
, arg
);
1125 case CCISS_PASSTHRU32
:
1126 return cciss_ioctl32_passthru(bdev
, mode
, cmd
, arg
);
1127 case CCISS_BIG_PASSTHRU32
:
1128 return cciss_ioctl32_big_passthru(bdev
, mode
, cmd
, arg
);
1131 return -ENOIOCTLCMD
;
1135 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
1136 unsigned cmd
, unsigned long arg
)
1138 IOCTL32_Command_struct __user
*arg32
=
1139 (IOCTL32_Command_struct __user
*) arg
;
1140 IOCTL_Command_struct arg64
;
1141 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
1147 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1148 sizeof(arg64
.LUN_info
));
1150 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1151 sizeof(arg64
.Request
));
1153 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1154 sizeof(arg64
.error_info
));
1155 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1156 err
|= get_user(cp
, &arg32
->buf
);
1157 arg64
.buf
= compat_ptr(cp
);
1158 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1163 err
= do_ioctl(bdev
, mode
, CCISS_PASSTHRU
, (unsigned long)p
);
1167 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1168 sizeof(arg32
->error_info
));
1174 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1175 unsigned cmd
, unsigned long arg
)
1177 BIG_IOCTL32_Command_struct __user
*arg32
=
1178 (BIG_IOCTL32_Command_struct __user
*) arg
;
1179 BIG_IOCTL_Command_struct arg64
;
1180 BIG_IOCTL_Command_struct __user
*p
=
1181 compat_alloc_user_space(sizeof(arg64
));
1187 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1188 sizeof(arg64
.LUN_info
));
1190 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1191 sizeof(arg64
.Request
));
1193 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1194 sizeof(arg64
.error_info
));
1195 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1196 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
1197 err
|= get_user(cp
, &arg32
->buf
);
1198 arg64
.buf
= compat_ptr(cp
);
1199 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1204 err
= do_ioctl(bdev
, mode
, CCISS_BIG_PASSTHRU
, (unsigned long)p
);
1208 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1209 sizeof(arg32
->error_info
));
1216 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
1218 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
1220 if (!drv
->cylinders
)
1223 geo
->heads
= drv
->heads
;
1224 geo
->sectors
= drv
->sectors
;
1225 geo
->cylinders
= drv
->cylinders
;
1229 static void check_ioctl_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
1231 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
1232 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
1233 (void)check_for_unit_attention(h
, c
);
1238 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
1239 unsigned int cmd
, unsigned long arg
)
1241 struct gendisk
*disk
= bdev
->bd_disk
;
1242 ctlr_info_t
*h
= get_host(disk
);
1243 drive_info_struct
*drv
= get_drv(disk
);
1244 void __user
*argp
= (void __user
*)arg
;
1246 dev_dbg(&h
->pdev
->dev
, "cciss_ioctl: Called with cmd=%x %lx\n",
1249 case CCISS_GETPCIINFO
:
1251 cciss_pci_info_struct pciinfo
;
1255 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
1256 pciinfo
.bus
= h
->pdev
->bus
->number
;
1257 pciinfo
.dev_fn
= h
->pdev
->devfn
;
1258 pciinfo
.board_id
= h
->board_id
;
1260 (argp
, &pciinfo
, sizeof(cciss_pci_info_struct
)))
1264 case CCISS_GETINTINFO
:
1266 cciss_coalint_struct intinfo
;
1270 readl(&h
->cfgtable
->HostWrite
.CoalIntDelay
);
1272 readl(&h
->cfgtable
->HostWrite
.CoalIntCount
);
1274 (argp
, &intinfo
, sizeof(cciss_coalint_struct
)))
1278 case CCISS_SETINTINFO
:
1280 cciss_coalint_struct intinfo
;
1281 unsigned long flags
;
1286 if (!capable(CAP_SYS_ADMIN
))
1289 (&intinfo
, argp
, sizeof(cciss_coalint_struct
)))
1291 if ((intinfo
.delay
== 0) && (intinfo
.count
== 0))
1293 spin_lock_irqsave(&h
->lock
, flags
);
1294 /* Update the field, and then ring the doorbell */
1295 writel(intinfo
.delay
,
1296 &(h
->cfgtable
->HostWrite
.CoalIntDelay
));
1297 writel(intinfo
.count
,
1298 &(h
->cfgtable
->HostWrite
.CoalIntCount
));
1299 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
1301 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1302 if (!(readl(h
->vaddr
+ SA5_DOORBELL
)
1303 & CFGTBL_ChangeReq
))
1305 /* delay and try again */
1308 spin_unlock_irqrestore(&h
->lock
, flags
);
1309 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1313 case CCISS_GETNODENAME
:
1315 NodeName_type NodeName
;
1320 for (i
= 0; i
< 16; i
++)
1322 readb(&h
->cfgtable
->ServerName
[i
]);
1323 if (copy_to_user(argp
, NodeName
, sizeof(NodeName_type
)))
1327 case CCISS_SETNODENAME
:
1329 NodeName_type NodeName
;
1330 unsigned long flags
;
1335 if (!capable(CAP_SYS_ADMIN
))
1339 (NodeName
, argp
, sizeof(NodeName_type
)))
1342 spin_lock_irqsave(&h
->lock
, flags
);
1344 /* Update the field, and then ring the doorbell */
1345 for (i
= 0; i
< 16; i
++)
1347 &h
->cfgtable
->ServerName
[i
]);
1349 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
1351 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1352 if (!(readl(h
->vaddr
+ SA5_DOORBELL
)
1353 & CFGTBL_ChangeReq
))
1355 /* delay and try again */
1358 spin_unlock_irqrestore(&h
->lock
, flags
);
1359 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1364 case CCISS_GETHEARTBEAT
:
1366 Heartbeat_type heartbeat
;
1370 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
1372 (argp
, &heartbeat
, sizeof(Heartbeat_type
)))
1376 case CCISS_GETBUSTYPES
:
1378 BusTypes_type BusTypes
;
1382 BusTypes
= readl(&h
->cfgtable
->BusTypes
);
1384 (argp
, &BusTypes
, sizeof(BusTypes_type
)))
1388 case CCISS_GETFIRMVER
:
1390 FirmwareVer_type firmware
;
1394 memcpy(firmware
, h
->firm_ver
, 4);
1397 (argp
, firmware
, sizeof(FirmwareVer_type
)))
1401 case CCISS_GETDRIVVER
:
1403 DriverVer_type DriverVer
= DRIVER_VERSION
;
1409 (argp
, &DriverVer
, sizeof(DriverVer_type
)))
1414 case CCISS_DEREGDISK
:
1416 case CCISS_REVALIDVOLS
:
1417 return rebuild_lun_table(h
, 0, 1);
1419 case CCISS_GETLUNINFO
:{
1420 LogvolInfo_struct luninfo
;
1422 memcpy(&luninfo
.LunID
, drv
->LunID
,
1423 sizeof(luninfo
.LunID
));
1424 luninfo
.num_opens
= drv
->usage_count
;
1425 luninfo
.num_parts
= 0;
1426 if (copy_to_user(argp
, &luninfo
,
1427 sizeof(LogvolInfo_struct
)))
1431 case CCISS_PASSTHRU
:
1433 IOCTL_Command_struct iocommand
;
1434 CommandList_struct
*c
;
1437 DECLARE_COMPLETION_ONSTACK(wait
);
1442 if (!capable(CAP_SYS_RAWIO
))
1446 (&iocommand
, argp
, sizeof(IOCTL_Command_struct
)))
1448 if ((iocommand
.buf_size
< 1) &&
1449 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
1452 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1453 /* Check kmalloc limits */
1454 if (iocommand
.buf_size
> 128000)
1457 if (iocommand
.buf_size
> 0) {
1458 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
1462 if (iocommand
.Request
.Type
.Direction
== XFER_WRITE
) {
1463 /* Copy the data into the buffer we created */
1465 (buff
, iocommand
.buf
, iocommand
.buf_size
)) {
1470 memset(buff
, 0, iocommand
.buf_size
);
1472 c
= cmd_special_alloc(h
);
1477 /* Fill in the command type */
1478 c
->cmd_type
= CMD_IOCTL_PEND
;
1479 /* Fill in Command Header */
1480 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
1481 if (iocommand
.buf_size
> 0) /* buffer to fill */
1483 c
->Header
.SGList
= 1;
1484 c
->Header
.SGTotal
= 1;
1485 } else /* no buffers to fill */
1487 c
->Header
.SGList
= 0;
1488 c
->Header
.SGTotal
= 0;
1490 c
->Header
.LUN
= iocommand
.LUN_info
;
1491 /* use the kernel address the cmd block for tag */
1492 c
->Header
.Tag
.lower
= c
->busaddr
;
1494 /* Fill in Request block */
1495 c
->Request
= iocommand
.Request
;
1497 /* Fill in the scatter gather information */
1498 if (iocommand
.buf_size
> 0) {
1499 temp64
.val
= pci_map_single(h
->pdev
, buff
,
1501 PCI_DMA_BIDIRECTIONAL
);
1502 c
->SG
[0].Addr
.lower
= temp64
.val32
.lower
;
1503 c
->SG
[0].Addr
.upper
= temp64
.val32
.upper
;
1504 c
->SG
[0].Len
= iocommand
.buf_size
;
1505 c
->SG
[0].Ext
= 0; /* we are not chaining */
1509 enqueue_cmd_and_start_io(h
, c
);
1510 wait_for_completion(&wait
);
1512 /* unlock the buffers from DMA */
1513 temp64
.val32
.lower
= c
->SG
[0].Addr
.lower
;
1514 temp64
.val32
.upper
= c
->SG
[0].Addr
.upper
;
1515 pci_unmap_single(h
->pdev
, (dma_addr_t
) temp64
.val
,
1517 PCI_DMA_BIDIRECTIONAL
);
1519 check_ioctl_unit_attention(h
, c
);
1521 /* Copy the error information out */
1522 iocommand
.error_info
= *(c
->err_info
);
1524 (argp
, &iocommand
, sizeof(IOCTL_Command_struct
))) {
1526 cmd_special_free(h
, c
);
1530 if (iocommand
.Request
.Type
.Direction
== XFER_READ
) {
1531 /* Copy the data out of the buffer we created */
1533 (iocommand
.buf
, buff
, iocommand
.buf_size
)) {
1535 cmd_special_free(h
, c
);
1540 cmd_special_free(h
, c
);
1543 case CCISS_BIG_PASSTHRU
:{
1544 BIG_IOCTL_Command_struct
*ioc
;
1545 CommandList_struct
*c
;
1546 unsigned char **buff
= NULL
;
1547 int *buff_size
= NULL
;
1552 DECLARE_COMPLETION_ONSTACK(wait
);
1555 BYTE __user
*data_ptr
;
1559 if (!capable(CAP_SYS_RAWIO
))
1561 ioc
= (BIG_IOCTL_Command_struct
*)
1562 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
1567 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
1571 if ((ioc
->buf_size
< 1) &&
1572 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
1576 /* Check kmalloc limits using all SGs */
1577 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
1581 if (ioc
->buf_size
> ioc
->malloc_size
* MAXSGENTRIES
) {
1586 kzalloc(MAXSGENTRIES
* sizeof(char *), GFP_KERNEL
);
1591 buff_size
= kmalloc(MAXSGENTRIES
* sizeof(int),
1597 left
= ioc
->buf_size
;
1598 data_ptr
= ioc
->buf
;
1601 ioc
->malloc_size
) ? ioc
->
1603 buff_size
[sg_used
] = sz
;
1604 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
1605 if (buff
[sg_used
] == NULL
) {
1609 if (ioc
->Request
.Type
.Direction
== XFER_WRITE
) {
1611 (buff
[sg_used
], data_ptr
, sz
)) {
1616 memset(buff
[sg_used
], 0, sz
);
1622 c
= cmd_special_alloc(h
);
1627 c
->cmd_type
= CMD_IOCTL_PEND
;
1628 c
->Header
.ReplyQueue
= 0;
1630 if (ioc
->buf_size
> 0) {
1631 c
->Header
.SGList
= sg_used
;
1632 c
->Header
.SGTotal
= sg_used
;
1634 c
->Header
.SGList
= 0;
1635 c
->Header
.SGTotal
= 0;
1637 c
->Header
.LUN
= ioc
->LUN_info
;
1638 c
->Header
.Tag
.lower
= c
->busaddr
;
1640 c
->Request
= ioc
->Request
;
1641 if (ioc
->buf_size
> 0) {
1642 for (i
= 0; i
< sg_used
; i
++) {
1644 pci_map_single(h
->pdev
, buff
[i
],
1646 PCI_DMA_BIDIRECTIONAL
);
1647 c
->SG
[i
].Addr
.lower
=
1649 c
->SG
[i
].Addr
.upper
=
1651 c
->SG
[i
].Len
= buff_size
[i
];
1652 c
->SG
[i
].Ext
= 0; /* we are not chaining */
1656 enqueue_cmd_and_start_io(h
, c
);
1657 wait_for_completion(&wait
);
1658 /* unlock the buffers from DMA */
1659 for (i
= 0; i
< sg_used
; i
++) {
1660 temp64
.val32
.lower
= c
->SG
[i
].Addr
.lower
;
1661 temp64
.val32
.upper
= c
->SG
[i
].Addr
.upper
;
1662 pci_unmap_single(h
->pdev
,
1663 (dma_addr_t
) temp64
.val
, buff_size
[i
],
1664 PCI_DMA_BIDIRECTIONAL
);
1666 check_ioctl_unit_attention(h
, c
);
1667 /* Copy the error information out */
1668 ioc
->error_info
= *(c
->err_info
);
1669 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
1670 cmd_special_free(h
, c
);
1674 if (ioc
->Request
.Type
.Direction
== XFER_READ
) {
1675 /* Copy the data out of the buffer we created */
1676 BYTE __user
*ptr
= ioc
->buf
;
1677 for (i
= 0; i
< sg_used
; i
++) {
1679 (ptr
, buff
[i
], buff_size
[i
])) {
1680 cmd_special_free(h
, c
);
1684 ptr
+= buff_size
[i
];
1687 cmd_special_free(h
, c
);
1691 for (i
= 0; i
< sg_used
; i
++)
1700 /* scsi_cmd_ioctl handles these, below, though some are not */
1701 /* very meaningful for cciss. SG_IO is the main one people want. */
1703 case SG_GET_VERSION_NUM
:
1704 case SG_SET_TIMEOUT
:
1705 case SG_GET_TIMEOUT
:
1706 case SG_GET_RESERVED_SIZE
:
1707 case SG_SET_RESERVED_SIZE
:
1708 case SG_EMULATED_HOST
:
1710 case SCSI_IOCTL_SEND_COMMAND
:
1711 return scsi_cmd_ioctl(disk
->queue
, disk
, mode
, cmd
, argp
);
1713 /* scsi_cmd_ioctl would normally handle these, below, but */
1714 /* they aren't a good fit for cciss, as CD-ROMs are */
1715 /* not supported, and we don't have any bus/target/lun */
1716 /* which we present to the kernel. */
1718 case CDROM_SEND_PACKET
:
1719 case CDROMCLOSETRAY
:
1721 case SCSI_IOCTL_GET_IDLUN
:
1722 case SCSI_IOCTL_GET_BUS_NUMBER
:
1728 static void cciss_check_queues(ctlr_info_t
*h
)
1730 int start_queue
= h
->next_to_run
;
1733 /* check to see if we have maxed out the number of commands that can
1734 * be placed on the queue. If so then exit. We do this check here
1735 * in case the interrupt we serviced was from an ioctl and did not
1736 * free any new commands.
1738 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
)
1741 /* We have room on the queue for more commands. Now we need to queue
1742 * them up. We will also keep track of the next queue to run so
1743 * that every queue gets a chance to be started first.
1745 for (i
= 0; i
< h
->highest_lun
+ 1; i
++) {
1746 int curr_queue
= (start_queue
+ i
) % (h
->highest_lun
+ 1);
1747 /* make sure the disk has been added and the drive is real
1748 * because this can be called from the middle of init_one.
1750 if (!h
->drv
[curr_queue
])
1752 if (!(h
->drv
[curr_queue
]->queue
) ||
1753 !(h
->drv
[curr_queue
]->heads
))
1755 blk_start_queue(h
->gendisk
[curr_queue
]->queue
);
1757 /* check to see if we have maxed out the number of commands
1758 * that can be placed on the queue.
1760 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
) {
1761 if (curr_queue
== start_queue
) {
1763 (start_queue
+ 1) % (h
->highest_lun
+ 1);
1766 h
->next_to_run
= curr_queue
;
1773 static void cciss_softirq_done(struct request
*rq
)
1775 CommandList_struct
*c
= rq
->completion_data
;
1776 ctlr_info_t
*h
= hba
[c
->ctlr
];
1777 SGDescriptor_struct
*curr_sg
= c
->SG
;
1779 unsigned long flags
;
1783 if (c
->Request
.Type
.Direction
== XFER_READ
)
1784 ddir
= PCI_DMA_FROMDEVICE
;
1786 ddir
= PCI_DMA_TODEVICE
;
1788 /* command did not need to be retried */
1789 /* unmap the DMA mapping for all the scatter gather elements */
1790 for (i
= 0; i
< c
->Header
.SGList
; i
++) {
1791 if (curr_sg
[sg_index
].Ext
== CCISS_SG_CHAIN
) {
1792 cciss_unmap_sg_chain_block(h
, c
);
1793 /* Point to the next block */
1794 curr_sg
= h
->cmd_sg_list
[c
->cmdindex
];
1797 temp64
.val32
.lower
= curr_sg
[sg_index
].Addr
.lower
;
1798 temp64
.val32
.upper
= curr_sg
[sg_index
].Addr
.upper
;
1799 pci_unmap_page(h
->pdev
, temp64
.val
, curr_sg
[sg_index
].Len
,
1804 dev_dbg(&h
->pdev
->dev
, "Done with %p\n", rq
);
1806 /* set the residual count for pc requests */
1807 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1808 rq
->resid_len
= c
->err_info
->ResidualCnt
;
1810 blk_end_request_all(rq
, (rq
->errors
== 0) ? 0 : -EIO
);
1812 spin_lock_irqsave(&h
->lock
, flags
);
1814 cciss_check_queues(h
);
1815 spin_unlock_irqrestore(&h
->lock
, flags
);
1818 static inline void log_unit_to_scsi3addr(ctlr_info_t
*h
,
1819 unsigned char scsi3addr
[], uint32_t log_unit
)
1821 memcpy(scsi3addr
, h
->drv
[log_unit
]->LunID
,
1822 sizeof(h
->drv
[log_unit
]->LunID
));
1825 /* This function gets the SCSI vendor, model, and revision of a logical drive
1826 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1827 * they cannot be read.
1829 static void cciss_get_device_descr(ctlr_info_t
*h
, int logvol
,
1830 char *vendor
, char *model
, char *rev
)
1833 InquiryData_struct
*inq_buf
;
1834 unsigned char scsi3addr
[8];
1840 inq_buf
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1844 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
1845 rc
= sendcmd_withirq(h
, CISS_INQUIRY
, inq_buf
, sizeof(*inq_buf
), 0,
1846 scsi3addr
, TYPE_CMD
);
1848 memcpy(vendor
, &inq_buf
->data_byte
[8], VENDOR_LEN
);
1849 vendor
[VENDOR_LEN
] = '\0';
1850 memcpy(model
, &inq_buf
->data_byte
[16], MODEL_LEN
);
1851 model
[MODEL_LEN
] = '\0';
1852 memcpy(rev
, &inq_buf
->data_byte
[32], REV_LEN
);
1853 rev
[REV_LEN
] = '\0';
1860 /* This function gets the serial number of a logical drive via
1861 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1862 * number cannot be had, for whatever reason, 16 bytes of 0xff
1863 * are returned instead.
1865 static void cciss_get_serial_no(ctlr_info_t
*h
, int logvol
,
1866 unsigned char *serial_no
, int buflen
)
1868 #define PAGE_83_INQ_BYTES 64
1871 unsigned char scsi3addr
[8];
1875 memset(serial_no
, 0xff, buflen
);
1876 buf
= kzalloc(PAGE_83_INQ_BYTES
, GFP_KERNEL
);
1879 memset(serial_no
, 0, buflen
);
1880 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
1881 rc
= sendcmd_withirq(h
, CISS_INQUIRY
, buf
,
1882 PAGE_83_INQ_BYTES
, 0x83, scsi3addr
, TYPE_CMD
);
1884 memcpy(serial_no
, &buf
[8], buflen
);
1890 * cciss_add_disk sets up the block device queue for a logical drive
1892 static int cciss_add_disk(ctlr_info_t
*h
, struct gendisk
*disk
,
1895 disk
->queue
= blk_init_queue(do_cciss_request
, &h
->lock
);
1897 goto init_queue_failure
;
1898 sprintf(disk
->disk_name
, "cciss/c%dd%d", h
->ctlr
, drv_index
);
1899 disk
->major
= h
->major
;
1900 disk
->first_minor
= drv_index
<< NWD_SHIFT
;
1901 disk
->fops
= &cciss_fops
;
1902 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
1904 disk
->private_data
= h
->drv
[drv_index
];
1905 disk
->driverfs_dev
= &h
->drv
[drv_index
]->dev
;
1907 /* Set up queue information */
1908 blk_queue_bounce_limit(disk
->queue
, h
->pdev
->dma_mask
);
1910 /* This is a hardware imposed limit. */
1911 blk_queue_max_segments(disk
->queue
, h
->maxsgentries
);
1913 blk_queue_max_hw_sectors(disk
->queue
, h
->cciss_max_sectors
);
1915 blk_queue_softirq_done(disk
->queue
, cciss_softirq_done
);
1917 disk
->queue
->queuedata
= h
;
1919 blk_queue_logical_block_size(disk
->queue
,
1920 h
->drv
[drv_index
]->block_size
);
1922 /* Make sure all queue data is written out before */
1923 /* setting h->drv[drv_index]->queue, as setting this */
1924 /* allows the interrupt handler to start the queue */
1926 h
->drv
[drv_index
]->queue
= disk
->queue
;
1931 blk_cleanup_queue(disk
->queue
);
1937 /* This function will check the usage_count of the drive to be updated/added.
1938 * If the usage_count is zero and it is a heretofore unknown drive, or,
1939 * the drive's capacity, geometry, or serial number has changed,
1940 * then the drive information will be updated and the disk will be
1941 * re-registered with the kernel. If these conditions don't hold,
1942 * then it will be left alone for the next reboot. The exception to this
1943 * is disk 0 which will always be left registered with the kernel since it
1944 * is also the controller node. Any changes to disk 0 will show up on
1947 static void cciss_update_drive_info(ctlr_info_t
*h
, int drv_index
,
1948 int first_time
, int via_ioctl
)
1950 struct gendisk
*disk
;
1951 InquiryData_struct
*inq_buff
= NULL
;
1952 unsigned int block_size
;
1953 sector_t total_size
;
1954 unsigned long flags
= 0;
1956 drive_info_struct
*drvinfo
;
1958 /* Get information about the disk and modify the driver structure */
1959 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1960 drvinfo
= kzalloc(sizeof(*drvinfo
), GFP_KERNEL
);
1961 if (inq_buff
== NULL
|| drvinfo
== NULL
)
1964 /* testing to see if 16-byte CDBs are already being used */
1965 if (h
->cciss_read
== CCISS_READ_16
) {
1966 cciss_read_capacity_16(h
, drv_index
,
1967 &total_size
, &block_size
);
1970 cciss_read_capacity(h
, drv_index
, &total_size
, &block_size
);
1971 /* if read_capacity returns all F's this volume is >2TB */
1972 /* in size so we switch to 16-byte CDB's for all */
1973 /* read/write ops */
1974 if (total_size
== 0xFFFFFFFFULL
) {
1975 cciss_read_capacity_16(h
, drv_index
,
1976 &total_size
, &block_size
);
1977 h
->cciss_read
= CCISS_READ_16
;
1978 h
->cciss_write
= CCISS_WRITE_16
;
1980 h
->cciss_read
= CCISS_READ_10
;
1981 h
->cciss_write
= CCISS_WRITE_10
;
1985 cciss_geometry_inquiry(h
, drv_index
, total_size
, block_size
,
1987 drvinfo
->block_size
= block_size
;
1988 drvinfo
->nr_blocks
= total_size
+ 1;
1990 cciss_get_device_descr(h
, drv_index
, drvinfo
->vendor
,
1991 drvinfo
->model
, drvinfo
->rev
);
1992 cciss_get_serial_no(h
, drv_index
, drvinfo
->serial_no
,
1993 sizeof(drvinfo
->serial_no
));
1994 /* Save the lunid in case we deregister the disk, below. */
1995 memcpy(drvinfo
->LunID
, h
->drv
[drv_index
]->LunID
,
1996 sizeof(drvinfo
->LunID
));
1998 /* Is it the same disk we already know, and nothing's changed? */
1999 if (h
->drv
[drv_index
]->raid_level
!= -1 &&
2000 ((memcmp(drvinfo
->serial_no
,
2001 h
->drv
[drv_index
]->serial_no
, 16) == 0) &&
2002 drvinfo
->block_size
== h
->drv
[drv_index
]->block_size
&&
2003 drvinfo
->nr_blocks
== h
->drv
[drv_index
]->nr_blocks
&&
2004 drvinfo
->heads
== h
->drv
[drv_index
]->heads
&&
2005 drvinfo
->sectors
== h
->drv
[drv_index
]->sectors
&&
2006 drvinfo
->cylinders
== h
->drv
[drv_index
]->cylinders
))
2007 /* The disk is unchanged, nothing to update */
2010 /* If we get here it's not the same disk, or something's changed,
2011 * so we need to * deregister it, and re-register it, if it's not
2013 * If the disk already exists then deregister it before proceeding
2014 * (unless it's the first disk (for the controller node).
2016 if (h
->drv
[drv_index
]->raid_level
!= -1 && drv_index
!= 0) {
2017 dev_warn(&h
->pdev
->dev
, "disk %d has changed.\n", drv_index
);
2018 spin_lock_irqsave(&h
->lock
, flags
);
2019 h
->drv
[drv_index
]->busy_configuring
= 1;
2020 spin_unlock_irqrestore(&h
->lock
, flags
);
2022 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2023 * which keeps the interrupt handler from starting
2026 ret
= deregister_disk(h
, drv_index
, 0, via_ioctl
);
2029 /* If the disk is in use return */
2033 /* Save the new information from cciss_geometry_inquiry
2034 * and serial number inquiry. If the disk was deregistered
2035 * above, then h->drv[drv_index] will be NULL.
2037 if (h
->drv
[drv_index
] == NULL
) {
2038 drvinfo
->device_initialized
= 0;
2039 h
->drv
[drv_index
] = drvinfo
;
2040 drvinfo
= NULL
; /* so it won't be freed below. */
2042 /* special case for cxd0 */
2043 h
->drv
[drv_index
]->block_size
= drvinfo
->block_size
;
2044 h
->drv
[drv_index
]->nr_blocks
= drvinfo
->nr_blocks
;
2045 h
->drv
[drv_index
]->heads
= drvinfo
->heads
;
2046 h
->drv
[drv_index
]->sectors
= drvinfo
->sectors
;
2047 h
->drv
[drv_index
]->cylinders
= drvinfo
->cylinders
;
2048 h
->drv
[drv_index
]->raid_level
= drvinfo
->raid_level
;
2049 memcpy(h
->drv
[drv_index
]->serial_no
, drvinfo
->serial_no
, 16);
2050 memcpy(h
->drv
[drv_index
]->vendor
, drvinfo
->vendor
,
2052 memcpy(h
->drv
[drv_index
]->model
, drvinfo
->model
, MODEL_LEN
+ 1);
2053 memcpy(h
->drv
[drv_index
]->rev
, drvinfo
->rev
, REV_LEN
+ 1);
2057 disk
= h
->gendisk
[drv_index
];
2058 set_capacity(disk
, h
->drv
[drv_index
]->nr_blocks
);
2060 /* If it's not disk 0 (drv_index != 0)
2061 * or if it was disk 0, but there was previously
2062 * no actual corresponding configured logical drive
2063 * (raid_leve == -1) then we want to update the
2064 * logical drive's information.
2066 if (drv_index
|| first_time
) {
2067 if (cciss_add_disk(h
, disk
, drv_index
) != 0) {
2068 cciss_free_gendisk(h
, drv_index
);
2069 cciss_free_drive_info(h
, drv_index
);
2070 dev_warn(&h
->pdev
->dev
, "could not update disk %d\n",
2081 dev_err(&h
->pdev
->dev
, "out of memory\n");
2085 /* This function will find the first index of the controllers drive array
2086 * that has a null drv pointer and allocate the drive info struct and
2087 * will return that index This is where new drives will be added.
2088 * If the index to be returned is greater than the highest_lun index for
2089 * the controller then highest_lun is set * to this new index.
2090 * If there are no available indexes or if tha allocation fails, then -1
2091 * is returned. * "controller_node" is used to know if this is a real
2092 * logical drive, or just the controller node, which determines if this
2093 * counts towards highest_lun.
2095 static int cciss_alloc_drive_info(ctlr_info_t
*h
, int controller_node
)
2098 drive_info_struct
*drv
;
2100 /* Search for an empty slot for our drive info */
2101 for (i
= 0; i
< CISS_MAX_LUN
; i
++) {
2103 /* if not cxd0 case, and it's occupied, skip it. */
2104 if (h
->drv
[i
] && i
!= 0)
2107 * If it's cxd0 case, and drv is alloc'ed already, and a
2108 * disk is configured there, skip it.
2110 if (i
== 0 && h
->drv
[i
] && h
->drv
[i
]->raid_level
!= -1)
2114 * We've found an empty slot. Update highest_lun
2115 * provided this isn't just the fake cxd0 controller node.
2117 if (i
> h
->highest_lun
&& !controller_node
)
2120 /* If adding a real disk at cxd0, and it's already alloc'ed */
2121 if (i
== 0 && h
->drv
[i
] != NULL
)
2125 * Found an empty slot, not already alloc'ed. Allocate it.
2126 * Mark it with raid_level == -1, so we know it's new later on.
2128 drv
= kzalloc(sizeof(*drv
), GFP_KERNEL
);
2131 drv
->raid_level
= -1; /* so we know it's new */
2138 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
)
2140 kfree(h
->drv
[drv_index
]);
2141 h
->drv
[drv_index
] = NULL
;
2144 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
)
2146 put_disk(h
->gendisk
[drv_index
]);
2147 h
->gendisk
[drv_index
] = NULL
;
2150 /* cciss_add_gendisk finds a free hba[]->drv structure
2151 * and allocates a gendisk if needed, and sets the lunid
2152 * in the drvinfo structure. It returns the index into
2153 * the ->drv[] array, or -1 if none are free.
2154 * is_controller_node indicates whether highest_lun should
2155 * count this disk, or if it's only being added to provide
2156 * a means to talk to the controller in case no logical
2157 * drives have yet been configured.
2159 static int cciss_add_gendisk(ctlr_info_t
*h
, unsigned char lunid
[],
2160 int controller_node
)
2164 drv_index
= cciss_alloc_drive_info(h
, controller_node
);
2165 if (drv_index
== -1)
2168 /*Check if the gendisk needs to be allocated */
2169 if (!h
->gendisk
[drv_index
]) {
2170 h
->gendisk
[drv_index
] =
2171 alloc_disk(1 << NWD_SHIFT
);
2172 if (!h
->gendisk
[drv_index
]) {
2173 dev_err(&h
->pdev
->dev
,
2174 "could not allocate a new disk %d\n",
2176 goto err_free_drive_info
;
2179 memcpy(h
->drv
[drv_index
]->LunID
, lunid
,
2180 sizeof(h
->drv
[drv_index
]->LunID
));
2181 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
2183 /* Don't need to mark this busy because nobody */
2184 /* else knows about this disk yet to contend */
2185 /* for access to it. */
2186 h
->drv
[drv_index
]->busy_configuring
= 0;
2191 cciss_free_gendisk(h
, drv_index
);
2192 err_free_drive_info
:
2193 cciss_free_drive_info(h
, drv_index
);
2197 /* This is for the special case of a controller which
2198 * has no logical drives. In this case, we still need
2199 * to register a disk so the controller can be accessed
2200 * by the Array Config Utility.
2202 static void cciss_add_controller_node(ctlr_info_t
*h
)
2204 struct gendisk
*disk
;
2207 if (h
->gendisk
[0] != NULL
) /* already did this? Then bail. */
2210 drv_index
= cciss_add_gendisk(h
, CTLR_LUNID
, 1);
2211 if (drv_index
== -1)
2213 h
->drv
[drv_index
]->block_size
= 512;
2214 h
->drv
[drv_index
]->nr_blocks
= 0;
2215 h
->drv
[drv_index
]->heads
= 0;
2216 h
->drv
[drv_index
]->sectors
= 0;
2217 h
->drv
[drv_index
]->cylinders
= 0;
2218 h
->drv
[drv_index
]->raid_level
= -1;
2219 memset(h
->drv
[drv_index
]->serial_no
, 0, 16);
2220 disk
= h
->gendisk
[drv_index
];
2221 if (cciss_add_disk(h
, disk
, drv_index
) == 0)
2223 cciss_free_gendisk(h
, drv_index
);
2224 cciss_free_drive_info(h
, drv_index
);
2226 dev_warn(&h
->pdev
->dev
, "could not add disk 0.\n");
2230 /* This function will add and remove logical drives from the Logical
2231 * drive array of the controller and maintain persistency of ordering
2232 * so that mount points are preserved until the next reboot. This allows
2233 * for the removal of logical drives in the middle of the drive array
2234 * without a re-ordering of those drives.
2236 * h = The controller to perform the operations on
2238 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
,
2242 ReportLunData_struct
*ld_buff
= NULL
;
2248 unsigned char lunid
[8] = CTLR_LUNID
;
2249 unsigned long flags
;
2251 if (!capable(CAP_SYS_RAWIO
))
2254 /* Set busy_configuring flag for this operation */
2255 spin_lock_irqsave(&h
->lock
, flags
);
2256 if (h
->busy_configuring
) {
2257 spin_unlock_irqrestore(&h
->lock
, flags
);
2260 h
->busy_configuring
= 1;
2261 spin_unlock_irqrestore(&h
->lock
, flags
);
2263 ld_buff
= kzalloc(sizeof(ReportLunData_struct
), GFP_KERNEL
);
2264 if (ld_buff
== NULL
)
2267 return_code
= sendcmd_withirq(h
, CISS_REPORT_LOG
, ld_buff
,
2268 sizeof(ReportLunData_struct
),
2269 0, CTLR_LUNID
, TYPE_CMD
);
2271 if (return_code
== IO_OK
)
2272 listlength
= be32_to_cpu(*(__be32
*) ld_buff
->LUNListLength
);
2273 else { /* reading number of logical volumes failed */
2274 dev_warn(&h
->pdev
->dev
,
2275 "report logical volume command failed\n");
2280 num_luns
= listlength
/ 8; /* 8 bytes per entry */
2281 if (num_luns
> CISS_MAX_LUN
) {
2282 num_luns
= CISS_MAX_LUN
;
2283 dev_warn(&h
->pdev
->dev
, "more luns configured"
2284 " on controller than can be handled by"
2289 cciss_add_controller_node(h
);
2291 /* Compare controller drive array to driver's drive array
2292 * to see if any drives are missing on the controller due
2293 * to action of Array Config Utility (user deletes drive)
2294 * and deregister logical drives which have disappeared.
2296 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2300 /* skip holes in the array from already deleted drives */
2301 if (h
->drv
[i
] == NULL
)
2304 for (j
= 0; j
< num_luns
; j
++) {
2305 memcpy(lunid
, &ld_buff
->LUN
[j
][0], sizeof(lunid
));
2306 if (memcmp(h
->drv
[i
]->LunID
, lunid
,
2307 sizeof(lunid
)) == 0) {
2313 /* Deregister it from the OS, it's gone. */
2314 spin_lock_irqsave(&h
->lock
, flags
);
2315 h
->drv
[i
]->busy_configuring
= 1;
2316 spin_unlock_irqrestore(&h
->lock
, flags
);
2317 return_code
= deregister_disk(h
, i
, 1, via_ioctl
);
2318 if (h
->drv
[i
] != NULL
)
2319 h
->drv
[i
]->busy_configuring
= 0;
2323 /* Compare controller drive array to driver's drive array.
2324 * Check for updates in the drive information and any new drives
2325 * on the controller due to ACU adding logical drives, or changing
2326 * a logical drive's size, etc. Reregister any new/changed drives
2328 for (i
= 0; i
< num_luns
; i
++) {
2333 memcpy(lunid
, &ld_buff
->LUN
[i
][0], sizeof(lunid
));
2334 /* Find if the LUN is already in the drive array
2335 * of the driver. If so then update its info
2336 * if not in use. If it does not exist then find
2337 * the first free index and add it.
2339 for (j
= 0; j
<= h
->highest_lun
; j
++) {
2340 if (h
->drv
[j
] != NULL
&&
2341 memcmp(h
->drv
[j
]->LunID
, lunid
,
2342 sizeof(h
->drv
[j
]->LunID
)) == 0) {
2349 /* check if the drive was found already in the array */
2351 drv_index
= cciss_add_gendisk(h
, lunid
, 0);
2352 if (drv_index
== -1)
2355 cciss_update_drive_info(h
, drv_index
, first_time
, via_ioctl
);
2360 h
->busy_configuring
= 0;
2361 /* We return -1 here to tell the ACU that we have registered/updated
2362 * all of the drives that we can and to keep it from calling us
2367 dev_err(&h
->pdev
->dev
, "out of memory\n");
2368 h
->busy_configuring
= 0;
2372 static void cciss_clear_drive_info(drive_info_struct
*drive_info
)
2374 /* zero out the disk size info */
2375 drive_info
->nr_blocks
= 0;
2376 drive_info
->block_size
= 0;
2377 drive_info
->heads
= 0;
2378 drive_info
->sectors
= 0;
2379 drive_info
->cylinders
= 0;
2380 drive_info
->raid_level
= -1;
2381 memset(drive_info
->serial_no
, 0, sizeof(drive_info
->serial_no
));
2382 memset(drive_info
->model
, 0, sizeof(drive_info
->model
));
2383 memset(drive_info
->rev
, 0, sizeof(drive_info
->rev
));
2384 memset(drive_info
->vendor
, 0, sizeof(drive_info
->vendor
));
2386 * don't clear the LUNID though, we need to remember which
2391 /* This function will deregister the disk and it's queue from the
2392 * kernel. It must be called with the controller lock held and the
2393 * drv structures busy_configuring flag set. It's parameters are:
2395 * disk = This is the disk to be deregistered
2396 * drv = This is the drive_info_struct associated with the disk to be
2397 * deregistered. It contains information about the disk used
2399 * clear_all = This flag determines whether or not the disk information
2400 * is going to be completely cleared out and the highest_lun
2401 * reset. Sometimes we want to clear out information about
2402 * the disk in preparation for re-adding it. In this case
2403 * the highest_lun should be left unchanged and the LunID
2404 * should not be cleared.
2406 * This indicates whether we've reached this path via ioctl.
2407 * This affects the maximum usage count allowed for c0d0 to be messed with.
2408 * If this path is reached via ioctl(), then the max_usage_count will
2409 * be 1, as the process calling ioctl() has got to have the device open.
2410 * If we get here via sysfs, then the max usage count will be zero.
2412 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
2413 int clear_all
, int via_ioctl
)
2416 struct gendisk
*disk
;
2417 drive_info_struct
*drv
;
2418 int recalculate_highest_lun
;
2420 if (!capable(CAP_SYS_RAWIO
))
2423 drv
= h
->drv
[drv_index
];
2424 disk
= h
->gendisk
[drv_index
];
2426 /* make sure logical volume is NOT is use */
2427 if (clear_all
|| (h
->gendisk
[0] == disk
)) {
2428 if (drv
->usage_count
> via_ioctl
)
2430 } else if (drv
->usage_count
> 0)
2433 recalculate_highest_lun
= (drv
== h
->drv
[h
->highest_lun
]);
2435 /* invalidate the devices and deregister the disk. If it is disk
2436 * zero do not deregister it but just zero out it's values. This
2437 * allows us to delete disk zero but keep the controller registered.
2439 if (h
->gendisk
[0] != disk
) {
2440 struct request_queue
*q
= disk
->queue
;
2441 if (disk
->flags
& GENHD_FL_UP
) {
2442 cciss_destroy_ld_sysfs_entry(h
, drv_index
, 0);
2446 blk_cleanup_queue(q
);
2447 /* If clear_all is set then we are deleting the logical
2448 * drive, not just refreshing its info. For drives
2449 * other than disk 0 we will call put_disk. We do not
2450 * do this for disk 0 as we need it to be able to
2451 * configure the controller.
2454 /* This isn't pretty, but we need to find the
2455 * disk in our array and NULL our the pointer.
2456 * This is so that we will call alloc_disk if
2457 * this index is used again later.
2459 for (i
=0; i
< CISS_MAX_LUN
; i
++){
2460 if (h
->gendisk
[i
] == disk
) {
2461 h
->gendisk
[i
] = NULL
;
2468 set_capacity(disk
, 0);
2469 cciss_clear_drive_info(drv
);
2474 /* if it was the last disk, find the new hightest lun */
2475 if (clear_all
&& recalculate_highest_lun
) {
2476 int newhighest
= -1;
2477 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2478 /* if the disk has size > 0, it is available */
2479 if (h
->drv
[i
] && h
->drv
[i
]->heads
)
2482 h
->highest_lun
= newhighest
;
2487 static int fill_cmd(ctlr_info_t
*h
, CommandList_struct
*c
, __u8 cmd
, void *buff
,
2488 size_t size
, __u8 page_code
, unsigned char *scsi3addr
,
2491 u64bit buff_dma_handle
;
2494 c
->cmd_type
= CMD_IOCTL_PEND
;
2495 c
->Header
.ReplyQueue
= 0;
2497 c
->Header
.SGList
= 1;
2498 c
->Header
.SGTotal
= 1;
2500 c
->Header
.SGList
= 0;
2501 c
->Header
.SGTotal
= 0;
2503 c
->Header
.Tag
.lower
= c
->busaddr
;
2504 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
2506 c
->Request
.Type
.Type
= cmd_type
;
2507 if (cmd_type
== TYPE_CMD
) {
2510 /* are we trying to read a vital product page */
2511 if (page_code
!= 0) {
2512 c
->Request
.CDB
[1] = 0x01;
2513 c
->Request
.CDB
[2] = page_code
;
2515 c
->Request
.CDBLen
= 6;
2516 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2517 c
->Request
.Type
.Direction
= XFER_READ
;
2518 c
->Request
.Timeout
= 0;
2519 c
->Request
.CDB
[0] = CISS_INQUIRY
;
2520 c
->Request
.CDB
[4] = size
& 0xFF;
2522 case CISS_REPORT_LOG
:
2523 case CISS_REPORT_PHYS
:
2524 /* Talking to controller so It's a physical command
2525 mode = 00 target = 0. Nothing to write.
2527 c
->Request
.CDBLen
= 12;
2528 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2529 c
->Request
.Type
.Direction
= XFER_READ
;
2530 c
->Request
.Timeout
= 0;
2531 c
->Request
.CDB
[0] = cmd
;
2532 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
2533 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
2534 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
2535 c
->Request
.CDB
[9] = size
& 0xFF;
2538 case CCISS_READ_CAPACITY
:
2539 c
->Request
.CDBLen
= 10;
2540 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2541 c
->Request
.Type
.Direction
= XFER_READ
;
2542 c
->Request
.Timeout
= 0;
2543 c
->Request
.CDB
[0] = cmd
;
2545 case CCISS_READ_CAPACITY_16
:
2546 c
->Request
.CDBLen
= 16;
2547 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2548 c
->Request
.Type
.Direction
= XFER_READ
;
2549 c
->Request
.Timeout
= 0;
2550 c
->Request
.CDB
[0] = cmd
;
2551 c
->Request
.CDB
[1] = 0x10;
2552 c
->Request
.CDB
[10] = (size
>> 24) & 0xFF;
2553 c
->Request
.CDB
[11] = (size
>> 16) & 0xFF;
2554 c
->Request
.CDB
[12] = (size
>> 8) & 0xFF;
2555 c
->Request
.CDB
[13] = size
& 0xFF;
2556 c
->Request
.Timeout
= 0;
2557 c
->Request
.CDB
[0] = cmd
;
2559 case CCISS_CACHE_FLUSH
:
2560 c
->Request
.CDBLen
= 12;
2561 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2562 c
->Request
.Type
.Direction
= XFER_WRITE
;
2563 c
->Request
.Timeout
= 0;
2564 c
->Request
.CDB
[0] = BMIC_WRITE
;
2565 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
2567 case TEST_UNIT_READY
:
2568 c
->Request
.CDBLen
= 6;
2569 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2570 c
->Request
.Type
.Direction
= XFER_NONE
;
2571 c
->Request
.Timeout
= 0;
2574 dev_warn(&h
->pdev
->dev
, "Unknown Command 0x%c\n", cmd
);
2577 } else if (cmd_type
== TYPE_MSG
) {
2579 case 0: /* ABORT message */
2580 c
->Request
.CDBLen
= 12;
2581 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2582 c
->Request
.Type
.Direction
= XFER_WRITE
;
2583 c
->Request
.Timeout
= 0;
2584 c
->Request
.CDB
[0] = cmd
; /* abort */
2585 c
->Request
.CDB
[1] = 0; /* abort a command */
2586 /* buff contains the tag of the command to abort */
2587 memcpy(&c
->Request
.CDB
[4], buff
, 8);
2589 case 1: /* RESET message */
2590 c
->Request
.CDBLen
= 16;
2591 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2592 c
->Request
.Type
.Direction
= XFER_NONE
;
2593 c
->Request
.Timeout
= 0;
2594 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
2595 c
->Request
.CDB
[0] = cmd
; /* reset */
2596 c
->Request
.CDB
[1] = 0x03; /* reset a target */
2598 case 3: /* No-Op message */
2599 c
->Request
.CDBLen
= 1;
2600 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2601 c
->Request
.Type
.Direction
= XFER_WRITE
;
2602 c
->Request
.Timeout
= 0;
2603 c
->Request
.CDB
[0] = cmd
;
2606 dev_warn(&h
->pdev
->dev
,
2607 "unknown message type %d\n", cmd
);
2611 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
2614 /* Fill in the scatter gather information */
2616 buff_dma_handle
.val
= (__u64
) pci_map_single(h
->pdev
,
2618 PCI_DMA_BIDIRECTIONAL
);
2619 c
->SG
[0].Addr
.lower
= buff_dma_handle
.val32
.lower
;
2620 c
->SG
[0].Addr
.upper
= buff_dma_handle
.val32
.upper
;
2621 c
->SG
[0].Len
= size
;
2622 c
->SG
[0].Ext
= 0; /* we are not chaining */
2627 static int check_target_status(ctlr_info_t
*h
, CommandList_struct
*c
)
2629 switch (c
->err_info
->ScsiStatus
) {
2632 case SAM_STAT_CHECK_CONDITION
:
2633 switch (0xf & c
->err_info
->SenseInfo
[2]) {
2634 case 0: return IO_OK
; /* no sense */
2635 case 1: return IO_OK
; /* recovered error */
2637 if (check_for_unit_attention(h
, c
))
2638 return IO_NEEDS_RETRY
;
2639 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x "
2640 "check condition, sense key = 0x%02x\n",
2641 c
->Request
.CDB
[0], c
->err_info
->SenseInfo
[2]);
2645 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x"
2646 "scsi status = 0x%02x\n",
2647 c
->Request
.CDB
[0], c
->err_info
->ScsiStatus
);
2653 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
)
2655 int return_status
= IO_OK
;
2657 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
2660 switch (c
->err_info
->CommandStatus
) {
2661 case CMD_TARGET_STATUS
:
2662 return_status
= check_target_status(h
, c
);
2664 case CMD_DATA_UNDERRUN
:
2665 case CMD_DATA_OVERRUN
:
2666 /* expected for inquiry and report lun commands */
2669 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x is "
2670 "reported invalid\n", c
->Request
.CDB
[0]);
2671 return_status
= IO_ERROR
;
2673 case CMD_PROTOCOL_ERR
:
2674 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x has "
2675 "protocol error\n", c
->Request
.CDB
[0]);
2676 return_status
= IO_ERROR
;
2678 case CMD_HARDWARE_ERR
:
2679 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x had "
2680 " hardware error\n", c
->Request
.CDB
[0]);
2681 return_status
= IO_ERROR
;
2683 case CMD_CONNECTION_LOST
:
2684 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x had "
2685 "connection lost\n", c
->Request
.CDB
[0]);
2686 return_status
= IO_ERROR
;
2689 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x was "
2690 "aborted\n", c
->Request
.CDB
[0]);
2691 return_status
= IO_ERROR
;
2693 case CMD_ABORT_FAILED
:
2694 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x reports "
2695 "abort failed\n", c
->Request
.CDB
[0]);
2696 return_status
= IO_ERROR
;
2698 case CMD_UNSOLICITED_ABORT
:
2699 dev_warn(&h
->pdev
->dev
, "unsolicited abort 0x%02x\n",
2701 return_status
= IO_NEEDS_RETRY
;
2704 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x returned "
2705 "unknown status %x\n", c
->Request
.CDB
[0],
2706 c
->err_info
->CommandStatus
);
2707 return_status
= IO_ERROR
;
2709 return return_status
;
2712 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
2715 DECLARE_COMPLETION_ONSTACK(wait
);
2716 u64bit buff_dma_handle
;
2717 int return_status
= IO_OK
;
2721 enqueue_cmd_and_start_io(h
, c
);
2723 wait_for_completion(&wait
);
2725 if (c
->err_info
->CommandStatus
== 0 || !attempt_retry
)
2728 return_status
= process_sendcmd_error(h
, c
);
2730 if (return_status
== IO_NEEDS_RETRY
&&
2731 c
->retry_count
< MAX_CMD_RETRIES
) {
2732 dev_warn(&h
->pdev
->dev
, "retrying 0x%02x\n",
2735 /* erase the old error information */
2736 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2737 return_status
= IO_OK
;
2738 INIT_COMPLETION(wait
);
2743 /* unlock the buffers from DMA */
2744 buff_dma_handle
.val32
.lower
= c
->SG
[0].Addr
.lower
;
2745 buff_dma_handle
.val32
.upper
= c
->SG
[0].Addr
.upper
;
2746 pci_unmap_single(h
->pdev
, (dma_addr_t
) buff_dma_handle
.val
,
2747 c
->SG
[0].Len
, PCI_DMA_BIDIRECTIONAL
);
2748 return return_status
;
2751 static int sendcmd_withirq(ctlr_info_t
*h
, __u8 cmd
, void *buff
, size_t size
,
2752 __u8 page_code
, unsigned char scsi3addr
[],
2755 CommandList_struct
*c
;
2758 c
= cmd_special_alloc(h
);
2761 return_status
= fill_cmd(h
, c
, cmd
, buff
, size
, page_code
,
2762 scsi3addr
, cmd_type
);
2763 if (return_status
== IO_OK
)
2764 return_status
= sendcmd_withirq_core(h
, c
, 1);
2766 cmd_special_free(h
, c
);
2767 return return_status
;
2770 static void cciss_geometry_inquiry(ctlr_info_t
*h
, int logvol
,
2771 sector_t total_size
,
2772 unsigned int block_size
,
2773 InquiryData_struct
*inq_buff
,
2774 drive_info_struct
*drv
)
2778 unsigned char scsi3addr
[8];
2780 memset(inq_buff
, 0, sizeof(InquiryData_struct
));
2781 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
2782 return_code
= sendcmd_withirq(h
, CISS_INQUIRY
, inq_buff
,
2783 sizeof(*inq_buff
), 0xC1, scsi3addr
, TYPE_CMD
);
2784 if (return_code
== IO_OK
) {
2785 if (inq_buff
->data_byte
[8] == 0xFF) {
2786 dev_warn(&h
->pdev
->dev
,
2787 "reading geometry failed, volume "
2788 "does not support reading geometry\n");
2790 drv
->sectors
= 32; /* Sectors per track */
2791 drv
->cylinders
= total_size
+ 1;
2792 drv
->raid_level
= RAID_UNKNOWN
;
2794 drv
->heads
= inq_buff
->data_byte
[6];
2795 drv
->sectors
= inq_buff
->data_byte
[7];
2796 drv
->cylinders
= (inq_buff
->data_byte
[4] & 0xff) << 8;
2797 drv
->cylinders
+= inq_buff
->data_byte
[5];
2798 drv
->raid_level
= inq_buff
->data_byte
[8];
2800 drv
->block_size
= block_size
;
2801 drv
->nr_blocks
= total_size
+ 1;
2802 t
= drv
->heads
* drv
->sectors
;
2804 sector_t real_size
= total_size
+ 1;
2805 unsigned long rem
= sector_div(real_size
, t
);
2808 drv
->cylinders
= real_size
;
2810 } else { /* Get geometry failed */
2811 dev_warn(&h
->pdev
->dev
, "reading geometry failed\n");
2816 cciss_read_capacity(ctlr_info_t
*h
, int logvol
, sector_t
*total_size
,
2817 unsigned int *block_size
)
2819 ReadCapdata_struct
*buf
;
2821 unsigned char scsi3addr
[8];
2823 buf
= kzalloc(sizeof(ReadCapdata_struct
), GFP_KERNEL
);
2825 dev_warn(&h
->pdev
->dev
, "out of memory\n");
2829 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
2830 return_code
= sendcmd_withirq(h
, CCISS_READ_CAPACITY
, buf
,
2831 sizeof(ReadCapdata_struct
), 0, scsi3addr
, TYPE_CMD
);
2832 if (return_code
== IO_OK
) {
2833 *total_size
= be32_to_cpu(*(__be32
*) buf
->total_size
);
2834 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2835 } else { /* read capacity command failed */
2836 dev_warn(&h
->pdev
->dev
, "read capacity failed\n");
2838 *block_size
= BLOCK_SIZE
;
2843 static void cciss_read_capacity_16(ctlr_info_t
*h
, int logvol
,
2844 sector_t
*total_size
, unsigned int *block_size
)
2846 ReadCapdata_struct_16
*buf
;
2848 unsigned char scsi3addr
[8];
2850 buf
= kzalloc(sizeof(ReadCapdata_struct_16
), GFP_KERNEL
);
2852 dev_warn(&h
->pdev
->dev
, "out of memory\n");
2856 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
2857 return_code
= sendcmd_withirq(h
, CCISS_READ_CAPACITY_16
,
2858 buf
, sizeof(ReadCapdata_struct_16
),
2859 0, scsi3addr
, TYPE_CMD
);
2860 if (return_code
== IO_OK
) {
2861 *total_size
= be64_to_cpu(*(__be64
*) buf
->total_size
);
2862 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2863 } else { /* read capacity command failed */
2864 dev_warn(&h
->pdev
->dev
, "read capacity failed\n");
2866 *block_size
= BLOCK_SIZE
;
2868 dev_info(&h
->pdev
->dev
, " blocks= %llu block_size= %d\n",
2869 (unsigned long long)*total_size
+1, *block_size
);
2873 static int cciss_revalidate(struct gendisk
*disk
)
2875 ctlr_info_t
*h
= get_host(disk
);
2876 drive_info_struct
*drv
= get_drv(disk
);
2879 unsigned int block_size
;
2880 sector_t total_size
;
2881 InquiryData_struct
*inq_buff
= NULL
;
2883 for (logvol
= 0; logvol
< CISS_MAX_LUN
; logvol
++) {
2884 if (memcmp(h
->drv
[logvol
]->LunID
, drv
->LunID
,
2885 sizeof(drv
->LunID
)) == 0) {
2894 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
2895 if (inq_buff
== NULL
) {
2896 dev_warn(&h
->pdev
->dev
, "out of memory\n");
2899 if (h
->cciss_read
== CCISS_READ_10
) {
2900 cciss_read_capacity(h
, logvol
,
2901 &total_size
, &block_size
);
2903 cciss_read_capacity_16(h
, logvol
,
2904 &total_size
, &block_size
);
2906 cciss_geometry_inquiry(h
, logvol
, total_size
, block_size
,
2909 blk_queue_logical_block_size(drv
->queue
, drv
->block_size
);
2910 set_capacity(disk
, drv
->nr_blocks
);
2917 * Map (physical) PCI mem into (virtual) kernel space
2919 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
2921 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
2922 ulong page_offs
= ((ulong
) base
) - page_base
;
2923 void __iomem
*page_remapped
= ioremap(page_base
, page_offs
+ size
);
2925 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
2929 * Takes jobs of the Q and sends them to the hardware, then puts it on
2930 * the Q to wait for completion.
2932 static void start_io(ctlr_info_t
*h
)
2934 CommandList_struct
*c
;
2936 while (!hlist_empty(&h
->reqQ
)) {
2937 c
= hlist_entry(h
->reqQ
.first
, CommandList_struct
, list
);
2938 /* can't do anything if fifo is full */
2939 if ((h
->access
.fifo_full(h
))) {
2940 dev_warn(&h
->pdev
->dev
, "fifo full\n");
2944 /* Get the first entry from the Request Q */
2948 /* Tell the controller execute command */
2949 h
->access
.submit_command(h
, c
);
2951 /* Put job onto the completed Q */
2956 /* Assumes that h->lock is held. */
2957 /* Zeros out the error record and then resends the command back */
2958 /* to the controller */
2959 static inline void resend_cciss_cmd(ctlr_info_t
*h
, CommandList_struct
*c
)
2961 /* erase the old error information */
2962 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2964 /* add it to software queue and then send it to the controller */
2967 if (h
->Qdepth
> h
->maxQsinceinit
)
2968 h
->maxQsinceinit
= h
->Qdepth
;
2973 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte
,
2974 unsigned int msg_byte
, unsigned int host_byte
,
2975 unsigned int driver_byte
)
2977 /* inverse of macros in scsi.h */
2978 return (scsi_status_byte
& 0xff) |
2979 ((msg_byte
& 0xff) << 8) |
2980 ((host_byte
& 0xff) << 16) |
2981 ((driver_byte
& 0xff) << 24);
2984 static inline int evaluate_target_status(ctlr_info_t
*h
,
2985 CommandList_struct
*cmd
, int *retry_cmd
)
2987 unsigned char sense_key
;
2988 unsigned char status_byte
, msg_byte
, host_byte
, driver_byte
;
2992 /* If we get in here, it means we got "target status", that is, scsi status */
2993 status_byte
= cmd
->err_info
->ScsiStatus
;
2994 driver_byte
= DRIVER_OK
;
2995 msg_byte
= cmd
->err_info
->CommandStatus
; /* correct? seems too device specific */
2997 if (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
)
2998 host_byte
= DID_PASSTHROUGH
;
3002 error_value
= make_status_bytes(status_byte
, msg_byte
,
3003 host_byte
, driver_byte
);
3005 if (cmd
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
) {
3006 if (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
)
3007 dev_warn(&h
->pdev
->dev
, "cmd %p "
3008 "has SCSI Status 0x%x\n",
3009 cmd
, cmd
->err_info
->ScsiStatus
);
3013 /* check the sense key */
3014 sense_key
= 0xf & cmd
->err_info
->SenseInfo
[2];
3015 /* no status or recovered error */
3016 if (((sense_key
== 0x0) || (sense_key
== 0x1)) &&
3017 (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
))
3020 if (check_for_unit_attention(h
, cmd
)) {
3021 *retry_cmd
= !(cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
);
3025 /* Not SG_IO or similar? */
3026 if (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
) {
3027 if (error_value
!= 0)
3028 dev_warn(&h
->pdev
->dev
, "cmd %p has CHECK CONDITION"
3029 " sense key = 0x%x\n", cmd
, sense_key
);
3033 /* SG_IO or similar, copy sense data back */
3034 if (cmd
->rq
->sense
) {
3035 if (cmd
->rq
->sense_len
> cmd
->err_info
->SenseLen
)
3036 cmd
->rq
->sense_len
= cmd
->err_info
->SenseLen
;
3037 memcpy(cmd
->rq
->sense
, cmd
->err_info
->SenseInfo
,
3038 cmd
->rq
->sense_len
);
3040 cmd
->rq
->sense_len
= 0;
3045 /* checks the status of the job and calls complete buffers to mark all
3046 * buffers for the completed job. Note that this function does not need
3047 * to hold the hba/queue lock.
3049 static inline void complete_command(ctlr_info_t
*h
, CommandList_struct
*cmd
,
3053 struct request
*rq
= cmd
->rq
;
3058 rq
->errors
= make_status_bytes(0, 0, 0, DRIVER_TIMEOUT
);
3060 if (cmd
->err_info
->CommandStatus
== 0) /* no error has occurred */
3061 goto after_error_processing
;
3063 switch (cmd
->err_info
->CommandStatus
) {
3064 case CMD_TARGET_STATUS
:
3065 rq
->errors
= evaluate_target_status(h
, cmd
, &retry_cmd
);
3067 case CMD_DATA_UNDERRUN
:
3068 if (cmd
->rq
->cmd_type
== REQ_TYPE_FS
) {
3069 dev_warn(&h
->pdev
->dev
, "cmd %p has"
3070 " completed with data underrun "
3072 cmd
->rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
3075 case CMD_DATA_OVERRUN
:
3076 if (cmd
->rq
->cmd_type
== REQ_TYPE_FS
)
3077 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p has"
3078 " completed with data overrun "
3082 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p is "
3083 "reported invalid\n", cmd
);
3084 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3085 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3086 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3087 DID_PASSTHROUGH
: DID_ERROR
);
3089 case CMD_PROTOCOL_ERR
:
3090 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p has "
3091 "protocol error\n", cmd
);
3092 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3093 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3094 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3095 DID_PASSTHROUGH
: DID_ERROR
);
3097 case CMD_HARDWARE_ERR
:
3098 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p had "
3099 " hardware error\n", cmd
);
3100 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3101 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3102 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3103 DID_PASSTHROUGH
: DID_ERROR
);
3105 case CMD_CONNECTION_LOST
:
3106 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p had "
3107 "connection lost\n", cmd
);
3108 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3109 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3110 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3111 DID_PASSTHROUGH
: DID_ERROR
);
3114 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p was "
3116 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3117 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3118 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3119 DID_PASSTHROUGH
: DID_ABORT
);
3121 case CMD_ABORT_FAILED
:
3122 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p reports "
3123 "abort failed\n", cmd
);
3124 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3125 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3126 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3127 DID_PASSTHROUGH
: DID_ERROR
);
3129 case CMD_UNSOLICITED_ABORT
:
3130 dev_warn(&h
->pdev
->dev
, "cciss%d: unsolicited "
3131 "abort %p\n", h
->ctlr
, cmd
);
3132 if (cmd
->retry_count
< MAX_CMD_RETRIES
) {
3134 dev_warn(&h
->pdev
->dev
, "retrying %p\n", cmd
);
3137 dev_warn(&h
->pdev
->dev
,
3138 "%p retried too many times\n", cmd
);
3139 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3140 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3141 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3142 DID_PASSTHROUGH
: DID_ABORT
);
3145 dev_warn(&h
->pdev
->dev
, "cmd %p timedout\n", cmd
);
3146 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3147 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3148 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3149 DID_PASSTHROUGH
: DID_ERROR
);
3152 dev_warn(&h
->pdev
->dev
, "cmd %p returned "
3153 "unknown status %x\n", cmd
,
3154 cmd
->err_info
->CommandStatus
);
3155 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3156 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3157 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3158 DID_PASSTHROUGH
: DID_ERROR
);
3161 after_error_processing
:
3163 /* We need to return this command */
3165 resend_cciss_cmd(h
, cmd
);
3168 cmd
->rq
->completion_data
= cmd
;
3169 blk_complete_request(cmd
->rq
);
3172 static inline u32
cciss_tag_contains_index(u32 tag
)
3174 #define DIRECT_LOOKUP_BIT 0x10
3175 return tag
& DIRECT_LOOKUP_BIT
;
3178 static inline u32
cciss_tag_to_index(u32 tag
)
3180 #define DIRECT_LOOKUP_SHIFT 5
3181 return tag
>> DIRECT_LOOKUP_SHIFT
;
3184 static inline u32
cciss_tag_discard_error_bits(u32 tag
)
3186 #define CCISS_ERROR_BITS 0x03
3187 return tag
& ~CCISS_ERROR_BITS
;
3190 static inline void cciss_mark_tag_indexed(u32
*tag
)
3192 *tag
|= DIRECT_LOOKUP_BIT
;
3195 static inline void cciss_set_tag_index(u32
*tag
, u32 index
)
3197 *tag
|= (index
<< DIRECT_LOOKUP_SHIFT
);
3201 * Get a request and submit it to the controller.
3203 static void do_cciss_request(struct request_queue
*q
)
3205 ctlr_info_t
*h
= q
->queuedata
;
3206 CommandList_struct
*c
;
3209 struct request
*creq
;
3211 struct scatterlist
*tmp_sg
;
3212 SGDescriptor_struct
*curr_sg
;
3213 drive_info_struct
*drv
;
3218 /* We call start_io here in case there is a command waiting on the
3219 * queue that has not been sent.
3221 if (blk_queue_plugged(q
))
3225 creq
= blk_peek_request(q
);
3229 BUG_ON(creq
->nr_phys_segments
> h
->maxsgentries
);
3235 blk_start_request(creq
);
3237 tmp_sg
= h
->scatter_list
[c
->cmdindex
];
3238 spin_unlock_irq(q
->queue_lock
);
3240 c
->cmd_type
= CMD_RWREQ
;
3243 /* fill in the request */
3244 drv
= creq
->rq_disk
->private_data
;
3245 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
3246 /* got command from pool, so use the command block index instead */
3247 /* for direct lookups. */
3248 /* The first 2 bits are reserved for controller error reporting. */
3249 cciss_set_tag_index(&c
->Header
.Tag
.lower
, c
->cmdindex
);
3250 cciss_mark_tag_indexed(&c
->Header
.Tag
.lower
);
3251 memcpy(&c
->Header
.LUN
, drv
->LunID
, sizeof(drv
->LunID
));
3252 c
->Request
.CDBLen
= 10; /* 12 byte commands not in FW yet; */
3253 c
->Request
.Type
.Type
= TYPE_CMD
; /* It is a command. */
3254 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3255 c
->Request
.Type
.Direction
=
3256 (rq_data_dir(creq
) == READ
) ? XFER_READ
: XFER_WRITE
;
3257 c
->Request
.Timeout
= 0; /* Don't time out */
3259 (rq_data_dir(creq
) == READ
) ? h
->cciss_read
: h
->cciss_write
;
3260 start_blk
= blk_rq_pos(creq
);
3261 dev_dbg(&h
->pdev
->dev
, "sector =%d nr_sectors=%d\n",
3262 (int)blk_rq_pos(creq
), (int)blk_rq_sectors(creq
));
3263 sg_init_table(tmp_sg
, h
->maxsgentries
);
3264 seg
= blk_rq_map_sg(q
, creq
, tmp_sg
);
3266 /* get the DMA records for the setup */
3267 if (c
->Request
.Type
.Direction
== XFER_READ
)
3268 dir
= PCI_DMA_FROMDEVICE
;
3270 dir
= PCI_DMA_TODEVICE
;
3276 for (i
= 0; i
< seg
; i
++) {
3277 if (((sg_index
+1) == (h
->max_cmd_sgentries
)) &&
3278 !chained
&& ((seg
- i
) > 1)) {
3279 /* Point to next chain block. */
3280 curr_sg
= h
->cmd_sg_list
[c
->cmdindex
];
3284 curr_sg
[sg_index
].Len
= tmp_sg
[i
].length
;
3285 temp64
.val
= (__u64
) pci_map_page(h
->pdev
, sg_page(&tmp_sg
[i
]),
3287 tmp_sg
[i
].length
, dir
);
3288 curr_sg
[sg_index
].Addr
.lower
= temp64
.val32
.lower
;
3289 curr_sg
[sg_index
].Addr
.upper
= temp64
.val32
.upper
;
3290 curr_sg
[sg_index
].Ext
= 0; /* we are not chaining */
3294 cciss_map_sg_chain_block(h
, c
, h
->cmd_sg_list
[c
->cmdindex
],
3295 (seg
- (h
->max_cmd_sgentries
- 1)) *
3296 sizeof(SGDescriptor_struct
));
3298 /* track how many SG entries we are using */
3302 dev_dbg(&h
->pdev
->dev
, "Submitting %u sectors in %d segments "
3304 blk_rq_sectors(creq
), seg
, chained
);
3306 c
->Header
.SGTotal
= seg
+ chained
;
3307 if (seg
<= h
->max_cmd_sgentries
)
3308 c
->Header
.SGList
= c
->Header
.SGTotal
;
3310 c
->Header
.SGList
= h
->max_cmd_sgentries
;
3311 set_performant_mode(h
, c
);
3313 if (likely(creq
->cmd_type
== REQ_TYPE_FS
)) {
3314 if(h
->cciss_read
== CCISS_READ_10
) {
3315 c
->Request
.CDB
[1] = 0;
3316 c
->Request
.CDB
[2] = (start_blk
>> 24) & 0xff; /* MSB */
3317 c
->Request
.CDB
[3] = (start_blk
>> 16) & 0xff;
3318 c
->Request
.CDB
[4] = (start_blk
>> 8) & 0xff;
3319 c
->Request
.CDB
[5] = start_blk
& 0xff;
3320 c
->Request
.CDB
[6] = 0; /* (sect >> 24) & 0xff; MSB */
3321 c
->Request
.CDB
[7] = (blk_rq_sectors(creq
) >> 8) & 0xff;
3322 c
->Request
.CDB
[8] = blk_rq_sectors(creq
) & 0xff;
3323 c
->Request
.CDB
[9] = c
->Request
.CDB
[11] = c
->Request
.CDB
[12] = 0;
3325 u32 upper32
= upper_32_bits(start_blk
);
3327 c
->Request
.CDBLen
= 16;
3328 c
->Request
.CDB
[1]= 0;
3329 c
->Request
.CDB
[2]= (upper32
>> 24) & 0xff; /* MSB */
3330 c
->Request
.CDB
[3]= (upper32
>> 16) & 0xff;
3331 c
->Request
.CDB
[4]= (upper32
>> 8) & 0xff;
3332 c
->Request
.CDB
[5]= upper32
& 0xff;
3333 c
->Request
.CDB
[6]= (start_blk
>> 24) & 0xff;
3334 c
->Request
.CDB
[7]= (start_blk
>> 16) & 0xff;
3335 c
->Request
.CDB
[8]= (start_blk
>> 8) & 0xff;
3336 c
->Request
.CDB
[9]= start_blk
& 0xff;
3337 c
->Request
.CDB
[10]= (blk_rq_sectors(creq
) >> 24) & 0xff;
3338 c
->Request
.CDB
[11]= (blk_rq_sectors(creq
) >> 16) & 0xff;
3339 c
->Request
.CDB
[12]= (blk_rq_sectors(creq
) >> 8) & 0xff;
3340 c
->Request
.CDB
[13]= blk_rq_sectors(creq
) & 0xff;
3341 c
->Request
.CDB
[14] = c
->Request
.CDB
[15] = 0;
3343 } else if (creq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
3344 c
->Request
.CDBLen
= creq
->cmd_len
;
3345 memcpy(c
->Request
.CDB
, creq
->cmd
, BLK_MAX_CDB
);
3347 dev_warn(&h
->pdev
->dev
, "bad request type %d\n",
3352 spin_lock_irq(q
->queue_lock
);
3356 if (h
->Qdepth
> h
->maxQsinceinit
)
3357 h
->maxQsinceinit
= h
->Qdepth
;
3363 /* We will already have the driver lock here so not need
3369 static inline unsigned long get_next_completion(ctlr_info_t
*h
)
3371 return h
->access
.command_completed(h
);
3374 static inline int interrupt_pending(ctlr_info_t
*h
)
3376 return h
->access
.intr_pending(h
);
3379 static inline long interrupt_not_for_us(ctlr_info_t
*h
)
3381 return ((h
->access
.intr_pending(h
) == 0) ||
3382 (h
->interrupts_enabled
== 0));
3385 static inline int bad_tag(ctlr_info_t
*h
, u32 tag_index
,
3388 if (unlikely(tag_index
>= h
->nr_cmds
)) {
3389 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
3395 static inline void finish_cmd(ctlr_info_t
*h
, CommandList_struct
*c
,
3399 if (likely(c
->cmd_type
== CMD_RWREQ
))
3400 complete_command(h
, c
, 0);
3401 else if (c
->cmd_type
== CMD_IOCTL_PEND
)
3402 complete(c
->waiting
);
3403 #ifdef CONFIG_CISS_SCSI_TAPE
3404 else if (c
->cmd_type
== CMD_SCSI
)
3405 complete_scsi_command(c
, 0, raw_tag
);
3409 static inline u32
next_command(ctlr_info_t
*h
)
3413 if (unlikely(h
->transMethod
!= CFGTBL_Trans_Performant
))
3414 return h
->access
.command_completed(h
);
3416 if ((*(h
->reply_pool_head
) & 1) == (h
->reply_pool_wraparound
)) {
3417 a
= *(h
->reply_pool_head
); /* Next cmd in ring buffer */
3418 (h
->reply_pool_head
)++;
3419 h
->commands_outstanding
--;
3423 /* Check for wraparound */
3424 if (h
->reply_pool_head
== (h
->reply_pool
+ h
->max_commands
)) {
3425 h
->reply_pool_head
= h
->reply_pool
;
3426 h
->reply_pool_wraparound
^= 1;
3431 /* process completion of an indexed ("direct lookup") command */
3432 static inline u32
process_indexed_cmd(ctlr_info_t
*h
, u32 raw_tag
)
3435 CommandList_struct
*c
;
3437 tag_index
= cciss_tag_to_index(raw_tag
);
3438 if (bad_tag(h
, tag_index
, raw_tag
))
3439 return next_command(h
);
3440 c
= h
->cmd_pool
+ tag_index
;
3441 finish_cmd(h
, c
, raw_tag
);
3442 return next_command(h
);
3445 /* process completion of a non-indexed command */
3446 static inline u32
process_nonindexed_cmd(ctlr_info_t
*h
, u32 raw_tag
)
3449 CommandList_struct
*c
= NULL
;
3450 struct hlist_node
*tmp
;
3451 __u32 busaddr_masked
, tag_masked
;
3453 tag
= cciss_tag_discard_error_bits(raw_tag
);
3454 hlist_for_each_entry(c
, tmp
, &h
->cmpQ
, list
) {
3455 busaddr_masked
= cciss_tag_discard_error_bits(c
->busaddr
);
3456 tag_masked
= cciss_tag_discard_error_bits(tag
);
3457 if (busaddr_masked
== tag_masked
) {
3458 finish_cmd(h
, c
, raw_tag
);
3459 return next_command(h
);
3462 bad_tag(h
, h
->nr_cmds
+ 1, raw_tag
);
3463 return next_command(h
);
3466 static irqreturn_t
do_cciss_intx(int irq
, void *dev_id
)
3468 ctlr_info_t
*h
= dev_id
;
3469 unsigned long flags
;
3472 if (interrupt_not_for_us(h
))
3474 spin_lock_irqsave(&h
->lock
, flags
);
3475 while (interrupt_pending(h
)) {
3476 raw_tag
= get_next_completion(h
);
3477 while (raw_tag
!= FIFO_EMPTY
) {
3478 if (cciss_tag_contains_index(raw_tag
))
3479 raw_tag
= process_indexed_cmd(h
, raw_tag
);
3481 raw_tag
= process_nonindexed_cmd(h
, raw_tag
);
3484 spin_unlock_irqrestore(&h
->lock
, flags
);
3488 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3489 * check the interrupt pending register because it is not set.
3491 static irqreturn_t
do_cciss_msix_intr(int irq
, void *dev_id
)
3493 ctlr_info_t
*h
= dev_id
;
3494 unsigned long flags
;
3497 spin_lock_irqsave(&h
->lock
, flags
);
3498 raw_tag
= get_next_completion(h
);
3499 while (raw_tag
!= FIFO_EMPTY
) {
3500 if (cciss_tag_contains_index(raw_tag
))
3501 raw_tag
= process_indexed_cmd(h
, raw_tag
);
3503 raw_tag
= process_nonindexed_cmd(h
, raw_tag
);
3505 spin_unlock_irqrestore(&h
->lock
, flags
);
3510 * add_to_scan_list() - add controller to rescan queue
3511 * @h: Pointer to the controller.
3513 * Adds the controller to the rescan queue if not already on the queue.
3515 * returns 1 if added to the queue, 0 if skipped (could be on the
3516 * queue already, or the controller could be initializing or shutting
3519 static int add_to_scan_list(struct ctlr_info
*h
)
3521 struct ctlr_info
*test_h
;
3525 if (h
->busy_initializing
)
3528 if (!mutex_trylock(&h
->busy_shutting_down
))
3531 mutex_lock(&scan_mutex
);
3532 list_for_each_entry(test_h
, &scan_q
, scan_list
) {
3538 if (!found
&& !h
->busy_scanning
) {
3539 INIT_COMPLETION(h
->scan_wait
);
3540 list_add_tail(&h
->scan_list
, &scan_q
);
3543 mutex_unlock(&scan_mutex
);
3544 mutex_unlock(&h
->busy_shutting_down
);
3550 * remove_from_scan_list() - remove controller from rescan queue
3551 * @h: Pointer to the controller.
3553 * Removes the controller from the rescan queue if present. Blocks if
3554 * the controller is currently conducting a rescan. The controller
3555 * can be in one of three states:
3556 * 1. Doesn't need a scan
3557 * 2. On the scan list, but not scanning yet (we remove it)
3558 * 3. Busy scanning (and not on the list). In this case we want to wait for
3559 * the scan to complete to make sure the scanning thread for this
3560 * controller is completely idle.
3562 static void remove_from_scan_list(struct ctlr_info
*h
)
3564 struct ctlr_info
*test_h
, *tmp_h
;
3566 mutex_lock(&scan_mutex
);
3567 list_for_each_entry_safe(test_h
, tmp_h
, &scan_q
, scan_list
) {
3568 if (test_h
== h
) { /* state 2. */
3569 list_del(&h
->scan_list
);
3570 complete_all(&h
->scan_wait
);
3571 mutex_unlock(&scan_mutex
);
3575 if (h
->busy_scanning
) { /* state 3. */
3576 mutex_unlock(&scan_mutex
);
3577 wait_for_completion(&h
->scan_wait
);
3578 } else { /* state 1, nothing to do. */
3579 mutex_unlock(&scan_mutex
);
3584 * scan_thread() - kernel thread used to rescan controllers
3587 * A kernel thread used scan for drive topology changes on
3588 * controllers. The thread processes only one controller at a time
3589 * using a queue. Controllers are added to the queue using
3590 * add_to_scan_list() and removed from the queue either after done
3591 * processing or using remove_from_scan_list().
3595 static int scan_thread(void *data
)
3597 struct ctlr_info
*h
;
3600 set_current_state(TASK_INTERRUPTIBLE
);
3602 if (kthread_should_stop())
3606 mutex_lock(&scan_mutex
);
3607 if (list_empty(&scan_q
)) {
3608 mutex_unlock(&scan_mutex
);
3612 h
= list_entry(scan_q
.next
,
3615 list_del(&h
->scan_list
);
3616 h
->busy_scanning
= 1;
3617 mutex_unlock(&scan_mutex
);
3619 rebuild_lun_table(h
, 0, 0);
3620 complete_all(&h
->scan_wait
);
3621 mutex_lock(&scan_mutex
);
3622 h
->busy_scanning
= 0;
3623 mutex_unlock(&scan_mutex
);
3630 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
3632 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
3635 switch (c
->err_info
->SenseInfo
[12]) {
3637 dev_warn(&h
->pdev
->dev
, "a state change "
3638 "detected, command retried\n");
3642 dev_warn(&h
->pdev
->dev
, "LUN failure "
3643 "detected, action required\n");
3646 case REPORT_LUNS_CHANGED
:
3647 dev_warn(&h
->pdev
->dev
, "report LUN data changed\n");
3649 * Here, we could call add_to_scan_list and wake up the scan thread,
3650 * except that it's quite likely that we will get more than one
3651 * REPORT_LUNS_CHANGED condition in quick succession, which means
3652 * that those which occur after the first one will likely happen
3653 * *during* the scan_thread's rescan. And the rescan code is not
3654 * robust enough to restart in the middle, undoing what it has already
3655 * done, and it's not clear that it's even possible to do this, since
3656 * part of what it does is notify the block layer, which starts
3657 * doing it's own i/o to read partition tables and so on, and the
3658 * driver doesn't have visibility to know what might need undoing.
3659 * In any event, if possible, it is horribly complicated to get right
3660 * so we just don't do it for now.
3662 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3666 case POWER_OR_RESET
:
3667 dev_warn(&h
->pdev
->dev
,
3668 "a power on or device reset detected\n");
3671 case UNIT_ATTENTION_CLEARED
:
3672 dev_warn(&h
->pdev
->dev
,
3673 "unit attention cleared by another initiator\n");
3677 dev_warn(&h
->pdev
->dev
, "unknown unit attention detected\n");
3683 * We cannot read the structure directly, for portability we must use
3685 * This is for debug only.
3687 static void print_cfg_table(ctlr_info_t
*h
)
3691 CfgTable_struct
*tb
= h
->cfgtable
;
3693 dev_dbg(&h
->pdev
->dev
, "Controller Configuration information\n");
3694 dev_dbg(&h
->pdev
->dev
, "------------------------------------\n");
3695 for (i
= 0; i
< 4; i
++)
3696 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
3697 temp_name
[4] = '\0';
3698 dev_dbg(&h
->pdev
->dev
, " Signature = %s\n", temp_name
);
3699 dev_dbg(&h
->pdev
->dev
, " Spec Number = %d\n",
3700 readl(&(tb
->SpecValence
)));
3701 dev_dbg(&h
->pdev
->dev
, " Transport methods supported = 0x%x\n",
3702 readl(&(tb
->TransportSupport
)));
3703 dev_dbg(&h
->pdev
->dev
, " Transport methods active = 0x%x\n",
3704 readl(&(tb
->TransportActive
)));
3705 dev_dbg(&h
->pdev
->dev
, " Requested transport Method = 0x%x\n",
3706 readl(&(tb
->HostWrite
.TransportRequest
)));
3707 dev_dbg(&h
->pdev
->dev
, " Coalesce Interrupt Delay = 0x%x\n",
3708 readl(&(tb
->HostWrite
.CoalIntDelay
)));
3709 dev_dbg(&h
->pdev
->dev
, " Coalesce Interrupt Count = 0x%x\n",
3710 readl(&(tb
->HostWrite
.CoalIntCount
)));
3711 dev_dbg(&h
->pdev
->dev
, " Max outstanding commands = 0x%d\n",
3712 readl(&(tb
->CmdsOutMax
)));
3713 dev_dbg(&h
->pdev
->dev
, " Bus Types = 0x%x\n",
3714 readl(&(tb
->BusTypes
)));
3715 for (i
= 0; i
< 16; i
++)
3716 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
3717 temp_name
[16] = '\0';
3718 dev_dbg(&h
->pdev
->dev
, " Server Name = %s\n", temp_name
);
3719 dev_dbg(&h
->pdev
->dev
, " Heartbeat Counter = 0x%x\n\n\n",
3720 readl(&(tb
->HeartBeat
)));
3723 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
3725 int i
, offset
, mem_type
, bar_type
;
3726 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
3729 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3730 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
3731 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
3734 mem_type
= pci_resource_flags(pdev
, i
) &
3735 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
3737 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
3738 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
3739 offset
+= 4; /* 32 bit */
3741 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
3744 default: /* reserved in PCI 2.2 */
3745 dev_warn(&pdev
->dev
,
3746 "Base address is invalid\n");
3751 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
3757 /* Fill in bucket_map[], given nsgs (the max number of
3758 * scatter gather elements supported) and bucket[],
3759 * which is an array of 8 integers. The bucket[] array
3760 * contains 8 different DMA transfer sizes (in 16
3761 * byte increments) which the controller uses to fetch
3762 * commands. This function fills in bucket_map[], which
3763 * maps a given number of scatter gather elements to one of
3764 * the 8 DMA transfer sizes. The point of it is to allow the
3765 * controller to only do as much DMA as needed to fetch the
3766 * command, with the DMA transfer size encoded in the lower
3767 * bits of the command address.
3769 static void calc_bucket_map(int bucket
[], int num_buckets
,
3770 int nsgs
, int *bucket_map
)
3774 /* even a command with 0 SGs requires 4 blocks */
3775 #define MINIMUM_TRANSFER_BLOCKS 4
3776 #define NUM_BUCKETS 8
3777 /* Note, bucket_map must have nsgs+1 entries. */
3778 for (i
= 0; i
<= nsgs
; i
++) {
3779 /* Compute size of a command with i SG entries */
3780 size
= i
+ MINIMUM_TRANSFER_BLOCKS
;
3781 b
= num_buckets
; /* Assume the biggest bucket */
3782 /* Find the bucket that is just big enough */
3783 for (j
= 0; j
< 8; j
++) {
3784 if (bucket
[j
] >= size
) {
3789 /* for a command with i SG entries, use bucket b. */
3794 static void __devinit
cciss_wait_for_mode_change_ack(ctlr_info_t
*h
)
3798 /* under certain very rare conditions, this can take awhile.
3799 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3800 * as we enter this code.) */
3801 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
3802 if (!(readl(h
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
3808 static __devinit
void cciss_enter_performant_mode(ctlr_info_t
*h
)
3810 /* This is a bit complicated. There are 8 registers on
3811 * the controller which we write to to tell it 8 different
3812 * sizes of commands which there may be. It's a way of
3813 * reducing the DMA done to fetch each command. Encoded into
3814 * each command's tag are 3 bits which communicate to the controller
3815 * which of the eight sizes that command fits within. The size of
3816 * each command depends on how many scatter gather entries there are.
3817 * Each SG entry requires 16 bytes. The eight registers are programmed
3818 * with the number of 16-byte blocks a command of that size requires.
3819 * The smallest command possible requires 5 such 16 byte blocks.
3820 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3821 * blocks. Note, this only extends to the SG entries contained
3822 * within the command block, and does not extend to chained blocks
3823 * of SG elements. bft[] contains the eight values we write to
3824 * the registers. They are not evenly distributed, but have more
3825 * sizes for small commands, and fewer sizes for larger commands.
3828 int bft
[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES
+ 4};
3830 * 5 = 1 s/g entry or 4k
3831 * 6 = 2 s/g entry or 8k
3832 * 8 = 4 s/g entry or 16k
3833 * 10 = 6 s/g entry or 24k
3835 unsigned long register_value
;
3836 BUILD_BUG_ON(28 > MAXSGENTRIES
+ 4);
3838 h
->reply_pool_wraparound
= 1; /* spec: init to 1 */
3840 /* Controller spec: zero out this buffer. */
3841 memset(h
->reply_pool
, 0, h
->max_commands
* sizeof(__u64
));
3842 h
->reply_pool_head
= h
->reply_pool
;
3844 trans_offset
= readl(&(h
->cfgtable
->TransMethodOffset
));
3845 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->maxsgentries
,
3846 h
->blockFetchTable
);
3847 writel(bft
[0], &h
->transtable
->BlockFetch0
);
3848 writel(bft
[1], &h
->transtable
->BlockFetch1
);
3849 writel(bft
[2], &h
->transtable
->BlockFetch2
);
3850 writel(bft
[3], &h
->transtable
->BlockFetch3
);
3851 writel(bft
[4], &h
->transtable
->BlockFetch4
);
3852 writel(bft
[5], &h
->transtable
->BlockFetch5
);
3853 writel(bft
[6], &h
->transtable
->BlockFetch6
);
3854 writel(bft
[7], &h
->transtable
->BlockFetch7
);
3856 /* size of controller ring buffer */
3857 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
3858 writel(1, &h
->transtable
->RepQCount
);
3859 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
3860 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
3861 writel(h
->reply_pool_dhandle
, &h
->transtable
->RepQAddr0Low32
);
3862 writel(0, &h
->transtable
->RepQAddr0High32
);
3863 writel(CFGTBL_Trans_Performant
,
3864 &(h
->cfgtable
->HostWrite
.TransportRequest
));
3866 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
3867 cciss_wait_for_mode_change_ack(h
);
3868 register_value
= readl(&(h
->cfgtable
->TransportActive
));
3869 if (!(register_value
& CFGTBL_Trans_Performant
))
3870 dev_warn(&h
->pdev
->dev
, "cciss: unable to get board into"
3871 " performant mode\n");
3874 static void __devinit
cciss_put_controller_into_performant_mode(ctlr_info_t
*h
)
3876 __u32 trans_support
;
3878 dev_dbg(&h
->pdev
->dev
, "Trying to put board into Performant mode\n");
3879 /* Attempt to put controller into performant mode if supported */
3880 /* Does board support performant mode? */
3881 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
3882 if (!(trans_support
& PERFORMANT_MODE
))
3885 dev_dbg(&h
->pdev
->dev
, "Placing controller into performant mode\n");
3886 /* Performant mode demands commands on a 32 byte boundary
3887 * pci_alloc_consistent aligns on page boundarys already.
3888 * Just need to check if divisible by 32
3890 if ((sizeof(CommandList_struct
) % 32) != 0) {
3891 dev_warn(&h
->pdev
->dev
, "%s %d %s\n",
3892 "cciss info: command size[",
3893 (int)sizeof(CommandList_struct
),
3894 "] not divisible by 32, no performant mode..\n");
3898 /* Performant mode ring buffer and supporting data structures */
3899 h
->reply_pool
= (__u64
*)pci_alloc_consistent(
3900 h
->pdev
, h
->max_commands
* sizeof(__u64
),
3901 &(h
->reply_pool_dhandle
));
3903 /* Need a block fetch table for performant mode */
3904 h
->blockFetchTable
= kmalloc(((h
->maxsgentries
+1) *
3905 sizeof(__u32
)), GFP_KERNEL
);
3907 if ((h
->reply_pool
== NULL
) || (h
->blockFetchTable
== NULL
))
3910 cciss_enter_performant_mode(h
);
3912 /* Change the access methods to the performant access methods */
3913 h
->access
= SA5_performant_access
;
3914 h
->transMethod
= CFGTBL_Trans_Performant
;
3918 kfree(h
->blockFetchTable
);
3920 pci_free_consistent(h
->pdev
,
3921 h
->max_commands
* sizeof(__u64
),
3923 h
->reply_pool_dhandle
);
3926 } /* cciss_put_controller_into_performant_mode */
3928 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3929 * controllers that are capable. If not, we use IO-APIC mode.
3932 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*h
)
3934 #ifdef CONFIG_PCI_MSI
3936 struct msix_entry cciss_msix_entries
[4] = { {0, 0}, {0, 1},
3940 /* Some boards advertise MSI but don't really support it */
3941 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
3942 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
3943 goto default_int_mode
;
3945 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
3946 err
= pci_enable_msix(h
->pdev
, cciss_msix_entries
, 4);
3948 h
->intr
[0] = cciss_msix_entries
[0].vector
;
3949 h
->intr
[1] = cciss_msix_entries
[1].vector
;
3950 h
->intr
[2] = cciss_msix_entries
[2].vector
;
3951 h
->intr
[3] = cciss_msix_entries
[3].vector
;
3956 dev_warn(&h
->pdev
->dev
,
3957 "only %d MSI-X vectors available\n", err
);
3958 goto default_int_mode
;
3960 dev_warn(&h
->pdev
->dev
,
3961 "MSI-X init failed %d\n", err
);
3962 goto default_int_mode
;
3965 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
3966 if (!pci_enable_msi(h
->pdev
))
3969 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
3972 #endif /* CONFIG_PCI_MSI */
3973 /* if we get here we're going to use the default interrupt mode */
3974 h
->intr
[PERF_MODE_INT
] = h
->pdev
->irq
;
3978 static int __devinit
cciss_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
3981 u32 subsystem_vendor_id
, subsystem_device_id
;
3983 subsystem_vendor_id
= pdev
->subsystem_vendor
;
3984 subsystem_device_id
= pdev
->subsystem_device
;
3985 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
3986 subsystem_vendor_id
;
3988 for (i
= 0; i
< ARRAY_SIZE(products
); i
++) {
3989 /* Stand aside for hpsa driver on request */
3990 if (cciss_allow_hpsa
&& products
[i
].board_id
== HPSA_BOUNDARY
)
3992 if (*board_id
== products
[i
].board_id
)
3995 dev_warn(&pdev
->dev
, "unrecognized board ID: 0x%08x, ignoring.\n",
4000 static inline bool cciss_board_disabled(ctlr_info_t
*h
)
4004 (void) pci_read_config_word(h
->pdev
, PCI_COMMAND
, &command
);
4005 return ((command
& PCI_COMMAND_MEMORY
) == 0);
4008 static int __devinit
cciss_pci_find_memory_BAR(struct pci_dev
*pdev
,
4009 unsigned long *memory_bar
)
4013 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
4014 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
4015 /* addressing mode bits already removed */
4016 *memory_bar
= pci_resource_start(pdev
, i
);
4017 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
4021 dev_warn(&pdev
->dev
, "no memory BAR found\n");
4025 static int __devinit
cciss_wait_for_board_ready(ctlr_info_t
*h
)
4030 for (i
= 0; i
< CCISS_BOARD_READY_ITERATIONS
; i
++) {
4031 scratchpad
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
4032 if (scratchpad
== CCISS_FIRMWARE_READY
)
4034 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS
);
4036 dev_warn(&h
->pdev
->dev
, "board not ready, timed out.\n");
4040 static int __devinit
cciss_find_cfg_addrs(struct pci_dev
*pdev
,
4041 void __iomem
*vaddr
, u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
4044 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
4045 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
4046 *cfg_base_addr
&= (u32
) 0x0000ffff;
4047 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
4048 if (*cfg_base_addr_index
== -1) {
4049 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index, "
4050 "*cfg_base_addr = 0x%08x\n", *cfg_base_addr
);
4056 static int __devinit
cciss_find_cfgtables(ctlr_info_t
*h
)
4060 u64 cfg_base_addr_index
;
4064 rc
= cciss_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
4065 &cfg_base_addr_index
, &cfg_offset
);
4068 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4069 cfg_base_addr_index
) + cfg_offset
, sizeof(h
->cfgtable
));
4072 /* Find performant mode table. */
4073 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
4074 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4075 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
4076 sizeof(*h
->transtable
));
4082 static void __devinit
cciss_get_max_perf_mode_cmds(struct ctlr_info
*h
)
4084 h
->max_commands
= readl(&(h
->cfgtable
->MaxPerformantModeCommands
));
4085 if (h
->max_commands
< 16) {
4086 dev_warn(&h
->pdev
->dev
, "Controller reports "
4087 "max supported commands of %d, an obvious lie. "
4088 "Using 16. Ensure that firmware is up to date.\n",
4090 h
->max_commands
= 16;
4094 /* Interrogate the hardware for some limits:
4095 * max commands, max SG elements without chaining, and with chaining,
4096 * SG chain block size, etc.
4098 static void __devinit
cciss_find_board_params(ctlr_info_t
*h
)
4100 cciss_get_max_perf_mode_cmds(h
);
4101 h
->nr_cmds
= h
->max_commands
- 4; /* Allow room for some ioctls */
4102 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxSGElements
));
4104 * Limit in-command s/g elements to 32 save dma'able memory.
4105 * Howvever spec says if 0, use 31
4107 h
->max_cmd_sgentries
= 31;
4108 if (h
->maxsgentries
> 512) {
4109 h
->max_cmd_sgentries
= 32;
4110 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sgentries
+ 1;
4111 h
->maxsgentries
--; /* save one for chain pointer */
4113 h
->maxsgentries
= 31; /* default to traditional values */
4118 static inline bool CISS_signature_present(ctlr_info_t
*h
)
4120 if ((readb(&h
->cfgtable
->Signature
[0]) != 'C') ||
4121 (readb(&h
->cfgtable
->Signature
[1]) != 'I') ||
4122 (readb(&h
->cfgtable
->Signature
[2]) != 'S') ||
4123 (readb(&h
->cfgtable
->Signature
[3]) != 'S')) {
4124 dev_warn(&h
->pdev
->dev
, "not a valid CISS config table\n");
4130 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4131 static inline void cciss_enable_scsi_prefetch(ctlr_info_t
*h
)
4136 prefetch
= readl(&(h
->cfgtable
->SCSI_Prefetch
));
4138 writel(prefetch
, &(h
->cfgtable
->SCSI_Prefetch
));
4142 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4143 * in a prefetch beyond physical memory.
4145 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t
*h
)
4150 if (h
->board_id
!= 0x3225103C)
4152 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
4153 dma_prefetch
|= 0x8000;
4154 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
4155 pci_read_config_dword(h
->pdev
, PCI_COMMAND_PARITY
, &dma_refetch
);
4157 pci_write_config_dword(h
->pdev
, PCI_COMMAND_PARITY
, dma_refetch
);
4160 static int __devinit
cciss_pci_init(ctlr_info_t
*h
)
4162 int prod_index
, err
;
4164 prod_index
= cciss_lookup_board_id(h
->pdev
, &h
->board_id
);
4167 h
->product_name
= products
[prod_index
].product_name
;
4168 h
->access
= *(products
[prod_index
].access
);
4170 if (cciss_board_disabled(h
)) {
4171 dev_warn(&h
->pdev
->dev
, "controller appears to be disabled\n");
4174 err
= pci_enable_device(h
->pdev
);
4176 dev_warn(&h
->pdev
->dev
, "Unable to Enable PCI device\n");
4180 err
= pci_request_regions(h
->pdev
, "cciss");
4182 dev_warn(&h
->pdev
->dev
,
4183 "Cannot obtain PCI resources, aborting\n");
4187 dev_dbg(&h
->pdev
->dev
, "irq = %x\n", h
->pdev
->irq
);
4188 dev_dbg(&h
->pdev
->dev
, "board_id = %x\n", h
->board_id
);
4190 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4191 * else we use the IO-APIC interrupt assigned to us by system ROM.
4193 cciss_interrupt_mode(h
);
4194 err
= cciss_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
4196 goto err_out_free_res
;
4197 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
4200 goto err_out_free_res
;
4202 err
= cciss_wait_for_board_ready(h
);
4204 goto err_out_free_res
;
4205 err
= cciss_find_cfgtables(h
);
4207 goto err_out_free_res
;
4209 cciss_find_board_params(h
);
4211 if (!CISS_signature_present(h
)) {
4213 goto err_out_free_res
;
4215 cciss_enable_scsi_prefetch(h
);
4216 cciss_p600_dma_prefetch_quirk(h
);
4217 cciss_put_controller_into_performant_mode(h
);
4222 * Deliberately omit pci_disable_device(): it does something nasty to
4223 * Smart Array controllers that pci_enable_device does not undo
4226 iounmap(h
->transtable
);
4228 iounmap(h
->cfgtable
);
4231 pci_release_regions(h
->pdev
);
4235 /* Function to find the first free pointer into our hba[] array
4236 * Returns -1 if no free entries are left.
4238 static int alloc_cciss_hba(struct pci_dev
*pdev
)
4242 for (i
= 0; i
< MAX_CTLR
; i
++) {
4246 h
= kzalloc(sizeof(ctlr_info_t
), GFP_KERNEL
);
4253 dev_warn(&pdev
->dev
, "This driver supports a maximum"
4254 " of %d controllers.\n", MAX_CTLR
);
4257 dev_warn(&pdev
->dev
, "out of memory.\n");
4261 static void free_hba(ctlr_info_t
*h
)
4265 hba
[h
->ctlr
] = NULL
;
4266 for (i
= 0; i
< h
->highest_lun
+ 1; i
++)
4267 if (h
->gendisk
[i
] != NULL
)
4268 put_disk(h
->gendisk
[i
]);
4272 /* Send a message CDB to the firmware. */
4273 static __devinit
int cciss_message(struct pci_dev
*pdev
, unsigned char opcode
, unsigned char type
)
4276 CommandListHeader_struct CommandHeader
;
4277 RequestBlock_struct Request
;
4278 ErrDescriptor_struct ErrorDescriptor
;
4280 static const size_t cmd_sz
= sizeof(Command
) + sizeof(ErrorInfo_struct
);
4283 uint32_t paddr32
, tag
;
4284 void __iomem
*vaddr
;
4287 vaddr
= ioremap_nocache(pci_resource_start(pdev
, 0), pci_resource_len(pdev
, 0));
4291 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4292 CCISS commands, so they must be allocated from the lower 4GiB of
4294 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4300 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
4306 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4307 although there's no guarantee, we assume that the address is at
4308 least 4-byte aligned (most likely, it's page-aligned). */
4311 cmd
->CommandHeader
.ReplyQueue
= 0;
4312 cmd
->CommandHeader
.SGList
= 0;
4313 cmd
->CommandHeader
.SGTotal
= 0;
4314 cmd
->CommandHeader
.Tag
.lower
= paddr32
;
4315 cmd
->CommandHeader
.Tag
.upper
= 0;
4316 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
4318 cmd
->Request
.CDBLen
= 16;
4319 cmd
->Request
.Type
.Type
= TYPE_MSG
;
4320 cmd
->Request
.Type
.Attribute
= ATTR_HEADOFQUEUE
;
4321 cmd
->Request
.Type
.Direction
= XFER_NONE
;
4322 cmd
->Request
.Timeout
= 0; /* Don't time out */
4323 cmd
->Request
.CDB
[0] = opcode
;
4324 cmd
->Request
.CDB
[1] = type
;
4325 memset(&cmd
->Request
.CDB
[2], 0, 14); /* the rest of the CDB is reserved */
4327 cmd
->ErrorDescriptor
.Addr
.lower
= paddr32
+ sizeof(Command
);
4328 cmd
->ErrorDescriptor
.Addr
.upper
= 0;
4329 cmd
->ErrorDescriptor
.Len
= sizeof(ErrorInfo_struct
);
4331 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
4333 for (i
= 0; i
< 10; i
++) {
4334 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
4335 if ((tag
& ~3) == paddr32
)
4337 schedule_timeout_uninterruptible(HZ
);
4342 /* we leak the DMA buffer here ... no choice since the controller could
4343 still complete the command. */
4346 "controller message %02x:%02x timed out\n",
4351 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
4354 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
4359 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
4364 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4365 #define cciss_noop(p) cciss_message(p, 3, 0)
4367 static __devinit
int cciss_reset_msi(struct pci_dev
*pdev
)
4369 /* the #defines are stolen from drivers/pci/msi.h. */
4370 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4371 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4376 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSI
);
4378 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
4379 if (control
& PCI_MSI_FLAGS_ENABLE
) {
4380 dev_info(&pdev
->dev
, "resetting MSI\n");
4381 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSI_FLAGS_ENABLE
);
4385 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSIX
);
4387 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
4388 if (control
& PCI_MSIX_FLAGS_ENABLE
) {
4389 dev_info(&pdev
->dev
, "resetting MSI-X\n");
4390 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSIX_FLAGS_ENABLE
);
4397 static int cciss_controller_hard_reset(struct pci_dev
*pdev
,
4398 void * __iomem vaddr
, bool use_doorbell
)
4404 /* For everything after the P600, the PCI power state method
4405 * of resetting the controller doesn't work, so we have this
4406 * other way using the doorbell register.
4408 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
4409 writel(DOORBELL_CTLR_RESET
, vaddr
+ SA5_DOORBELL
);
4411 } else { /* Try to do it the PCI power state way */
4413 /* Quoting from the Open CISS Specification: "The Power
4414 * Management Control/Status Register (CSR) controls the power
4415 * state of the device. The normal operating state is D0,
4416 * CSR=00h. The software off state is D3, CSR=03h. To reset
4417 * the controller, place the interface device in D3 then to D0,
4418 * this causes a secondary PCI reset which will reset the
4421 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
4424 "cciss_controller_hard_reset: "
4425 "PCI PM not supported\n");
4428 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
4429 /* enter the D3hot power management state */
4430 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
4431 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4433 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4437 /* enter the D0 power management state */
4438 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4440 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4447 /* This does a hard reset of the controller using PCI power management
4448 * states or using the doorbell register. */
4449 static __devinit
int cciss_kdump_hard_reset_controller(struct pci_dev
*pdev
)
4451 u16 saved_config_space
[32];
4454 u64 cfg_base_addr_index
;
4455 void __iomem
*vaddr
;
4456 unsigned long paddr
;
4457 u32 misc_fw_support
, active_transport
;
4459 CfgTable_struct __iomem
*cfgtable
;
4463 /* For controllers as old a the p600, this is very nearly
4466 * pci_save_state(pci_dev);
4467 * pci_set_power_state(pci_dev, PCI_D3hot);
4468 * pci_set_power_state(pci_dev, PCI_D0);
4469 * pci_restore_state(pci_dev);
4471 * but we can't use these nice canned kernel routines on
4472 * kexec, because they also check the MSI/MSI-X state in PCI
4473 * configuration space and do the wrong thing when it is
4474 * set/cleared. Also, the pci_save/restore_state functions
4475 * violate the ordering requirements for restoring the
4476 * configuration space from the CCISS document (see the
4477 * comment below). So we roll our own ....
4479 * For controllers newer than the P600, the pci power state
4480 * method of resetting doesn't work so we have another way
4481 * using the doorbell register.
4484 /* Exclude 640x boards. These are two pci devices in one slot
4485 * which share a battery backed cache module. One controls the
4486 * cache, the other accesses the cache through the one that controls
4487 * it. If we reset the one controlling the cache, the other will
4488 * likely not be happy. Just forbid resetting this conjoined mess.
4490 cciss_lookup_board_id(pdev
, &board_id
);
4491 if (board_id
== 0x409C0E11 || board_id
== 0x409D0E11) {
4492 dev_warn(&pdev
->dev
, "Cannot reset Smart Array 640x "
4493 "due to shared cache module.");
4497 for (i
= 0; i
< 32; i
++)
4498 pci_read_config_word(pdev
, 2*i
, &saved_config_space
[i
]);
4500 /* find the first memory BAR, so we can find the cfg table */
4501 rc
= cciss_pci_find_memory_BAR(pdev
, &paddr
);
4504 vaddr
= remap_pci_mem(paddr
, 0x250);
4508 /* find cfgtable in order to check if reset via doorbell is supported */
4509 rc
= cciss_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
4510 &cfg_base_addr_index
, &cfg_offset
);
4513 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
4514 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
4520 /* If reset via doorbell register is supported, use that. */
4521 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
4522 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
4524 /* The doorbell reset seems to cause lockups on some Smart
4525 * Arrays (e.g. P410, P410i, maybe others). Until this is
4526 * fixed or at least isolated, avoid the doorbell reset.
4530 rc
= cciss_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
4532 goto unmap_cfgtable
;
4534 /* Restore the PCI configuration space. The Open CISS
4535 * Specification says, "Restore the PCI Configuration
4536 * Registers, offsets 00h through 60h. It is important to
4537 * restore the command register, 16-bits at offset 04h,
4538 * last. Do not restore the configuration status register,
4539 * 16-bits at offset 06h." Note that the offset is 2*i.
4541 for (i
= 0; i
< 32; i
++) {
4542 if (i
== 2 || i
== 3)
4544 pci_write_config_word(pdev
, 2*i
, saved_config_space
[i
]);
4547 pci_write_config_word(pdev
, 4, saved_config_space
[2]);
4549 /* Some devices (notably the HP Smart Array 5i Controller)
4550 need a little pause here */
4551 msleep(CCISS_POST_RESET_PAUSE_MSECS
);
4553 /* Controller should be in simple mode at this point. If it's not,
4554 * It means we're on one of those controllers which doesn't support
4555 * the doorbell reset method and on which the PCI power management reset
4556 * method doesn't work (P800, for example.)
4557 * In those cases, don't try to proceed, as it generally doesn't work.
4559 active_transport
= readl(&cfgtable
->TransportActive
);
4560 if (active_transport
& PERFORMANT_MODE
) {
4561 dev_warn(&pdev
->dev
, "Unable to successfully reset controller,"
4562 " Ignoring controller.\n");
4574 static __devinit
int cciss_init_reset_devices(struct pci_dev
*pdev
)
4581 /* Reset the controller with a PCI power-cycle or via doorbell */
4582 rc
= cciss_kdump_hard_reset_controller(pdev
);
4584 /* -ENOTSUPP here means we cannot reset the controller
4585 * but it's already (and still) up and running in
4586 * "performant mode". Or, it might be 640x, which can't reset
4587 * due to concerns about shared bbwc between 6402/6404 pair.
4589 if (rc
== -ENOTSUPP
)
4590 return 0; /* just try to do the kdump anyhow. */
4593 if (cciss_reset_msi(pdev
))
4596 /* Now try to get the controller to respond to a no-op */
4597 for (i
= 0; i
< CCISS_POST_RESET_NOOP_RETRIES
; i
++) {
4598 if (cciss_noop(pdev
) == 0)
4601 dev_warn(&pdev
->dev
, "no-op failed%s\n",
4602 (i
< CCISS_POST_RESET_NOOP_RETRIES
- 1 ?
4603 "; re-trying" : ""));
4604 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS
);
4610 * This is it. Find all the controllers and register them. I really hate
4611 * stealing all these major device numbers.
4612 * returns the number of block devices registered.
4614 static int __devinit
cciss_init_one(struct pci_dev
*pdev
,
4615 const struct pci_device_id
*ent
)
4621 int dac
, return_code
;
4622 InquiryData_struct
*inq_buff
;
4625 rc
= cciss_init_reset_devices(pdev
);
4628 i
= alloc_cciss_hba(pdev
);
4634 h
->busy_initializing
= 1;
4635 INIT_HLIST_HEAD(&h
->cmpQ
);
4636 INIT_HLIST_HEAD(&h
->reqQ
);
4637 mutex_init(&h
->busy_shutting_down
);
4639 if (cciss_pci_init(h
) != 0)
4640 goto clean_no_release_regions
;
4642 sprintf(h
->devname
, "cciss%d", i
);
4645 init_completion(&h
->scan_wait
);
4647 if (cciss_create_hba_sysfs_entry(h
))
4650 /* configure PCI DMA stuff */
4651 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)))
4653 else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))
4656 dev_err(&h
->pdev
->dev
, "no suitable DMA available\n");
4661 * register with the major number, or get a dynamic major number
4662 * by passing 0 as argument. This is done for greater than
4663 * 8 controller support.
4665 if (i
< MAX_CTLR_ORIG
)
4666 h
->major
= COMPAQ_CISS_MAJOR
+ i
;
4667 rc
= register_blkdev(h
->major
, h
->devname
);
4668 if (rc
== -EBUSY
|| rc
== -EINVAL
) {
4669 dev_err(&h
->pdev
->dev
,
4670 "Unable to get major number %d for %s "
4671 "on hba %d\n", h
->major
, h
->devname
, i
);
4674 if (i
>= MAX_CTLR_ORIG
)
4678 /* make sure the board interrupts are off */
4679 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
4680 if (h
->msi_vector
|| h
->msix_vector
) {
4681 if (request_irq(h
->intr
[PERF_MODE_INT
],
4683 IRQF_DISABLED
, h
->devname
, h
)) {
4684 dev_err(&h
->pdev
->dev
, "Unable to get irq %d for %s\n",
4685 h
->intr
[PERF_MODE_INT
], h
->devname
);
4689 if (request_irq(h
->intr
[PERF_MODE_INT
], do_cciss_intx
,
4690 IRQF_DISABLED
, h
->devname
, h
)) {
4691 dev_err(&h
->pdev
->dev
, "Unable to get irq %d for %s\n",
4692 h
->intr
[PERF_MODE_INT
], h
->devname
);
4697 dev_info(&h
->pdev
->dev
, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4698 h
->devname
, pdev
->device
, pci_name(pdev
),
4699 h
->intr
[PERF_MODE_INT
], dac
? "" : " not");
4702 kmalloc(DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
)
4703 * sizeof(unsigned long), GFP_KERNEL
);
4704 h
->cmd_pool
= (CommandList_struct
*)
4705 pci_alloc_consistent(h
->pdev
,
4706 h
->nr_cmds
* sizeof(CommandList_struct
),
4707 &(h
->cmd_pool_dhandle
));
4708 h
->errinfo_pool
= (ErrorInfo_struct
*)
4709 pci_alloc_consistent(h
->pdev
,
4710 h
->nr_cmds
* sizeof(ErrorInfo_struct
),
4711 &(h
->errinfo_pool_dhandle
));
4712 if ((h
->cmd_pool_bits
== NULL
)
4713 || (h
->cmd_pool
== NULL
)
4714 || (h
->errinfo_pool
== NULL
)) {
4715 dev_err(&h
->pdev
->dev
, "out of memory");
4719 /* Need space for temp scatter list */
4720 h
->scatter_list
= kmalloc(h
->max_commands
*
4721 sizeof(struct scatterlist
*),
4723 if (!h
->scatter_list
)
4726 for (k
= 0; k
< h
->nr_cmds
; k
++) {
4727 h
->scatter_list
[k
] = kmalloc(sizeof(struct scatterlist
) *
4730 if (h
->scatter_list
[k
] == NULL
) {
4731 dev_err(&h
->pdev
->dev
,
4732 "could not allocate s/g lists\n");
4736 h
->cmd_sg_list
= cciss_allocate_sg_chain_blocks(h
,
4737 h
->chainsize
, h
->nr_cmds
);
4738 if (!h
->cmd_sg_list
&& h
->chainsize
> 0)
4741 spin_lock_init(&h
->lock
);
4743 /* Initialize the pdev driver private data.
4744 have it point to h. */
4745 pci_set_drvdata(pdev
, h
);
4746 /* command and error info recs zeroed out before
4748 memset(h
->cmd_pool_bits
, 0,
4749 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
)
4750 * sizeof(unsigned long));
4753 h
->highest_lun
= -1;
4754 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4756 h
->gendisk
[j
] = NULL
;
4759 cciss_scsi_setup(h
);
4761 /* Turn the interrupts on so we can service requests */
4762 h
->access
.set_intr_mask(h
, CCISS_INTR_ON
);
4764 /* Get the firmware version */
4765 inq_buff
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
4766 if (inq_buff
== NULL
) {
4767 dev_err(&h
->pdev
->dev
, "out of memory\n");
4771 return_code
= sendcmd_withirq(h
, CISS_INQUIRY
, inq_buff
,
4772 sizeof(InquiryData_struct
), 0, CTLR_LUNID
, TYPE_CMD
);
4773 if (return_code
== IO_OK
) {
4774 h
->firm_ver
[0] = inq_buff
->data_byte
[32];
4775 h
->firm_ver
[1] = inq_buff
->data_byte
[33];
4776 h
->firm_ver
[2] = inq_buff
->data_byte
[34];
4777 h
->firm_ver
[3] = inq_buff
->data_byte
[35];
4778 } else { /* send command failed */
4779 dev_warn(&h
->pdev
->dev
, "unable to determine firmware"
4780 " version of controller\n");
4786 h
->cciss_max_sectors
= 8192;
4788 rebuild_lun_table(h
, 1, 0);
4789 h
->busy_initializing
= 0;
4793 kfree(h
->cmd_pool_bits
);
4794 /* Free up sg elements */
4795 for (k
-- ; k
>= 0; k
--)
4796 kfree(h
->scatter_list
[k
]);
4797 kfree(h
->scatter_list
);
4798 cciss_free_sg_chain_blocks(h
->cmd_sg_list
, h
->nr_cmds
);
4800 pci_free_consistent(h
->pdev
,
4801 h
->nr_cmds
* sizeof(CommandList_struct
),
4802 h
->cmd_pool
, h
->cmd_pool_dhandle
);
4803 if (h
->errinfo_pool
)
4804 pci_free_consistent(h
->pdev
,
4805 h
->nr_cmds
* sizeof(ErrorInfo_struct
),
4807 h
->errinfo_pool_dhandle
);
4808 free_irq(h
->intr
[PERF_MODE_INT
], h
);
4810 unregister_blkdev(h
->major
, h
->devname
);
4812 cciss_destroy_hba_sysfs_entry(h
);
4814 pci_release_regions(pdev
);
4815 clean_no_release_regions
:
4816 h
->busy_initializing
= 0;
4819 * Deliberately omit pci_disable_device(): it does something nasty to
4820 * Smart Array controllers that pci_enable_device does not undo
4822 pci_set_drvdata(pdev
, NULL
);
4827 static void cciss_shutdown(struct pci_dev
*pdev
)
4833 h
= pci_get_drvdata(pdev
);
4834 flush_buf
= kzalloc(4, GFP_KERNEL
);
4836 dev_warn(&h
->pdev
->dev
, "cache not flushed, out of memory.\n");
4839 /* write all data in the battery backed cache to disk */
4840 memset(flush_buf
, 0, 4);
4841 return_code
= sendcmd_withirq(h
, CCISS_CACHE_FLUSH
, flush_buf
,
4842 4, 0, CTLR_LUNID
, TYPE_CMD
);
4844 if (return_code
!= IO_OK
)
4845 dev_warn(&h
->pdev
->dev
, "Error flushing cache\n");
4846 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
4847 free_irq(h
->intr
[PERF_MODE_INT
], h
);
4850 static void __devexit
cciss_remove_one(struct pci_dev
*pdev
)
4855 if (pci_get_drvdata(pdev
) == NULL
) {
4856 dev_err(&pdev
->dev
, "Unable to remove device\n");
4860 h
= pci_get_drvdata(pdev
);
4862 if (hba
[i
] == NULL
) {
4863 dev_err(&pdev
->dev
, "device appears to already be removed\n");
4867 mutex_lock(&h
->busy_shutting_down
);
4869 remove_from_scan_list(h
);
4870 remove_proc_entry(h
->devname
, proc_cciss
);
4871 unregister_blkdev(h
->major
, h
->devname
);
4873 /* remove it from the disk list */
4874 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4875 struct gendisk
*disk
= h
->gendisk
[j
];
4877 struct request_queue
*q
= disk
->queue
;
4879 if (disk
->flags
& GENHD_FL_UP
) {
4880 cciss_destroy_ld_sysfs_entry(h
, j
, 1);
4884 blk_cleanup_queue(q
);
4888 #ifdef CONFIG_CISS_SCSI_TAPE
4889 cciss_unregister_scsi(h
); /* unhook from SCSI subsystem */
4892 cciss_shutdown(pdev
);
4894 #ifdef CONFIG_PCI_MSI
4896 pci_disable_msix(h
->pdev
);
4897 else if (h
->msi_vector
)
4898 pci_disable_msi(h
->pdev
);
4899 #endif /* CONFIG_PCI_MSI */
4901 iounmap(h
->transtable
);
4902 iounmap(h
->cfgtable
);
4905 pci_free_consistent(h
->pdev
, h
->nr_cmds
* sizeof(CommandList_struct
),
4906 h
->cmd_pool
, h
->cmd_pool_dhandle
);
4907 pci_free_consistent(h
->pdev
, h
->nr_cmds
* sizeof(ErrorInfo_struct
),
4908 h
->errinfo_pool
, h
->errinfo_pool_dhandle
);
4909 kfree(h
->cmd_pool_bits
);
4910 /* Free up sg elements */
4911 for (j
= 0; j
< h
->nr_cmds
; j
++)
4912 kfree(h
->scatter_list
[j
]);
4913 kfree(h
->scatter_list
);
4914 cciss_free_sg_chain_blocks(h
->cmd_sg_list
, h
->nr_cmds
);
4916 * Deliberately omit pci_disable_device(): it does something nasty to
4917 * Smart Array controllers that pci_enable_device does not undo
4919 pci_release_regions(pdev
);
4920 pci_set_drvdata(pdev
, NULL
);
4921 cciss_destroy_hba_sysfs_entry(h
);
4922 mutex_unlock(&h
->busy_shutting_down
);
4926 static struct pci_driver cciss_pci_driver
= {
4928 .probe
= cciss_init_one
,
4929 .remove
= __devexit_p(cciss_remove_one
),
4930 .id_table
= cciss_pci_device_id
, /* id_table */
4931 .shutdown
= cciss_shutdown
,
4935 * This is it. Register the PCI driver information for the cards we control
4936 * the OS will call our registered routines when it finds one of our cards.
4938 static int __init
cciss_init(void)
4943 * The hardware requires that commands are aligned on a 64-bit
4944 * boundary. Given that we use pci_alloc_consistent() to allocate an
4945 * array of them, the size must be a multiple of 8 bytes.
4947 BUILD_BUG_ON(sizeof(CommandList_struct
) % COMMANDLIST_ALIGNMENT
);
4948 printk(KERN_INFO DRIVER_NAME
"\n");
4950 err
= bus_register(&cciss_bus_type
);
4954 /* Start the scan thread */
4955 cciss_scan_thread
= kthread_run(scan_thread
, NULL
, "cciss_scan");
4956 if (IS_ERR(cciss_scan_thread
)) {
4957 err
= PTR_ERR(cciss_scan_thread
);
4958 goto err_bus_unregister
;
4961 /* Register for our PCI devices */
4962 err
= pci_register_driver(&cciss_pci_driver
);
4964 goto err_thread_stop
;
4969 kthread_stop(cciss_scan_thread
);
4971 bus_unregister(&cciss_bus_type
);
4976 static void __exit
cciss_cleanup(void)
4980 pci_unregister_driver(&cciss_pci_driver
);
4981 /* double check that all controller entrys have been removed */
4982 for (i
= 0; i
< MAX_CTLR
; i
++) {
4983 if (hba
[i
] != NULL
) {
4984 dev_warn(&hba
[i
]->pdev
->dev
,
4985 "had to remove controller\n");
4986 cciss_remove_one(hba
[i
]->pdev
);
4989 kthread_stop(cciss_scan_thread
);
4990 remove_proc_entry("driver/cciss", NULL
);
4991 bus_unregister(&cciss_bus_type
);
4994 module_init(cciss_init
);
4995 module_exit(cciss_cleanup
);