4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
53 #include <asm/byteorder.h>
55 #include <asm/uaccess.h>
58 static int __ide_end_request(ide_drive_t
*drive
, struct request
*rq
,
59 int uptodate
, unsigned int nr_bytes
, int dequeue
)
65 error
= uptodate
? uptodate
: -EIO
;
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
71 if (blk_noretry_request(rq
) && error
)
72 nr_bytes
= rq
->hard_nr_sectors
<< 9;
74 if (!blk_fs_request(rq
) && error
&& !rq
->errors
)
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
81 if ((drive
->dev_flags
& IDE_DFLAG_DMA_PIO_RETRY
) &&
82 drive
->retry_pio
<= 3) {
83 drive
->dev_flags
&= ~IDE_DFLAG_DMA_PIO_RETRY
;
87 if (!blk_end_request(rq
, error
, nr_bytes
))
90 if (ret
== 0 && dequeue
)
91 drive
->hwif
->rq
= NULL
;
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
100 * @nr_sectors: number of sectors completed
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
107 int ide_end_request (ide_drive_t
*drive
, int uptodate
, int nr_sectors
)
109 unsigned int nr_bytes
= nr_sectors
<< 9;
110 struct request
*rq
= drive
->hwif
->rq
;
113 if (blk_pc_request(rq
))
114 nr_bytes
= rq
->data_len
;
116 nr_bytes
= rq
->hard_cur_sectors
<< 9;
119 return __ide_end_request(drive
, rq
, uptodate
, nr_bytes
, 1);
121 EXPORT_SYMBOL(ide_end_request
);
124 * ide_end_dequeued_request - complete an IDE I/O
125 * @drive: IDE device for the I/O
127 * @nr_sectors: number of sectors completed
129 * Complete an I/O that is no longer on the request queue. This
130 * typically occurs when we pull the request and issue a REQUEST_SENSE.
131 * We must still finish the old request but we must not tamper with the
132 * queue in the meantime.
134 * NOTE: This path does not handle barrier, but barrier is not supported
138 int ide_end_dequeued_request(ide_drive_t
*drive
, struct request
*rq
,
139 int uptodate
, int nr_sectors
)
141 BUG_ON(!blk_rq_started(rq
));
143 return __ide_end_request(drive
, rq
, uptodate
, nr_sectors
<< 9, 0);
145 EXPORT_SYMBOL_GPL(ide_end_dequeued_request
);
148 * ide_end_drive_cmd - end an explicit drive command
153 * Clean up after success/failure of an explicit drive command.
154 * These get thrown onto the queue so they are synchronized with
155 * real I/O operations on the drive.
157 * In LBA48 mode we have to read the register set twice to get
158 * all the extra information out.
161 void ide_end_drive_cmd (ide_drive_t
*drive
, u8 stat
, u8 err
)
163 ide_hwif_t
*hwif
= drive
->hwif
;
164 struct request
*rq
= hwif
->rq
;
166 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
167 ide_task_t
*task
= (ide_task_t
*)rq
->special
;
170 struct ide_taskfile
*tf
= &task
->tf
;
175 drive
->hwif
->tp_ops
->tf_read(drive
, task
);
177 if (task
->tf_flags
& IDE_TFLAG_DYN
)
180 } else if (blk_pm_request(rq
)) {
181 struct request_pm_state
*pm
= rq
->data
;
183 ide_complete_power_step(drive
, rq
);
184 if (pm
->pm_step
== IDE_PM_COMPLETED
)
185 ide_complete_pm_request(drive
, rq
);
193 if (unlikely(blk_end_request(rq
, (rq
->errors
? -EIO
: 0),
197 EXPORT_SYMBOL(ide_end_drive_cmd
);
199 static void ide_kill_rq(ide_drive_t
*drive
, struct request
*rq
)
202 struct ide_driver
*drv
;
204 drv
= *(struct ide_driver
**)rq
->rq_disk
->private_data
;
205 drv
->end_request(drive
, 0, 0);
207 ide_end_request(drive
, 0, 0);
210 static ide_startstop_t
ide_ata_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
212 ide_hwif_t
*hwif
= drive
->hwif
;
214 if ((stat
& ATA_BUSY
) ||
215 ((stat
& ATA_DF
) && (drive
->dev_flags
& IDE_DFLAG_NOWERR
) == 0)) {
216 /* other bits are useless when BUSY */
217 rq
->errors
|= ERROR_RESET
;
218 } else if (stat
& ATA_ERR
) {
219 /* err has different meaning on cdrom and tape */
220 if (err
== ATA_ABORTED
) {
221 if ((drive
->dev_flags
& IDE_DFLAG_LBA
) &&
222 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
223 hwif
->tp_ops
->read_status(hwif
) == ATA_CMD_INIT_DEV_PARAMS
)
225 } else if ((err
& BAD_CRC
) == BAD_CRC
) {
226 /* UDMA crc error, just retry the operation */
228 } else if (err
& (ATA_BBK
| ATA_UNC
)) {
229 /* retries won't help these */
230 rq
->errors
= ERROR_MAX
;
231 } else if (err
& ATA_TRK0NF
) {
232 /* help it find track zero */
233 rq
->errors
|= ERROR_RECAL
;
237 if ((stat
& ATA_DRQ
) && rq_data_dir(rq
) == READ
&&
238 (hwif
->host_flags
& IDE_HFLAG_ERROR_STOPS_FIFO
) == 0) {
239 int nsect
= drive
->mult_count
? drive
->mult_count
: 1;
241 ide_pad_transfer(drive
, READ
, nsect
* SECTOR_SIZE
);
244 if (rq
->errors
>= ERROR_MAX
|| blk_noretry_request(rq
)) {
245 ide_kill_rq(drive
, rq
);
249 if (hwif
->tp_ops
->read_status(hwif
) & (ATA_BUSY
| ATA_DRQ
))
250 rq
->errors
|= ERROR_RESET
;
252 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
254 return ide_do_reset(drive
);
257 if ((rq
->errors
& ERROR_RECAL
) == ERROR_RECAL
)
258 drive
->special
.b
.recalibrate
= 1;
265 static ide_startstop_t
ide_atapi_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
267 ide_hwif_t
*hwif
= drive
->hwif
;
269 if ((stat
& ATA_BUSY
) ||
270 ((stat
& ATA_DF
) && (drive
->dev_flags
& IDE_DFLAG_NOWERR
) == 0)) {
271 /* other bits are useless when BUSY */
272 rq
->errors
|= ERROR_RESET
;
274 /* add decoding error stuff */
277 if (hwif
->tp_ops
->read_status(hwif
) & (ATA_BUSY
| ATA_DRQ
))
279 hwif
->tp_ops
->exec_command(hwif
, ATA_CMD_IDLEIMMEDIATE
);
281 if (rq
->errors
>= ERROR_MAX
) {
282 ide_kill_rq(drive
, rq
);
284 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
286 return ide_do_reset(drive
);
294 static ide_startstop_t
295 __ide_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
297 if (drive
->media
== ide_disk
)
298 return ide_ata_error(drive
, rq
, stat
, err
);
299 return ide_atapi_error(drive
, rq
, stat
, err
);
303 * ide_error - handle an error on the IDE
304 * @drive: drive the error occurred on
305 * @msg: message to report
308 * ide_error() takes action based on the error returned by the drive.
309 * For normal I/O that may well include retries. We deal with
310 * both new-style (taskfile) and old style command handling here.
311 * In the case of taskfile command handling there is work left to
315 ide_startstop_t
ide_error (ide_drive_t
*drive
, const char *msg
, u8 stat
)
320 err
= ide_dump_status(drive
, msg
, stat
);
322 rq
= drive
->hwif
->rq
;
326 /* retry only "normal" I/O: */
327 if (!blk_fs_request(rq
)) {
329 ide_end_drive_cmd(drive
, stat
, err
);
333 return __ide_error(drive
, rq
, stat
, err
);
335 EXPORT_SYMBOL_GPL(ide_error
);
337 static void ide_tf_set_specify_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
339 tf
->nsect
= drive
->sect
;
340 tf
->lbal
= drive
->sect
;
341 tf
->lbam
= drive
->cyl
;
342 tf
->lbah
= drive
->cyl
>> 8;
343 tf
->device
= (drive
->head
- 1) | drive
->select
;
344 tf
->command
= ATA_CMD_INIT_DEV_PARAMS
;
347 static void ide_tf_set_restore_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
349 tf
->nsect
= drive
->sect
;
350 tf
->command
= ATA_CMD_RESTORE
;
353 static void ide_tf_set_setmult_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
355 tf
->nsect
= drive
->mult_req
;
356 tf
->command
= ATA_CMD_SET_MULTI
;
359 static ide_startstop_t
ide_disk_special(ide_drive_t
*drive
)
361 special_t
*s
= &drive
->special
;
364 memset(&args
, 0, sizeof(ide_task_t
));
365 args
.data_phase
= TASKFILE_NO_DATA
;
367 if (s
->b
.set_geometry
) {
368 s
->b
.set_geometry
= 0;
369 ide_tf_set_specify_cmd(drive
, &args
.tf
);
370 } else if (s
->b
.recalibrate
) {
371 s
->b
.recalibrate
= 0;
372 ide_tf_set_restore_cmd(drive
, &args
.tf
);
373 } else if (s
->b
.set_multmode
) {
374 s
->b
.set_multmode
= 0;
375 ide_tf_set_setmult_cmd(drive
, &args
.tf
);
377 int special
= s
->all
;
379 printk(KERN_ERR
"%s: bad special flag: 0x%02x\n", drive
->name
, special
);
383 args
.tf_flags
= IDE_TFLAG_TF
| IDE_TFLAG_DEVICE
|
384 IDE_TFLAG_CUSTOM_HANDLER
;
386 do_rw_taskfile(drive
, &args
);
392 * do_special - issue some special commands
393 * @drive: drive the command is for
395 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
396 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
398 * It used to do much more, but has been scaled back.
401 static ide_startstop_t
do_special (ide_drive_t
*drive
)
403 special_t
*s
= &drive
->special
;
406 printk("%s: do_special: 0x%02x\n", drive
->name
, s
->all
);
408 if (drive
->media
== ide_disk
)
409 return ide_disk_special(drive
);
416 void ide_map_sg(ide_drive_t
*drive
, struct request
*rq
)
418 ide_hwif_t
*hwif
= drive
->hwif
;
419 struct scatterlist
*sg
= hwif
->sg_table
;
421 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
422 sg_init_one(sg
, rq
->buffer
, rq
->nr_sectors
* SECTOR_SIZE
);
424 } else if (!rq
->bio
) {
425 sg_init_one(sg
, rq
->data
, rq
->data_len
);
428 hwif
->sg_nents
= blk_rq_map_sg(drive
->queue
, rq
, sg
);
432 EXPORT_SYMBOL_GPL(ide_map_sg
);
434 void ide_init_sg_cmd(ide_drive_t
*drive
, struct request
*rq
)
436 ide_hwif_t
*hwif
= drive
->hwif
;
438 hwif
->nsect
= hwif
->nleft
= rq
->nr_sectors
;
443 EXPORT_SYMBOL_GPL(ide_init_sg_cmd
);
446 * execute_drive_command - issue special drive command
447 * @drive: the drive to issue the command on
448 * @rq: the request structure holding the command
450 * execute_drive_cmd() issues a special drive command, usually
451 * initiated by ioctl() from the external hdparm program. The
452 * command can be a drive command, drive task or taskfile
453 * operation. Weirdly you can call it with NULL to wait for
454 * all commands to finish. Don't do this as that is due to change
457 static ide_startstop_t
execute_drive_cmd (ide_drive_t
*drive
,
460 ide_hwif_t
*hwif
= drive
->hwif
;
461 ide_task_t
*task
= rq
->special
;
464 hwif
->data_phase
= task
->data_phase
;
466 switch (hwif
->data_phase
) {
467 case TASKFILE_MULTI_OUT
:
469 case TASKFILE_MULTI_IN
:
471 ide_init_sg_cmd(drive
, rq
);
472 ide_map_sg(drive
, rq
);
477 return do_rw_taskfile(drive
, task
);
481 * NULL is actually a valid way of waiting for
482 * all current requests to be flushed from the queue.
485 printk("%s: DRIVE_CMD (null)\n", drive
->name
);
487 ide_end_drive_cmd(drive
, hwif
->tp_ops
->read_status(hwif
),
488 ide_read_error(drive
));
493 int ide_devset_execute(ide_drive_t
*drive
, const struct ide_devset
*setting
,
496 struct request_queue
*q
= drive
->queue
;
500 if (!(setting
->flags
& DS_SYNC
))
501 return setting
->set(drive
, arg
);
503 rq
= blk_get_request(q
, READ
, __GFP_WAIT
);
504 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
506 rq
->cmd
[0] = REQ_DEVSET_EXEC
;
507 *(int *)&rq
->cmd
[1] = arg
;
508 rq
->special
= setting
->set
;
510 if (blk_execute_rq(q
, NULL
, rq
, 0))
516 EXPORT_SYMBOL_GPL(ide_devset_execute
);
518 static ide_startstop_t
ide_special_rq(ide_drive_t
*drive
, struct request
*rq
)
522 if (cmd
== REQ_PARK_HEADS
|| cmd
== REQ_UNPARK_HEADS
) {
524 struct ide_taskfile
*tf
= &task
.tf
;
526 memset(&task
, 0, sizeof(task
));
527 if (cmd
== REQ_PARK_HEADS
) {
528 drive
->sleep
= *(unsigned long *)rq
->special
;
529 drive
->dev_flags
|= IDE_DFLAG_SLEEPING
;
530 tf
->command
= ATA_CMD_IDLEIMMEDIATE
;
535 task
.tf_flags
|= IDE_TFLAG_CUSTOM_HANDLER
;
536 } else /* cmd == REQ_UNPARK_HEADS */
537 tf
->command
= ATA_CMD_CHK_POWER
;
539 task
.tf_flags
|= IDE_TFLAG_TF
| IDE_TFLAG_DEVICE
;
541 drive
->hwif
->data_phase
= task
.data_phase
= TASKFILE_NO_DATA
;
542 return do_rw_taskfile(drive
, &task
);
546 case REQ_DEVSET_EXEC
:
548 int err
, (*setfunc
)(ide_drive_t
*, int) = rq
->special
;
550 err
= setfunc(drive
, *(int *)&rq
->cmd
[1]);
555 ide_end_request(drive
, err
, 0);
558 case REQ_DRIVE_RESET
:
559 return ide_do_reset(drive
);
561 blk_dump_rq_flags(rq
, "ide_special_rq - bad request");
562 ide_end_request(drive
, 0, 0);
568 * start_request - start of I/O and command issuing for IDE
570 * start_request() initiates handling of a new I/O request. It
571 * accepts commands and I/O (read/write) requests.
573 * FIXME: this function needs a rename
576 static ide_startstop_t
start_request (ide_drive_t
*drive
, struct request
*rq
)
578 ide_startstop_t startstop
;
580 BUG_ON(!blk_rq_started(rq
));
583 printk("%s: start_request: current=0x%08lx\n",
584 drive
->hwif
->name
, (unsigned long) rq
);
587 /* bail early if we've exceeded max_failures */
588 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
589 rq
->cmd_flags
|= REQ_FAILED
;
593 if (blk_pm_request(rq
))
594 ide_check_pm_state(drive
, rq
);
597 if (ide_wait_stat(&startstop
, drive
, drive
->ready_stat
,
598 ATA_BUSY
| ATA_DRQ
, WAIT_READY
)) {
599 printk(KERN_ERR
"%s: drive not ready for command\n", drive
->name
);
602 if (!drive
->special
.all
) {
603 struct ide_driver
*drv
;
606 * We reset the drive so we need to issue a SETFEATURES.
607 * Do it _after_ do_special() restored device parameters.
609 if (drive
->current_speed
== 0xff)
610 ide_config_drive_speed(drive
, drive
->desired_speed
);
612 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
)
613 return execute_drive_cmd(drive
, rq
);
614 else if (blk_pm_request(rq
)) {
615 struct request_pm_state
*pm
= rq
->data
;
617 printk("%s: start_power_step(step: %d)\n",
618 drive
->name
, pm
->pm_step
);
620 startstop
= ide_start_power_step(drive
, rq
);
621 if (startstop
== ide_stopped
&&
622 pm
->pm_step
== IDE_PM_COMPLETED
)
623 ide_complete_pm_request(drive
, rq
);
625 } else if (!rq
->rq_disk
&& blk_special_request(rq
))
627 * TODO: Once all ULDs have been modified to
628 * check for specific op codes rather than
629 * blindly accepting any special request, the
630 * check for ->rq_disk above may be replaced
631 * by a more suitable mechanism or even
634 return ide_special_rq(drive
, rq
);
636 drv
= *(struct ide_driver
**)rq
->rq_disk
->private_data
;
638 return drv
->do_request(drive
, rq
, rq
->sector
);
640 return do_special(drive
);
642 ide_kill_rq(drive
, rq
);
647 * ide_stall_queue - pause an IDE device
648 * @drive: drive to stall
649 * @timeout: time to stall for (jiffies)
651 * ide_stall_queue() can be used by a drive to give excess bandwidth back
652 * to the port by sleeping for timeout jiffies.
655 void ide_stall_queue (ide_drive_t
*drive
, unsigned long timeout
)
657 if (timeout
> WAIT_WORSTCASE
)
658 timeout
= WAIT_WORSTCASE
;
659 drive
->sleep
= timeout
+ jiffies
;
660 drive
->dev_flags
|= IDE_DFLAG_SLEEPING
;
662 EXPORT_SYMBOL(ide_stall_queue
);
664 static inline int ide_lock_port(ide_hwif_t
*hwif
)
674 static inline void ide_unlock_port(ide_hwif_t
*hwif
)
679 static inline int ide_lock_host(struct ide_host
*host
, ide_hwif_t
*hwif
)
683 if (host
->host_flags
& IDE_HFLAG_SERIALIZE
) {
684 rc
= test_and_set_bit_lock(IDE_HOST_BUSY
, &host
->host_busy
);
687 ide_get_lock(ide_intr
, hwif
);
693 static inline void ide_unlock_host(struct ide_host
*host
)
695 if (host
->host_flags
& IDE_HFLAG_SERIALIZE
) {
698 clear_bit_unlock(IDE_HOST_BUSY
, &host
->host_busy
);
703 * Issue a new request to a device.
705 void do_ide_request(struct request_queue
*q
)
707 ide_drive_t
*drive
= q
->queuedata
;
708 ide_hwif_t
*hwif
= drive
->hwif
;
709 struct ide_host
*host
= hwif
->host
;
710 struct request
*rq
= NULL
;
711 ide_startstop_t startstop
;
714 * drive is doing pre-flush, ordered write, post-flush sequence. even
715 * though that is 3 requests, it must be seen as a single transaction.
716 * we must not preempt this drive until that is complete
718 if (blk_queue_flushing(q
))
720 * small race where queue could get replugged during
721 * the 3-request flush cycle, just yank the plug since
722 * we want it to finish asap
726 spin_unlock_irq(q
->queue_lock
);
728 if (ide_lock_host(host
, hwif
))
731 spin_lock_irq(&hwif
->lock
);
733 if (!ide_lock_port(hwif
)) {
734 ide_hwif_t
*prev_port
;
736 prev_port
= hwif
->host
->cur_port
;
739 if (drive
->dev_flags
& IDE_DFLAG_SLEEPING
&&
740 time_after(drive
->sleep
, jiffies
)) {
741 ide_unlock_port(hwif
);
745 if ((hwif
->host
->host_flags
& IDE_HFLAG_SERIALIZE
) &&
748 * set nIEN for previous port, drives in the
749 * quirk_list may not like intr setups/cleanups
751 if (prev_port
&& prev_port
->cur_dev
->quirk_list
== 0)
752 prev_port
->tp_ops
->set_irq(prev_port
, 0);
754 hwif
->host
->cur_port
= hwif
;
756 hwif
->cur_dev
= drive
;
757 drive
->dev_flags
&= ~(IDE_DFLAG_SLEEPING
| IDE_DFLAG_PARKED
);
759 spin_unlock_irq(&hwif
->lock
);
760 spin_lock_irq(q
->queue_lock
);
762 * we know that the queue isn't empty, but this can happen
763 * if the q->prep_rq_fn() decides to kill a request
765 rq
= elv_next_request(drive
->queue
);
766 spin_unlock_irq(q
->queue_lock
);
767 spin_lock_irq(&hwif
->lock
);
770 ide_unlock_port(hwif
);
775 * Sanity: don't accept a request that isn't a PM request
776 * if we are currently power managed. This is very important as
777 * blk_stop_queue() doesn't prevent the elv_next_request()
778 * above to return us whatever is in the queue. Since we call
779 * ide_do_request() ourselves, we end up taking requests while
780 * the queue is blocked...
782 * We let requests forced at head of queue with ide-preempt
783 * though. I hope that doesn't happen too much, hopefully not
784 * unless the subdriver triggers such a thing in its own PM
787 if ((drive
->dev_flags
& IDE_DFLAG_BLOCKED
) &&
788 blk_pm_request(rq
) == 0 &&
789 (rq
->cmd_flags
& REQ_PREEMPT
) == 0) {
790 /* there should be no pending command at this point */
791 ide_unlock_port(hwif
);
797 spin_unlock_irq(&hwif
->lock
);
798 startstop
= start_request(drive
, rq
);
799 spin_lock_irq(&hwif
->lock
);
801 if (startstop
== ide_stopped
)
806 spin_unlock_irq(&hwif
->lock
);
808 ide_unlock_host(host
);
809 spin_lock_irq(q
->queue_lock
);
813 spin_unlock_irq(&hwif
->lock
);
814 ide_unlock_host(host
);
816 spin_lock_irq(q
->queue_lock
);
818 if (!elv_queue_empty(q
))
823 * un-busy the port etc, and clear any pending DMA status. we want to
824 * retry the current request in pio mode instead of risking tossing it
827 static ide_startstop_t
ide_dma_timeout_retry(ide_drive_t
*drive
, int error
)
829 ide_hwif_t
*hwif
= drive
->hwif
;
831 ide_startstop_t ret
= ide_stopped
;
834 * end current dma transaction
838 printk(KERN_WARNING
"%s: DMA timeout error\n", drive
->name
);
839 (void)hwif
->dma_ops
->dma_end(drive
);
840 ret
= ide_error(drive
, "dma timeout error",
841 hwif
->tp_ops
->read_status(hwif
));
843 printk(KERN_WARNING
"%s: DMA timeout retry\n", drive
->name
);
844 hwif
->dma_ops
->dma_timeout(drive
);
848 * disable dma for now, but remember that we did so because of
849 * a timeout -- we'll reenable after we finish this next request
850 * (or rather the first chunk of it) in pio.
852 drive
->dev_flags
|= IDE_DFLAG_DMA_PIO_RETRY
;
854 ide_dma_off_quietly(drive
);
857 * un-busy drive etc and make sure request is sane
871 rq
->sector
= rq
->bio
->bi_sector
;
872 rq
->current_nr_sectors
= bio_iovec(rq
->bio
)->bv_len
>> 9;
873 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
874 rq
->buffer
= bio_data(rq
->bio
);
879 static void ide_plug_device(ide_drive_t
*drive
)
881 struct request_queue
*q
= drive
->queue
;
884 spin_lock_irqsave(q
->queue_lock
, flags
);
885 if (!elv_queue_empty(q
))
887 spin_unlock_irqrestore(q
->queue_lock
, flags
);
891 * ide_timer_expiry - handle lack of an IDE interrupt
892 * @data: timer callback magic (hwif)
894 * An IDE command has timed out before the expected drive return
895 * occurred. At this point we attempt to clean up the current
896 * mess. If the current handler includes an expiry handler then
897 * we invoke the expiry handler, and providing it is happy the
898 * work is done. If that fails we apply generic recovery rules
899 * invoking the handler and checking the drive DMA status. We
900 * have an excessively incestuous relationship with the DMA
901 * logic that wants cleaning up.
904 void ide_timer_expiry (unsigned long data
)
906 ide_hwif_t
*hwif
= (ide_hwif_t
*)data
;
907 ide_drive_t
*uninitialized_var(drive
);
908 ide_handler_t
*handler
;
913 spin_lock_irqsave(&hwif
->lock
, flags
);
915 handler
= hwif
->handler
;
917 if (handler
== NULL
|| hwif
->req_gen
!= hwif
->req_gen_timer
) {
919 * Either a marginal timeout occurred
920 * (got the interrupt just as timer expired),
921 * or we were "sleeping" to give other devices a chance.
922 * Either way, we don't really want to complain about anything.
925 ide_expiry_t
*expiry
= hwif
->expiry
;
926 ide_startstop_t startstop
= ide_stopped
;
928 drive
= hwif
->cur_dev
;
931 wait
= expiry(drive
);
932 if (wait
> 0) { /* continue */
934 hwif
->timer
.expires
= jiffies
+ wait
;
935 hwif
->req_gen_timer
= hwif
->req_gen
;
936 add_timer(&hwif
->timer
);
937 spin_unlock_irqrestore(&hwif
->lock
, flags
);
941 hwif
->handler
= NULL
;
943 * We need to simulate a real interrupt when invoking
944 * the handler() function, which means we need to
945 * globally mask the specific IRQ:
947 spin_unlock(&hwif
->lock
);
948 /* disable_irq_nosync ?? */
949 disable_irq(hwif
->irq
);
950 /* local CPU only, as if we were handling an interrupt */
951 local_irq_disable_nort();
953 startstop
= handler(drive
);
954 } else if (drive_is_ready(drive
)) {
955 if (drive
->waiting_for_dma
)
956 hwif
->dma_ops
->dma_lost_irq(drive
);
957 (void)ide_ack_intr(hwif
);
958 printk(KERN_WARNING
"%s: lost interrupt\n",
960 startstop
= handler(drive
);
962 if (drive
->waiting_for_dma
)
963 startstop
= ide_dma_timeout_retry(drive
, wait
);
965 startstop
= ide_error(drive
, "irq timeout",
966 hwif
->tp_ops
->read_status(hwif
));
968 spin_lock_irq(&hwif
->lock
);
969 enable_irq(hwif
->irq
);
970 if (startstop
== ide_stopped
&& hwif
->polling
== 0) {
971 ide_unlock_port(hwif
);
975 spin_unlock_irqrestore(&hwif
->lock
, flags
);
978 ide_unlock_host(hwif
->host
);
979 ide_plug_device(drive
);
984 * unexpected_intr - handle an unexpected IDE interrupt
985 * @irq: interrupt line
986 * @hwif: port being processed
988 * There's nothing really useful we can do with an unexpected interrupt,
989 * other than reading the status register (to clear it), and logging it.
990 * There should be no way that an irq can happen before we're ready for it,
991 * so we needn't worry much about losing an "important" interrupt here.
993 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
994 * the drive enters "idle", "standby", or "sleep" mode, so if the status
995 * looks "good", we just ignore the interrupt completely.
997 * This routine assumes __cli() is in effect when called.
999 * If an unexpected interrupt happens on irq15 while we are handling irq14
1000 * and if the two interfaces are "serialized" (CMD640), then it looks like
1001 * we could screw up by interfering with a new request being set up for
1004 * In reality, this is a non-issue. The new command is not sent unless
1005 * the drive is ready to accept one, in which case we know the drive is
1006 * not trying to interrupt us. And ide_set_handler() is always invoked
1007 * before completing the issuance of any new drive command, so we will not
1008 * be accidentally invoked as a result of any valid command completion
1012 static void unexpected_intr(int irq
, ide_hwif_t
*hwif
)
1014 u8 stat
= hwif
->tp_ops
->read_status(hwif
);
1016 if (!OK_STAT(stat
, ATA_DRDY
, BAD_STAT
)) {
1017 /* Try to not flood the console with msgs */
1018 static unsigned long last_msgtime
, count
;
1021 if (time_after(jiffies
, last_msgtime
+ HZ
)) {
1022 last_msgtime
= jiffies
;
1023 printk(KERN_ERR
"%s: unexpected interrupt, "
1024 "status=0x%02x, count=%ld\n",
1025 hwif
->name
, stat
, count
);
1031 * ide_intr - default IDE interrupt handler
1032 * @irq: interrupt number
1034 * @regs: unused weirdness from the kernel irq layer
1036 * This is the default IRQ handler for the IDE layer. You should
1037 * not need to override it. If you do be aware it is subtle in
1040 * hwif is the interface in the group currently performing
1041 * a command. hwif->cur_dev is the drive and hwif->handler is
1042 * the IRQ handler to call. As we issue a command the handlers
1043 * step through multiple states, reassigning the handler to the
1044 * next step in the process. Unlike a smart SCSI controller IDE
1045 * expects the main processor to sequence the various transfer
1046 * stages. We also manage a poll timer to catch up with most
1047 * timeout situations. There are still a few where the handlers
1048 * don't ever decide to give up.
1050 * The handler eventually returns ide_stopped to indicate the
1051 * request completed. At this point we issue the next request
1052 * on the port and the process begins again.
1055 irqreturn_t
ide_intr (int irq
, void *dev_id
)
1057 ide_hwif_t
*hwif
= (ide_hwif_t
*)dev_id
;
1058 ide_drive_t
*uninitialized_var(drive
);
1059 ide_handler_t
*handler
;
1060 unsigned long flags
;
1061 ide_startstop_t startstop
;
1062 irqreturn_t irq_ret
= IRQ_NONE
;
1063 int plug_device
= 0;
1065 if (hwif
->host
->host_flags
& IDE_HFLAG_SERIALIZE
) {
1066 if (hwif
!= hwif
->host
->cur_port
)
1070 spin_lock_irqsave(&hwif
->lock
, flags
);
1072 if (!ide_ack_intr(hwif
))
1075 handler
= hwif
->handler
;
1077 if (handler
== NULL
|| hwif
->polling
) {
1079 * Not expecting an interrupt from this drive.
1080 * That means this could be:
1081 * (1) an interrupt from another PCI device
1082 * sharing the same PCI INT# as us.
1083 * or (2) a drive just entered sleep or standby mode,
1084 * and is interrupting to let us know.
1085 * or (3) a spurious interrupt of unknown origin.
1087 * For PCI, we cannot tell the difference,
1088 * so in that case we just ignore it and hope it goes away.
1090 * FIXME: unexpected_intr should be hwif-> then we can
1091 * remove all the ifdef PCI crap
1093 #ifdef CONFIG_BLK_DEV_IDEPCI
1094 if (hwif
->chipset
!= ide_pci
)
1095 #endif /* CONFIG_BLK_DEV_IDEPCI */
1098 * Probably not a shared PCI interrupt,
1099 * so we can safely try to do something about it:
1101 unexpected_intr(irq
, hwif
);
1102 #ifdef CONFIG_BLK_DEV_IDEPCI
1105 * Whack the status register, just in case
1106 * we have a leftover pending IRQ.
1108 (void)hwif
->tp_ops
->read_status(hwif
);
1109 #endif /* CONFIG_BLK_DEV_IDEPCI */
1114 drive
= hwif
->cur_dev
;
1116 if (!drive_is_ready(drive
))
1118 * This happens regularly when we share a PCI IRQ with
1119 * another device. Unfortunately, it can also happen
1120 * with some buggy drives that trigger the IRQ before
1121 * their status register is up to date. Hopefully we have
1122 * enough advance overhead that the latter isn't a problem.
1126 hwif
->handler
= NULL
;
1128 del_timer(&hwif
->timer
);
1129 spin_unlock(&hwif
->lock
);
1131 if (hwif
->port_ops
&& hwif
->port_ops
->clear_irq
)
1132 hwif
->port_ops
->clear_irq(drive
);
1134 if (drive
->dev_flags
& IDE_DFLAG_UNMASK
)
1135 local_irq_enable_in_hardirq();
1137 /* service this interrupt, may set handler for next interrupt */
1138 startstop
= handler(drive
);
1140 spin_lock_irq(&hwif
->lock
);
1142 * Note that handler() may have set things up for another
1143 * interrupt to occur soon, but it cannot happen until
1144 * we exit from this routine, because it will be the
1145 * same irq as is currently being serviced here, and Linux
1146 * won't allow another of the same (on any CPU) until we return.
1148 if (startstop
== ide_stopped
&& hwif
->polling
== 0) {
1149 BUG_ON(hwif
->handler
);
1150 ide_unlock_port(hwif
);
1153 irq_ret
= IRQ_HANDLED
;
1155 spin_unlock_irqrestore(&hwif
->lock
, flags
);
1158 ide_unlock_host(hwif
->host
);
1159 ide_plug_device(drive
);
1164 EXPORT_SYMBOL_GPL(ide_intr
);
1167 * ide_do_drive_cmd - issue IDE special command
1168 * @drive: device to issue command
1169 * @rq: request to issue
1171 * This function issues a special IDE device request
1172 * onto the request queue.
1174 * the rq is queued at the head of the request queue, displacing
1175 * the currently-being-processed request and this function
1176 * returns immediately without waiting for the new rq to be
1177 * completed. This is VERY DANGEROUS, and is intended for
1178 * careful use by the ATAPI tape/cdrom driver code.
1181 void ide_do_drive_cmd(ide_drive_t
*drive
, struct request
*rq
)
1183 struct request_queue
*q
= drive
->queue
;
1184 unsigned long flags
;
1186 drive
->hwif
->rq
= NULL
;
1188 spin_lock_irqsave(q
->queue_lock
, flags
);
1189 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FRONT
, 0);
1190 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1192 EXPORT_SYMBOL(ide_do_drive_cmd
);
1194 void ide_pktcmd_tf_load(ide_drive_t
*drive
, u32 tf_flags
, u16 bcount
, u8 dma
)
1196 ide_hwif_t
*hwif
= drive
->hwif
;
1199 memset(&task
, 0, sizeof(task
));
1200 task
.tf_flags
= IDE_TFLAG_OUT_LBAH
| IDE_TFLAG_OUT_LBAM
|
1201 IDE_TFLAG_OUT_FEATURE
| tf_flags
;
1202 task
.tf
.feature
= dma
; /* Use PIO/DMA */
1203 task
.tf
.lbam
= bcount
& 0xff;
1204 task
.tf
.lbah
= (bcount
>> 8) & 0xff;
1206 ide_tf_dump(drive
->name
, &task
.tf
);
1207 hwif
->tp_ops
->set_irq(hwif
, 1);
1208 SELECT_MASK(drive
, 0);
1209 hwif
->tp_ops
->tf_load(drive
, &task
);
1212 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load
);
1214 void ide_pad_transfer(ide_drive_t
*drive
, int write
, int len
)
1216 ide_hwif_t
*hwif
= drive
->hwif
;
1221 hwif
->tp_ops
->output_data(drive
, NULL
, buf
, min(4, len
));
1223 hwif
->tp_ops
->input_data(drive
, NULL
, buf
, min(4, len
));
1227 EXPORT_SYMBOL_GPL(ide_pad_transfer
);