2 * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 * 2000 Bonin Franck <boninf@free.fr>
6 * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 * This driver intends to support RFC 2734, which describes a method for
27 * transporting IPv4 datagrams over IEEE-1394 serial busses.
31 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33 * Non-RFC 2734 related:
34 * - Handle fragmented skb's coming from the networking layer.
35 * - Move generic GASP reception to core 1394 code
36 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37 * - Stability improvements
38 * - Performance enhancements
39 * - Consider garbage collecting old partial datagrams after X amount of time
42 #include <linux/module.h>
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50 #include <linux/workqueue.h>
52 #include <linux/netdevice.h>
53 #include <linux/inetdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
67 #include "config_roms.h"
70 #include "highlevel.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80 printk(level "%s: " fmt, driver_name, ## args)
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83 printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
85 struct fragment_info
{
86 struct list_head list
;
91 struct partial_datagram
{
92 struct list_head list
;
98 struct list_head frag_info
;
102 struct list_head list
; /* partial datagram list per node */
103 unsigned int sz
; /* partial datagram list size per node */
104 spinlock_t lock
; /* partial datagram lock */
107 struct eth1394_host_info
{
108 struct hpsb_host
*host
;
109 struct net_device
*dev
;
112 struct eth1394_node_ref
{
113 struct unit_directory
*ud
;
114 struct list_head list
;
117 struct eth1394_node_info
{
118 u16 maxpayload
; /* max payload */
119 u8 sspd
; /* max speed */
120 u64 fifo
; /* FIFO address */
121 struct pdg_list pdg
; /* partial RX datagram lists */
122 int dgl
; /* outgoing datagram label */
125 static const char driver_name
[] = "eth1394";
127 static struct kmem_cache
*packet_task_cache
;
129 static struct hpsb_highlevel eth1394_highlevel
;
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len
[] = {
133 sizeof(struct eth1394_uf_hdr
),
134 sizeof(struct eth1394_ff_hdr
),
135 sizeof(struct eth1394_sf_hdr
),
136 sizeof(struct eth1394_sf_hdr
)
139 static const u16 eth1394_speedto_maxpayload
[] = {
140 /* S100, S200, S400, S800, S1600, S3200 */
141 512, 1024, 2048, 4096, 4096, 4096
144 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146 MODULE_LICENSE("GPL");
149 * The max_partial_datagrams parameter is the maximum number of fragmented
150 * datagrams per node that eth1394 will keep in memory. Providing an upper
151 * bound allows us to limit the amount of memory that partial datagrams
152 * consume in the event that some partial datagrams are never completed.
154 static int max_partial_datagrams
= 25;
155 module_param(max_partial_datagrams
, int, S_IRUGO
| S_IWUSR
);
156 MODULE_PARM_DESC(max_partial_datagrams
,
157 "Maximum number of partially received fragmented datagrams "
161 static int ether1394_header(struct sk_buff
*skb
, struct net_device
*dev
,
162 unsigned short type
, const void *daddr
,
163 const void *saddr
, unsigned len
);
164 static int ether1394_rebuild_header(struct sk_buff
*skb
);
165 static int ether1394_header_parse(const struct sk_buff
*skb
,
166 unsigned char *haddr
);
167 static int ether1394_header_cache(const struct neighbour
*neigh
,
168 struct hh_cache
*hh
);
169 static void ether1394_header_cache_update(struct hh_cache
*hh
,
170 const struct net_device
*dev
,
171 const unsigned char *haddr
);
172 static int ether1394_tx(struct sk_buff
*skb
, struct net_device
*dev
);
173 static void ether1394_iso(struct hpsb_iso
*iso
);
175 static struct ethtool_ops ethtool_ops
;
177 static int ether1394_write(struct hpsb_host
*host
, int srcid
, int destid
,
178 quadlet_t
*data
, u64 addr
, size_t len
, u16 flags
);
179 static void ether1394_add_host(struct hpsb_host
*host
);
180 static void ether1394_remove_host(struct hpsb_host
*host
);
181 static void ether1394_host_reset(struct hpsb_host
*host
);
183 /* Function for incoming 1394 packets */
184 const static struct hpsb_address_ops addr_ops
= {
185 .write
= ether1394_write
,
188 /* Ieee1394 highlevel driver functions */
189 static struct hpsb_highlevel eth1394_highlevel
= {
191 .add_host
= ether1394_add_host
,
192 .remove_host
= ether1394_remove_host
,
193 .host_reset
= ether1394_host_reset
,
196 static int ether1394_recv_init(struct eth1394_priv
*priv
)
198 unsigned int iso_buf_size
;
200 /* FIXME: rawiso limits us to PAGE_SIZE */
201 iso_buf_size
= min((unsigned int)PAGE_SIZE
,
202 2 * (1U << (priv
->host
->csr
.max_rec
+ 1)));
204 priv
->iso
= hpsb_iso_recv_init(priv
->host
,
205 ETHER1394_GASP_BUFFERS
* iso_buf_size
,
206 ETHER1394_GASP_BUFFERS
,
207 priv
->broadcast_channel
,
208 HPSB_ISO_DMA_PACKET_PER_BUFFER
,
210 if (priv
->iso
== NULL
) {
211 ETH1394_PRINT_G(KERN_ERR
, "Failed to allocate IR context\n");
212 priv
->bc_state
= ETHER1394_BC_ERROR
;
216 if (hpsb_iso_recv_start(priv
->iso
, -1, (1 << 3), -1) < 0)
217 priv
->bc_state
= ETHER1394_BC_STOPPED
;
219 priv
->bc_state
= ETHER1394_BC_RUNNING
;
223 /* This is called after an "ifup" */
224 static int ether1394_open(struct net_device
*dev
)
226 struct eth1394_priv
*priv
= netdev_priv(dev
);
229 if (priv
->bc_state
== ETHER1394_BC_ERROR
) {
230 ret
= ether1394_recv_init(priv
);
234 netif_start_queue(dev
);
238 /* This is called after an "ifdown" */
239 static int ether1394_stop(struct net_device
*dev
)
241 /* flush priv->wake */
242 flush_scheduled_work();
244 netif_stop_queue(dev
);
248 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
249 * so that's what we do. Should we increment the stat counters too? */
250 static void ether1394_tx_timeout(struct net_device
*dev
)
252 struct hpsb_host
*host
=
253 ((struct eth1394_priv
*)netdev_priv(dev
))->host
;
255 ETH1394_PRINT(KERN_ERR
, dev
->name
, "Timeout, resetting host\n");
256 ether1394_host_reset(host
);
259 static inline int ether1394_max_mtu(struct hpsb_host
* host
)
261 return (1 << (host
->csr
.max_rec
+ 1))
262 - sizeof(union eth1394_hdr
) - ETHER1394_GASP_OVERHEAD
;
265 static int ether1394_change_mtu(struct net_device
*dev
, int new_mtu
)
272 max_mtu
= ether1394_max_mtu(
273 ((struct eth1394_priv
*)netdev_priv(dev
))->host
);
274 if (new_mtu
> max_mtu
) {
275 ETH1394_PRINT(KERN_INFO
, dev
->name
,
276 "Local node constrains MTU to %d\n", max_mtu
);
284 static void purge_partial_datagram(struct list_head
*old
)
286 struct partial_datagram
*pd
;
287 struct list_head
*lh
, *n
;
288 struct fragment_info
*fi
;
290 pd
= list_entry(old
, struct partial_datagram
, list
);
292 list_for_each_safe(lh
, n
, &pd
->frag_info
) {
293 fi
= list_entry(lh
, struct fragment_info
, list
);
302 /******************************************
303 * 1394 bus activity functions
304 ******************************************/
306 static struct eth1394_node_ref
*eth1394_find_node(struct list_head
*inl
,
307 struct unit_directory
*ud
)
309 struct eth1394_node_ref
*node
;
311 list_for_each_entry(node
, inl
, list
)
318 static struct eth1394_node_ref
*eth1394_find_node_guid(struct list_head
*inl
,
321 struct eth1394_node_ref
*node
;
323 list_for_each_entry(node
, inl
, list
)
324 if (node
->ud
->ne
->guid
== guid
)
330 static struct eth1394_node_ref
*eth1394_find_node_nodeid(struct list_head
*inl
,
333 struct eth1394_node_ref
*node
;
335 list_for_each_entry(node
, inl
, list
)
336 if (node
->ud
->ne
->nodeid
== nodeid
)
342 static int eth1394_new_node(struct eth1394_host_info
*hi
,
343 struct unit_directory
*ud
)
345 struct eth1394_priv
*priv
;
346 struct eth1394_node_ref
*new_node
;
347 struct eth1394_node_info
*node_info
;
349 new_node
= kmalloc(sizeof(*new_node
), GFP_KERNEL
);
353 node_info
= kmalloc(sizeof(*node_info
), GFP_KERNEL
);
359 spin_lock_init(&node_info
->pdg
.lock
);
360 INIT_LIST_HEAD(&node_info
->pdg
.list
);
361 node_info
->pdg
.sz
= 0;
362 node_info
->fifo
= CSR1212_INVALID_ADDR_SPACE
;
364 ud
->device
.driver_data
= node_info
;
367 priv
= netdev_priv(hi
->dev
);
368 list_add_tail(&new_node
->list
, &priv
->ip_node_list
);
372 static int eth1394_probe(struct device
*dev
)
374 struct unit_directory
*ud
;
375 struct eth1394_host_info
*hi
;
377 ud
= container_of(dev
, struct unit_directory
, device
);
378 hi
= hpsb_get_hostinfo(ð1394_highlevel
, ud
->ne
->host
);
382 return eth1394_new_node(hi
, ud
);
385 static int eth1394_remove(struct device
*dev
)
387 struct unit_directory
*ud
;
388 struct eth1394_host_info
*hi
;
389 struct eth1394_priv
*priv
;
390 struct eth1394_node_ref
*old_node
;
391 struct eth1394_node_info
*node_info
;
392 struct list_head
*lh
, *n
;
395 ud
= container_of(dev
, struct unit_directory
, device
);
396 hi
= hpsb_get_hostinfo(ð1394_highlevel
, ud
->ne
->host
);
400 priv
= netdev_priv(hi
->dev
);
402 old_node
= eth1394_find_node(&priv
->ip_node_list
, ud
);
406 list_del(&old_node
->list
);
409 node_info
= (struct eth1394_node_info
*)ud
->device
.driver_data
;
411 spin_lock_irqsave(&node_info
->pdg
.lock
, flags
);
412 /* The partial datagram list should be empty, but we'll just
413 * make sure anyway... */
414 list_for_each_safe(lh
, n
, &node_info
->pdg
.list
)
415 purge_partial_datagram(lh
);
416 spin_unlock_irqrestore(&node_info
->pdg
.lock
, flags
);
419 ud
->device
.driver_data
= NULL
;
423 static int eth1394_update(struct unit_directory
*ud
)
425 struct eth1394_host_info
*hi
;
426 struct eth1394_priv
*priv
;
427 struct eth1394_node_ref
*node
;
429 hi
= hpsb_get_hostinfo(ð1394_highlevel
, ud
->ne
->host
);
433 priv
= netdev_priv(hi
->dev
);
434 node
= eth1394_find_node(&priv
->ip_node_list
, ud
);
438 return eth1394_new_node(hi
, ud
);
441 static struct ieee1394_device_id eth1394_id_table
[] = {
443 .match_flags
= (IEEE1394_MATCH_SPECIFIER_ID
|
444 IEEE1394_MATCH_VERSION
),
445 .specifier_id
= ETHER1394_GASP_SPECIFIER_ID
,
446 .version
= ETHER1394_GASP_VERSION
,
451 MODULE_DEVICE_TABLE(ieee1394
, eth1394_id_table
);
453 static struct hpsb_protocol_driver eth1394_proto_driver
= {
455 .id_table
= eth1394_id_table
,
456 .update
= eth1394_update
,
458 .probe
= eth1394_probe
,
459 .remove
= eth1394_remove
,
463 static void ether1394_reset_priv(struct net_device
*dev
, int set_mtu
)
467 struct eth1394_priv
*priv
= netdev_priv(dev
);
468 struct hpsb_host
*host
= priv
->host
;
469 u64 guid
= get_unaligned((u64
*)&(host
->csr
.rom
->bus_info_data
[3]));
470 int max_speed
= IEEE1394_SPEED_MAX
;
472 spin_lock_irqsave(&priv
->lock
, flags
);
474 memset(priv
->ud_list
, 0, sizeof(priv
->ud_list
));
475 priv
->bc_maxpayload
= 512;
477 /* Determine speed limit */
478 /* FIXME: This is broken for nodes with link speed < PHY speed,
479 * and it is suboptimal for S200B...S800B hardware.
480 * The result of nodemgr's speed probe should be used somehow. */
481 for (i
= 0; i
< host
->node_count
; i
++) {
482 /* take care of S100B...S400B PHY ports */
483 if (host
->speed
[i
] == SELFID_SPEED_UNKNOWN
) {
484 max_speed
= IEEE1394_SPEED_100
;
487 if (max_speed
> host
->speed
[i
])
488 max_speed
= host
->speed
[i
];
490 priv
->bc_sspd
= max_speed
;
493 /* Use the RFC 2734 default 1500 octets or the maximum payload
495 dev
->mtu
= min(1500, ether1394_max_mtu(host
));
497 /* Set our hardware address while we're at it */
498 memcpy(dev
->dev_addr
, &guid
, sizeof(u64
));
499 memset(dev
->broadcast
, 0xff, sizeof(u64
));
502 spin_unlock_irqrestore(&priv
->lock
, flags
);
505 static const struct header_ops ether1394_header_ops
= {
506 .create
= ether1394_header
,
507 .rebuild
= ether1394_rebuild_header
,
508 .cache
= ether1394_header_cache
,
509 .cache_update
= ether1394_header_cache_update
,
510 .parse
= ether1394_header_parse
,
513 static const struct net_device_ops ether1394_netdev_ops
= {
514 .ndo_open
= ether1394_open
,
515 .ndo_stop
= ether1394_stop
,
516 .ndo_start_xmit
= ether1394_tx
,
517 .ndo_tx_timeout
= ether1394_tx_timeout
,
518 .ndo_change_mtu
= ether1394_change_mtu
,
521 static void ether1394_init_dev(struct net_device
*dev
)
524 dev
->header_ops
= ðer1394_header_ops
;
525 dev
->netdev_ops
= ðer1394_netdev_ops
;
527 SET_ETHTOOL_OPS(dev
, ðtool_ops
);
529 dev
->watchdog_timeo
= ETHER1394_TIMEOUT
;
530 dev
->flags
= IFF_BROADCAST
| IFF_MULTICAST
;
531 dev
->features
= NETIF_F_HIGHDMA
;
532 dev
->addr_len
= ETH1394_ALEN
;
533 dev
->hard_header_len
= ETH1394_HLEN
;
534 dev
->type
= ARPHRD_IEEE1394
;
536 /* FIXME: This value was copied from ether_setup(). Is it too much? */
537 dev
->tx_queue_len
= 1000;
541 * Wake the queue up after commonly encountered transmit failure conditions are
542 * hopefully over. Currently only tlabel exhaustion is accounted for.
544 static void ether1394_wake_queue(struct work_struct
*work
)
546 struct eth1394_priv
*priv
;
547 struct hpsb_packet
*packet
;
549 priv
= container_of(work
, struct eth1394_priv
, wake
);
550 packet
= hpsb_alloc_packet(0);
552 /* This is really bad, but unjam the queue anyway. */
556 packet
->host
= priv
->host
;
557 packet
->node_id
= priv
->wake_node
;
559 * A transaction label is all we really want. If we get one, it almost
560 * always means we can get a lot more because the ieee1394 core recycled
561 * a whole batch of tlabels, at last.
563 if (hpsb_get_tlabel(packet
) == 0)
564 hpsb_free_tlabel(packet
);
566 hpsb_free_packet(packet
);
568 netif_wake_queue(priv
->wake_dev
);
572 * This function is called every time a card is found. It is generally called
573 * when the module is installed. This is where we add all of our ethernet
574 * devices. One for each host.
576 static void ether1394_add_host(struct hpsb_host
*host
)
578 struct eth1394_host_info
*hi
= NULL
;
579 struct net_device
*dev
= NULL
;
580 struct eth1394_priv
*priv
;
583 if (hpsb_config_rom_ip1394_add(host
) != 0) {
584 ETH1394_PRINT_G(KERN_ERR
, "Can't add IP-over-1394 ROM entry\n");
588 fifo_addr
= hpsb_allocate_and_register_addrspace(
589 ð1394_highlevel
, host
, &addr_ops
,
590 ETHER1394_REGION_ADDR_LEN
, ETHER1394_REGION_ADDR_LEN
,
591 CSR1212_INVALID_ADDR_SPACE
, CSR1212_INVALID_ADDR_SPACE
);
592 if (fifo_addr
== CSR1212_INVALID_ADDR_SPACE
) {
593 ETH1394_PRINT_G(KERN_ERR
, "Cannot register CSR space\n");
594 hpsb_config_rom_ip1394_remove(host
);
598 dev
= alloc_netdev(sizeof(*priv
), "eth%d", ether1394_init_dev
);
600 ETH1394_PRINT_G(KERN_ERR
, "Out of memory\n");
604 SET_NETDEV_DEV(dev
, &host
->device
);
606 priv
= netdev_priv(dev
);
607 INIT_LIST_HEAD(&priv
->ip_node_list
);
608 spin_lock_init(&priv
->lock
);
610 priv
->local_fifo
= fifo_addr
;
611 INIT_WORK(&priv
->wake
, ether1394_wake_queue
);
612 priv
->wake_dev
= dev
;
614 hi
= hpsb_create_hostinfo(ð1394_highlevel
, host
, sizeof(*hi
));
616 ETH1394_PRINT_G(KERN_ERR
, "Out of memory\n");
620 ether1394_reset_priv(dev
, 1);
622 if (register_netdev(dev
)) {
623 ETH1394_PRINT_G(KERN_ERR
, "Cannot register the driver\n");
627 ETH1394_PRINT(KERN_INFO
, dev
->name
, "IPv4 over IEEE 1394 (fw-host%d)\n",
633 /* Ignore validity in hopes that it will be set in the future. It'll
634 * be checked when the eth device is opened. */
635 priv
->broadcast_channel
= host
->csr
.broadcast_channel
& 0x3f;
637 ether1394_recv_init(priv
);
643 hpsb_destroy_hostinfo(ð1394_highlevel
, host
);
644 hpsb_unregister_addrspace(ð1394_highlevel
, host
, fifo_addr
);
645 hpsb_config_rom_ip1394_remove(host
);
648 /* Remove a card from our list */
649 static void ether1394_remove_host(struct hpsb_host
*host
)
651 struct eth1394_host_info
*hi
;
652 struct eth1394_priv
*priv
;
654 hi
= hpsb_get_hostinfo(ð1394_highlevel
, host
);
657 priv
= netdev_priv(hi
->dev
);
658 hpsb_unregister_addrspace(ð1394_highlevel
, host
, priv
->local_fifo
);
659 hpsb_config_rom_ip1394_remove(host
);
661 hpsb_iso_shutdown(priv
->iso
);
662 unregister_netdev(hi
->dev
);
663 free_netdev(hi
->dev
);
666 /* A bus reset happened */
667 static void ether1394_host_reset(struct hpsb_host
*host
)
669 struct eth1394_host_info
*hi
;
670 struct eth1394_priv
*priv
;
671 struct net_device
*dev
;
672 struct list_head
*lh
, *n
;
673 struct eth1394_node_ref
*node
;
674 struct eth1394_node_info
*node_info
;
677 hi
= hpsb_get_hostinfo(ð1394_highlevel
, host
);
679 /* This can happen for hosts that we don't use */
684 priv
= netdev_priv(dev
);
686 /* Reset our private host data, but not our MTU */
687 netif_stop_queue(dev
);
688 ether1394_reset_priv(dev
, 0);
690 list_for_each_entry(node
, &priv
->ip_node_list
, list
) {
691 node_info
= node
->ud
->device
.driver_data
;
693 spin_lock_irqsave(&node_info
->pdg
.lock
, flags
);
695 list_for_each_safe(lh
, n
, &node_info
->pdg
.list
)
696 purge_partial_datagram(lh
);
698 INIT_LIST_HEAD(&(node_info
->pdg
.list
));
699 node_info
->pdg
.sz
= 0;
701 spin_unlock_irqrestore(&node_info
->pdg
.lock
, flags
);
704 netif_wake_queue(dev
);
707 /******************************************
708 * HW Header net device functions
709 ******************************************/
710 /* These functions have been adapted from net/ethernet/eth.c */
712 /* Create a fake MAC header for an arbitrary protocol layer.
713 * saddr=NULL means use device source address
714 * daddr=NULL means leave destination address (eg unresolved arp). */
715 static int ether1394_header(struct sk_buff
*skb
, struct net_device
*dev
,
716 unsigned short type
, const void *daddr
,
717 const void *saddr
, unsigned len
)
719 struct eth1394hdr
*eth
=
720 (struct eth1394hdr
*)skb_push(skb
, ETH1394_HLEN
);
722 eth
->h_proto
= htons(type
);
724 if (dev
->flags
& (IFF_LOOPBACK
| IFF_NOARP
)) {
725 memset(eth
->h_dest
, 0, dev
->addr_len
);
726 return dev
->hard_header_len
;
730 memcpy(eth
->h_dest
, daddr
, dev
->addr_len
);
731 return dev
->hard_header_len
;
734 return -dev
->hard_header_len
;
737 /* Rebuild the faked MAC header. This is called after an ARP
738 * (or in future other address resolution) has completed on this
739 * sk_buff. We now let ARP fill in the other fields.
741 * This routine CANNOT use cached dst->neigh!
742 * Really, it is used only when dst->neigh is wrong.
744 static int ether1394_rebuild_header(struct sk_buff
*skb
)
746 struct eth1394hdr
*eth
= (struct eth1394hdr
*)skb
->data
;
748 if (eth
->h_proto
== htons(ETH_P_IP
))
749 return arp_find((unsigned char *)ð
->h_dest
, skb
);
751 ETH1394_PRINT(KERN_DEBUG
, skb
->dev
->name
,
752 "unable to resolve type %04x addresses\n",
753 ntohs(eth
->h_proto
));
757 static int ether1394_header_parse(const struct sk_buff
*skb
,
758 unsigned char *haddr
)
760 memcpy(haddr
, skb
->dev
->dev_addr
, ETH1394_ALEN
);
764 static int ether1394_header_cache(const struct neighbour
*neigh
,
767 __be16 type
= hh
->hh_type
;
768 struct net_device
*dev
= neigh
->dev
;
769 struct eth1394hdr
*eth
=
770 (struct eth1394hdr
*)((u8
*)hh
->hh_data
+ 16 - ETH1394_HLEN
);
772 if (type
== htons(ETH_P_802_3
))
776 memcpy(eth
->h_dest
, neigh
->ha
, dev
->addr_len
);
778 hh
->hh_len
= ETH1394_HLEN
;
782 /* Called by Address Resolution module to notify changes in address. */
783 static void ether1394_header_cache_update(struct hh_cache
*hh
,
784 const struct net_device
*dev
,
785 const unsigned char * haddr
)
787 memcpy((u8
*)hh
->hh_data
+ 16 - ETH1394_HLEN
, haddr
, dev
->addr_len
);
790 /******************************************
791 * Datagram reception code
792 ******************************************/
794 /* Copied from net/ethernet/eth.c */
795 static __be16
ether1394_type_trans(struct sk_buff
*skb
, struct net_device
*dev
)
797 struct eth1394hdr
*eth
;
800 skb_reset_mac_header(skb
);
801 skb_pull(skb
, ETH1394_HLEN
);
802 eth
= eth1394_hdr(skb
);
804 if (*eth
->h_dest
& 1) {
805 if (memcmp(eth
->h_dest
, dev
->broadcast
, dev
->addr_len
) == 0)
806 skb
->pkt_type
= PACKET_BROADCAST
;
809 skb
->pkt_type
= PACKET_MULTICAST
;
812 if (memcmp(eth
->h_dest
, dev
->dev_addr
, dev
->addr_len
))
813 skb
->pkt_type
= PACKET_OTHERHOST
;
816 if (ntohs(eth
->h_proto
) >= 1536)
821 if (*(unsigned short *)rawp
== 0xFFFF)
822 return htons(ETH_P_802_3
);
824 return htons(ETH_P_802_2
);
827 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
828 * We also perform ARP translation here, if need be. */
829 static __be16
ether1394_parse_encap(struct sk_buff
*skb
, struct net_device
*dev
,
830 nodeid_t srcid
, nodeid_t destid
,
833 struct eth1394_priv
*priv
= netdev_priv(dev
);
837 /* Setup our hw addresses. We use these to build the ethernet header. */
838 if (destid
== (LOCAL_BUS
| ALL_NODES
))
839 dest_hw
= ~cpu_to_be64(0); /* broadcast */
841 dest_hw
= cpu_to_be64((u64
)priv
->host
->csr
.guid_hi
<< 32 |
842 priv
->host
->csr
.guid_lo
);
844 /* If this is an ARP packet, convert it. First, we want to make
845 * use of some of the fields, since they tell us a little bit
846 * about the sending machine. */
847 if (ether_type
== htons(ETH_P_ARP
)) {
848 struct eth1394_arp
*arp1394
= (struct eth1394_arp
*)skb
->data
;
849 struct arphdr
*arp
= (struct arphdr
*)skb
->data
;
850 unsigned char *arp_ptr
= (unsigned char *)(arp
+ 1);
851 u64 fifo_addr
= (u64
)ntohs(arp1394
->fifo_hi
) << 32 |
852 ntohl(arp1394
->fifo_lo
);
853 u8 max_rec
= min(priv
->host
->csr
.max_rec
,
854 (u8
)(arp1394
->max_rec
));
855 int sspd
= arp1394
->sspd
;
857 struct eth1394_node_ref
*node
;
858 struct eth1394_node_info
*node_info
;
861 /* Sanity check. MacOSX seems to be sending us 131 in this
862 * field (atleast on my Panther G5). Not sure why. */
863 if (sspd
> 5 || sspd
< 0)
866 maxpayload
= min(eth1394_speedto_maxpayload
[sspd
],
867 (u16
)(1 << (max_rec
+ 1)));
869 guid
= get_unaligned(&arp1394
->s_uniq_id
);
870 node
= eth1394_find_node_guid(&priv
->ip_node_list
,
873 return cpu_to_be16(0);
876 (struct eth1394_node_info
*)node
->ud
->device
.driver_data
;
878 /* Update our speed/payload/fifo_offset table */
879 node_info
->maxpayload
= maxpayload
;
880 node_info
->sspd
= sspd
;
881 node_info
->fifo
= fifo_addr
;
883 /* Now that we're done with the 1394 specific stuff, we'll
884 * need to alter some of the data. Believe it or not, all
885 * that needs to be done is sender_IP_address needs to be
886 * moved, the destination hardware address get stuffed
887 * in and the hardware address length set to 8.
889 * IMPORTANT: The code below overwrites 1394 specific data
890 * needed above so keep the munging of the data for the
891 * higher level IP stack last. */
894 arp_ptr
+= arp
->ar_hln
; /* skip over sender unique id */
895 *(u32
*)arp_ptr
= arp1394
->sip
; /* move sender IP addr */
896 arp_ptr
+= arp
->ar_pln
; /* skip over sender IP addr */
898 if (arp
->ar_op
== htons(ARPOP_REQUEST
))
899 memset(arp_ptr
, 0, sizeof(u64
));
901 memcpy(arp_ptr
, dev
->dev_addr
, sizeof(u64
));
904 /* Now add the ethernet header. */
905 if (dev_hard_header(skb
, dev
, ntohs(ether_type
), &dest_hw
, NULL
,
907 ret
= ether1394_type_trans(skb
, dev
);
912 static int fragment_overlap(struct list_head
*frag_list
, int offset
, int len
)
914 struct fragment_info
*fi
;
915 int end
= offset
+ len
;
917 list_for_each_entry(fi
, frag_list
, list
)
918 if (offset
< fi
->offset
+ fi
->len
&& end
> fi
->offset
)
924 static struct list_head
*find_partial_datagram(struct list_head
*pdgl
, int dgl
)
926 struct partial_datagram
*pd
;
928 list_for_each_entry(pd
, pdgl
, list
)
935 /* Assumes that new fragment does not overlap any existing fragments */
936 static int new_fragment(struct list_head
*frag_info
, int offset
, int len
)
938 struct list_head
*lh
;
939 struct fragment_info
*fi
, *fi2
, *new;
941 list_for_each(lh
, frag_info
) {
942 fi
= list_entry(lh
, struct fragment_info
, list
);
943 if (fi
->offset
+ fi
->len
== offset
) {
944 /* The new fragment can be tacked on to the end */
946 /* Did the new fragment plug a hole? */
947 fi2
= list_entry(lh
->next
, struct fragment_info
, list
);
948 if (fi
->offset
+ fi
->len
== fi2
->offset
) {
949 /* glue fragments together */
955 } else if (offset
+ len
== fi
->offset
) {
956 /* The new fragment can be tacked on to the beginning */
959 /* Did the new fragment plug a hole? */
960 fi2
= list_entry(lh
->prev
, struct fragment_info
, list
);
961 if (fi2
->offset
+ fi2
->len
== fi
->offset
) {
962 /* glue fragments together */
968 } else if (offset
> fi
->offset
+ fi
->len
) {
970 } else if (offset
+ len
< fi
->offset
) {
976 new = kmalloc(sizeof(*new), GFP_ATOMIC
);
980 new->offset
= offset
;
983 list_add(&new->list
, lh
);
987 static int new_partial_datagram(struct net_device
*dev
, struct list_head
*pdgl
,
988 int dgl
, int dg_size
, char *frag_buf
,
989 int frag_off
, int frag_len
)
991 struct partial_datagram
*new;
993 new = kmalloc(sizeof(*new), GFP_ATOMIC
);
997 INIT_LIST_HEAD(&new->frag_info
);
999 if (new_fragment(&new->frag_info
, frag_off
, frag_len
) < 0) {
1005 new->dg_size
= dg_size
;
1007 new->skb
= dev_alloc_skb(dg_size
+ dev
->hard_header_len
+ 15);
1009 struct fragment_info
*fi
= list_entry(new->frag_info
.next
,
1010 struct fragment_info
,
1017 skb_reserve(new->skb
, (dev
->hard_header_len
+ 15) & ~15);
1018 new->pbuf
= skb_put(new->skb
, dg_size
);
1019 memcpy(new->pbuf
+ frag_off
, frag_buf
, frag_len
);
1021 list_add(&new->list
, pdgl
);
1025 static int update_partial_datagram(struct list_head
*pdgl
, struct list_head
*lh
,
1026 char *frag_buf
, int frag_off
, int frag_len
)
1028 struct partial_datagram
*pd
=
1029 list_entry(lh
, struct partial_datagram
, list
);
1031 if (new_fragment(&pd
->frag_info
, frag_off
, frag_len
) < 0)
1034 memcpy(pd
->pbuf
+ frag_off
, frag_buf
, frag_len
);
1036 /* Move list entry to beginnig of list so that oldest partial
1037 * datagrams percolate to the end of the list */
1038 list_move(lh
, pdgl
);
1042 static int is_datagram_complete(struct list_head
*lh
, int dg_size
)
1044 struct partial_datagram
*pd
;
1045 struct fragment_info
*fi
;
1047 pd
= list_entry(lh
, struct partial_datagram
, list
);
1048 fi
= list_entry(pd
->frag_info
.next
, struct fragment_info
, list
);
1050 return (fi
->len
== dg_size
);
1053 /* Packet reception. We convert the IP1394 encapsulation header to an
1054 * ethernet header, and fill it with some of our other fields. This is
1055 * an incoming packet from the 1394 bus. */
1056 static int ether1394_data_handler(struct net_device
*dev
, int srcid
, int destid
,
1059 struct sk_buff
*skb
;
1060 unsigned long flags
;
1061 struct eth1394_priv
*priv
= netdev_priv(dev
);
1062 union eth1394_hdr
*hdr
= (union eth1394_hdr
*)buf
;
1063 __be16 ether_type
= cpu_to_be16(0); /* initialized to clear warning */
1065 struct unit_directory
*ud
= priv
->ud_list
[NODEID_TO_NODE(srcid
)];
1066 struct eth1394_node_info
*node_info
;
1069 struct eth1394_node_ref
*node
;
1070 node
= eth1394_find_node_nodeid(&priv
->ip_node_list
, srcid
);
1071 if (unlikely(!node
)) {
1072 HPSB_PRINT(KERN_ERR
, "ether1394 rx: sender nodeid "
1073 "lookup failure: " NODE_BUS_FMT
,
1074 NODE_BUS_ARGS(priv
->host
, srcid
));
1075 dev
->stats
.rx_dropped
++;
1080 priv
->ud_list
[NODEID_TO_NODE(srcid
)] = ud
;
1083 node_info
= (struct eth1394_node_info
*)ud
->device
.driver_data
;
1085 /* First, did we receive a fragmented or unfragmented datagram? */
1086 hdr
->words
.word1
= ntohs(hdr
->words
.word1
);
1088 hdr_len
= hdr_type_len
[hdr
->common
.lf
];
1090 if (hdr
->common
.lf
== ETH1394_HDR_LF_UF
) {
1091 /* An unfragmented datagram has been received by the ieee1394
1092 * bus. Build an skbuff around it so we can pass it to the
1093 * high level network layer. */
1095 skb
= dev_alloc_skb(len
+ dev
->hard_header_len
+ 15);
1096 if (unlikely(!skb
)) {
1097 ETH1394_PRINT_G(KERN_ERR
, "Out of memory\n");
1098 dev
->stats
.rx_dropped
++;
1101 skb_reserve(skb
, (dev
->hard_header_len
+ 15) & ~15);
1102 memcpy(skb_put(skb
, len
- hdr_len
), buf
+ hdr_len
,
1104 ether_type
= hdr
->uf
.ether_type
;
1106 /* A datagram fragment has been received, now the fun begins. */
1108 struct list_head
*pdgl
, *lh
;
1109 struct partial_datagram
*pd
;
1111 int fg_len
= len
- hdr_len
;
1115 struct pdg_list
*pdg
= &(node_info
->pdg
);
1117 hdr
->words
.word3
= ntohs(hdr
->words
.word3
);
1118 /* The 4th header word is reserved so no need to do ntohs() */
1120 if (hdr
->common
.lf
== ETH1394_HDR_LF_FF
) {
1121 ether_type
= hdr
->ff
.ether_type
;
1123 dg_size
= hdr
->ff
.dg_size
+ 1;
1126 hdr
->words
.word2
= ntohs(hdr
->words
.word2
);
1128 dg_size
= hdr
->sf
.dg_size
+ 1;
1129 fg_off
= hdr
->sf
.fg_off
;
1131 spin_lock_irqsave(&pdg
->lock
, flags
);
1133 pdgl
= &(pdg
->list
);
1134 lh
= find_partial_datagram(pdgl
, dgl
);
1137 while (pdg
->sz
>= max_partial_datagrams
) {
1138 /* remove the oldest */
1139 purge_partial_datagram(pdgl
->prev
);
1143 retval
= new_partial_datagram(dev
, pdgl
, dgl
, dg_size
,
1144 buf
+ hdr_len
, fg_off
,
1147 spin_unlock_irqrestore(&pdg
->lock
, flags
);
1151 lh
= find_partial_datagram(pdgl
, dgl
);
1153 pd
= list_entry(lh
, struct partial_datagram
, list
);
1155 if (fragment_overlap(&pd
->frag_info
, fg_off
, fg_len
)) {
1156 /* Overlapping fragments, obliterate old
1157 * datagram and start new one. */
1158 purge_partial_datagram(lh
);
1159 retval
= new_partial_datagram(dev
, pdgl
, dgl
,
1165 spin_unlock_irqrestore(&pdg
->lock
, flags
);
1169 retval
= update_partial_datagram(pdgl
, lh
,
1173 /* Couldn't save off fragment anyway
1174 * so might as well obliterate the
1176 purge_partial_datagram(lh
);
1178 spin_unlock_irqrestore(&pdg
->lock
, flags
);
1181 } /* fragment overlap */
1182 } /* new datagram or add to existing one */
1184 pd
= list_entry(lh
, struct partial_datagram
, list
);
1186 if (hdr
->common
.lf
== ETH1394_HDR_LF_FF
)
1187 pd
->ether_type
= ether_type
;
1189 if (is_datagram_complete(lh
, dg_size
)) {
1190 ether_type
= pd
->ether_type
;
1192 skb
= skb_get(pd
->skb
);
1193 purge_partial_datagram(lh
);
1194 spin_unlock_irqrestore(&pdg
->lock
, flags
);
1196 /* Datagram is not complete, we're done for the
1198 spin_unlock_irqrestore(&pdg
->lock
, flags
);
1201 } /* unframgented datagram or fragmented one */
1203 /* Write metadata, and then pass to the receive level */
1205 skb
->ip_summed
= CHECKSUM_UNNECESSARY
; /* don't check it */
1207 /* Parse the encapsulation header. This actually does the job of
1208 * converting to an ethernet frame header, aswell as arp
1209 * conversion if needed. ARP conversion is easier in this
1210 * direction, since we are using ethernet as our backend. */
1211 skb
->protocol
= ether1394_parse_encap(skb
, dev
, srcid
, destid
,
1214 spin_lock_irqsave(&priv
->lock
, flags
);
1216 if (!skb
->protocol
) {
1217 dev
->stats
.rx_errors
++;
1218 dev
->stats
.rx_dropped
++;
1219 dev_kfree_skb_any(skb
);
1220 } else if (netif_rx(skb
) == NET_RX_DROP
) {
1221 dev
->stats
.rx_errors
++;
1222 dev
->stats
.rx_dropped
++;
1224 dev
->stats
.rx_packets
++;
1225 dev
->stats
.rx_bytes
+= skb
->len
;
1228 spin_unlock_irqrestore(&priv
->lock
, flags
);
1231 if (netif_queue_stopped(dev
))
1232 netif_wake_queue(dev
);
1237 static int ether1394_write(struct hpsb_host
*host
, int srcid
, int destid
,
1238 quadlet_t
*data
, u64 addr
, size_t len
, u16 flags
)
1240 struct eth1394_host_info
*hi
;
1242 hi
= hpsb_get_hostinfo(ð1394_highlevel
, host
);
1243 if (unlikely(!hi
)) {
1244 ETH1394_PRINT_G(KERN_ERR
, "No net device at fw-host%d\n",
1246 return RCODE_ADDRESS_ERROR
;
1249 if (ether1394_data_handler(hi
->dev
, srcid
, destid
, (char*)data
, len
))
1250 return RCODE_ADDRESS_ERROR
;
1252 return RCODE_COMPLETE
;
1255 static void ether1394_iso(struct hpsb_iso
*iso
)
1259 struct eth1394_host_info
*hi
;
1260 struct net_device
*dev
;
1261 struct eth1394_priv
*priv
;
1268 hi
= hpsb_get_hostinfo(ð1394_highlevel
, iso
->host
);
1269 if (unlikely(!hi
)) {
1270 ETH1394_PRINT_G(KERN_ERR
, "No net device at fw-host%d\n",
1277 nready
= hpsb_iso_n_ready(iso
);
1278 for (i
= 0; i
< nready
; i
++) {
1279 struct hpsb_iso_packet_info
*info
=
1280 &iso
->infos
[(iso
->first_packet
+ i
) % iso
->buf_packets
];
1281 data
= (__be32
*)(iso
->data_buf
.kvirt
+ info
->offset
);
1283 /* skip over GASP header */
1284 buf
= (char *)data
+ 8;
1285 len
= info
->len
- 8;
1287 specifier_id
= (be32_to_cpu(data
[0]) & 0xffff) << 8 |
1288 (be32_to_cpu(data
[1]) & 0xff000000) >> 24;
1289 source_id
= be32_to_cpu(data
[0]) >> 16;
1291 priv
= netdev_priv(dev
);
1293 if (info
->channel
!= (iso
->host
->csr
.broadcast_channel
& 0x3f)
1294 || specifier_id
!= ETHER1394_GASP_SPECIFIER_ID
) {
1295 /* This packet is not for us */
1298 ether1394_data_handler(dev
, source_id
, LOCAL_BUS
| ALL_NODES
,
1302 hpsb_iso_recv_release_packets(iso
, i
);
1304 dev
->last_rx
= jiffies
;
1307 /******************************************
1308 * Datagram transmission code
1309 ******************************************/
1311 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1312 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1313 * needs to be munged a bit. The remainder of the arphdr is formatted based
1314 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1317 * Now that the EUI is used for the hardware address all we need to do to make
1318 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1319 * speed, and unicast FIFO address information between the sender_unique_id
1320 * and the IP addresses.
1322 static void ether1394_arp_to_1394arp(struct sk_buff
*skb
,
1323 struct net_device
*dev
)
1325 struct eth1394_priv
*priv
= netdev_priv(dev
);
1326 struct arphdr
*arp
= (struct arphdr
*)skb
->data
;
1327 unsigned char *arp_ptr
= (unsigned char *)(arp
+ 1);
1328 struct eth1394_arp
*arp1394
= (struct eth1394_arp
*)skb
->data
;
1330 arp1394
->hw_addr_len
= 16;
1331 arp1394
->sip
= *(u32
*)(arp_ptr
+ ETH1394_ALEN
);
1332 arp1394
->max_rec
= priv
->host
->csr
.max_rec
;
1333 arp1394
->sspd
= priv
->host
->csr
.lnk_spd
;
1334 arp1394
->fifo_hi
= htons(priv
->local_fifo
>> 32);
1335 arp1394
->fifo_lo
= htonl(priv
->local_fifo
& ~0x0);
1338 /* We need to encapsulate the standard header with our own. We use the
1339 * ethernet header's proto for our own. */
1340 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload
,
1342 union eth1394_hdr
*hdr
,
1343 u16 dg_size
, u16 dgl
)
1345 unsigned int adj_max_payload
=
1346 max_payload
- hdr_type_len
[ETH1394_HDR_LF_UF
];
1348 /* Does it all fit in one packet? */
1349 if (dg_size
<= adj_max_payload
) {
1350 hdr
->uf
.lf
= ETH1394_HDR_LF_UF
;
1351 hdr
->uf
.ether_type
= proto
;
1353 hdr
->ff
.lf
= ETH1394_HDR_LF_FF
;
1354 hdr
->ff
.ether_type
= proto
;
1355 hdr
->ff
.dg_size
= dg_size
- 1;
1357 adj_max_payload
= max_payload
- hdr_type_len
[ETH1394_HDR_LF_FF
];
1359 return DIV_ROUND_UP(dg_size
, adj_max_payload
);
1362 static unsigned int ether1394_encapsulate(struct sk_buff
*skb
,
1363 unsigned int max_payload
,
1364 union eth1394_hdr
*hdr
)
1366 union eth1394_hdr
*bufhdr
;
1367 int ftype
= hdr
->common
.lf
;
1368 int hdrsz
= hdr_type_len
[ftype
];
1369 unsigned int adj_max_payload
= max_payload
- hdrsz
;
1372 case ETH1394_HDR_LF_UF
:
1373 bufhdr
= (union eth1394_hdr
*)skb_push(skb
, hdrsz
);
1374 bufhdr
->words
.word1
= htons(hdr
->words
.word1
);
1375 bufhdr
->words
.word2
= hdr
->words
.word2
;
1378 case ETH1394_HDR_LF_FF
:
1379 bufhdr
= (union eth1394_hdr
*)skb_push(skb
, hdrsz
);
1380 bufhdr
->words
.word1
= htons(hdr
->words
.word1
);
1381 bufhdr
->words
.word2
= hdr
->words
.word2
;
1382 bufhdr
->words
.word3
= htons(hdr
->words
.word3
);
1383 bufhdr
->words
.word4
= 0;
1385 /* Set frag type here for future interior fragments */
1386 hdr
->common
.lf
= ETH1394_HDR_LF_IF
;
1391 hdr
->sf
.fg_off
+= adj_max_payload
;
1392 bufhdr
= (union eth1394_hdr
*)skb_pull(skb
, adj_max_payload
);
1393 if (max_payload
>= skb
->len
)
1394 hdr
->common
.lf
= ETH1394_HDR_LF_LF
;
1395 bufhdr
->words
.word1
= htons(hdr
->words
.word1
);
1396 bufhdr
->words
.word2
= htons(hdr
->words
.word2
);
1397 bufhdr
->words
.word3
= htons(hdr
->words
.word3
);
1398 bufhdr
->words
.word4
= 0;
1400 return min(max_payload
, skb
->len
);
1403 static struct hpsb_packet
*ether1394_alloc_common_packet(struct hpsb_host
*host
)
1405 struct hpsb_packet
*p
;
1407 p
= hpsb_alloc_packet(0);
1410 p
->generation
= get_hpsb_generation(host
);
1411 p
->type
= hpsb_async
;
1416 static int ether1394_prep_write_packet(struct hpsb_packet
*p
,
1417 struct hpsb_host
*host
, nodeid_t node
,
1418 u64 addr
, void *data
, int tx_len
)
1422 if (hpsb_get_tlabel(p
))
1425 p
->tcode
= TCODE_WRITEB
;
1426 p
->header_size
= 16;
1427 p
->expect_response
= 1;
1429 p
->node_id
<< 16 | p
->tlabel
<< 10 | 1 << 8 | TCODE_WRITEB
<< 4;
1430 p
->header
[1] = host
->node_id
<< 16 | addr
>> 32;
1431 p
->header
[2] = addr
& 0xffffffff;
1432 p
->header
[3] = tx_len
<< 16;
1433 p
->data_size
= (tx_len
+ 3) & ~3;
1439 static void ether1394_prep_gasp_packet(struct hpsb_packet
*p
,
1440 struct eth1394_priv
*priv
,
1441 struct sk_buff
*skb
, int length
)
1444 p
->tcode
= TCODE_STREAM_DATA
;
1446 p
->header
[0] = length
<< 16 | 3 << 14 | priv
->broadcast_channel
<< 8 |
1447 TCODE_STREAM_DATA
<< 4;
1448 p
->data_size
= length
;
1449 p
->data
= (quadlet_t
*)skb
->data
- 2;
1450 p
->data
[0] = cpu_to_be32(priv
->host
->node_id
<< 16 |
1451 ETHER1394_GASP_SPECIFIER_ID_HI
);
1452 p
->data
[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO
<< 24 |
1453 ETHER1394_GASP_VERSION
);
1455 p
->speed_code
= priv
->bc_sspd
;
1457 /* prevent hpsb_send_packet() from overriding our speed code */
1458 p
->node_id
= LOCAL_BUS
| ALL_NODES
;
1461 static void ether1394_free_packet(struct hpsb_packet
*packet
)
1463 if (packet
->tcode
!= TCODE_STREAM_DATA
)
1464 hpsb_free_tlabel(packet
);
1465 hpsb_free_packet(packet
);
1468 static void ether1394_complete_cb(void *__ptask
);
1470 static int ether1394_send_packet(struct packet_task
*ptask
, unsigned int tx_len
)
1472 struct eth1394_priv
*priv
= ptask
->priv
;
1473 struct hpsb_packet
*packet
= NULL
;
1475 packet
= ether1394_alloc_common_packet(priv
->host
);
1479 if (ptask
->tx_type
== ETH1394_GASP
) {
1480 int length
= tx_len
+ 2 * sizeof(quadlet_t
);
1482 ether1394_prep_gasp_packet(packet
, priv
, ptask
->skb
, length
);
1483 } else if (ether1394_prep_write_packet(packet
, priv
->host
,
1485 ptask
->addr
, ptask
->skb
->data
,
1487 hpsb_free_packet(packet
);
1491 ptask
->packet
= packet
;
1492 hpsb_set_packet_complete_task(ptask
->packet
, ether1394_complete_cb
,
1495 if (hpsb_send_packet(packet
) < 0) {
1496 ether1394_free_packet(packet
);
1503 /* Task function to be run when a datagram transmission is completed */
1504 static void ether1394_dg_complete(struct packet_task
*ptask
, int fail
)
1506 struct sk_buff
*skb
= ptask
->skb
;
1507 struct net_device
*dev
= skb
->dev
;
1508 struct eth1394_priv
*priv
= netdev_priv(dev
);
1509 unsigned long flags
;
1512 spin_lock_irqsave(&priv
->lock
, flags
);
1514 dev
->stats
.tx_dropped
++;
1515 dev
->stats
.tx_errors
++;
1517 dev
->stats
.tx_bytes
+= skb
->len
;
1518 dev
->stats
.tx_packets
++;
1520 spin_unlock_irqrestore(&priv
->lock
, flags
);
1522 dev_kfree_skb_any(skb
);
1523 kmem_cache_free(packet_task_cache
, ptask
);
1526 /* Callback for when a packet has been sent and the status of that packet is
1528 static void ether1394_complete_cb(void *__ptask
)
1530 struct packet_task
*ptask
= (struct packet_task
*)__ptask
;
1531 struct hpsb_packet
*packet
= ptask
->packet
;
1534 if (packet
->tcode
!= TCODE_STREAM_DATA
)
1535 fail
= hpsb_packet_success(packet
);
1537 ether1394_free_packet(packet
);
1539 ptask
->outstanding_pkts
--;
1540 if (ptask
->outstanding_pkts
> 0 && !fail
) {
1543 /* Add the encapsulation header to the fragment */
1544 tx_len
= ether1394_encapsulate(ptask
->skb
, ptask
->max_payload
,
1546 err
= ether1394_send_packet(ptask
, tx_len
);
1549 ETH1394_PRINT_G(KERN_ERR
, "Out of tlabels\n");
1551 ether1394_dg_complete(ptask
, 1);
1554 ether1394_dg_complete(ptask
, fail
);
1558 /* Transmit a packet (called by kernel) */
1559 static int ether1394_tx(struct sk_buff
*skb
, struct net_device
*dev
)
1561 struct eth1394hdr hdr_buf
;
1562 struct eth1394_priv
*priv
= netdev_priv(dev
);
1564 unsigned long flags
;
1566 eth1394_tx_type tx_type
;
1567 unsigned int tx_len
;
1568 unsigned int max_payload
;
1571 struct packet_task
*ptask
;
1572 struct eth1394_node_ref
*node
;
1573 struct eth1394_node_info
*node_info
= NULL
;
1575 ptask
= kmem_cache_alloc(packet_task_cache
, GFP_ATOMIC
);
1579 /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1580 * it does not set our validity bit. We need to compensate for
1581 * that somewhere else, but not in eth1394. */
1583 if ((priv
->host
->csr
.broadcast_channel
& 0xc0000000) != 0xc0000000)
1587 skb
= skb_share_check(skb
, GFP_ATOMIC
);
1591 /* Get rid of the fake eth1394 header, but first make a copy.
1592 * We might need to rebuild the header on tx failure. */
1593 memcpy(&hdr_buf
, skb
->data
, sizeof(hdr_buf
));
1594 skb_pull(skb
, ETH1394_HLEN
);
1596 proto
= hdr_buf
.h_proto
;
1599 /* Set the transmission type for the packet. ARP packets and IP
1600 * broadcast packets are sent via GASP. */
1601 if (memcmp(hdr_buf
.h_dest
, dev
->broadcast
, ETH1394_ALEN
) == 0 ||
1602 proto
== htons(ETH_P_ARP
) ||
1603 (proto
== htons(ETH_P_IP
) &&
1604 IN_MULTICAST(ntohl(ip_hdr(skb
)->daddr
)))) {
1605 tx_type
= ETH1394_GASP
;
1606 dest_node
= LOCAL_BUS
| ALL_NODES
;
1607 max_payload
= priv
->bc_maxpayload
- ETHER1394_GASP_OVERHEAD
;
1608 BUG_ON(max_payload
< 512 - ETHER1394_GASP_OVERHEAD
);
1610 if (max_payload
< dg_size
+ hdr_type_len
[ETH1394_HDR_LF_UF
])
1613 __be64 guid
= get_unaligned((__be64
*)hdr_buf
.h_dest
);
1615 node
= eth1394_find_node_guid(&priv
->ip_node_list
,
1621 (struct eth1394_node_info
*)node
->ud
->device
.driver_data
;
1622 if (node_info
->fifo
== CSR1212_INVALID_ADDR_SPACE
)
1625 dest_node
= node
->ud
->ne
->nodeid
;
1626 max_payload
= node_info
->maxpayload
;
1627 BUG_ON(max_payload
< 512 - ETHER1394_GASP_OVERHEAD
);
1629 dgl
= node_info
->dgl
;
1630 if (max_payload
< dg_size
+ hdr_type_len
[ETH1394_HDR_LF_UF
])
1632 tx_type
= ETH1394_WRREQ
;
1635 /* If this is an ARP packet, convert it */
1636 if (proto
== htons(ETH_P_ARP
))
1637 ether1394_arp_to_1394arp(skb
, dev
);
1639 ptask
->hdr
.words
.word1
= 0;
1640 ptask
->hdr
.words
.word2
= 0;
1641 ptask
->hdr
.words
.word3
= 0;
1642 ptask
->hdr
.words
.word4
= 0;
1645 ptask
->tx_type
= tx_type
;
1647 if (tx_type
!= ETH1394_GASP
) {
1650 spin_lock_irqsave(&priv
->lock
, flags
);
1651 addr
= node_info
->fifo
;
1652 spin_unlock_irqrestore(&priv
->lock
, flags
);
1655 ptask
->dest_node
= dest_node
;
1658 ptask
->tx_type
= tx_type
;
1659 ptask
->max_payload
= max_payload
;
1660 ptask
->outstanding_pkts
= ether1394_encapsulate_prep(max_payload
,
1661 proto
, &ptask
->hdr
, dg_size
, dgl
);
1663 /* Add the encapsulation header to the fragment */
1664 tx_len
= ether1394_encapsulate(skb
, max_payload
, &ptask
->hdr
);
1665 dev
->trans_start
= jiffies
;
1666 if (ether1394_send_packet(ptask
, tx_len
)) {
1667 if (dest_node
== (LOCAL_BUS
| ALL_NODES
))
1670 /* At this point we want to restore the packet. When we return
1671 * here with NETDEV_TX_BUSY we will get another entrance in this
1672 * routine with the same skb and we need it to look the same.
1673 * So we pull 4 more bytes, then build the header again. */
1675 ether1394_header(skb
, dev
, ntohs(hdr_buf
.h_proto
),
1676 hdr_buf
.h_dest
, NULL
, 0);
1678 /* Most failures of ether1394_send_packet are recoverable. */
1679 netif_stop_queue(dev
);
1680 priv
->wake_node
= dest_node
;
1681 schedule_work(&priv
->wake
);
1682 kmem_cache_free(packet_task_cache
, ptask
);
1683 return NETDEV_TX_BUSY
;
1686 return NETDEV_TX_OK
;
1689 kmem_cache_free(packet_task_cache
, ptask
);
1694 spin_lock_irqsave(&priv
->lock
, flags
);
1695 dev
->stats
.tx_dropped
++;
1696 dev
->stats
.tx_errors
++;
1697 spin_unlock_irqrestore(&priv
->lock
, flags
);
1700 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1701 * causes serious problems" here, allegedly. Before that patch,
1702 * -ERRNO was returned which is not appropriate under Linux 2.6.
1703 * Perhaps more needs to be done? Stop the queue in serious
1704 * conditions and restart it elsewhere?
1706 /* return NETDEV_TX_BUSY; */
1707 return NETDEV_TX_OK
;
1710 static void ether1394_get_drvinfo(struct net_device
*dev
,
1711 struct ethtool_drvinfo
*info
)
1713 strcpy(info
->driver
, driver_name
);
1714 strcpy(info
->bus_info
, "ieee1394"); /* FIXME provide more detail? */
1717 static struct ethtool_ops ethtool_ops
= {
1718 .get_drvinfo
= ether1394_get_drvinfo
1721 static int __init
ether1394_init_module(void)
1725 packet_task_cache
= kmem_cache_create("packet_task",
1726 sizeof(struct packet_task
),
1728 if (!packet_task_cache
)
1731 hpsb_register_highlevel(ð1394_highlevel
);
1732 err
= hpsb_register_protocol(ð1394_proto_driver
);
1734 hpsb_unregister_highlevel(ð1394_highlevel
);
1735 kmem_cache_destroy(packet_task_cache
);
1740 static void __exit
ether1394_exit_module(void)
1742 hpsb_unregister_protocol(ð1394_proto_driver
);
1743 hpsb_unregister_highlevel(ð1394_highlevel
);
1744 kmem_cache_destroy(packet_task_cache
);
1747 module_init(ether1394_init_module
);
1748 module_exit(ether1394_exit_module
);