2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
22 * UBI wear-leveling sub-system.
24 * This sub-system is responsible for wear-leveling. It works in terms of
25 * physical eraseblocks and erase counters and knows nothing about logical
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
34 * When physical eraseblocks are returned to the WL sub-system by means of the
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
37 * which is also managed by the WL sub-system.
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
43 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44 * an "optimal" physical eraseblock. For example, when it is known that the
45 * physical eraseblock will be "put" soon because it contains short-term data,
46 * the WL sub-system may pick a free physical eraseblock with low erase
47 * counter, and so forth.
49 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
52 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
53 * in a physical eraseblock, it has to be moved. Technically this is the same
54 * as moving it for wear-leveling reasons.
56 * As it was said, for the UBI sub-system all physical eraseblocks are either
57 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
58 * used eraseblocks are kept in @wl->used or @wl->scrub RB-trees, or
59 * (temporarily) in the @wl->pq queue.
61 * When the WL sub-system returns a physical eraseblock, the physical
62 * eraseblock is protected from being moved for some "time". For this reason,
63 * the physical eraseblock is not directly moved from the @wl->free tree to the
64 * @wl->used tree. There is a protection queue in between where this
65 * physical eraseblock is temporarily stored (@wl->pq).
67 * All this protection stuff is needed because:
68 * o we don't want to move physical eraseblocks just after we have given them
69 * to the user; instead, we first want to let users fill them up with data;
71 * o there is a chance that the user will put the physical eraseblock very
72 * soon, so it makes sense not to move it for some time, but wait; this is
73 * especially important in case of "short term" physical eraseblocks.
75 * Physical eraseblocks stay protected only for limited time. But the "time" is
76 * measured in erase cycles in this case. This is implemented with help of the
77 * protection queue. Eraseblocks are put to the tail of this queue when they
78 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
79 * head of the queue on each erase operation (for any eraseblock). So the
80 * length of the queue defines how may (global) erase cycles PEBs are protected.
82 * To put it differently, each physical eraseblock has 2 main states: free and
83 * used. The former state corresponds to the @wl->free tree. The latter state
84 * is split up on several sub-states:
85 * o the WL movement is allowed (@wl->used tree);
86 * o the WL movement is temporarily prohibited (@wl->pq queue);
87 * o scrubbing is needed (@wl->scrub tree).
89 * Depending on the sub-state, wear-leveling entries of the used physical
90 * eraseblocks may be kept in one of those structures.
92 * Note, in this implementation, we keep a small in-RAM object for each physical
93 * eraseblock. This is surely not a scalable solution. But it appears to be good
94 * enough for moderately large flashes and it is simple. In future, one may
95 * re-work this sub-system and make it more scalable.
97 * At the moment this sub-system does not utilize the sequence number, which
98 * was introduced relatively recently. But it would be wise to do this because
99 * the sequence number of a logical eraseblock characterizes how old is it. For
100 * example, when we move a PEB with low erase counter, and we need to pick the
101 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
102 * pick target PEB with an average EC if our PEB is not very "old". This is a
103 * room for future re-works of the WL sub-system.
106 #include <linux/slab.h>
107 #include <linux/crc32.h>
108 #include <linux/freezer.h>
109 #include <linux/kthread.h>
112 /* Number of physical eraseblocks reserved for wear-leveling purposes */
113 #define WL_RESERVED_PEBS 1
116 * Maximum difference between two erase counters. If this threshold is
117 * exceeded, the WL sub-system starts moving data from used physical
118 * eraseblocks with low erase counter to free physical eraseblocks with high
121 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
124 * When a physical eraseblock is moved, the WL sub-system has to pick the target
125 * physical eraseblock to move to. The simplest way would be just to pick the
126 * one with the highest erase counter. But in certain workloads this could lead
127 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
128 * situation when the picked physical eraseblock is constantly erased after the
129 * data is written to it. So, we have a constant which limits the highest erase
130 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
131 * does not pick eraseblocks with erase counter greater than the lowest erase
132 * counter plus %WL_FREE_MAX_DIFF.
134 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
137 * Maximum number of consecutive background thread failures which is enough to
138 * switch to read-only mode.
140 #define WL_MAX_FAILURES 32
143 * struct ubi_work - UBI work description data structure.
144 * @list: a link in the list of pending works
145 * @func: worker function
146 * @e: physical eraseblock to erase
147 * @torture: if the physical eraseblock has to be tortured
149 * The @func pointer points to the worker function. If the @cancel argument is
150 * not zero, the worker has to free the resources and exit immediately. The
151 * worker has to return zero in case of success and a negative error code in
155 struct list_head list
;
156 int (*func
)(struct ubi_device
*ubi
, struct ubi_work
*wrk
, int cancel
);
157 /* The below fields are only relevant to erasure works */
158 struct ubi_wl_entry
*e
;
162 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
163 static int paranoid_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
);
164 static int paranoid_check_in_wl_tree(struct ubi_wl_entry
*e
,
165 struct rb_root
*root
);
166 static int paranoid_check_in_pq(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
);
168 #define paranoid_check_ec(ubi, pnum, ec) 0
169 #define paranoid_check_in_wl_tree(e, root)
170 #define paranoid_check_in_pq(ubi, e) 0
174 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
175 * @e: the wear-leveling entry to add
176 * @root: the root of the tree
178 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
179 * the @ubi->used and @ubi->free RB-trees.
181 static void wl_tree_add(struct ubi_wl_entry
*e
, struct rb_root
*root
)
183 struct rb_node
**p
, *parent
= NULL
;
187 struct ubi_wl_entry
*e1
;
190 e1
= rb_entry(parent
, struct ubi_wl_entry
, u
.rb
);
194 else if (e
->ec
> e1
->ec
)
197 ubi_assert(e
->pnum
!= e1
->pnum
);
198 if (e
->pnum
< e1
->pnum
)
205 rb_link_node(&e
->u
.rb
, parent
, p
);
206 rb_insert_color(&e
->u
.rb
, root
);
210 * do_work - do one pending work.
211 * @ubi: UBI device description object
213 * This function returns zero in case of success and a negative error code in
216 static int do_work(struct ubi_device
*ubi
)
219 struct ubi_work
*wrk
;
224 * @ubi->work_sem is used to synchronize with the workers. Workers take
225 * it in read mode, so many of them may be doing works at a time. But
226 * the queue flush code has to be sure the whole queue of works is
227 * done, and it takes the mutex in write mode.
229 down_read(&ubi
->work_sem
);
230 spin_lock(&ubi
->wl_lock
);
231 if (list_empty(&ubi
->works
)) {
232 spin_unlock(&ubi
->wl_lock
);
233 up_read(&ubi
->work_sem
);
237 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
238 list_del(&wrk
->list
);
239 ubi
->works_count
-= 1;
240 ubi_assert(ubi
->works_count
>= 0);
241 spin_unlock(&ubi
->wl_lock
);
244 * Call the worker function. Do not touch the work structure
245 * after this call as it will have been freed or reused by that
246 * time by the worker function.
248 err
= wrk
->func(ubi
, wrk
, 0);
250 ubi_err("work failed with error code %d", err
);
251 up_read(&ubi
->work_sem
);
257 * produce_free_peb - produce a free physical eraseblock.
258 * @ubi: UBI device description object
260 * This function tries to make a free PEB by means of synchronous execution of
261 * pending works. This may be needed if, for example the background thread is
262 * disabled. Returns zero in case of success and a negative error code in case
265 static int produce_free_peb(struct ubi_device
*ubi
)
269 spin_lock(&ubi
->wl_lock
);
270 while (!ubi
->free
.rb_node
) {
271 spin_unlock(&ubi
->wl_lock
);
273 dbg_wl("do one work synchronously");
278 spin_lock(&ubi
->wl_lock
);
280 spin_unlock(&ubi
->wl_lock
);
286 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
287 * @e: the wear-leveling entry to check
288 * @root: the root of the tree
290 * This function returns non-zero if @e is in the @root RB-tree and zero if it
293 static int in_wl_tree(struct ubi_wl_entry
*e
, struct rb_root
*root
)
299 struct ubi_wl_entry
*e1
;
301 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
303 if (e
->pnum
== e1
->pnum
) {
310 else if (e
->ec
> e1
->ec
)
313 ubi_assert(e
->pnum
!= e1
->pnum
);
314 if (e
->pnum
< e1
->pnum
)
325 * prot_queue_add - add physical eraseblock to the protection queue.
326 * @ubi: UBI device description object
327 * @e: the physical eraseblock to add
329 * This function adds @e to the tail of the protection queue @ubi->pq, where
330 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
331 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
334 static void prot_queue_add(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
336 int pq_tail
= ubi
->pq_head
- 1;
339 pq_tail
= UBI_PROT_QUEUE_LEN
- 1;
340 ubi_assert(pq_tail
>= 0 && pq_tail
< UBI_PROT_QUEUE_LEN
);
341 list_add_tail(&e
->u
.list
, &ubi
->pq
[pq_tail
]);
342 dbg_wl("added PEB %d EC %d to the protection queue", e
->pnum
, e
->ec
);
346 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
347 * @root: the RB-tree where to look for
348 * @max: highest possible erase counter
350 * This function looks for a wear leveling entry with erase counter closest to
351 * @max and less then @max.
353 static struct ubi_wl_entry
*find_wl_entry(struct rb_root
*root
, int max
)
356 struct ubi_wl_entry
*e
;
358 e
= rb_entry(rb_first(root
), struct ubi_wl_entry
, u
.rb
);
363 struct ubi_wl_entry
*e1
;
365 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
378 * ubi_wl_get_peb - get a physical eraseblock.
379 * @ubi: UBI device description object
380 * @dtype: type of data which will be stored in this physical eraseblock
382 * This function returns a physical eraseblock in case of success and a
383 * negative error code in case of failure. Might sleep.
385 int ubi_wl_get_peb(struct ubi_device
*ubi
, int dtype
)
388 struct ubi_wl_entry
*e
, *first
, *last
;
390 ubi_assert(dtype
== UBI_LONGTERM
|| dtype
== UBI_SHORTTERM
||
391 dtype
== UBI_UNKNOWN
);
394 spin_lock(&ubi
->wl_lock
);
395 if (!ubi
->free
.rb_node
) {
396 if (ubi
->works_count
== 0) {
397 ubi_assert(list_empty(&ubi
->works
));
398 ubi_err("no free eraseblocks");
399 spin_unlock(&ubi
->wl_lock
);
402 spin_unlock(&ubi
->wl_lock
);
404 err
= produce_free_peb(ubi
);
413 * For long term data we pick a physical eraseblock with high
414 * erase counter. But the highest erase counter we can pick is
415 * bounded by the the lowest erase counter plus
418 e
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
422 * For unknown data we pick a physical eraseblock with medium
423 * erase counter. But we by no means can pick a physical
424 * eraseblock with erase counter greater or equivalent than the
425 * lowest erase counter plus %WL_FREE_MAX_DIFF.
427 first
= rb_entry(rb_first(&ubi
->free
), struct ubi_wl_entry
,
429 last
= rb_entry(rb_last(&ubi
->free
), struct ubi_wl_entry
, u
.rb
);
431 if (last
->ec
- first
->ec
< WL_FREE_MAX_DIFF
)
432 e
= rb_entry(ubi
->free
.rb_node
,
433 struct ubi_wl_entry
, u
.rb
);
435 medium_ec
= (first
->ec
+ WL_FREE_MAX_DIFF
)/2;
436 e
= find_wl_entry(&ubi
->free
, medium_ec
);
441 * For short term data we pick a physical eraseblock with the
442 * lowest erase counter as we expect it will be erased soon.
444 e
= rb_entry(rb_first(&ubi
->free
), struct ubi_wl_entry
, u
.rb
);
450 paranoid_check_in_wl_tree(e
, &ubi
->free
);
453 * Move the physical eraseblock to the protection queue where it will
454 * be protected from being moved for some time.
456 rb_erase(&e
->u
.rb
, &ubi
->free
);
457 dbg_wl("PEB %d EC %d", e
->pnum
, e
->ec
);
458 prot_queue_add(ubi
, e
);
459 spin_unlock(&ubi
->wl_lock
);
464 * prot_queue_del - remove a physical eraseblock from the protection queue.
465 * @ubi: UBI device description object
466 * @pnum: the physical eraseblock to remove
468 * This function deletes PEB @pnum from the protection queue and returns zero
469 * in case of success and %-ENODEV if the PEB was not found.
471 static int prot_queue_del(struct ubi_device
*ubi
, int pnum
)
473 struct ubi_wl_entry
*e
;
475 e
= ubi
->lookuptbl
[pnum
];
479 if (paranoid_check_in_pq(ubi
, e
))
482 list_del(&e
->u
.list
);
483 dbg_wl("deleted PEB %d from the protection queue", e
->pnum
);
488 * sync_erase - synchronously erase a physical eraseblock.
489 * @ubi: UBI device description object
490 * @e: the the physical eraseblock to erase
491 * @torture: if the physical eraseblock has to be tortured
493 * This function returns zero in case of success and a negative error code in
496 static int sync_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
500 struct ubi_ec_hdr
*ec_hdr
;
501 unsigned long long ec
= e
->ec
;
503 dbg_wl("erase PEB %d, old EC %llu", e
->pnum
, ec
);
505 err
= paranoid_check_ec(ubi
, e
->pnum
, e
->ec
);
509 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
513 err
= ubi_io_sync_erase(ubi
, e
->pnum
, torture
);
518 if (ec
> UBI_MAX_ERASECOUNTER
) {
520 * Erase counter overflow. Upgrade UBI and use 64-bit
521 * erase counters internally.
523 ubi_err("erase counter overflow at PEB %d, EC %llu",
529 dbg_wl("erased PEB %d, new EC %llu", e
->pnum
, ec
);
531 ec_hdr
->ec
= cpu_to_be64(ec
);
533 err
= ubi_io_write_ec_hdr(ubi
, e
->pnum
, ec_hdr
);
538 spin_lock(&ubi
->wl_lock
);
539 if (e
->ec
> ubi
->max_ec
)
541 spin_unlock(&ubi
->wl_lock
);
549 * serve_prot_queue - check if it is time to stop protecting PEBs.
550 * @ubi: UBI device description object
552 * This function is called after each erase operation and removes PEBs from the
553 * tail of the protection queue. These PEBs have been protected for long enough
554 * and should be moved to the used tree.
556 static void serve_prot_queue(struct ubi_device
*ubi
)
558 struct ubi_wl_entry
*e
, *tmp
;
562 * There may be several protected physical eraseblock to remove,
567 spin_lock(&ubi
->wl_lock
);
568 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[ubi
->pq_head
], u
.list
) {
569 dbg_wl("PEB %d EC %d protection over, move to used tree",
572 list_del(&e
->u
.list
);
573 wl_tree_add(e
, &ubi
->used
);
576 * Let's be nice and avoid holding the spinlock for
579 spin_unlock(&ubi
->wl_lock
);
586 if (ubi
->pq_head
== UBI_PROT_QUEUE_LEN
)
588 ubi_assert(ubi
->pq_head
>= 0 && ubi
->pq_head
< UBI_PROT_QUEUE_LEN
);
589 spin_unlock(&ubi
->wl_lock
);
593 * schedule_ubi_work - schedule a work.
594 * @ubi: UBI device description object
595 * @wrk: the work to schedule
597 * This function adds a work defined by @wrk to the tail of the pending works
600 static void schedule_ubi_work(struct ubi_device
*ubi
, struct ubi_work
*wrk
)
602 spin_lock(&ubi
->wl_lock
);
603 list_add_tail(&wrk
->list
, &ubi
->works
);
604 ubi_assert(ubi
->works_count
>= 0);
605 ubi
->works_count
+= 1;
606 if (ubi
->thread_enabled
)
607 wake_up_process(ubi
->bgt_thread
);
608 spin_unlock(&ubi
->wl_lock
);
611 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
615 * schedule_erase - schedule an erase work.
616 * @ubi: UBI device description object
617 * @e: the WL entry of the physical eraseblock to erase
618 * @torture: if the physical eraseblock has to be tortured
620 * This function returns zero in case of success and a %-ENOMEM in case of
623 static int schedule_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
626 struct ubi_work
*wl_wrk
;
628 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
629 e
->pnum
, e
->ec
, torture
);
631 wl_wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
635 wl_wrk
->func
= &erase_worker
;
637 wl_wrk
->torture
= torture
;
639 schedule_ubi_work(ubi
, wl_wrk
);
644 * wear_leveling_worker - wear-leveling worker function.
645 * @ubi: UBI device description object
646 * @wrk: the work object
647 * @cancel: non-zero if the worker has to free memory and exit
649 * This function copies a more worn out physical eraseblock to a less worn out
650 * one. Returns zero in case of success and a negative error code in case of
653 static int wear_leveling_worker(struct ubi_device
*ubi
, struct ubi_work
*wrk
,
656 int err
, scrubbing
= 0, torture
= 0;
657 struct ubi_wl_entry
*e1
, *e2
;
658 struct ubi_vid_hdr
*vid_hdr
;
664 vid_hdr
= ubi_zalloc_vid_hdr(ubi
, GFP_NOFS
);
668 mutex_lock(&ubi
->move_mutex
);
669 spin_lock(&ubi
->wl_lock
);
670 ubi_assert(!ubi
->move_from
&& !ubi
->move_to
);
671 ubi_assert(!ubi
->move_to_put
);
673 if (!ubi
->free
.rb_node
||
674 (!ubi
->used
.rb_node
&& !ubi
->scrub
.rb_node
)) {
676 * No free physical eraseblocks? Well, they must be waiting in
677 * the queue to be erased. Cancel movement - it will be
678 * triggered again when a free physical eraseblock appears.
680 * No used physical eraseblocks? They must be temporarily
681 * protected from being moved. They will be moved to the
682 * @ubi->used tree later and the wear-leveling will be
685 dbg_wl("cancel WL, a list is empty: free %d, used %d",
686 !ubi
->free
.rb_node
, !ubi
->used
.rb_node
);
690 if (!ubi
->scrub
.rb_node
) {
692 * Now pick the least worn-out used physical eraseblock and a
693 * highly worn-out free physical eraseblock. If the erase
694 * counters differ much enough, start wear-leveling.
696 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
697 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
699 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
)) {
700 dbg_wl("no WL needed: min used EC %d, max free EC %d",
704 paranoid_check_in_wl_tree(e1
, &ubi
->used
);
705 rb_erase(&e1
->u
.rb
, &ubi
->used
);
706 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
707 e1
->pnum
, e1
->ec
, e2
->pnum
, e2
->ec
);
709 /* Perform scrubbing */
711 e1
= rb_entry(rb_first(&ubi
->scrub
), struct ubi_wl_entry
, u
.rb
);
712 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
713 paranoid_check_in_wl_tree(e1
, &ubi
->scrub
);
714 rb_erase(&e1
->u
.rb
, &ubi
->scrub
);
715 dbg_wl("scrub PEB %d to PEB %d", e1
->pnum
, e2
->pnum
);
718 paranoid_check_in_wl_tree(e2
, &ubi
->free
);
719 rb_erase(&e2
->u
.rb
, &ubi
->free
);
722 spin_unlock(&ubi
->wl_lock
);
725 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
726 * We so far do not know which logical eraseblock our physical
727 * eraseblock (@e1) belongs to. We have to read the volume identifier
730 * Note, we are protected from this PEB being unmapped and erased. The
731 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
732 * which is being moved was unmapped.
735 err
= ubi_io_read_vid_hdr(ubi
, e1
->pnum
, vid_hdr
, 0);
736 if (err
&& err
!= UBI_IO_BITFLIPS
) {
737 if (err
== UBI_IO_PEB_FREE
) {
739 * We are trying to move PEB without a VID header. UBI
740 * always write VID headers shortly after the PEB was
741 * given, so we have a situation when it did not have
742 * chance to write it down because it was preempted.
743 * Just re-schedule the work, so that next time it will
744 * likely have the VID header in place.
746 dbg_wl("PEB %d has no VID header", e1
->pnum
);
750 ubi_err("error %d while reading VID header from PEB %d",
757 err
= ubi_eba_copy_leb(ubi
, e1
->pnum
, e2
->pnum
, vid_hdr
);
764 /* Target PEB write error, torture it */
770 * The LEB has not been moved because the volume is being
771 * deleted or the PEB has been put meanwhile. We should prevent
772 * this PEB from being selected for wear-leveling movement
773 * again, so put it to the protection queue.
776 dbg_wl("canceled moving PEB %d", e1
->pnum
);
777 ubi_assert(err
== 1);
779 ubi_free_vid_hdr(ubi
, vid_hdr
);
782 spin_lock(&ubi
->wl_lock
);
783 prot_queue_add(ubi
, e1
);
784 ubi_assert(!ubi
->move_to_put
);
785 ubi
->move_from
= ubi
->move_to
= NULL
;
786 ubi
->wl_scheduled
= 0;
787 spin_unlock(&ubi
->wl_lock
);
790 err
= schedule_erase(ubi
, e2
, 0);
793 mutex_unlock(&ubi
->move_mutex
);
797 /* The PEB has been successfully moved */
798 ubi_free_vid_hdr(ubi
, vid_hdr
);
801 ubi_msg("scrubbed PEB %d, data moved to PEB %d",
804 spin_lock(&ubi
->wl_lock
);
805 if (!ubi
->move_to_put
) {
806 wl_tree_add(e2
, &ubi
->used
);
809 ubi
->move_from
= ubi
->move_to
= NULL
;
810 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
811 spin_unlock(&ubi
->wl_lock
);
813 err
= schedule_erase(ubi
, e1
, 0);
821 * Well, the target PEB was put meanwhile, schedule it for
824 dbg_wl("PEB %d was put meanwhile, erase", e2
->pnum
);
825 err
= schedule_erase(ubi
, e2
, 0);
831 mutex_unlock(&ubi
->move_mutex
);
835 * For some reasons the LEB was not moved, might be an error, might be
836 * something else. @e1 was not changed, so return it back. @e2 might
837 * have been changed, schedule it for erasure.
840 dbg_wl("canceled moving PEB %d", e1
->pnum
);
841 ubi_free_vid_hdr(ubi
, vid_hdr
);
843 spin_lock(&ubi
->wl_lock
);
845 wl_tree_add(e1
, &ubi
->scrub
);
847 wl_tree_add(e1
, &ubi
->used
);
848 ubi_assert(!ubi
->move_to_put
);
849 ubi
->move_from
= ubi
->move_to
= NULL
;
850 ubi
->wl_scheduled
= 0;
851 spin_unlock(&ubi
->wl_lock
);
854 err
= schedule_erase(ubi
, e2
, torture
);
858 mutex_unlock(&ubi
->move_mutex
);
862 ubi_err("error %d while moving PEB %d to PEB %d",
863 err
, e1
->pnum
, e2
->pnum
);
865 ubi_free_vid_hdr(ubi
, vid_hdr
);
866 spin_lock(&ubi
->wl_lock
);
867 ubi
->move_from
= ubi
->move_to
= NULL
;
868 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
869 spin_unlock(&ubi
->wl_lock
);
872 kmem_cache_free(ubi_wl_entry_slab
, e1
);
874 kmem_cache_free(ubi_wl_entry_slab
, e2
);
877 mutex_unlock(&ubi
->move_mutex
);
881 ubi
->wl_scheduled
= 0;
882 spin_unlock(&ubi
->wl_lock
);
883 mutex_unlock(&ubi
->move_mutex
);
884 ubi_free_vid_hdr(ubi
, vid_hdr
);
889 * ensure_wear_leveling - schedule wear-leveling if it is needed.
890 * @ubi: UBI device description object
892 * This function checks if it is time to start wear-leveling and schedules it
893 * if yes. This function returns zero in case of success and a negative error
894 * code in case of failure.
896 static int ensure_wear_leveling(struct ubi_device
*ubi
)
899 struct ubi_wl_entry
*e1
;
900 struct ubi_wl_entry
*e2
;
901 struct ubi_work
*wrk
;
903 spin_lock(&ubi
->wl_lock
);
904 if (ubi
->wl_scheduled
)
905 /* Wear-leveling is already in the work queue */
909 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
910 * the WL worker has to be scheduled anyway.
912 if (!ubi
->scrub
.rb_node
) {
913 if (!ubi
->used
.rb_node
|| !ubi
->free
.rb_node
)
914 /* No physical eraseblocks - no deal */
918 * We schedule wear-leveling only if the difference between the
919 * lowest erase counter of used physical eraseblocks and a high
920 * erase counter of free physical eraseblocks is greater than
923 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
924 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
926 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
))
928 dbg_wl("schedule wear-leveling");
930 dbg_wl("schedule scrubbing");
932 ubi
->wl_scheduled
= 1;
933 spin_unlock(&ubi
->wl_lock
);
935 wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
941 wrk
->func
= &wear_leveling_worker
;
942 schedule_ubi_work(ubi
, wrk
);
946 spin_lock(&ubi
->wl_lock
);
947 ubi
->wl_scheduled
= 0;
949 spin_unlock(&ubi
->wl_lock
);
954 * erase_worker - physical eraseblock erase worker function.
955 * @ubi: UBI device description object
956 * @wl_wrk: the work object
957 * @cancel: non-zero if the worker has to free memory and exit
959 * This function erases a physical eraseblock and perform torture testing if
960 * needed. It also takes care about marking the physical eraseblock bad if
961 * needed. Returns zero in case of success and a negative error code in case of
964 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
967 struct ubi_wl_entry
*e
= wl_wrk
->e
;
968 int pnum
= e
->pnum
, err
, need
;
971 dbg_wl("cancel erasure of PEB %d EC %d", pnum
, e
->ec
);
973 kmem_cache_free(ubi_wl_entry_slab
, e
);
977 dbg_wl("erase PEB %d EC %d", pnum
, e
->ec
);
979 err
= sync_erase(ubi
, e
, wl_wrk
->torture
);
981 /* Fine, we've erased it successfully */
984 spin_lock(&ubi
->wl_lock
);
985 wl_tree_add(e
, &ubi
->free
);
986 spin_unlock(&ubi
->wl_lock
);
989 * One more erase operation has happened, take care about
990 * protected physical eraseblocks.
992 serve_prot_queue(ubi
);
994 /* And take care about wear-leveling */
995 err
= ensure_wear_leveling(ubi
);
999 ubi_err("failed to erase PEB %d, error %d", pnum
, err
);
1001 kmem_cache_free(ubi_wl_entry_slab
, e
);
1003 if (err
== -EINTR
|| err
== -ENOMEM
|| err
== -EAGAIN
||
1007 /* Re-schedule the LEB for erasure */
1008 err1
= schedule_erase(ubi
, e
, 0);
1014 } else if (err
!= -EIO
) {
1016 * If this is not %-EIO, we have no idea what to do. Scheduling
1017 * this physical eraseblock for erasure again would cause
1018 * errors again and again. Well, lets switch to RO mode.
1023 /* It is %-EIO, the PEB went bad */
1025 if (!ubi
->bad_allowed
) {
1026 ubi_err("bad physical eraseblock %d detected", pnum
);
1030 spin_lock(&ubi
->volumes_lock
);
1031 need
= ubi
->beb_rsvd_level
- ubi
->beb_rsvd_pebs
+ 1;
1033 need
= ubi
->avail_pebs
>= need
? need
: ubi
->avail_pebs
;
1034 ubi
->avail_pebs
-= need
;
1035 ubi
->rsvd_pebs
+= need
;
1036 ubi
->beb_rsvd_pebs
+= need
;
1038 ubi_msg("reserve more %d PEBs", need
);
1041 if (ubi
->beb_rsvd_pebs
== 0) {
1042 spin_unlock(&ubi
->volumes_lock
);
1043 ubi_err("no reserved physical eraseblocks");
1047 spin_unlock(&ubi
->volumes_lock
);
1048 ubi_msg("mark PEB %d as bad", pnum
);
1050 err
= ubi_io_mark_bad(ubi
, pnum
);
1054 spin_lock(&ubi
->volumes_lock
);
1055 ubi
->beb_rsvd_pebs
-= 1;
1056 ubi
->bad_peb_count
+= 1;
1057 ubi
->good_peb_count
-= 1;
1058 ubi_calculate_reserved(ubi
);
1059 if (ubi
->beb_rsvd_pebs
== 0)
1060 ubi_warn("last PEB from the reserved pool was used");
1061 spin_unlock(&ubi
->volumes_lock
);
1071 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1072 * @ubi: UBI device description object
1073 * @pnum: physical eraseblock to return
1074 * @torture: if this physical eraseblock has to be tortured
1076 * This function is called to return physical eraseblock @pnum to the pool of
1077 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1078 * occurred to this @pnum and it has to be tested. This function returns zero
1079 * in case of success, and a negative error code in case of failure.
1081 int ubi_wl_put_peb(struct ubi_device
*ubi
, int pnum
, int torture
)
1084 struct ubi_wl_entry
*e
;
1086 dbg_wl("PEB %d", pnum
);
1087 ubi_assert(pnum
>= 0);
1088 ubi_assert(pnum
< ubi
->peb_count
);
1091 spin_lock(&ubi
->wl_lock
);
1092 e
= ubi
->lookuptbl
[pnum
];
1093 if (e
== ubi
->move_from
) {
1095 * User is putting the physical eraseblock which was selected to
1096 * be moved. It will be scheduled for erasure in the
1097 * wear-leveling worker.
1099 dbg_wl("PEB %d is being moved, wait", pnum
);
1100 spin_unlock(&ubi
->wl_lock
);
1102 /* Wait for the WL worker by taking the @ubi->move_mutex */
1103 mutex_lock(&ubi
->move_mutex
);
1104 mutex_unlock(&ubi
->move_mutex
);
1106 } else if (e
== ubi
->move_to
) {
1108 * User is putting the physical eraseblock which was selected
1109 * as the target the data is moved to. It may happen if the EBA
1110 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1111 * but the WL sub-system has not put the PEB to the "used" tree
1112 * yet, but it is about to do this. So we just set a flag which
1113 * will tell the WL worker that the PEB is not needed anymore
1114 * and should be scheduled for erasure.
1116 dbg_wl("PEB %d is the target of data moving", pnum
);
1117 ubi_assert(!ubi
->move_to_put
);
1118 ubi
->move_to_put
= 1;
1119 spin_unlock(&ubi
->wl_lock
);
1122 if (in_wl_tree(e
, &ubi
->used
)) {
1123 paranoid_check_in_wl_tree(e
, &ubi
->used
);
1124 rb_erase(&e
->u
.rb
, &ubi
->used
);
1125 } else if (in_wl_tree(e
, &ubi
->scrub
)) {
1126 paranoid_check_in_wl_tree(e
, &ubi
->scrub
);
1127 rb_erase(&e
->u
.rb
, &ubi
->scrub
);
1129 err
= prot_queue_del(ubi
, e
->pnum
);
1131 ubi_err("PEB %d not found", pnum
);
1133 spin_unlock(&ubi
->wl_lock
);
1138 spin_unlock(&ubi
->wl_lock
);
1140 err
= schedule_erase(ubi
, e
, torture
);
1142 spin_lock(&ubi
->wl_lock
);
1143 wl_tree_add(e
, &ubi
->used
);
1144 spin_unlock(&ubi
->wl_lock
);
1151 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1152 * @ubi: UBI device description object
1153 * @pnum: the physical eraseblock to schedule
1155 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1156 * needs scrubbing. This function schedules a physical eraseblock for
1157 * scrubbing which is done in background. This function returns zero in case of
1158 * success and a negative error code in case of failure.
1160 int ubi_wl_scrub_peb(struct ubi_device
*ubi
, int pnum
)
1162 struct ubi_wl_entry
*e
;
1164 dbg_msg("schedule PEB %d for scrubbing", pnum
);
1167 spin_lock(&ubi
->wl_lock
);
1168 e
= ubi
->lookuptbl
[pnum
];
1169 if (e
== ubi
->move_from
|| in_wl_tree(e
, &ubi
->scrub
)) {
1170 spin_unlock(&ubi
->wl_lock
);
1174 if (e
== ubi
->move_to
) {
1176 * This physical eraseblock was used to move data to. The data
1177 * was moved but the PEB was not yet inserted to the proper
1178 * tree. We should just wait a little and let the WL worker
1181 spin_unlock(&ubi
->wl_lock
);
1182 dbg_wl("the PEB %d is not in proper tree, retry", pnum
);
1187 if (in_wl_tree(e
, &ubi
->used
)) {
1188 paranoid_check_in_wl_tree(e
, &ubi
->used
);
1189 rb_erase(&e
->u
.rb
, &ubi
->used
);
1193 err
= prot_queue_del(ubi
, e
->pnum
);
1195 ubi_err("PEB %d not found", pnum
);
1197 spin_unlock(&ubi
->wl_lock
);
1202 wl_tree_add(e
, &ubi
->scrub
);
1203 spin_unlock(&ubi
->wl_lock
);
1206 * Technically scrubbing is the same as wear-leveling, so it is done
1209 return ensure_wear_leveling(ubi
);
1213 * ubi_wl_flush - flush all pending works.
1214 * @ubi: UBI device description object
1216 * This function returns zero in case of success and a negative error code in
1219 int ubi_wl_flush(struct ubi_device
*ubi
)
1224 * Erase while the pending works queue is not empty, but not more than
1225 * the number of currently pending works.
1227 dbg_wl("flush (%d pending works)", ubi
->works_count
);
1228 while (ubi
->works_count
) {
1235 * Make sure all the works which have been done in parallel are
1238 down_write(&ubi
->work_sem
);
1239 up_write(&ubi
->work_sem
);
1242 * And in case last was the WL worker and it canceled the LEB
1243 * movement, flush again.
1245 while (ubi
->works_count
) {
1246 dbg_wl("flush more (%d pending works)", ubi
->works_count
);
1256 * tree_destroy - destroy an RB-tree.
1257 * @root: the root of the tree to destroy
1259 static void tree_destroy(struct rb_root
*root
)
1262 struct ubi_wl_entry
*e
;
1268 else if (rb
->rb_right
)
1271 e
= rb_entry(rb
, struct ubi_wl_entry
, u
.rb
);
1275 if (rb
->rb_left
== &e
->u
.rb
)
1278 rb
->rb_right
= NULL
;
1281 kmem_cache_free(ubi_wl_entry_slab
, e
);
1287 * ubi_thread - UBI background thread.
1288 * @u: the UBI device description object pointer
1290 int ubi_thread(void *u
)
1293 struct ubi_device
*ubi
= u
;
1295 ubi_msg("background thread \"%s\" started, PID %d",
1296 ubi
->bgt_name
, task_pid_nr(current
));
1302 if (kthread_should_stop())
1305 if (try_to_freeze())
1308 spin_lock(&ubi
->wl_lock
);
1309 if (list_empty(&ubi
->works
) || ubi
->ro_mode
||
1310 !ubi
->thread_enabled
) {
1311 set_current_state(TASK_INTERRUPTIBLE
);
1312 spin_unlock(&ubi
->wl_lock
);
1316 spin_unlock(&ubi
->wl_lock
);
1320 ubi_err("%s: work failed with error code %d",
1321 ubi
->bgt_name
, err
);
1322 if (failures
++ > WL_MAX_FAILURES
) {
1324 * Too many failures, disable the thread and
1325 * switch to read-only mode.
1327 ubi_msg("%s: %d consecutive failures",
1328 ubi
->bgt_name
, WL_MAX_FAILURES
);
1330 ubi
->thread_enabled
= 0;
1339 dbg_wl("background thread \"%s\" is killed", ubi
->bgt_name
);
1344 * cancel_pending - cancel all pending works.
1345 * @ubi: UBI device description object
1347 static void cancel_pending(struct ubi_device
*ubi
)
1349 while (!list_empty(&ubi
->works
)) {
1350 struct ubi_work
*wrk
;
1352 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
1353 list_del(&wrk
->list
);
1354 wrk
->func(ubi
, wrk
, 1);
1355 ubi
->works_count
-= 1;
1356 ubi_assert(ubi
->works_count
>= 0);
1361 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1362 * @ubi: UBI device description object
1363 * @si: scanning information
1365 * This function returns zero in case of success, and a negative error code in
1368 int ubi_wl_init_scan(struct ubi_device
*ubi
, struct ubi_scan_info
*si
)
1371 struct rb_node
*rb1
, *rb2
;
1372 struct ubi_scan_volume
*sv
;
1373 struct ubi_scan_leb
*seb
, *tmp
;
1374 struct ubi_wl_entry
*e
;
1376 ubi
->used
= ubi
->free
= ubi
->scrub
= RB_ROOT
;
1377 spin_lock_init(&ubi
->wl_lock
);
1378 mutex_init(&ubi
->move_mutex
);
1379 init_rwsem(&ubi
->work_sem
);
1380 ubi
->max_ec
= si
->max_ec
;
1381 INIT_LIST_HEAD(&ubi
->works
);
1383 sprintf(ubi
->bgt_name
, UBI_BGT_NAME_PATTERN
, ubi
->ubi_num
);
1386 ubi
->lookuptbl
= kzalloc(ubi
->peb_count
* sizeof(void *), GFP_KERNEL
);
1387 if (!ubi
->lookuptbl
)
1390 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; i
++)
1391 INIT_LIST_HEAD(&ubi
->pq
[i
]);
1394 list_for_each_entry_safe(seb
, tmp
, &si
->erase
, u
.list
) {
1397 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1401 e
->pnum
= seb
->pnum
;
1403 ubi
->lookuptbl
[e
->pnum
] = e
;
1404 if (schedule_erase(ubi
, e
, 0)) {
1405 kmem_cache_free(ubi_wl_entry_slab
, e
);
1410 list_for_each_entry(seb
, &si
->free
, u
.list
) {
1413 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1417 e
->pnum
= seb
->pnum
;
1419 ubi_assert(e
->ec
>= 0);
1420 wl_tree_add(e
, &ubi
->free
);
1421 ubi
->lookuptbl
[e
->pnum
] = e
;
1424 list_for_each_entry(seb
, &si
->corr
, u
.list
) {
1427 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1431 e
->pnum
= seb
->pnum
;
1433 ubi
->lookuptbl
[e
->pnum
] = e
;
1434 if (schedule_erase(ubi
, e
, 0)) {
1435 kmem_cache_free(ubi_wl_entry_slab
, e
);
1440 ubi_rb_for_each_entry(rb1
, sv
, &si
->volumes
, rb
) {
1441 ubi_rb_for_each_entry(rb2
, seb
, &sv
->root
, u
.rb
) {
1444 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1448 e
->pnum
= seb
->pnum
;
1450 ubi
->lookuptbl
[e
->pnum
] = e
;
1452 dbg_wl("add PEB %d EC %d to the used tree",
1454 wl_tree_add(e
, &ubi
->used
);
1456 dbg_wl("add PEB %d EC %d to the scrub tree",
1458 wl_tree_add(e
, &ubi
->scrub
);
1463 if (ubi
->avail_pebs
< WL_RESERVED_PEBS
) {
1464 ubi_err("no enough physical eraseblocks (%d, need %d)",
1465 ubi
->avail_pebs
, WL_RESERVED_PEBS
);
1468 ubi
->avail_pebs
-= WL_RESERVED_PEBS
;
1469 ubi
->rsvd_pebs
+= WL_RESERVED_PEBS
;
1471 /* Schedule wear-leveling if needed */
1472 err
= ensure_wear_leveling(ubi
);
1479 cancel_pending(ubi
);
1480 tree_destroy(&ubi
->used
);
1481 tree_destroy(&ubi
->free
);
1482 tree_destroy(&ubi
->scrub
);
1483 kfree(ubi
->lookuptbl
);
1488 * protection_queue_destroy - destroy the protection queue.
1489 * @ubi: UBI device description object
1491 static void protection_queue_destroy(struct ubi_device
*ubi
)
1494 struct ubi_wl_entry
*e
, *tmp
;
1496 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
) {
1497 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[i
], u
.list
) {
1498 list_del(&e
->u
.list
);
1499 kmem_cache_free(ubi_wl_entry_slab
, e
);
1505 * ubi_wl_close - close the wear-leveling sub-system.
1506 * @ubi: UBI device description object
1508 void ubi_wl_close(struct ubi_device
*ubi
)
1510 dbg_wl("close the WL sub-system");
1511 cancel_pending(ubi
);
1512 protection_queue_destroy(ubi
);
1513 tree_destroy(&ubi
->used
);
1514 tree_destroy(&ubi
->free
);
1515 tree_destroy(&ubi
->scrub
);
1516 kfree(ubi
->lookuptbl
);
1519 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1522 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1523 * @ubi: UBI device description object
1524 * @pnum: the physical eraseblock number to check
1525 * @ec: the erase counter to check
1527 * This function returns zero if the erase counter of physical eraseblock @pnum
1528 * is equivalent to @ec, %1 if not, and a negative error code if an error
1531 static int paranoid_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
)
1535 struct ubi_ec_hdr
*ec_hdr
;
1537 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1541 err
= ubi_io_read_ec_hdr(ubi
, pnum
, ec_hdr
, 0);
1542 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1543 /* The header does not have to exist */
1548 read_ec
= be64_to_cpu(ec_hdr
->ec
);
1549 if (ec
!= read_ec
) {
1550 ubi_err("paranoid check failed for PEB %d", pnum
);
1551 ubi_err("read EC is %lld, should be %d", read_ec
, ec
);
1552 ubi_dbg_dump_stack();
1563 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1564 * @e: the wear-leveling entry to check
1565 * @root: the root of the tree
1567 * This function returns zero if @e is in the @root RB-tree and %1 if it is
1570 static int paranoid_check_in_wl_tree(struct ubi_wl_entry
*e
,
1571 struct rb_root
*root
)
1573 if (in_wl_tree(e
, root
))
1576 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1577 e
->pnum
, e
->ec
, root
);
1578 ubi_dbg_dump_stack();
1583 * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1585 * @ubi: UBI device description object
1586 * @e: the wear-leveling entry to check
1588 * This function returns zero if @e is in @ubi->pq and %1 if it is not.
1590 static int paranoid_check_in_pq(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
1592 struct ubi_wl_entry
*p
;
1595 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
)
1596 list_for_each_entry(p
, &ubi
->pq
[i
], u
.list
)
1600 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1602 ubi_dbg_dump_stack();
1605 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */