repo init
[linux-rt-nao.git] / drivers / net / wireless / ath9k / eeprom.c
blobacd6c5374d44c1cca46ecaca40009f9051ec11cf
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "core.h"
18 #include "hw.h"
19 #include "reg.h"
20 #include "phy.h"
22 static void ath9k_hw_analog_shift_rmw(struct ath_hal *ah,
23 u32 reg, u32 mask,
24 u32 shift, u32 val)
26 u32 regVal;
28 regVal = REG_READ(ah, reg) & ~mask;
29 regVal |= (val << shift) & mask;
31 REG_WRITE(ah, reg, regVal);
33 if (ah->ah_config.analog_shiftreg)
34 udelay(100);
36 return;
39 static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
42 if (fbin == AR5416_BCHAN_UNUSED)
43 return fbin;
45 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
48 static inline int16_t ath9k_hw_interpolate(u16 target,
49 u16 srcLeft, u16 srcRight,
50 int16_t targetLeft,
51 int16_t targetRight)
53 int16_t rv;
55 if (srcRight == srcLeft) {
56 rv = targetLeft;
57 } else {
58 rv = (int16_t) (((target - srcLeft) * targetRight +
59 (srcRight - target) * targetLeft) /
60 (srcRight - srcLeft));
62 return rv;
65 static inline bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList,
66 u16 listSize, u16 *indexL,
67 u16 *indexR)
69 u16 i;
71 if (target <= pList[0]) {
72 *indexL = *indexR = 0;
73 return true;
75 if (target >= pList[listSize - 1]) {
76 *indexL = *indexR = (u16) (listSize - 1);
77 return true;
80 for (i = 0; i < listSize - 1; i++) {
81 if (pList[i] == target) {
82 *indexL = *indexR = i;
83 return true;
85 if (target < pList[i + 1]) {
86 *indexL = i;
87 *indexR = (u16) (i + 1);
88 return false;
91 return false;
94 static bool ath9k_hw_eeprom_read(struct ath_hal *ah, u32 off, u16 *data)
96 (void)REG_READ(ah, AR5416_EEPROM_OFFSET + (off << AR5416_EEPROM_S));
98 if (!ath9k_hw_wait(ah,
99 AR_EEPROM_STATUS_DATA,
100 AR_EEPROM_STATUS_DATA_BUSY |
101 AR_EEPROM_STATUS_DATA_PROT_ACCESS, 0)) {
102 return false;
105 *data = MS(REG_READ(ah, AR_EEPROM_STATUS_DATA),
106 AR_EEPROM_STATUS_DATA_VAL);
108 return true;
111 static int ath9k_hw_flash_map(struct ath_hal *ah)
113 struct ath_hal_5416 *ahp = AH5416(ah);
115 ahp->ah_cal_mem = ioremap(AR5416_EEPROM_START_ADDR, AR5416_EEPROM_MAX);
117 if (!ahp->ah_cal_mem) {
118 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
119 "cannot remap eeprom region \n");
120 return -EIO;
123 return 0;
126 static bool ath9k_hw_flash_read(struct ath_hal *ah, u32 off, u16 *data)
128 struct ath_hal_5416 *ahp = AH5416(ah);
130 *data = ioread16(ahp->ah_cal_mem + off);
132 return true;
135 static inline bool ath9k_hw_nvram_read(struct ath_hal *ah, u32 off, u16 *data)
137 if (ath9k_hw_use_flash(ah))
138 return ath9k_hw_flash_read(ah, off, data);
139 else
140 return ath9k_hw_eeprom_read(ah, off, data);
143 static bool ath9k_hw_fill_4k_eeprom(struct ath_hal *ah)
145 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
146 struct ath_hal_5416 *ahp = AH5416(ah);
147 struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
148 u16 *eep_data;
149 int addr, eep_start_loc = 0;
151 eep_start_loc = 64;
153 if (!ath9k_hw_use_flash(ah)) {
154 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
155 "Reading from EEPROM, not flash\n");
158 eep_data = (u16 *)eep;
160 for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
161 if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
162 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
163 "Unable to read eeprom region \n");
164 return false;
166 eep_data++;
168 return true;
169 #undef SIZE_EEPROM_4K
172 static bool ath9k_hw_fill_def_eeprom(struct ath_hal *ah)
174 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
175 struct ath_hal_5416 *ahp = AH5416(ah);
176 struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
177 u16 *eep_data;
178 int addr, ar5416_eep_start_loc = 0x100;
180 eep_data = (u16 *)eep;
182 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
183 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
184 eep_data)) {
185 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
186 "Unable to read eeprom region\n");
187 return false;
189 eep_data++;
191 return true;
192 #undef SIZE_EEPROM_DEF
195 static bool (*ath9k_fill_eeprom[]) (struct ath_hal *) = {
196 ath9k_hw_fill_def_eeprom,
197 ath9k_hw_fill_4k_eeprom
200 static inline bool ath9k_hw_fill_eeprom(struct ath_hal *ah)
202 struct ath_hal_5416 *ahp = AH5416(ah);
204 return ath9k_fill_eeprom[ahp->ah_eep_map](ah);
207 static int ath9k_hw_check_def_eeprom(struct ath_hal *ah)
209 struct ath_hal_5416 *ahp = AH5416(ah);
210 struct ar5416_eeprom_def *eep =
211 (struct ar5416_eeprom_def *) &ahp->ah_eeprom.def;
212 u16 *eepdata, temp, magic, magic2;
213 u32 sum = 0, el;
214 bool need_swap = false;
215 int i, addr, size;
217 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
218 &magic)) {
219 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
220 "Reading Magic # failed\n");
221 return false;
224 if (!ath9k_hw_use_flash(ah)) {
226 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
227 "Read Magic = 0x%04X\n", magic);
229 if (magic != AR5416_EEPROM_MAGIC) {
230 magic2 = swab16(magic);
232 if (magic2 == AR5416_EEPROM_MAGIC) {
233 size = sizeof(struct ar5416_eeprom_def);
234 need_swap = true;
235 eepdata = (u16 *) (&ahp->ah_eeprom);
237 for (addr = 0; addr < size / sizeof(u16); addr++) {
238 temp = swab16(*eepdata);
239 *eepdata = temp;
240 eepdata++;
242 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
243 "0x%04X ", *eepdata);
245 if (((addr + 1) % 6) == 0)
246 DPRINTF(ah->ah_sc,
247 ATH_DBG_EEPROM, "\n");
249 } else {
250 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
251 "Invalid EEPROM Magic. "
252 "endianness mismatch.\n");
253 return -EINVAL;
258 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
259 need_swap ? "True" : "False");
261 if (need_swap)
262 el = swab16(ahp->ah_eeprom.def.baseEepHeader.length);
263 else
264 el = ahp->ah_eeprom.def.baseEepHeader.length;
266 if (el > sizeof(struct ar5416_eeprom_def))
267 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
268 else
269 el = el / sizeof(u16);
271 eepdata = (u16 *)(&ahp->ah_eeprom);
273 for (i = 0; i < el; i++)
274 sum ^= *eepdata++;
276 if (need_swap) {
277 u32 integer, j;
278 u16 word;
280 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
281 "EEPROM Endianness is not native.. Changing \n");
283 word = swab16(eep->baseEepHeader.length);
284 eep->baseEepHeader.length = word;
286 word = swab16(eep->baseEepHeader.checksum);
287 eep->baseEepHeader.checksum = word;
289 word = swab16(eep->baseEepHeader.version);
290 eep->baseEepHeader.version = word;
292 word = swab16(eep->baseEepHeader.regDmn[0]);
293 eep->baseEepHeader.regDmn[0] = word;
295 word = swab16(eep->baseEepHeader.regDmn[1]);
296 eep->baseEepHeader.regDmn[1] = word;
298 word = swab16(eep->baseEepHeader.rfSilent);
299 eep->baseEepHeader.rfSilent = word;
301 word = swab16(eep->baseEepHeader.blueToothOptions);
302 eep->baseEepHeader.blueToothOptions = word;
304 word = swab16(eep->baseEepHeader.deviceCap);
305 eep->baseEepHeader.deviceCap = word;
307 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
308 struct modal_eep_header *pModal =
309 &eep->modalHeader[j];
310 integer = swab32(pModal->antCtrlCommon);
311 pModal->antCtrlCommon = integer;
313 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
314 integer = swab32(pModal->antCtrlChain[i]);
315 pModal->antCtrlChain[i] = integer;
318 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
319 word = swab16(pModal->spurChans[i].spurChan);
320 pModal->spurChans[i].spurChan = word;
325 if (sum != 0xffff || ar5416_get_eep_ver(ahp) != AR5416_EEP_VER ||
326 ar5416_get_eep_rev(ahp) < AR5416_EEP_NO_BACK_VER) {
327 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
328 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
329 sum, ar5416_get_eep_ver(ahp));
330 return -EINVAL;
333 return 0;
336 static int ath9k_hw_check_4k_eeprom(struct ath_hal *ah)
338 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
339 struct ath_hal_5416 *ahp = AH5416(ah);
340 struct ar5416_eeprom_4k *eep =
341 (struct ar5416_eeprom_4k *) &ahp->ah_eeprom.map4k;
342 u16 *eepdata, temp, magic, magic2;
343 u32 sum = 0, el;
344 bool need_swap = false;
345 int i, addr;
348 if (!ath9k_hw_use_flash(ah)) {
350 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
351 &magic)) {
352 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
353 "Reading Magic # failed\n");
354 return false;
357 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
358 "Read Magic = 0x%04X\n", magic);
360 if (magic != AR5416_EEPROM_MAGIC) {
361 magic2 = swab16(magic);
363 if (magic2 == AR5416_EEPROM_MAGIC) {
364 need_swap = true;
365 eepdata = (u16 *) (&ahp->ah_eeprom);
367 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
368 temp = swab16(*eepdata);
369 *eepdata = temp;
370 eepdata++;
372 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
373 "0x%04X ", *eepdata);
375 if (((addr + 1) % 6) == 0)
376 DPRINTF(ah->ah_sc,
377 ATH_DBG_EEPROM, "\n");
379 } else {
380 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
381 "Invalid EEPROM Magic. "
382 "endianness mismatch.\n");
383 return -EINVAL;
388 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
389 need_swap ? "True" : "False");
391 if (need_swap)
392 el = swab16(ahp->ah_eeprom.map4k.baseEepHeader.length);
393 else
394 el = ahp->ah_eeprom.map4k.baseEepHeader.length;
396 if (el > sizeof(struct ar5416_eeprom_def))
397 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
398 else
399 el = el / sizeof(u16);
401 eepdata = (u16 *)(&ahp->ah_eeprom);
403 for (i = 0; i < el; i++)
404 sum ^= *eepdata++;
406 if (need_swap) {
407 u32 integer;
408 u16 word;
410 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
411 "EEPROM Endianness is not native.. Changing \n");
413 word = swab16(eep->baseEepHeader.length);
414 eep->baseEepHeader.length = word;
416 word = swab16(eep->baseEepHeader.checksum);
417 eep->baseEepHeader.checksum = word;
419 word = swab16(eep->baseEepHeader.version);
420 eep->baseEepHeader.version = word;
422 word = swab16(eep->baseEepHeader.regDmn[0]);
423 eep->baseEepHeader.regDmn[0] = word;
425 word = swab16(eep->baseEepHeader.regDmn[1]);
426 eep->baseEepHeader.regDmn[1] = word;
428 word = swab16(eep->baseEepHeader.rfSilent);
429 eep->baseEepHeader.rfSilent = word;
431 word = swab16(eep->baseEepHeader.blueToothOptions);
432 eep->baseEepHeader.blueToothOptions = word;
434 word = swab16(eep->baseEepHeader.deviceCap);
435 eep->baseEepHeader.deviceCap = word;
437 integer = swab32(eep->modalHeader.antCtrlCommon);
438 eep->modalHeader.antCtrlCommon = integer;
440 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
441 integer = swab32(eep->modalHeader.antCtrlChain[i]);
442 eep->modalHeader.antCtrlChain[i] = integer;
445 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
446 word = swab16(eep->modalHeader.spurChans[i].spurChan);
447 eep->modalHeader.spurChans[i].spurChan = word;
451 if (sum != 0xffff || ar5416_get_eep4k_ver(ahp) != AR5416_EEP_VER ||
452 ar5416_get_eep4k_rev(ahp) < AR5416_EEP_NO_BACK_VER) {
453 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
454 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
455 sum, ar5416_get_eep4k_ver(ahp));
456 return -EINVAL;
459 return 0;
460 #undef EEPROM_4K_SIZE
463 static int (*ath9k_check_eeprom[]) (struct ath_hal *) = {
464 ath9k_hw_check_def_eeprom,
465 ath9k_hw_check_4k_eeprom
468 static inline int ath9k_hw_check_eeprom(struct ath_hal *ah)
470 struct ath_hal_5416 *ahp = AH5416(ah);
472 return ath9k_check_eeprom[ahp->ah_eep_map](ah);
475 static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
476 u8 *pVpdList, u16 numIntercepts,
477 u8 *pRetVpdList)
479 u16 i, k;
480 u8 currPwr = pwrMin;
481 u16 idxL = 0, idxR = 0;
483 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
484 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
485 numIntercepts, &(idxL),
486 &(idxR));
487 if (idxR < 1)
488 idxR = 1;
489 if (idxL == numIntercepts - 1)
490 idxL = (u16) (numIntercepts - 2);
491 if (pPwrList[idxL] == pPwrList[idxR])
492 k = pVpdList[idxL];
493 else
494 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
495 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
496 (pPwrList[idxR] - pPwrList[idxL]));
497 pRetVpdList[i] = (u8) k;
498 currPwr += 2;
501 return true;
504 static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hal *ah,
505 struct ath9k_channel *chan,
506 struct cal_data_per_freq_4k *pRawDataSet,
507 u8 *bChans, u16 availPiers,
508 u16 tPdGainOverlap, int16_t *pMinCalPower,
509 u16 *pPdGainBoundaries, u8 *pPDADCValues,
510 u16 numXpdGains)
512 #define TMP_VAL_VPD_TABLE \
513 ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
514 int i, j, k;
515 int16_t ss;
516 u16 idxL = 0, idxR = 0, numPiers;
517 static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
518 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
519 static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
520 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
521 static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
522 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
524 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
525 u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
526 u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
527 int16_t vpdStep;
528 int16_t tmpVal;
529 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
530 bool match;
531 int16_t minDelta = 0;
532 struct chan_centers centers;
533 #define PD_GAIN_BOUNDARY_DEFAULT 58;
535 ath9k_hw_get_channel_centers(ah, chan, &centers);
537 for (numPiers = 0; numPiers < availPiers; numPiers++) {
538 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
539 break;
542 match = ath9k_hw_get_lower_upper_index(
543 (u8)FREQ2FBIN(centers.synth_center,
544 IS_CHAN_2GHZ(chan)), bChans, numPiers,
545 &idxL, &idxR);
547 if (match) {
548 for (i = 0; i < numXpdGains; i++) {
549 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
550 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
551 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
552 pRawDataSet[idxL].pwrPdg[i],
553 pRawDataSet[idxL].vpdPdg[i],
554 AR5416_EEP4K_PD_GAIN_ICEPTS,
555 vpdTableI[i]);
557 } else {
558 for (i = 0; i < numXpdGains; i++) {
559 pVpdL = pRawDataSet[idxL].vpdPdg[i];
560 pPwrL = pRawDataSet[idxL].pwrPdg[i];
561 pVpdR = pRawDataSet[idxR].vpdPdg[i];
562 pPwrR = pRawDataSet[idxR].pwrPdg[i];
564 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
566 maxPwrT4[i] =
567 min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
568 pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
571 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
572 pPwrL, pVpdL,
573 AR5416_EEP4K_PD_GAIN_ICEPTS,
574 vpdTableL[i]);
575 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
576 pPwrR, pVpdR,
577 AR5416_EEP4K_PD_GAIN_ICEPTS,
578 vpdTableR[i]);
580 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
581 vpdTableI[i][j] =
582 (u8)(ath9k_hw_interpolate((u16)
583 FREQ2FBIN(centers.
584 synth_center,
585 IS_CHAN_2GHZ
586 (chan)),
587 bChans[idxL], bChans[idxR],
588 vpdTableL[i][j], vpdTableR[i][j]));
593 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
595 k = 0;
597 for (i = 0; i < numXpdGains; i++) {
598 if (i == (numXpdGains - 1))
599 pPdGainBoundaries[i] =
600 (u16)(maxPwrT4[i] / 2);
601 else
602 pPdGainBoundaries[i] =
603 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
605 pPdGainBoundaries[i] =
606 min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
608 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
609 minDelta = pPdGainBoundaries[0] - 23;
610 pPdGainBoundaries[0] = 23;
611 } else {
612 minDelta = 0;
615 if (i == 0) {
616 if (AR_SREV_9280_10_OR_LATER(ah))
617 ss = (int16_t)(0 - (minPwrT4[i] / 2));
618 else
619 ss = 0;
620 } else {
621 ss = (int16_t)((pPdGainBoundaries[i - 1] -
622 (minPwrT4[i] / 2)) -
623 tPdGainOverlap + 1 + minDelta);
625 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
626 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
628 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
629 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
630 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
631 ss++;
634 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
635 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
636 (minPwrT4[i] / 2));
637 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
638 tgtIndex : sizeCurrVpdTable;
640 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
641 pPDADCValues[k++] = vpdTableI[i][ss++];
643 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
644 vpdTableI[i][sizeCurrVpdTable - 2]);
645 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
647 if (tgtIndex > maxIndex) {
648 while ((ss <= tgtIndex) &&
649 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
650 tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
651 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
652 255 : tmpVal);
653 ss++;
658 while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
659 pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
660 i++;
663 while (k < AR5416_NUM_PDADC_VALUES) {
664 pPDADCValues[k] = pPDADCValues[k - 1];
665 k++;
668 return;
669 #undef TMP_VAL_VPD_TABLE
672 static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hal *ah,
673 struct ath9k_channel *chan,
674 struct cal_data_per_freq *pRawDataSet,
675 u8 *bChans, u16 availPiers,
676 u16 tPdGainOverlap, int16_t *pMinCalPower,
677 u16 *pPdGainBoundaries, u8 *pPDADCValues,
678 u16 numXpdGains)
680 int i, j, k;
681 int16_t ss;
682 u16 idxL = 0, idxR = 0, numPiers;
683 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
684 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
685 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
686 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
687 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
688 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
690 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
691 u8 minPwrT4[AR5416_NUM_PD_GAINS];
692 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
693 int16_t vpdStep;
694 int16_t tmpVal;
695 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
696 bool match;
697 int16_t minDelta = 0;
698 struct chan_centers centers;
700 ath9k_hw_get_channel_centers(ah, chan, &centers);
702 for (numPiers = 0; numPiers < availPiers; numPiers++) {
703 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
704 break;
707 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
708 IS_CHAN_2GHZ(chan)),
709 bChans, numPiers, &idxL, &idxR);
711 if (match) {
712 for (i = 0; i < numXpdGains; i++) {
713 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
714 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
715 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
716 pRawDataSet[idxL].pwrPdg[i],
717 pRawDataSet[idxL].vpdPdg[i],
718 AR5416_PD_GAIN_ICEPTS,
719 vpdTableI[i]);
721 } else {
722 for (i = 0; i < numXpdGains; i++) {
723 pVpdL = pRawDataSet[idxL].vpdPdg[i];
724 pPwrL = pRawDataSet[idxL].pwrPdg[i];
725 pVpdR = pRawDataSet[idxR].vpdPdg[i];
726 pPwrR = pRawDataSet[idxR].pwrPdg[i];
728 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
730 maxPwrT4[i] =
731 min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
732 pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
735 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
736 pPwrL, pVpdL,
737 AR5416_PD_GAIN_ICEPTS,
738 vpdTableL[i]);
739 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
740 pPwrR, pVpdR,
741 AR5416_PD_GAIN_ICEPTS,
742 vpdTableR[i]);
744 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
745 vpdTableI[i][j] =
746 (u8)(ath9k_hw_interpolate((u16)
747 FREQ2FBIN(centers.
748 synth_center,
749 IS_CHAN_2GHZ
750 (chan)),
751 bChans[idxL], bChans[idxR],
752 vpdTableL[i][j], vpdTableR[i][j]));
757 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
759 k = 0;
761 for (i = 0; i < numXpdGains; i++) {
762 if (i == (numXpdGains - 1))
763 pPdGainBoundaries[i] =
764 (u16)(maxPwrT4[i] / 2);
765 else
766 pPdGainBoundaries[i] =
767 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
769 pPdGainBoundaries[i] =
770 min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
772 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
773 minDelta = pPdGainBoundaries[0] - 23;
774 pPdGainBoundaries[0] = 23;
775 } else {
776 minDelta = 0;
779 if (i == 0) {
780 if (AR_SREV_9280_10_OR_LATER(ah))
781 ss = (int16_t)(0 - (minPwrT4[i] / 2));
782 else
783 ss = 0;
784 } else {
785 ss = (int16_t)((pPdGainBoundaries[i - 1] -
786 (minPwrT4[i] / 2)) -
787 tPdGainOverlap + 1 + minDelta);
789 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
790 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
792 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
793 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
794 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
795 ss++;
798 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
799 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
800 (minPwrT4[i] / 2));
801 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
802 tgtIndex : sizeCurrVpdTable;
804 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
805 pPDADCValues[k++] = vpdTableI[i][ss++];
808 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
809 vpdTableI[i][sizeCurrVpdTable - 2]);
810 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
812 if (tgtIndex > maxIndex) {
813 while ((ss <= tgtIndex) &&
814 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
815 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
816 (ss - maxIndex + 1) * vpdStep));
817 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
818 255 : tmpVal);
819 ss++;
824 while (i < AR5416_PD_GAINS_IN_MASK) {
825 pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
826 i++;
829 while (k < AR5416_NUM_PDADC_VALUES) {
830 pPDADCValues[k] = pPDADCValues[k - 1];
831 k++;
834 return;
837 static void ath9k_hw_get_legacy_target_powers(struct ath_hal *ah,
838 struct ath9k_channel *chan,
839 struct cal_target_power_leg *powInfo,
840 u16 numChannels,
841 struct cal_target_power_leg *pNewPower,
842 u16 numRates, bool isExtTarget)
844 struct chan_centers centers;
845 u16 clo, chi;
846 int i;
847 int matchIndex = -1, lowIndex = -1;
848 u16 freq;
850 ath9k_hw_get_channel_centers(ah, chan, &centers);
851 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
853 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
854 IS_CHAN_2GHZ(chan))) {
855 matchIndex = 0;
856 } else {
857 for (i = 0; (i < numChannels) &&
858 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
859 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
860 IS_CHAN_2GHZ(chan))) {
861 matchIndex = i;
862 break;
863 } else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
864 IS_CHAN_2GHZ(chan))) &&
865 (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
866 IS_CHAN_2GHZ(chan)))) {
867 lowIndex = i - 1;
868 break;
871 if ((matchIndex == -1) && (lowIndex == -1))
872 matchIndex = i - 1;
875 if (matchIndex != -1) {
876 *pNewPower = powInfo[matchIndex];
877 } else {
878 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
879 IS_CHAN_2GHZ(chan));
880 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
881 IS_CHAN_2GHZ(chan));
883 for (i = 0; i < numRates; i++) {
884 pNewPower->tPow2x[i] =
885 (u8)ath9k_hw_interpolate(freq, clo, chi,
886 powInfo[lowIndex].tPow2x[i],
887 powInfo[lowIndex + 1].tPow2x[i]);
892 static void ath9k_hw_get_target_powers(struct ath_hal *ah,
893 struct ath9k_channel *chan,
894 struct cal_target_power_ht *powInfo,
895 u16 numChannels,
896 struct cal_target_power_ht *pNewPower,
897 u16 numRates, bool isHt40Target)
899 struct chan_centers centers;
900 u16 clo, chi;
901 int i;
902 int matchIndex = -1, lowIndex = -1;
903 u16 freq;
905 ath9k_hw_get_channel_centers(ah, chan, &centers);
906 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
908 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
909 matchIndex = 0;
910 } else {
911 for (i = 0; (i < numChannels) &&
912 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
913 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
914 IS_CHAN_2GHZ(chan))) {
915 matchIndex = i;
916 break;
917 } else
918 if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
919 IS_CHAN_2GHZ(chan))) &&
920 (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
921 IS_CHAN_2GHZ(chan)))) {
922 lowIndex = i - 1;
923 break;
926 if ((matchIndex == -1) && (lowIndex == -1))
927 matchIndex = i - 1;
930 if (matchIndex != -1) {
931 *pNewPower = powInfo[matchIndex];
932 } else {
933 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
934 IS_CHAN_2GHZ(chan));
935 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
936 IS_CHAN_2GHZ(chan));
938 for (i = 0; i < numRates; i++) {
939 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
940 clo, chi,
941 powInfo[lowIndex].tPow2x[i],
942 powInfo[lowIndex + 1].tPow2x[i]);
947 static u16 ath9k_hw_get_max_edge_power(u16 freq,
948 struct cal_ctl_edges *pRdEdgesPower,
949 bool is2GHz, int num_band_edges)
951 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
952 int i;
954 for (i = 0; (i < num_band_edges) &&
955 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
956 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
957 twiceMaxEdgePower = pRdEdgesPower[i].tPower;
958 break;
959 } else if ((i > 0) &&
960 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
961 is2GHz))) {
962 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
963 is2GHz) < freq &&
964 pRdEdgesPower[i - 1].flag) {
965 twiceMaxEdgePower =
966 pRdEdgesPower[i - 1].tPower;
968 break;
972 return twiceMaxEdgePower;
975 static bool ath9k_hw_set_def_power_cal_table(struct ath_hal *ah,
976 struct ath9k_channel *chan,
977 int16_t *pTxPowerIndexOffset)
979 struct ath_hal_5416 *ahp = AH5416(ah);
980 struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def;
981 struct cal_data_per_freq *pRawDataset;
982 u8 *pCalBChans = NULL;
983 u16 pdGainOverlap_t2;
984 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
985 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
986 u16 numPiers, i, j;
987 int16_t tMinCalPower;
988 u16 numXpdGain, xpdMask;
989 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
990 u32 reg32, regOffset, regChainOffset;
991 int16_t modalIdx;
993 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
994 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
996 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
997 AR5416_EEP_MINOR_VER_2) {
998 pdGainOverlap_t2 =
999 pEepData->modalHeader[modalIdx].pdGainOverlap;
1000 } else {
1001 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
1002 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
1005 if (IS_CHAN_2GHZ(chan)) {
1006 pCalBChans = pEepData->calFreqPier2G;
1007 numPiers = AR5416_NUM_2G_CAL_PIERS;
1008 } else {
1009 pCalBChans = pEepData->calFreqPier5G;
1010 numPiers = AR5416_NUM_5G_CAL_PIERS;
1013 numXpdGain = 0;
1015 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
1016 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
1017 if (numXpdGain >= AR5416_NUM_PD_GAINS)
1018 break;
1019 xpdGainValues[numXpdGain] =
1020 (u16)(AR5416_PD_GAINS_IN_MASK - i);
1021 numXpdGain++;
1025 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
1026 (numXpdGain - 1) & 0x3);
1027 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
1028 xpdGainValues[0]);
1029 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
1030 xpdGainValues[1]);
1031 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
1032 xpdGainValues[2]);
1034 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1035 if (AR_SREV_5416_V20_OR_LATER(ah) &&
1036 (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) &&
1037 (i != 0)) {
1038 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1039 } else
1040 regChainOffset = i * 0x1000;
1042 if (pEepData->baseEepHeader.txMask & (1 << i)) {
1043 if (IS_CHAN_2GHZ(chan))
1044 pRawDataset = pEepData->calPierData2G[i];
1045 else
1046 pRawDataset = pEepData->calPierData5G[i];
1048 ath9k_hw_get_def_gain_boundaries_pdadcs(ah, chan,
1049 pRawDataset, pCalBChans,
1050 numPiers, pdGainOverlap_t2,
1051 &tMinCalPower, gainBoundaries,
1052 pdadcValues, numXpdGain);
1054 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
1055 REG_WRITE(ah,
1056 AR_PHY_TPCRG5 + regChainOffset,
1057 SM(pdGainOverlap_t2,
1058 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
1059 | SM(gainBoundaries[0],
1060 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
1061 | SM(gainBoundaries[1],
1062 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
1063 | SM(gainBoundaries[2],
1064 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
1065 | SM(gainBoundaries[3],
1066 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
1069 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
1070 for (j = 0; j < 32; j++) {
1071 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
1072 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
1073 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
1074 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
1075 REG_WRITE(ah, regOffset, reg32);
1077 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1078 "PDADC (%d,%4x): %4.4x %8.8x\n",
1079 i, regChainOffset, regOffset,
1080 reg32);
1081 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1082 "PDADC: Chain %d | PDADC %3d "
1083 "Value %3d | PDADC %3d Value %3d | "
1084 "PDADC %3d Value %3d | PDADC %3d "
1085 "Value %3d |\n",
1086 i, 4 * j, pdadcValues[4 * j],
1087 4 * j + 1, pdadcValues[4 * j + 1],
1088 4 * j + 2, pdadcValues[4 * j + 2],
1089 4 * j + 3,
1090 pdadcValues[4 * j + 3]);
1092 regOffset += 4;
1097 *pTxPowerIndexOffset = 0;
1099 return true;
1102 static bool ath9k_hw_set_4k_power_cal_table(struct ath_hal *ah,
1103 struct ath9k_channel *chan,
1104 int16_t *pTxPowerIndexOffset)
1106 struct ath_hal_5416 *ahp = AH5416(ah);
1107 struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k;
1108 struct cal_data_per_freq_4k *pRawDataset;
1109 u8 *pCalBChans = NULL;
1110 u16 pdGainOverlap_t2;
1111 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
1112 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
1113 u16 numPiers, i, j;
1114 int16_t tMinCalPower;
1115 u16 numXpdGain, xpdMask;
1116 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
1117 u32 reg32, regOffset, regChainOffset;
1119 xpdMask = pEepData->modalHeader.xpdGain;
1121 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1122 AR5416_EEP_MINOR_VER_2) {
1123 pdGainOverlap_t2 =
1124 pEepData->modalHeader.pdGainOverlap;
1125 } else {
1126 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
1127 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
1130 pCalBChans = pEepData->calFreqPier2G;
1131 numPiers = AR5416_NUM_2G_CAL_PIERS;
1133 numXpdGain = 0;
1135 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
1136 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
1137 if (numXpdGain >= AR5416_NUM_PD_GAINS)
1138 break;
1139 xpdGainValues[numXpdGain] =
1140 (u16)(AR5416_PD_GAINS_IN_MASK - i);
1141 numXpdGain++;
1145 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
1146 (numXpdGain - 1) & 0x3);
1147 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
1148 xpdGainValues[0]);
1149 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
1150 xpdGainValues[1]);
1151 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
1152 xpdGainValues[2]);
1154 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1155 if (AR_SREV_5416_V20_OR_LATER(ah) &&
1156 (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) &&
1157 (i != 0)) {
1158 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1159 } else
1160 regChainOffset = i * 0x1000;
1162 if (pEepData->baseEepHeader.txMask & (1 << i)) {
1163 pRawDataset = pEepData->calPierData2G[i];
1165 ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
1166 pRawDataset, pCalBChans,
1167 numPiers, pdGainOverlap_t2,
1168 &tMinCalPower, gainBoundaries,
1169 pdadcValues, numXpdGain);
1171 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
1172 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
1173 SM(pdGainOverlap_t2,
1174 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
1175 | SM(gainBoundaries[0],
1176 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
1177 | SM(gainBoundaries[1],
1178 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
1179 | SM(gainBoundaries[2],
1180 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
1181 | SM(gainBoundaries[3],
1182 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
1185 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
1186 for (j = 0; j < 32; j++) {
1187 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
1188 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
1189 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
1190 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
1191 REG_WRITE(ah, regOffset, reg32);
1193 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1194 "PDADC (%d,%4x): %4.4x %8.8x\n",
1195 i, regChainOffset, regOffset,
1196 reg32);
1197 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1198 "PDADC: Chain %d | "
1199 "PDADC %3d Value %3d | "
1200 "PDADC %3d Value %3d | "
1201 "PDADC %3d Value %3d | "
1202 "PDADC %3d Value %3d |\n",
1203 i, 4 * j, pdadcValues[4 * j],
1204 4 * j + 1, pdadcValues[4 * j + 1],
1205 4 * j + 2, pdadcValues[4 * j + 2],
1206 4 * j + 3,
1207 pdadcValues[4 * j + 3]);
1209 regOffset += 4;
1214 *pTxPowerIndexOffset = 0;
1216 return true;
1219 static bool ath9k_hw_set_def_power_per_rate_table(struct ath_hal *ah,
1220 struct ath9k_channel *chan,
1221 int16_t *ratesArray,
1222 u16 cfgCtl,
1223 u16 AntennaReduction,
1224 u16 twiceMaxRegulatoryPower,
1225 u16 powerLimit)
1227 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
1228 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */
1230 struct ath_hal_5416 *ahp = AH5416(ah);
1231 struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def;
1232 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1233 static const u16 tpScaleReductionTable[5] =
1234 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
1236 int i;
1237 int16_t twiceLargestAntenna;
1238 struct cal_ctl_data *rep;
1239 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
1240 0, { 0, 0, 0, 0}
1242 struct cal_target_power_leg targetPowerOfdmExt = {
1243 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
1244 0, { 0, 0, 0, 0 }
1246 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1247 0, {0, 0, 0, 0}
1249 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
1250 u16 ctlModesFor11a[] =
1251 { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
1252 u16 ctlModesFor11g[] =
1253 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
1254 CTL_2GHT40
1256 u16 numCtlModes, *pCtlMode, ctlMode, freq;
1257 struct chan_centers centers;
1258 int tx_chainmask;
1259 u16 twiceMinEdgePower;
1261 tx_chainmask = ahp->ah_txchainmask;
1263 ath9k_hw_get_channel_centers(ah, chan, &centers);
1265 twiceLargestAntenna = max(
1266 pEepData->modalHeader
1267 [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1268 pEepData->modalHeader
1269 [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1271 twiceLargestAntenna = max((u8)twiceLargestAntenna,
1272 pEepData->modalHeader
1273 [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1275 twiceLargestAntenna = (int16_t)min(AntennaReduction -
1276 twiceLargestAntenna, 0);
1278 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
1280 if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) {
1281 maxRegAllowedPower -=
1282 (tpScaleReductionTable[(ah->ah_tpScale)] * 2);
1285 scaledPower = min(powerLimit, maxRegAllowedPower);
1287 switch (ar5416_get_ntxchains(tx_chainmask)) {
1288 case 1:
1289 break;
1290 case 2:
1291 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
1292 break;
1293 case 3:
1294 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
1295 break;
1298 scaledPower = max((u16)0, scaledPower);
1300 if (IS_CHAN_2GHZ(chan)) {
1301 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
1302 SUB_NUM_CTL_MODES_AT_2G_40;
1303 pCtlMode = ctlModesFor11g;
1305 ath9k_hw_get_legacy_target_powers(ah, chan,
1306 pEepData->calTargetPowerCck,
1307 AR5416_NUM_2G_CCK_TARGET_POWERS,
1308 &targetPowerCck, 4, false);
1309 ath9k_hw_get_legacy_target_powers(ah, chan,
1310 pEepData->calTargetPower2G,
1311 AR5416_NUM_2G_20_TARGET_POWERS,
1312 &targetPowerOfdm, 4, false);
1313 ath9k_hw_get_target_powers(ah, chan,
1314 pEepData->calTargetPower2GHT20,
1315 AR5416_NUM_2G_20_TARGET_POWERS,
1316 &targetPowerHt20, 8, false);
1318 if (IS_CHAN_HT40(chan)) {
1319 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1320 ath9k_hw_get_target_powers(ah, chan,
1321 pEepData->calTargetPower2GHT40,
1322 AR5416_NUM_2G_40_TARGET_POWERS,
1323 &targetPowerHt40, 8, true);
1324 ath9k_hw_get_legacy_target_powers(ah, chan,
1325 pEepData->calTargetPowerCck,
1326 AR5416_NUM_2G_CCK_TARGET_POWERS,
1327 &targetPowerCckExt, 4, true);
1328 ath9k_hw_get_legacy_target_powers(ah, chan,
1329 pEepData->calTargetPower2G,
1330 AR5416_NUM_2G_20_TARGET_POWERS,
1331 &targetPowerOfdmExt, 4, true);
1333 } else {
1334 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1335 SUB_NUM_CTL_MODES_AT_5G_40;
1336 pCtlMode = ctlModesFor11a;
1338 ath9k_hw_get_legacy_target_powers(ah, chan,
1339 pEepData->calTargetPower5G,
1340 AR5416_NUM_5G_20_TARGET_POWERS,
1341 &targetPowerOfdm, 4, false);
1342 ath9k_hw_get_target_powers(ah, chan,
1343 pEepData->calTargetPower5GHT20,
1344 AR5416_NUM_5G_20_TARGET_POWERS,
1345 &targetPowerHt20, 8, false);
1347 if (IS_CHAN_HT40(chan)) {
1348 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1349 ath9k_hw_get_target_powers(ah, chan,
1350 pEepData->calTargetPower5GHT40,
1351 AR5416_NUM_5G_40_TARGET_POWERS,
1352 &targetPowerHt40, 8, true);
1353 ath9k_hw_get_legacy_target_powers(ah, chan,
1354 pEepData->calTargetPower5G,
1355 AR5416_NUM_5G_20_TARGET_POWERS,
1356 &targetPowerOfdmExt, 4, true);
1360 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1361 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1362 (pCtlMode[ctlMode] == CTL_2GHT40);
1363 if (isHt40CtlMode)
1364 freq = centers.synth_center;
1365 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1366 freq = centers.ext_center;
1367 else
1368 freq = centers.ctl_center;
1370 if (ar5416_get_eep_ver(ahp) == 14 && ar5416_get_eep_rev(ahp) <= 2)
1371 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1373 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1374 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
1375 "EXT_ADDITIVE %d\n",
1376 ctlMode, numCtlModes, isHt40CtlMode,
1377 (pCtlMode[ctlMode] & EXT_ADDITIVE));
1379 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1380 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1381 " LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
1382 "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
1383 "chan %d\n",
1384 i, cfgCtl, pCtlMode[ctlMode],
1385 pEepData->ctlIndex[i], chan->channel);
1387 if ((((cfgCtl & ~CTL_MODE_M) |
1388 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1389 pEepData->ctlIndex[i]) ||
1390 (((cfgCtl & ~CTL_MODE_M) |
1391 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1392 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1393 rep = &(pEepData->ctlData[i]);
1395 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1396 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1397 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1399 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1400 " MATCH-EE_IDX %d: ch %d is2 %d "
1401 "2xMinEdge %d chainmask %d chains %d\n",
1402 i, freq, IS_CHAN_2GHZ(chan),
1403 twiceMinEdgePower, tx_chainmask,
1404 ar5416_get_ntxchains
1405 (tx_chainmask));
1406 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1407 twiceMaxEdgePower = min(twiceMaxEdgePower,
1408 twiceMinEdgePower);
1409 } else {
1410 twiceMaxEdgePower = twiceMinEdgePower;
1411 break;
1416 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1418 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1419 " SEL-Min ctlMode %d pCtlMode %d "
1420 "2xMaxEdge %d sP %d minCtlPwr %d\n",
1421 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
1422 scaledPower, minCtlPower);
1424 switch (pCtlMode[ctlMode]) {
1425 case CTL_11B:
1426 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1427 targetPowerCck.tPow2x[i] =
1428 min((u16)targetPowerCck.tPow2x[i],
1429 minCtlPower);
1431 break;
1432 case CTL_11A:
1433 case CTL_11G:
1434 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1435 targetPowerOfdm.tPow2x[i] =
1436 min((u16)targetPowerOfdm.tPow2x[i],
1437 minCtlPower);
1439 break;
1440 case CTL_5GHT20:
1441 case CTL_2GHT20:
1442 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1443 targetPowerHt20.tPow2x[i] =
1444 min((u16)targetPowerHt20.tPow2x[i],
1445 minCtlPower);
1447 break;
1448 case CTL_11B_EXT:
1449 targetPowerCckExt.tPow2x[0] = min((u16)
1450 targetPowerCckExt.tPow2x[0],
1451 minCtlPower);
1452 break;
1453 case CTL_11A_EXT:
1454 case CTL_11G_EXT:
1455 targetPowerOfdmExt.tPow2x[0] = min((u16)
1456 targetPowerOfdmExt.tPow2x[0],
1457 minCtlPower);
1458 break;
1459 case CTL_5GHT40:
1460 case CTL_2GHT40:
1461 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1462 targetPowerHt40.tPow2x[i] =
1463 min((u16)targetPowerHt40.tPow2x[i],
1464 minCtlPower);
1466 break;
1467 default:
1468 break;
1472 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1473 ratesArray[rate18mb] = ratesArray[rate24mb] =
1474 targetPowerOfdm.tPow2x[0];
1475 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1476 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1477 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1478 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1480 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1481 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1483 if (IS_CHAN_2GHZ(chan)) {
1484 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1485 ratesArray[rate2s] = ratesArray[rate2l] =
1486 targetPowerCck.tPow2x[1];
1487 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1488 targetPowerCck.tPow2x[2];
1490 ratesArray[rate11s] = ratesArray[rate11l] =
1491 targetPowerCck.tPow2x[3];
1494 if (IS_CHAN_HT40(chan)) {
1495 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1496 ratesArray[rateHt40_0 + i] =
1497 targetPowerHt40.tPow2x[i];
1499 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1500 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1501 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1502 if (IS_CHAN_2GHZ(chan)) {
1503 ratesArray[rateExtCck] =
1504 targetPowerCckExt.tPow2x[0];
1507 return true;
1510 static bool ath9k_hw_set_4k_power_per_rate_table(struct ath_hal *ah,
1511 struct ath9k_channel *chan,
1512 int16_t *ratesArray,
1513 u16 cfgCtl,
1514 u16 AntennaReduction,
1515 u16 twiceMaxRegulatoryPower,
1516 u16 powerLimit)
1518 struct ath_hal_5416 *ahp = AH5416(ah);
1519 struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k;
1520 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1521 static const u16 tpScaleReductionTable[5] =
1522 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
1524 int i;
1525 int16_t twiceLargestAntenna;
1526 struct cal_ctl_data_4k *rep;
1527 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
1528 0, { 0, 0, 0, 0}
1530 struct cal_target_power_leg targetPowerOfdmExt = {
1531 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
1532 0, { 0, 0, 0, 0 }
1534 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1535 0, {0, 0, 0, 0}
1537 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
1538 u16 ctlModesFor11g[] =
1539 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
1540 CTL_2GHT40
1542 u16 numCtlModes, *pCtlMode, ctlMode, freq;
1543 struct chan_centers centers;
1544 int tx_chainmask;
1545 u16 twiceMinEdgePower;
1547 tx_chainmask = ahp->ah_txchainmask;
1549 ath9k_hw_get_channel_centers(ah, chan, &centers);
1551 twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
1553 twiceLargestAntenna = (int16_t)min(AntennaReduction -
1554 twiceLargestAntenna, 0);
1556 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
1558 if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) {
1559 maxRegAllowedPower -=
1560 (tpScaleReductionTable[(ah->ah_tpScale)] * 2);
1563 scaledPower = min(powerLimit, maxRegAllowedPower);
1564 scaledPower = max((u16)0, scaledPower);
1566 numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
1567 pCtlMode = ctlModesFor11g;
1569 ath9k_hw_get_legacy_target_powers(ah, chan,
1570 pEepData->calTargetPowerCck,
1571 AR5416_NUM_2G_CCK_TARGET_POWERS,
1572 &targetPowerCck, 4, false);
1573 ath9k_hw_get_legacy_target_powers(ah, chan,
1574 pEepData->calTargetPower2G,
1575 AR5416_NUM_2G_20_TARGET_POWERS,
1576 &targetPowerOfdm, 4, false);
1577 ath9k_hw_get_target_powers(ah, chan,
1578 pEepData->calTargetPower2GHT20,
1579 AR5416_NUM_2G_20_TARGET_POWERS,
1580 &targetPowerHt20, 8, false);
1582 if (IS_CHAN_HT40(chan)) {
1583 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1584 ath9k_hw_get_target_powers(ah, chan,
1585 pEepData->calTargetPower2GHT40,
1586 AR5416_NUM_2G_40_TARGET_POWERS,
1587 &targetPowerHt40, 8, true);
1588 ath9k_hw_get_legacy_target_powers(ah, chan,
1589 pEepData->calTargetPowerCck,
1590 AR5416_NUM_2G_CCK_TARGET_POWERS,
1591 &targetPowerCckExt, 4, true);
1592 ath9k_hw_get_legacy_target_powers(ah, chan,
1593 pEepData->calTargetPower2G,
1594 AR5416_NUM_2G_20_TARGET_POWERS,
1595 &targetPowerOfdmExt, 4, true);
1598 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1599 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1600 (pCtlMode[ctlMode] == CTL_2GHT40);
1601 if (isHt40CtlMode)
1602 freq = centers.synth_center;
1603 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1604 freq = centers.ext_center;
1605 else
1606 freq = centers.ctl_center;
1608 if (ar5416_get_eep_ver(ahp) == 14 &&
1609 ar5416_get_eep_rev(ahp) <= 2)
1610 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1612 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1613 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
1614 "EXT_ADDITIVE %d\n",
1615 ctlMode, numCtlModes, isHt40CtlMode,
1616 (pCtlMode[ctlMode] & EXT_ADDITIVE));
1618 for (i = 0; (i < AR5416_NUM_CTLS) &&
1619 pEepData->ctlIndex[i]; i++) {
1620 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1621 " LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
1622 "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
1623 "chan %d\n",
1624 i, cfgCtl, pCtlMode[ctlMode],
1625 pEepData->ctlIndex[i], chan->channel);
1627 if ((((cfgCtl & ~CTL_MODE_M) |
1628 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1629 pEepData->ctlIndex[i]) ||
1630 (((cfgCtl & ~CTL_MODE_M) |
1631 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1632 ((pEepData->ctlIndex[i] & CTL_MODE_M) |
1633 SD_NO_CTL))) {
1634 rep = &(pEepData->ctlData[i]);
1636 twiceMinEdgePower =
1637 ath9k_hw_get_max_edge_power(freq,
1638 rep->ctlEdges[ar5416_get_ntxchains
1639 (tx_chainmask) - 1],
1640 IS_CHAN_2GHZ(chan),
1641 AR5416_EEP4K_NUM_BAND_EDGES);
1643 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1644 " MATCH-EE_IDX %d: ch %d is2 %d "
1645 "2xMinEdge %d chainmask %d chains %d\n",
1646 i, freq, IS_CHAN_2GHZ(chan),
1647 twiceMinEdgePower, tx_chainmask,
1648 ar5416_get_ntxchains
1649 (tx_chainmask));
1650 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1651 twiceMaxEdgePower =
1652 min(twiceMaxEdgePower,
1653 twiceMinEdgePower);
1654 } else {
1655 twiceMaxEdgePower = twiceMinEdgePower;
1656 break;
1661 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
1663 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1664 " SEL-Min ctlMode %d pCtlMode %d "
1665 "2xMaxEdge %d sP %d minCtlPwr %d\n",
1666 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
1667 scaledPower, minCtlPower);
1669 switch (pCtlMode[ctlMode]) {
1670 case CTL_11B:
1671 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x);
1672 i++) {
1673 targetPowerCck.tPow2x[i] =
1674 min((u16)targetPowerCck.tPow2x[i],
1675 minCtlPower);
1677 break;
1678 case CTL_11G:
1679 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
1680 i++) {
1681 targetPowerOfdm.tPow2x[i] =
1682 min((u16)targetPowerOfdm.tPow2x[i],
1683 minCtlPower);
1685 break;
1686 case CTL_2GHT20:
1687 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x);
1688 i++) {
1689 targetPowerHt20.tPow2x[i] =
1690 min((u16)targetPowerHt20.tPow2x[i],
1691 minCtlPower);
1693 break;
1694 case CTL_11B_EXT:
1695 targetPowerCckExt.tPow2x[0] = min((u16)
1696 targetPowerCckExt.tPow2x[0],
1697 minCtlPower);
1698 break;
1699 case CTL_11G_EXT:
1700 targetPowerOfdmExt.tPow2x[0] = min((u16)
1701 targetPowerOfdmExt.tPow2x[0],
1702 minCtlPower);
1703 break;
1704 case CTL_2GHT40:
1705 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x);
1706 i++) {
1707 targetPowerHt40.tPow2x[i] =
1708 min((u16)targetPowerHt40.tPow2x[i],
1709 minCtlPower);
1711 break;
1712 default:
1713 break;
1717 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1718 ratesArray[rate18mb] = ratesArray[rate24mb] =
1719 targetPowerOfdm.tPow2x[0];
1720 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1721 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1722 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1723 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1725 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1726 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1728 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1729 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
1730 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
1731 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
1733 if (IS_CHAN_HT40(chan)) {
1734 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1735 ratesArray[rateHt40_0 + i] =
1736 targetPowerHt40.tPow2x[i];
1738 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1739 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1740 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1741 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
1743 return true;
1746 static int ath9k_hw_def_set_txpower(struct ath_hal *ah,
1747 struct ath9k_channel *chan,
1748 u16 cfgCtl,
1749 u8 twiceAntennaReduction,
1750 u8 twiceMaxRegulatoryPower,
1751 u8 powerLimit)
1753 struct ath_hal_5416 *ahp = AH5416(ah);
1754 struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def;
1755 struct modal_eep_header *pModal =
1756 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1757 int16_t ratesArray[Ar5416RateSize];
1758 int16_t txPowerIndexOffset = 0;
1759 u8 ht40PowerIncForPdadc = 2;
1760 int i;
1762 memset(ratesArray, 0, sizeof(ratesArray));
1764 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1765 AR5416_EEP_MINOR_VER_2) {
1766 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1769 if (!ath9k_hw_set_def_power_per_rate_table(ah, chan,
1770 &ratesArray[0], cfgCtl,
1771 twiceAntennaReduction,
1772 twiceMaxRegulatoryPower,
1773 powerLimit)) {
1774 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1775 "ath9k_hw_set_txpower: unable to set "
1776 "tx power per rate table\n");
1777 return -EIO;
1780 if (!ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset)) {
1781 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1782 "ath9k_hw_set_txpower: unable to set power table\n");
1783 return -EIO;
1786 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1787 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1788 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1789 ratesArray[i] = AR5416_MAX_RATE_POWER;
1792 if (AR_SREV_9280_10_OR_LATER(ah)) {
1793 for (i = 0; i < Ar5416RateSize; i++)
1794 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
1797 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1798 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1799 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1800 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1801 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1802 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1803 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1804 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1805 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1806 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1808 if (IS_CHAN_2GHZ(chan)) {
1809 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1810 ATH9K_POW_SM(ratesArray[rate2s], 24)
1811 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1812 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1813 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1814 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1815 ATH9K_POW_SM(ratesArray[rate11s], 24)
1816 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1817 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1818 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1821 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1822 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1823 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1824 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1825 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1826 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1827 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1828 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1829 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1830 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1832 if (IS_CHAN_HT40(chan)) {
1833 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1834 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1835 ht40PowerIncForPdadc, 24)
1836 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1837 ht40PowerIncForPdadc, 16)
1838 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1839 ht40PowerIncForPdadc, 8)
1840 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1841 ht40PowerIncForPdadc, 0));
1842 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1843 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1844 ht40PowerIncForPdadc, 24)
1845 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1846 ht40PowerIncForPdadc, 16)
1847 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1848 ht40PowerIncForPdadc, 8)
1849 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1850 ht40PowerIncForPdadc, 0));
1852 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1853 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1854 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1855 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1856 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1859 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1860 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1861 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1863 i = rate6mb;
1865 if (IS_CHAN_HT40(chan))
1866 i = rateHt40_0;
1867 else if (IS_CHAN_HT20(chan))
1868 i = rateHt20_0;
1870 if (AR_SREV_9280_10_OR_LATER(ah))
1871 ah->ah_maxPowerLevel =
1872 ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
1873 else
1874 ah->ah_maxPowerLevel = ratesArray[i];
1876 return 0;
1879 static int ath9k_hw_4k_set_txpower(struct ath_hal *ah,
1880 struct ath9k_channel *chan,
1881 u16 cfgCtl,
1882 u8 twiceAntennaReduction,
1883 u8 twiceMaxRegulatoryPower,
1884 u8 powerLimit)
1886 struct ath_hal_5416 *ahp = AH5416(ah);
1887 struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k;
1888 struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
1889 int16_t ratesArray[Ar5416RateSize];
1890 int16_t txPowerIndexOffset = 0;
1891 u8 ht40PowerIncForPdadc = 2;
1892 int i;
1894 memset(ratesArray, 0, sizeof(ratesArray));
1896 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1897 AR5416_EEP_MINOR_VER_2) {
1898 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1901 if (!ath9k_hw_set_4k_power_per_rate_table(ah, chan,
1902 &ratesArray[0], cfgCtl,
1903 twiceAntennaReduction,
1904 twiceMaxRegulatoryPower,
1905 powerLimit)) {
1906 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1907 "ath9k_hw_set_txpower: unable to set "
1908 "tx power per rate table\n");
1909 return -EIO;
1912 if (!ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset)) {
1913 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1914 "ath9k_hw_set_txpower: unable to set power table\n");
1915 return -EIO;
1918 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1919 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1920 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1921 ratesArray[i] = AR5416_MAX_RATE_POWER;
1924 if (AR_SREV_9280_10_OR_LATER(ah)) {
1925 for (i = 0; i < Ar5416RateSize; i++)
1926 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
1929 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1930 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1931 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1932 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1933 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1934 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1935 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1936 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1937 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1938 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1940 if (IS_CHAN_2GHZ(chan)) {
1941 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1942 ATH9K_POW_SM(ratesArray[rate2s], 24)
1943 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1944 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1945 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1946 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1947 ATH9K_POW_SM(ratesArray[rate11s], 24)
1948 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1949 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1950 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1953 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1954 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1955 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1956 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1957 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1958 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1959 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1960 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1961 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1962 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1964 if (IS_CHAN_HT40(chan)) {
1965 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1966 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1967 ht40PowerIncForPdadc, 24)
1968 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1969 ht40PowerIncForPdadc, 16)
1970 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1971 ht40PowerIncForPdadc, 8)
1972 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1973 ht40PowerIncForPdadc, 0));
1974 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1975 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1976 ht40PowerIncForPdadc, 24)
1977 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1978 ht40PowerIncForPdadc, 16)
1979 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1980 ht40PowerIncForPdadc, 8)
1981 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1982 ht40PowerIncForPdadc, 0));
1984 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1985 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1986 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1987 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1988 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1991 i = rate6mb;
1993 if (IS_CHAN_HT40(chan))
1994 i = rateHt40_0;
1995 else if (IS_CHAN_HT20(chan))
1996 i = rateHt20_0;
1998 if (AR_SREV_9280_10_OR_LATER(ah))
1999 ah->ah_maxPowerLevel =
2000 ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
2001 else
2002 ah->ah_maxPowerLevel = ratesArray[i];
2004 return 0;
2007 static int (*ath9k_set_txpower[]) (struct ath_hal *,
2008 struct ath9k_channel *,
2009 u16, u8, u8, u8) = {
2010 ath9k_hw_def_set_txpower,
2011 ath9k_hw_4k_set_txpower
2014 int ath9k_hw_set_txpower(struct ath_hal *ah,
2015 struct ath9k_channel *chan,
2016 u16 cfgCtl,
2017 u8 twiceAntennaReduction,
2018 u8 twiceMaxRegulatoryPower,
2019 u8 powerLimit)
2021 struct ath_hal_5416 *ahp = AH5416(ah);
2023 return ath9k_set_txpower[ahp->ah_eep_map](ah, chan, cfgCtl,
2024 twiceAntennaReduction, twiceMaxRegulatoryPower,
2025 powerLimit);
2028 static void ath9k_hw_set_def_addac(struct ath_hal *ah,
2029 struct ath9k_channel *chan)
2031 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
2032 struct modal_eep_header *pModal;
2033 struct ath_hal_5416 *ahp = AH5416(ah);
2034 struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
2035 u8 biaslevel;
2037 if (ah->ah_macVersion != AR_SREV_VERSION_9160)
2038 return;
2040 if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7)
2041 return;
2043 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
2045 if (pModal->xpaBiasLvl != 0xff) {
2046 biaslevel = pModal->xpaBiasLvl;
2047 } else {
2048 u16 resetFreqBin, freqBin, freqCount = 0;
2049 struct chan_centers centers;
2051 ath9k_hw_get_channel_centers(ah, chan, &centers);
2053 resetFreqBin = FREQ2FBIN(centers.synth_center,
2054 IS_CHAN_2GHZ(chan));
2055 freqBin = XPA_LVL_FREQ(0) & 0xff;
2056 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
2058 freqCount++;
2060 while (freqCount < 3) {
2061 if (XPA_LVL_FREQ(freqCount) == 0x0)
2062 break;
2064 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
2065 if (resetFreqBin >= freqBin)
2066 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
2067 else
2068 break;
2069 freqCount++;
2073 if (IS_CHAN_2GHZ(chan)) {
2074 INI_RA(&ahp->ah_iniAddac, 7, 1) = (INI_RA(&ahp->ah_iniAddac,
2075 7, 1) & (~0x18)) | biaslevel << 3;
2076 } else {
2077 INI_RA(&ahp->ah_iniAddac, 6, 1) = (INI_RA(&ahp->ah_iniAddac,
2078 6, 1) & (~0xc0)) | biaslevel << 6;
2080 #undef XPA_LVL_FREQ
2083 static void ath9k_hw_set_4k_addac(struct ath_hal *ah,
2084 struct ath9k_channel *chan)
2086 struct modal_eep_4k_header *pModal;
2087 struct ath_hal_5416 *ahp = AH5416(ah);
2088 struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
2089 u8 biaslevel;
2091 if (ah->ah_macVersion != AR_SREV_VERSION_9160)
2092 return;
2094 if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7)
2095 return;
2097 pModal = &eep->modalHeader;
2099 if (pModal->xpaBiasLvl != 0xff) {
2100 biaslevel = pModal->xpaBiasLvl;
2101 INI_RA(&ahp->ah_iniAddac, 7, 1) =
2102 (INI_RA(&ahp->ah_iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
2106 static void (*ath9k_set_addac[]) (struct ath_hal *, struct ath9k_channel *) = {
2107 ath9k_hw_set_def_addac,
2108 ath9k_hw_set_4k_addac
2111 void ath9k_hw_set_addac(struct ath_hal *ah, struct ath9k_channel *chan)
2113 struct ath_hal_5416 *ahp = AH5416(ah);
2115 ath9k_set_addac[ahp->ah_eep_map](ah, chan);
2120 /* XXX: Clean me up, make me more legible */
2121 static bool ath9k_hw_eeprom_set_def_board_values(struct ath_hal *ah,
2122 struct ath9k_channel *chan)
2124 struct modal_eep_header *pModal;
2125 struct ath_hal_5416 *ahp = AH5416(ah);
2126 struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
2127 int i, regChainOffset;
2128 u8 txRxAttenLocal;
2129 u16 ant_config;
2131 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
2133 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
2135 ath9k_hw_get_eeprom_antenna_cfg(ah, chan, 0, &ant_config);
2136 REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2138 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2139 if (AR_SREV_9280(ah)) {
2140 if (i >= 2)
2141 break;
2144 if (AR_SREV_5416_V20_OR_LATER(ah) &&
2145 (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5)
2146 && (i != 0))
2147 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
2148 else
2149 regChainOffset = i * 0x1000;
2151 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
2152 pModal->antCtrlChain[i]);
2154 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
2155 (REG_READ(ah,
2156 AR_PHY_TIMING_CTRL4(0) +
2157 regChainOffset) &
2158 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
2159 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
2160 SM(pModal->iqCalICh[i],
2161 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
2162 SM(pModal->iqCalQCh[i],
2163 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
2165 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
2166 if ((eep->baseEepHeader.version &
2167 AR5416_EEP_VER_MINOR_MASK) >=
2168 AR5416_EEP_MINOR_VER_3) {
2169 txRxAttenLocal = pModal->txRxAttenCh[i];
2170 if (AR_SREV_9280_10_OR_LATER(ah)) {
2171 REG_RMW_FIELD(ah,
2172 AR_PHY_GAIN_2GHZ +
2173 regChainOffset,
2174 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
2175 pModal->
2176 bswMargin[i]);
2177 REG_RMW_FIELD(ah,
2178 AR_PHY_GAIN_2GHZ +
2179 regChainOffset,
2180 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
2181 pModal->
2182 bswAtten[i]);
2183 REG_RMW_FIELD(ah,
2184 AR_PHY_GAIN_2GHZ +
2185 regChainOffset,
2186 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
2187 pModal->
2188 xatten2Margin[i]);
2189 REG_RMW_FIELD(ah,
2190 AR_PHY_GAIN_2GHZ +
2191 regChainOffset,
2192 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
2193 pModal->
2194 xatten2Db[i]);
2195 } else {
2196 REG_WRITE(ah,
2197 AR_PHY_GAIN_2GHZ +
2198 regChainOffset,
2199 (REG_READ(ah,
2200 AR_PHY_GAIN_2GHZ +
2201 regChainOffset) &
2202 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
2203 | SM(pModal->
2204 bswMargin[i],
2205 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
2206 REG_WRITE(ah,
2207 AR_PHY_GAIN_2GHZ +
2208 regChainOffset,
2209 (REG_READ(ah,
2210 AR_PHY_GAIN_2GHZ +
2211 regChainOffset) &
2212 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
2213 | SM(pModal->bswAtten[i],
2214 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
2217 if (AR_SREV_9280_10_OR_LATER(ah)) {
2218 REG_RMW_FIELD(ah,
2219 AR_PHY_RXGAIN +
2220 regChainOffset,
2221 AR9280_PHY_RXGAIN_TXRX_ATTEN,
2222 txRxAttenLocal);
2223 REG_RMW_FIELD(ah,
2224 AR_PHY_RXGAIN +
2225 regChainOffset,
2226 AR9280_PHY_RXGAIN_TXRX_MARGIN,
2227 pModal->rxTxMarginCh[i]);
2228 } else {
2229 REG_WRITE(ah,
2230 AR_PHY_RXGAIN + regChainOffset,
2231 (REG_READ(ah,
2232 AR_PHY_RXGAIN +
2233 regChainOffset) &
2234 ~AR_PHY_RXGAIN_TXRX_ATTEN) |
2235 SM(txRxAttenLocal,
2236 AR_PHY_RXGAIN_TXRX_ATTEN));
2237 REG_WRITE(ah,
2238 AR_PHY_GAIN_2GHZ +
2239 regChainOffset,
2240 (REG_READ(ah,
2241 AR_PHY_GAIN_2GHZ +
2242 regChainOffset) &
2243 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
2244 SM(pModal->rxTxMarginCh[i],
2245 AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
2250 if (AR_SREV_9280_10_OR_LATER(ah)) {
2251 if (IS_CHAN_2GHZ(chan)) {
2252 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
2253 AR_AN_RF2G1_CH0_OB,
2254 AR_AN_RF2G1_CH0_OB_S,
2255 pModal->ob);
2256 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
2257 AR_AN_RF2G1_CH0_DB,
2258 AR_AN_RF2G1_CH0_DB_S,
2259 pModal->db);
2260 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
2261 AR_AN_RF2G1_CH1_OB,
2262 AR_AN_RF2G1_CH1_OB_S,
2263 pModal->ob_ch1);
2264 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
2265 AR_AN_RF2G1_CH1_DB,
2266 AR_AN_RF2G1_CH1_DB_S,
2267 pModal->db_ch1);
2268 } else {
2269 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
2270 AR_AN_RF5G1_CH0_OB5,
2271 AR_AN_RF5G1_CH0_OB5_S,
2272 pModal->ob);
2273 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
2274 AR_AN_RF5G1_CH0_DB5,
2275 AR_AN_RF5G1_CH0_DB5_S,
2276 pModal->db);
2277 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
2278 AR_AN_RF5G1_CH1_OB5,
2279 AR_AN_RF5G1_CH1_OB5_S,
2280 pModal->ob_ch1);
2281 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
2282 AR_AN_RF5G1_CH1_DB5,
2283 AR_AN_RF5G1_CH1_DB5_S,
2284 pModal->db_ch1);
2286 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
2287 AR_AN_TOP2_XPABIAS_LVL,
2288 AR_AN_TOP2_XPABIAS_LVL_S,
2289 pModal->xpaBiasLvl);
2290 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
2291 AR_AN_TOP2_LOCALBIAS,
2292 AR_AN_TOP2_LOCALBIAS_S,
2293 pModal->local_bias);
2294 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ForceXPAon: %d\n",
2295 pModal->force_xpaon);
2296 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
2297 pModal->force_xpaon);
2300 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
2301 pModal->switchSettling);
2302 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
2303 pModal->adcDesiredSize);
2305 if (!AR_SREV_9280_10_OR_LATER(ah))
2306 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
2307 AR_PHY_DESIRED_SZ_PGA,
2308 pModal->pgaDesiredSize);
2310 REG_WRITE(ah, AR_PHY_RF_CTL4,
2311 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
2312 | SM(pModal->txEndToXpaOff,
2313 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
2314 | SM(pModal->txFrameToXpaOn,
2315 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
2316 | SM(pModal->txFrameToXpaOn,
2317 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
2319 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
2320 pModal->txEndToRxOn);
2321 if (AR_SREV_9280_10_OR_LATER(ah)) {
2322 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
2323 pModal->thresh62);
2324 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
2325 AR_PHY_EXT_CCA0_THRESH62,
2326 pModal->thresh62);
2327 } else {
2328 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
2329 pModal->thresh62);
2330 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
2331 AR_PHY_EXT_CCA_THRESH62,
2332 pModal->thresh62);
2335 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2336 AR5416_EEP_MINOR_VER_2) {
2337 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
2338 AR_PHY_TX_END_DATA_START,
2339 pModal->txFrameToDataStart);
2340 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
2341 pModal->txFrameToPaOn);
2344 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2345 AR5416_EEP_MINOR_VER_3) {
2346 if (IS_CHAN_HT40(chan))
2347 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
2348 AR_PHY_SETTLING_SWITCH,
2349 pModal->swSettleHt40);
2352 return true;
2355 static bool ath9k_hw_eeprom_set_4k_board_values(struct ath_hal *ah,
2356 struct ath9k_channel *chan)
2358 struct modal_eep_4k_header *pModal;
2359 struct ath_hal_5416 *ahp = AH5416(ah);
2360 struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
2361 int regChainOffset;
2362 u8 txRxAttenLocal;
2363 u16 ant_config = 0;
2364 u8 ob[5], db1[5], db2[5];
2365 u8 ant_div_control1, ant_div_control2;
2366 u32 regVal;
2369 pModal = &eep->modalHeader;
2371 txRxAttenLocal = 23;
2373 ath9k_hw_get_eeprom_antenna_cfg(ah, chan, 0, &ant_config);
2374 REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2376 regChainOffset = 0;
2377 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
2378 pModal->antCtrlChain[0]);
2380 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
2381 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
2382 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
2383 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
2384 SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
2385 SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
2387 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2388 AR5416_EEP_MINOR_VER_3) {
2389 txRxAttenLocal = pModal->txRxAttenCh[0];
2390 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
2391 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
2392 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
2393 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
2394 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
2395 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
2396 pModal->xatten2Margin[0]);
2397 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
2398 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
2401 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
2402 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
2403 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
2404 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
2406 if (AR_SREV_9285_11(ah))
2407 REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
2409 /* Initialize Ant Diversity settings from EEPROM */
2410 if (pModal->version == 3) {
2411 ant_div_control1 = ((pModal->ob_234 >> 12) & 0xf);
2412 ant_div_control2 = ((pModal->db1_234 >> 12) & 0xf);
2413 regVal = REG_READ(ah, 0x99ac);
2414 regVal &= (~(0x7f000000));
2415 regVal |= ((ant_div_control1 & 0x1) << 24);
2416 regVal |= (((ant_div_control1 >> 1) & 0x1) << 29);
2417 regVal |= (((ant_div_control1 >> 2) & 0x1) << 30);
2418 regVal |= ((ant_div_control2 & 0x3) << 25);
2419 regVal |= (((ant_div_control2 >> 2) & 0x3) << 27);
2420 REG_WRITE(ah, 0x99ac, regVal);
2421 regVal = REG_READ(ah, 0x99ac);
2422 regVal = REG_READ(ah, 0xa208);
2423 regVal &= (~(0x1 << 13));
2424 regVal |= (((ant_div_control1 >> 3) & 0x1) << 13);
2425 REG_WRITE(ah, 0xa208, regVal);
2426 regVal = REG_READ(ah, 0xa208);
2429 if (pModal->version >= 2) {
2430 ob[0] = (pModal->ob_01 & 0xf);
2431 ob[1] = (pModal->ob_01 >> 4) & 0xf;
2432 ob[2] = (pModal->ob_234 & 0xf);
2433 ob[3] = ((pModal->ob_234 >> 4) & 0xf);
2434 ob[4] = ((pModal->ob_234 >> 8) & 0xf);
2436 db1[0] = (pModal->db1_01 & 0xf);
2437 db1[1] = ((pModal->db1_01 >> 4) & 0xf);
2438 db1[2] = (pModal->db1_234 & 0xf);
2439 db1[3] = ((pModal->db1_234 >> 4) & 0xf);
2440 db1[4] = ((pModal->db1_234 >> 8) & 0xf);
2442 db2[0] = (pModal->db2_01 & 0xf);
2443 db2[1] = ((pModal->db2_01 >> 4) & 0xf);
2444 db2[2] = (pModal->db2_234 & 0xf);
2445 db2[3] = ((pModal->db2_234 >> 4) & 0xf);
2446 db2[4] = ((pModal->db2_234 >> 8) & 0xf);
2448 } else if (pModal->version == 1) {
2450 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
2451 "EEPROM Model version is set to 1 \n");
2452 ob[0] = (pModal->ob_01 & 0xf);
2453 ob[1] = ob[2] = ob[3] = ob[4] = (pModal->ob_01 >> 4) & 0xf;
2454 db1[0] = (pModal->db1_01 & 0xf);
2455 db1[1] = db1[2] = db1[3] =
2456 db1[4] = ((pModal->db1_01 >> 4) & 0xf);
2457 db2[0] = (pModal->db2_01 & 0xf);
2458 db2[1] = db2[2] = db2[3] =
2459 db2[4] = ((pModal->db2_01 >> 4) & 0xf);
2460 } else {
2461 int i;
2462 for (i = 0; i < 5; i++) {
2463 ob[i] = pModal->ob_01;
2464 db1[i] = pModal->db1_01;
2465 db2[i] = pModal->db1_01;
2469 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2470 AR9285_AN_RF2G3_OB_0, AR9285_AN_RF2G3_OB_0_S, ob[0]);
2471 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2472 AR9285_AN_RF2G3_OB_1, AR9285_AN_RF2G3_OB_1_S, ob[1]);
2473 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2474 AR9285_AN_RF2G3_OB_2, AR9285_AN_RF2G3_OB_2_S, ob[2]);
2475 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2476 AR9285_AN_RF2G3_OB_3, AR9285_AN_RF2G3_OB_3_S, ob[3]);
2477 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2478 AR9285_AN_RF2G3_OB_4, AR9285_AN_RF2G3_OB_4_S, ob[4]);
2480 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2481 AR9285_AN_RF2G3_DB1_0, AR9285_AN_RF2G3_DB1_0_S, db1[0]);
2482 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2483 AR9285_AN_RF2G3_DB1_1, AR9285_AN_RF2G3_DB1_1_S, db1[1]);
2484 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2485 AR9285_AN_RF2G3_DB1_2, AR9285_AN_RF2G3_DB1_2_S, db1[2]);
2486 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2487 AR9285_AN_RF2G4_DB1_3, AR9285_AN_RF2G4_DB1_3_S, db1[3]);
2488 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2489 AR9285_AN_RF2G4_DB1_4, AR9285_AN_RF2G4_DB1_4_S, db1[4]);
2491 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2492 AR9285_AN_RF2G4_DB2_0, AR9285_AN_RF2G4_DB2_0_S, db2[0]);
2493 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2494 AR9285_AN_RF2G4_DB2_1, AR9285_AN_RF2G4_DB2_1_S, db2[1]);
2495 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2496 AR9285_AN_RF2G4_DB2_2, AR9285_AN_RF2G4_DB2_2_S, db2[2]);
2497 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2498 AR9285_AN_RF2G4_DB2_3, AR9285_AN_RF2G4_DB2_3_S, db2[3]);
2499 ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2500 AR9285_AN_RF2G4_DB2_4, AR9285_AN_RF2G4_DB2_4_S, db2[4]);
2503 if (AR_SREV_9285_11(ah))
2504 REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
2506 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
2507 pModal->switchSettling);
2508 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
2509 pModal->adcDesiredSize);
2511 REG_WRITE(ah, AR_PHY_RF_CTL4,
2512 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
2513 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
2514 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
2515 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
2517 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
2518 pModal->txEndToRxOn);
2519 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
2520 pModal->thresh62);
2521 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
2522 pModal->thresh62);
2524 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2525 AR5416_EEP_MINOR_VER_2) {
2526 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
2527 pModal->txFrameToDataStart);
2528 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
2529 pModal->txFrameToPaOn);
2532 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2533 AR5416_EEP_MINOR_VER_3) {
2534 if (IS_CHAN_HT40(chan))
2535 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
2536 AR_PHY_SETTLING_SWITCH,
2537 pModal->swSettleHt40);
2540 return true;
2543 static bool (*ath9k_eeprom_set_board_values[])(struct ath_hal *,
2544 struct ath9k_channel *) = {
2545 ath9k_hw_eeprom_set_def_board_values,
2546 ath9k_hw_eeprom_set_4k_board_values
2549 bool ath9k_hw_eeprom_set_board_values(struct ath_hal *ah,
2550 struct ath9k_channel *chan)
2552 struct ath_hal_5416 *ahp = AH5416(ah);
2554 return ath9k_eeprom_set_board_values[ahp->ah_eep_map](ah, chan);
2557 static int ath9k_hw_get_def_eeprom_antenna_cfg(struct ath_hal *ah,
2558 struct ath9k_channel *chan,
2559 u8 index, u16 *config)
2561 struct ath_hal_5416 *ahp = AH5416(ah);
2562 struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
2563 struct modal_eep_header *pModal =
2564 &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
2565 struct base_eep_header *pBase = &eep->baseEepHeader;
2567 switch (index) {
2568 case 0:
2569 *config = pModal->antCtrlCommon & 0xFFFF;
2570 return 0;
2571 case 1:
2572 if (pBase->version >= 0x0E0D) {
2573 if (pModal->useAnt1) {
2574 *config =
2575 ((pModal->antCtrlCommon & 0xFFFF0000) >> 16);
2576 return 0;
2579 break;
2580 default:
2581 break;
2584 return -EINVAL;
2587 static int ath9k_hw_get_4k_eeprom_antenna_cfg(struct ath_hal *ah,
2588 struct ath9k_channel *chan,
2589 u8 index, u16 *config)
2591 struct ath_hal_5416 *ahp = AH5416(ah);
2592 struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
2593 struct modal_eep_4k_header *pModal = &eep->modalHeader;
2595 switch (index) {
2596 case 0:
2597 *config = pModal->antCtrlCommon & 0xFFFF;
2598 return 0;
2599 default:
2600 break;
2603 return -EINVAL;
2606 static int (*ath9k_get_eeprom_antenna_cfg[])(struct ath_hal *,
2607 struct ath9k_channel *,
2608 u8, u16 *) = {
2609 ath9k_hw_get_def_eeprom_antenna_cfg,
2610 ath9k_hw_get_4k_eeprom_antenna_cfg
2613 int ath9k_hw_get_eeprom_antenna_cfg(struct ath_hal *ah,
2614 struct ath9k_channel *chan,
2615 u8 index, u16 *config)
2617 struct ath_hal_5416 *ahp = AH5416(ah);
2619 return ath9k_get_eeprom_antenna_cfg[ahp->ah_eep_map](ah, chan,
2620 index, config);
2623 static u8 ath9k_hw_get_4k_num_ant_config(struct ath_hal *ah,
2624 enum ieee80211_band freq_band)
2626 return 1;
2629 static u8 ath9k_hw_get_def_num_ant_config(struct ath_hal *ah,
2630 enum ieee80211_band freq_band)
2632 struct ath_hal_5416 *ahp = AH5416(ah);
2633 struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
2634 struct modal_eep_header *pModal =
2635 &(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
2636 struct base_eep_header *pBase = &eep->baseEepHeader;
2637 u8 num_ant_config;
2639 num_ant_config = 1;
2641 if (pBase->version >= 0x0E0D)
2642 if (pModal->useAnt1)
2643 num_ant_config += 1;
2645 return num_ant_config;
2648 static u8 (*ath9k_get_num_ant_config[])(struct ath_hal *,
2649 enum ieee80211_band) = {
2650 ath9k_hw_get_def_num_ant_config,
2651 ath9k_hw_get_4k_num_ant_config
2654 u8 ath9k_hw_get_num_ant_config(struct ath_hal *ah,
2655 enum ieee80211_band freq_band)
2657 struct ath_hal_5416 *ahp = AH5416(ah);
2659 return ath9k_get_num_ant_config[ahp->ah_eep_map](ah, freq_band);
2662 u16 ath9k_hw_eeprom_get_spur_chan(struct ath_hal *ah, u16 i, bool is2GHz)
2664 #define EEP_MAP4K_SPURCHAN \
2665 (ahp->ah_eeprom.map4k.modalHeader.spurChans[i].spurChan)
2666 #define EEP_DEF_SPURCHAN \
2667 (ahp->ah_eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
2668 struct ath_hal_5416 *ahp = AH5416(ah);
2669 u16 spur_val = AR_NO_SPUR;
2671 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2672 "Getting spur idx %d is2Ghz. %d val %x\n",
2673 i, is2GHz, ah->ah_config.spurchans[i][is2GHz]);
2675 switch (ah->ah_config.spurmode) {
2676 case SPUR_DISABLE:
2677 break;
2678 case SPUR_ENABLE_IOCTL:
2679 spur_val = ah->ah_config.spurchans[i][is2GHz];
2680 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2681 "Getting spur val from new loc. %d\n", spur_val);
2682 break;
2683 case SPUR_ENABLE_EEPROM:
2684 if (ahp->ah_eep_map == EEP_MAP_4KBITS)
2685 spur_val = EEP_MAP4K_SPURCHAN;
2686 else
2687 spur_val = EEP_DEF_SPURCHAN;
2688 break;
2692 return spur_val;
2693 #undef EEP_DEF_SPURCHAN
2694 #undef EEP_MAP4K_SPURCHAN
2697 static u32 ath9k_hw_get_eeprom_4k(struct ath_hal *ah,
2698 enum eeprom_param param)
2700 struct ath_hal_5416 *ahp = AH5416(ah);
2701 struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
2702 struct modal_eep_4k_header *pModal = &eep->modalHeader;
2703 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
2705 switch (param) {
2706 case EEP_NFTHRESH_2:
2707 return pModal[1].noiseFloorThreshCh[0];
2708 case AR_EEPROM_MAC(0):
2709 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
2710 case AR_EEPROM_MAC(1):
2711 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
2712 case AR_EEPROM_MAC(2):
2713 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
2714 case EEP_REG_0:
2715 return pBase->regDmn[0];
2716 case EEP_REG_1:
2717 return pBase->regDmn[1];
2718 case EEP_OP_CAP:
2719 return pBase->deviceCap;
2720 case EEP_OP_MODE:
2721 return pBase->opCapFlags;
2722 case EEP_RF_SILENT:
2723 return pBase->rfSilent;
2724 case EEP_OB_2:
2725 return pModal->ob_01;
2726 case EEP_DB_2:
2727 return pModal->db1_01;
2728 case EEP_MINOR_REV:
2729 return pBase->version & AR5416_EEP_VER_MINOR_MASK;
2730 case EEP_TX_MASK:
2731 return pBase->txMask;
2732 case EEP_RX_MASK:
2733 return pBase->rxMask;
2734 default:
2735 return 0;
2739 static u32 ath9k_hw_get_eeprom_def(struct ath_hal *ah,
2740 enum eeprom_param param)
2742 struct ath_hal_5416 *ahp = AH5416(ah);
2743 struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
2744 struct modal_eep_header *pModal = eep->modalHeader;
2745 struct base_eep_header *pBase = &eep->baseEepHeader;
2747 switch (param) {
2748 case EEP_NFTHRESH_5:
2749 return pModal[0].noiseFloorThreshCh[0];
2750 case EEP_NFTHRESH_2:
2751 return pModal[1].noiseFloorThreshCh[0];
2752 case AR_EEPROM_MAC(0):
2753 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
2754 case AR_EEPROM_MAC(1):
2755 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
2756 case AR_EEPROM_MAC(2):
2757 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
2758 case EEP_REG_0:
2759 return pBase->regDmn[0];
2760 case EEP_REG_1:
2761 return pBase->regDmn[1];
2762 case EEP_OP_CAP:
2763 return pBase->deviceCap;
2764 case EEP_OP_MODE:
2765 return pBase->opCapFlags;
2766 case EEP_RF_SILENT:
2767 return pBase->rfSilent;
2768 case EEP_OB_5:
2769 return pModal[0].ob;
2770 case EEP_DB_5:
2771 return pModal[0].db;
2772 case EEP_OB_2:
2773 return pModal[1].ob;
2774 case EEP_DB_2:
2775 return pModal[1].db;
2776 case EEP_MINOR_REV:
2777 return pBase->version & AR5416_EEP_VER_MINOR_MASK;
2778 case EEP_TX_MASK:
2779 return pBase->txMask;
2780 case EEP_RX_MASK:
2781 return pBase->rxMask;
2782 case EEP_RXGAIN_TYPE:
2783 return pBase->rxGainType;
2784 case EEP_TXGAIN_TYPE:
2785 return pBase->txGainType;
2787 default:
2788 return 0;
2792 static u32 (*ath9k_get_eeprom[])(struct ath_hal *, enum eeprom_param) = {
2793 ath9k_hw_get_eeprom_def,
2794 ath9k_hw_get_eeprom_4k
2797 u32 ath9k_hw_get_eeprom(struct ath_hal *ah,
2798 enum eeprom_param param)
2800 struct ath_hal_5416 *ahp = AH5416(ah);
2802 return ath9k_get_eeprom[ahp->ah_eep_map](ah, param);
2805 int ath9k_hw_eeprom_attach(struct ath_hal *ah)
2807 int status;
2808 struct ath_hal_5416 *ahp = AH5416(ah);
2810 if (ath9k_hw_use_flash(ah))
2811 ath9k_hw_flash_map(ah);
2813 if (AR_SREV_9285(ah))
2814 ahp->ah_eep_map = EEP_MAP_4KBITS;
2815 else
2816 ahp->ah_eep_map = EEP_MAP_DEFAULT;
2818 if (!ath9k_hw_fill_eeprom(ah))
2819 return -EIO;
2821 status = ath9k_hw_check_eeprom(ah);
2823 return status;