2 * MUSB OTG driver host support
4 * Copyright 2005 Mentor Graphics Corporation
5 * Copyright (C) 2005-2006 by Texas Instruments
6 * Copyright (C) 2006-2007 Nokia Corporation
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * version 2 as published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
22 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
25 * NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
29 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/delay.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/errno.h>
41 #include <linux/init.h>
42 #include <linux/list.h>
44 #include "musb_core.h"
45 #include "musb_host.h"
48 /* MUSB HOST status 22-mar-2006
50 * - There's still lots of partial code duplication for fault paths, so
51 * they aren't handled as consistently as they need to be.
53 * - PIO mostly behaved when last tested.
54 * + including ep0, with all usbtest cases 9, 10
55 * + usbtest 14 (ep0out) doesn't seem to run at all
56 * + double buffered OUT/TX endpoints saw stalls(!) with certain usbtest
57 * configurations, but otherwise double buffering passes basic tests.
58 * + for 2.6.N, for N > ~10, needs API changes for hcd framework.
60 * - DMA (CPPI) ... partially behaves, not currently recommended
61 * + about 1/15 the speed of typical EHCI implementations (PCI)
62 * + RX, all too often reqpkt seems to misbehave after tx
63 * + TX, no known issues (other than evident silicon issue)
65 * - DMA (Mentor/OMAP) ...has at least toggle update problems
67 * - Still no traffic scheduling code to make NAKing for bulk or control
68 * transfers unable to starve other requests; or to make efficient use
69 * of hardware with periodic transfers. (Note that network drivers
70 * commonly post bulk reads that stay pending for a long time; these
71 * would make very visible trouble.)
73 * - Not tested with HNP, but some SRP paths seem to behave.
75 * NOTE 24-August-2006:
77 * - Bulk traffic finally uses both sides of hardware ep1, freeing up an
78 * extra endpoint for periodic use enabling hub + keybd + mouse. That
79 * mostly works, except that with "usbnet" it's easy to trigger cases
80 * with "ping" where RX loses. (a) ping to davinci, even "ping -f",
81 * fine; but (b) ping _from_ davinci, even "ping -c 1", ICMP RX loses
82 * although ARP RX wins. (That test was done with a full speed link.)
87 * NOTE on endpoint usage:
89 * CONTROL transfers all go through ep0. BULK ones go through dedicated IN
90 * and OUT endpoints ... hardware is dedicated for those "async" queue(s).
92 * (Yes, bulk _could_ use more of the endpoints than that, and would even
93 * benefit from it ... one remote device may easily be NAKing while others
94 * need to perform transfers in that same direction. The same thing could
95 * be done in software though, assuming dma cooperates.)
97 * INTERUPPT and ISOCHRONOUS transfers are scheduled to the other endpoints.
98 * So far that scheduling is both dumb and optimistic: the endpoint will be
99 * "claimed" until its software queue is no longer refilled. No multiplexing
100 * of transfers between endpoints, or anything clever.
104 static void musb_ep_program(struct musb
*musb
, u8 epnum
,
105 struct urb
*urb
, unsigned int nOut
,
109 * Clear TX fifo. Needed to avoid BABBLE errors.
111 static void musb_h_tx_flush_fifo(struct musb_hw_ep
*ep
)
113 void __iomem
*epio
= ep
->regs
;
118 csr
= musb_readw(epio
, MUSB_TXCSR
);
119 while (csr
& MUSB_TXCSR_FIFONOTEMPTY
) {
121 DBG(3, "Host TX FIFONOTEMPTY csr: %02x\n", csr
);
123 csr
|= MUSB_TXCSR_FLUSHFIFO
;
124 musb_writew(epio
, MUSB_TXCSR
, csr
);
125 csr
= musb_readw(epio
, MUSB_TXCSR
);
126 if (WARN(retries
-- < 1,
127 "Could not flush host TX%d fifo: csr: %04x\n",
135 * Start transmit. Caller is responsible for locking shared resources.
136 * musb must be locked.
138 static inline void musb_h_tx_start(struct musb_hw_ep
*ep
)
142 /* NOTE: no locks here; caller should lock and select EP */
144 txcsr
= musb_readw(ep
->regs
, MUSB_TXCSR
);
145 txcsr
|= MUSB_TXCSR_TXPKTRDY
| MUSB_TXCSR_H_WZC_BITS
;
146 musb_writew(ep
->regs
, MUSB_TXCSR
, txcsr
);
148 txcsr
= MUSB_CSR0_H_SETUPPKT
| MUSB_CSR0_TXPKTRDY
;
149 musb_writew(ep
->regs
, MUSB_CSR0
, txcsr
);
154 static inline void cppi_host_txdma_start(struct musb_hw_ep
*ep
)
158 /* NOTE: no locks here; caller should lock and select EP */
159 txcsr
= musb_readw(ep
->regs
, MUSB_TXCSR
);
160 txcsr
|= MUSB_TXCSR_DMAENAB
| MUSB_TXCSR_H_WZC_BITS
;
161 musb_writew(ep
->regs
, MUSB_TXCSR
, txcsr
);
165 * Start the URB at the front of an endpoint's queue
166 * end must be claimed from the caller.
168 * Context: controller locked, irqs blocked
171 musb_start_urb(struct musb
*musb
, int is_in
, struct musb_qh
*qh
)
176 void __iomem
*mbase
= musb
->mregs
;
177 struct urb
*urb
= next_urb(qh
);
178 struct musb_hw_ep
*hw_ep
= qh
->hw_ep
;
179 unsigned pipe
= urb
->pipe
;
180 u8 address
= usb_pipedevice(pipe
);
181 int epnum
= hw_ep
->epnum
;
183 /* initialize software qh state */
187 /* gather right source of data */
189 case USB_ENDPOINT_XFER_CONTROL
:
190 /* control transfers always start with SETUP */
193 musb
->ep0_stage
= MUSB_EP0_START
;
194 buf
= urb
->setup_packet
;
197 case USB_ENDPOINT_XFER_ISOC
:
200 buf
= urb
->transfer_buffer
+ urb
->iso_frame_desc
[0].offset
;
201 len
= urb
->iso_frame_desc
[0].length
;
203 default: /* bulk, interrupt */
204 buf
= urb
->transfer_buffer
;
205 len
= urb
->transfer_buffer_length
;
208 DBG(4, "qh %p urb %p dev%d ep%d%s%s, hw_ep %d, %p/%d\n",
209 qh
, urb
, address
, qh
->epnum
,
210 is_in
? "in" : "out",
211 ({char *s
; switch (qh
->type
) {
212 case USB_ENDPOINT_XFER_CONTROL
: s
= ""; break;
213 case USB_ENDPOINT_XFER_BULK
: s
= "-bulk"; break;
214 case USB_ENDPOINT_XFER_ISOC
: s
= "-iso"; break;
215 default: s
= "-intr"; break;
219 /* Configure endpoint */
220 if (is_in
|| hw_ep
->is_shared_fifo
)
224 musb_ep_program(musb
, epnum
, urb
, !is_in
, buf
, len
);
226 /* transmit may have more work: start it when it is time */
230 /* determine if the time is right for a periodic transfer */
232 case USB_ENDPOINT_XFER_ISOC
:
233 case USB_ENDPOINT_XFER_INT
:
234 DBG(3, "check whether there's still time for periodic Tx\n");
236 frame
= musb_readw(mbase
, MUSB_FRAME
);
237 /* FIXME this doesn't implement that scheduling policy ...
238 * or handle framecounter wrapping
240 if ((urb
->transfer_flags
& URB_ISO_ASAP
)
241 || (frame
>= urb
->start_frame
)) {
242 /* REVISIT the SOF irq handler shouldn't duplicate
243 * this code; and we don't init urb->start_frame...
248 qh
->frame
= urb
->start_frame
;
249 /* enable SOF interrupt so we can count down */
250 DBG(1, "SOF for %d\n", epnum
);
251 #if 1 /* ifndef CONFIG_ARCH_DAVINCI */
252 musb_writeb(mbase
, MUSB_INTRUSBE
, 0xff);
258 DBG(4, "Start TX%d %s\n", epnum
,
259 hw_ep
->tx_channel
? "dma" : "pio");
261 if (!hw_ep
->tx_channel
)
262 musb_h_tx_start(hw_ep
);
263 else if (is_cppi_enabled() || tusb_dma_omap())
264 cppi_host_txdma_start(hw_ep
);
268 /* caller owns controller lock, irqs are blocked */
270 __musb_giveback(struct musb
*musb
, struct urb
*urb
, int status
)
271 __releases(musb
->lock
)
272 __acquires(musb
->lock
)
274 DBG(({ int level
; switch (status
) {
278 /* common/boring faults */
289 "complete %p %pF (%d), dev%d ep%d%s, %d/%d\n",
290 urb
, urb
->complete
, status
,
291 usb_pipedevice(urb
->pipe
),
292 usb_pipeendpoint(urb
->pipe
),
293 usb_pipein(urb
->pipe
) ? "in" : "out",
294 urb
->actual_length
, urb
->transfer_buffer_length
297 usb_hcd_unlink_urb_from_ep(musb_to_hcd(musb
), urb
);
298 spin_unlock(&musb
->lock
);
299 usb_hcd_giveback_urb(musb_to_hcd(musb
), urb
, status
);
300 spin_lock(&musb
->lock
);
303 /* for bulk/interrupt endpoints only */
305 musb_save_toggle(struct musb_hw_ep
*ep
, int is_in
, struct urb
*urb
)
307 struct usb_device
*udev
= urb
->dev
;
309 void __iomem
*epio
= ep
->regs
;
312 /* FIXME: the current Mentor DMA code seems to have
313 * problems getting toggle correct.
316 if (is_in
|| ep
->is_shared_fifo
)
322 csr
= musb_readw(epio
, MUSB_TXCSR
);
323 usb_settoggle(udev
, qh
->epnum
, 1,
324 (csr
& MUSB_TXCSR_H_DATATOGGLE
)
327 csr
= musb_readw(epio
, MUSB_RXCSR
);
328 usb_settoggle(udev
, qh
->epnum
, 0,
329 (csr
& MUSB_RXCSR_H_DATATOGGLE
)
334 /* caller owns controller lock, irqs are blocked */
335 static struct musb_qh
*
336 musb_giveback(struct musb_qh
*qh
, struct urb
*urb
, int status
)
338 struct musb_hw_ep
*ep
= qh
->hw_ep
;
339 struct musb
*musb
= ep
->musb
;
340 int is_in
= usb_pipein(urb
->pipe
);
341 int ready
= qh
->is_ready
;
343 /* save toggle eagerly, for paranoia */
345 case USB_ENDPOINT_XFER_BULK
:
346 case USB_ENDPOINT_XFER_INT
:
347 musb_save_toggle(ep
, is_in
, urb
);
349 case USB_ENDPOINT_XFER_ISOC
:
350 if (status
== 0 && urb
->error_count
)
356 __musb_giveback(musb
, urb
, status
);
357 qh
->is_ready
= ready
;
359 /* reclaim resources (and bandwidth) ASAP; deschedule it, and
360 * invalidate qh as soon as list_empty(&hep->urb_list)
362 if (list_empty(&qh
->hep
->urb_list
)) {
363 struct list_head
*head
;
370 /* clobber old pointers to this qh */
371 if (is_in
|| ep
->is_shared_fifo
)
375 qh
->hep
->hcpriv
= NULL
;
379 case USB_ENDPOINT_XFER_CONTROL
:
380 case USB_ENDPOINT_XFER_BULK
:
381 /* fifo policy for these lists, except that NAKing
382 * should rotate a qh to the end (for fairness).
385 head
= qh
->ring
.prev
;
392 case USB_ENDPOINT_XFER_ISOC
:
393 case USB_ENDPOINT_XFER_INT
:
394 /* this is where periodic bandwidth should be
395 * de-allocated if it's tracked and allocated;
396 * and where we'd update the schedule tree...
398 musb
->periodic
[ep
->epnum
] = NULL
;
408 * Advance this hardware endpoint's queue, completing the specified urb and
409 * advancing to either the next urb queued to that qh, or else invalidating
410 * that qh and advancing to the next qh scheduled after the current one.
412 * Context: caller owns controller lock, irqs are blocked
415 musb_advance_schedule(struct musb
*musb
, struct urb
*urb
,
416 struct musb_hw_ep
*hw_ep
, int is_in
)
420 if (is_in
|| hw_ep
->is_shared_fifo
)
425 if (urb
->status
== -EINPROGRESS
)
426 qh
= musb_giveback(qh
, urb
, 0);
428 qh
= musb_giveback(qh
, urb
, urb
->status
);
430 if (qh
!= NULL
&& qh
->is_ready
) {
431 DBG(4, "... next ep%d %cX urb %p\n",
432 hw_ep
->epnum
, is_in
? 'R' : 'T',
434 musb_start_urb(musb
, is_in
, qh
);
438 static u16
musb_h_flush_rxfifo(struct musb_hw_ep
*hw_ep
, u16 csr
)
440 /* we don't want fifo to fill itself again;
441 * ignore dma (various models),
442 * leave toggle alone (may not have been saved yet)
444 csr
|= MUSB_RXCSR_FLUSHFIFO
| MUSB_RXCSR_RXPKTRDY
;
445 csr
&= ~(MUSB_RXCSR_H_REQPKT
446 | MUSB_RXCSR_H_AUTOREQ
447 | MUSB_RXCSR_AUTOCLEAR
);
449 /* write 2x to allow double buffering */
450 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, csr
);
451 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, csr
);
453 /* flush writebuffer */
454 return musb_readw(hw_ep
->regs
, MUSB_RXCSR
);
458 * PIO RX for a packet (or part of it).
461 musb_host_packet_rx(struct musb
*musb
, struct urb
*urb
, u8 epnum
, u8 iso_err
)
469 struct musb_hw_ep
*hw_ep
= musb
->endpoints
+ epnum
;
470 void __iomem
*epio
= hw_ep
->regs
;
471 struct musb_qh
*qh
= hw_ep
->in_qh
;
472 int pipe
= urb
->pipe
;
473 void *buffer
= urb
->transfer_buffer
;
475 /* musb_ep_select(mbase, epnum); */
476 rx_count
= musb_readw(epio
, MUSB_RXCOUNT
);
477 DBG(3, "RX%d count %d, buffer %p len %d/%d\n", epnum
, rx_count
,
478 urb
->transfer_buffer
, qh
->offset
,
479 urb
->transfer_buffer_length
);
482 if (usb_pipeisoc(pipe
)) {
484 struct usb_iso_packet_descriptor
*d
;
491 d
= urb
->iso_frame_desc
+ qh
->iso_idx
;
492 buf
= buffer
+ d
->offset
;
494 if (rx_count
> length
) {
499 DBG(2, "** OVERFLOW %d into %d\n", rx_count
, length
);
503 urb
->actual_length
+= length
;
504 d
->actual_length
= length
;
508 /* see if we are done */
509 done
= (++qh
->iso_idx
>= urb
->number_of_packets
);
512 buf
= buffer
+ qh
->offset
;
513 length
= urb
->transfer_buffer_length
- qh
->offset
;
514 if (rx_count
> length
) {
515 if (urb
->status
== -EINPROGRESS
)
516 urb
->status
= -EOVERFLOW
;
517 DBG(2, "** OVERFLOW %d into %d\n", rx_count
, length
);
521 urb
->actual_length
+= length
;
522 qh
->offset
+= length
;
524 /* see if we are done */
525 done
= (urb
->actual_length
== urb
->transfer_buffer_length
)
526 || (rx_count
< qh
->maxpacket
)
527 || (urb
->status
!= -EINPROGRESS
);
529 && (urb
->status
== -EINPROGRESS
)
530 && (urb
->transfer_flags
& URB_SHORT_NOT_OK
)
531 && (urb
->actual_length
532 < urb
->transfer_buffer_length
))
533 urb
->status
= -EREMOTEIO
;
536 musb_read_fifo(hw_ep
, length
, buf
);
538 csr
= musb_readw(epio
, MUSB_RXCSR
);
539 csr
|= MUSB_RXCSR_H_WZC_BITS
;
540 if (unlikely(do_flush
))
541 musb_h_flush_rxfifo(hw_ep
, csr
);
543 /* REVISIT this assumes AUTOCLEAR is never set */
544 csr
&= ~(MUSB_RXCSR_RXPKTRDY
| MUSB_RXCSR_H_REQPKT
);
546 csr
|= MUSB_RXCSR_H_REQPKT
;
547 musb_writew(epio
, MUSB_RXCSR
, csr
);
553 /* we don't always need to reinit a given side of an endpoint...
554 * when we do, use tx/rx reinit routine and then construct a new CSR
555 * to address data toggle, NYET, and DMA or PIO.
557 * it's possible that driver bugs (especially for DMA) or aborting a
558 * transfer might have left the endpoint busier than it should be.
559 * the busy/not-empty tests are basically paranoia.
562 musb_rx_reinit(struct musb
*musb
, struct musb_qh
*qh
, struct musb_hw_ep
*ep
)
566 /* NOTE: we know the "rx" fifo reinit never triggers for ep0.
567 * That always uses tx_reinit since ep0 repurposes TX register
568 * offsets; the initial SETUP packet is also a kind of OUT.
571 /* if programmed for Tx, put it in RX mode */
572 if (ep
->is_shared_fifo
) {
573 csr
= musb_readw(ep
->regs
, MUSB_TXCSR
);
574 if (csr
& MUSB_TXCSR_MODE
) {
575 musb_h_tx_flush_fifo(ep
);
576 musb_writew(ep
->regs
, MUSB_TXCSR
,
577 MUSB_TXCSR_FRCDATATOG
);
579 /* clear mode (and everything else) to enable Rx */
580 musb_writew(ep
->regs
, MUSB_TXCSR
, 0);
582 /* scrub all previous state, clearing toggle */
584 csr
= musb_readw(ep
->regs
, MUSB_RXCSR
);
585 if (csr
& MUSB_RXCSR_RXPKTRDY
)
586 WARNING("rx%d, packet/%d ready?\n", ep
->epnum
,
587 musb_readw(ep
->regs
, MUSB_RXCOUNT
));
589 musb_h_flush_rxfifo(ep
, MUSB_RXCSR_CLRDATATOG
);
592 /* target addr and (for multipoint) hub addr/port */
593 if (musb
->is_multipoint
) {
594 musb_write_rxfunaddr(ep
->target_regs
, qh
->addr_reg
);
595 musb_write_rxhubaddr(ep
->target_regs
, qh
->h_addr_reg
);
596 musb_write_rxhubport(ep
->target_regs
, qh
->h_port_reg
);
599 musb_writeb(musb
->mregs
, MUSB_FADDR
, qh
->addr_reg
);
601 /* protocol/endpoint, interval/NAKlimit, i/o size */
602 musb_writeb(ep
->regs
, MUSB_RXTYPE
, qh
->type_reg
);
603 musb_writeb(ep
->regs
, MUSB_RXINTERVAL
, qh
->intv_reg
);
604 /* NOTE: bulk combining rewrites high bits of maxpacket */
605 musb_writew(ep
->regs
, MUSB_RXMAXP
, qh
->maxpacket
);
612 * Program an HDRC endpoint as per the given URB
613 * Context: irqs blocked, controller lock held
615 static void musb_ep_program(struct musb
*musb
, u8 epnum
,
616 struct urb
*urb
, unsigned int is_out
,
619 struct dma_controller
*dma_controller
;
620 struct dma_channel
*dma_channel
;
622 void __iomem
*mbase
= musb
->mregs
;
623 struct musb_hw_ep
*hw_ep
= musb
->endpoints
+ epnum
;
624 void __iomem
*epio
= hw_ep
->regs
;
628 if (!is_out
|| hw_ep
->is_shared_fifo
)
633 packet_sz
= qh
->maxpacket
;
635 DBG(3, "%s hw%d urb %p spd%d dev%d ep%d%s "
636 "h_addr%02x h_port%02x bytes %d\n",
637 is_out
? "-->" : "<--",
638 epnum
, urb
, urb
->dev
->speed
,
639 qh
->addr_reg
, qh
->epnum
, is_out
? "out" : "in",
640 qh
->h_addr_reg
, qh
->h_port_reg
,
643 musb_ep_select(mbase
, epnum
);
645 /* candidate for DMA? */
646 dma_controller
= musb
->dma_controller
;
647 if (is_dma_capable() && epnum
&& dma_controller
) {
648 dma_channel
= is_out
? hw_ep
->tx_channel
: hw_ep
->rx_channel
;
650 dma_channel
= dma_controller
->channel_alloc(
651 dma_controller
, hw_ep
, is_out
);
653 hw_ep
->tx_channel
= dma_channel
;
655 hw_ep
->rx_channel
= dma_channel
;
660 /* make sure we clear DMAEnab, autoSet bits from previous run */
662 /* OUT/transmit/EP0 or IN/receive? */
668 csr
= musb_readw(epio
, MUSB_TXCSR
);
670 /* disable interrupt in case we flush */
671 int_txe
= musb_readw(mbase
, MUSB_INTRTXE
);
672 musb_writew(mbase
, MUSB_INTRTXE
, int_txe
& ~(1 << epnum
));
674 /* general endpoint setup */
676 /* ASSERT: TXCSR_DMAENAB was already cleared */
678 /* flush all old state, set default */
679 musb_h_tx_flush_fifo(hw_ep
);
680 csr
&= ~(MUSB_TXCSR_H_NAKTIMEOUT
682 | MUSB_TXCSR_FRCDATATOG
683 | MUSB_TXCSR_H_RXSTALL
685 | MUSB_TXCSR_TXPKTRDY
687 csr
|= MUSB_TXCSR_MODE
;
689 if (usb_gettoggle(urb
->dev
,
691 csr
|= MUSB_TXCSR_H_WR_DATATOGGLE
692 | MUSB_TXCSR_H_DATATOGGLE
;
694 csr
|= MUSB_TXCSR_CLRDATATOG
;
696 /* twice in case of double packet buffering */
697 musb_writew(epio
, MUSB_TXCSR
, csr
);
698 /* REVISIT may need to clear FLUSHFIFO ... */
699 musb_writew(epio
, MUSB_TXCSR
, csr
);
700 csr
= musb_readw(epio
, MUSB_TXCSR
);
702 /* endpoint 0: just flush */
703 musb_writew(epio
, MUSB_CSR0
,
704 csr
| MUSB_CSR0_FLUSHFIFO
);
705 musb_writew(epio
, MUSB_CSR0
,
706 csr
| MUSB_CSR0_FLUSHFIFO
);
709 /* target addr and (for multipoint) hub addr/port */
710 if (musb
->is_multipoint
) {
711 musb_write_txfunaddr(mbase
, epnum
, qh
->addr_reg
);
712 musb_write_txhubaddr(mbase
, epnum
, qh
->h_addr_reg
);
713 musb_write_txhubport(mbase
, epnum
, qh
->h_port_reg
);
714 /* FIXME if !epnum, do the same for RX ... */
716 musb_writeb(mbase
, MUSB_FADDR
, qh
->addr_reg
);
718 /* protocol/endpoint/interval/NAKlimit */
720 musb_writeb(epio
, MUSB_TXTYPE
, qh
->type_reg
);
721 if (can_bulk_split(musb
, qh
->type
))
722 musb_writew(epio
, MUSB_TXMAXP
,
724 | ((hw_ep
->max_packet_sz_tx
/
725 packet_sz
) - 1) << 11);
727 musb_writew(epio
, MUSB_TXMAXP
,
729 musb_writeb(epio
, MUSB_TXINTERVAL
, qh
->intv_reg
);
731 musb_writeb(epio
, MUSB_NAKLIMIT0
, qh
->intv_reg
);
732 if (musb
->is_multipoint
)
733 musb_writeb(epio
, MUSB_TYPE0
,
737 if (can_bulk_split(musb
, qh
->type
))
738 load_count
= min((u32
) hw_ep
->max_packet_sz_tx
,
741 load_count
= min((u32
) packet_sz
, len
);
743 #ifdef CONFIG_USB_INVENTRA_DMA
746 /* clear previous state */
747 csr
= musb_readw(epio
, MUSB_TXCSR
);
748 csr
&= ~(MUSB_TXCSR_AUTOSET
750 | MUSB_TXCSR_DMAENAB
);
751 csr
|= MUSB_TXCSR_MODE
;
752 musb_writew(epio
, MUSB_TXCSR
,
753 csr
| MUSB_TXCSR_MODE
);
755 qh
->segsize
= min(len
, dma_channel
->max_len
);
757 if (qh
->segsize
<= packet_sz
)
758 dma_channel
->desired_mode
= 0;
760 dma_channel
->desired_mode
= 1;
763 if (dma_channel
->desired_mode
== 0) {
764 csr
&= ~(MUSB_TXCSR_AUTOSET
765 | MUSB_TXCSR_DMAMODE
);
766 csr
|= (MUSB_TXCSR_DMAENAB
);
767 /* against programming guide */
769 csr
|= (MUSB_TXCSR_AUTOSET
771 | MUSB_TXCSR_DMAMODE
);
773 musb_writew(epio
, MUSB_TXCSR
, csr
);
775 dma_ok
= dma_controller
->channel_program(
776 dma_channel
, packet_sz
,
777 dma_channel
->desired_mode
,
783 dma_controller
->channel_release(dma_channel
);
785 hw_ep
->tx_channel
= NULL
;
787 hw_ep
->rx_channel
= NULL
;
793 /* candidate for DMA */
794 if ((is_cppi_enabled() || tusb_dma_omap()) && dma_channel
) {
796 /* program endpoint CSRs first, then setup DMA.
797 * assume CPPI setup succeeds.
798 * defer enabling dma.
800 csr
= musb_readw(epio
, MUSB_TXCSR
);
801 csr
&= ~(MUSB_TXCSR_AUTOSET
803 | MUSB_TXCSR_DMAENAB
);
804 csr
|= MUSB_TXCSR_MODE
;
805 musb_writew(epio
, MUSB_TXCSR
,
806 csr
| MUSB_TXCSR_MODE
);
808 dma_channel
->actual_len
= 0L;
811 /* TX uses "rndis" mode automatically, but needs help
812 * to identify the zero-length-final-packet case.
814 dma_ok
= dma_controller
->channel_program(
815 dma_channel
, packet_sz
,
824 dma_controller
->channel_release(dma_channel
);
825 hw_ep
->tx_channel
= NULL
;
828 /* REVISIT there's an error path here that
829 * needs handling: can't do dma, but
830 * there's no pio buffer address...
836 /* ASSERT: TXCSR_DMAENAB was already cleared */
838 /* PIO to load FIFO */
839 qh
->segsize
= load_count
;
840 musb_write_fifo(hw_ep
, load_count
, buf
);
841 csr
= musb_readw(epio
, MUSB_TXCSR
);
842 csr
&= ~(MUSB_TXCSR_DMAENAB
844 | MUSB_TXCSR_AUTOSET
);
846 csr
|= MUSB_TXCSR_MODE
;
849 musb_writew(epio
, MUSB_TXCSR
, csr
);
852 /* re-enable interrupt */
853 musb_writew(mbase
, MUSB_INTRTXE
, int_txe
);
859 if (hw_ep
->rx_reinit
) {
860 musb_rx_reinit(musb
, qh
, hw_ep
);
862 /* init new state: toggle and NYET, maybe DMA later */
863 if (usb_gettoggle(urb
->dev
, qh
->epnum
, 0))
864 csr
= MUSB_RXCSR_H_WR_DATATOGGLE
865 | MUSB_RXCSR_H_DATATOGGLE
;
868 if (qh
->type
== USB_ENDPOINT_XFER_INT
)
869 csr
|= MUSB_RXCSR_DISNYET
;
872 csr
= musb_readw(hw_ep
->regs
, MUSB_RXCSR
);
874 if (csr
& (MUSB_RXCSR_RXPKTRDY
876 | MUSB_RXCSR_H_REQPKT
))
877 ERR("broken !rx_reinit, ep%d csr %04x\n",
880 /* scrub any stale state, leaving toggle alone */
881 csr
&= MUSB_RXCSR_DISNYET
;
884 /* kick things off */
886 if ((is_cppi_enabled() || tusb_dma_omap()) && dma_channel
) {
887 /* candidate for DMA */
889 dma_channel
->actual_len
= 0L;
892 /* AUTOREQ is in a DMA register */
893 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, csr
);
894 csr
= musb_readw(hw_ep
->regs
,
897 /* unless caller treats short rx transfers as
898 * errors, we dare not queue multiple transfers.
900 dma_ok
= dma_controller
->channel_program(
901 dma_channel
, packet_sz
,
902 !(urb
->transfer_flags
907 dma_controller
->channel_release(
909 hw_ep
->rx_channel
= NULL
;
912 csr
|= MUSB_RXCSR_DMAENAB
;
916 csr
|= MUSB_RXCSR_H_REQPKT
;
917 DBG(7, "RXCSR%d := %04x\n", epnum
, csr
);
918 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, csr
);
919 csr
= musb_readw(hw_ep
->regs
, MUSB_RXCSR
);
925 * Service the default endpoint (ep0) as host.
926 * Return true until it's time to start the status stage.
928 static bool musb_h_ep0_continue(struct musb
*musb
, u16 len
, struct urb
*urb
)
931 u8
*fifo_dest
= NULL
;
933 struct musb_hw_ep
*hw_ep
= musb
->control_ep
;
934 struct musb_qh
*qh
= hw_ep
->in_qh
;
935 struct usb_ctrlrequest
*request
;
937 switch (musb
->ep0_stage
) {
939 fifo_dest
= urb
->transfer_buffer
+ urb
->actual_length
;
940 fifo_count
= min_t(size_t, len
, urb
->transfer_buffer_length
-
942 if (fifo_count
< len
)
943 urb
->status
= -EOVERFLOW
;
945 musb_read_fifo(hw_ep
, fifo_count
, fifo_dest
);
947 urb
->actual_length
+= fifo_count
;
948 if (len
< qh
->maxpacket
) {
949 /* always terminate on short read; it's
950 * rarely reported as an error.
952 } else if (urb
->actual_length
<
953 urb
->transfer_buffer_length
)
957 request
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
959 if (!request
->wLength
) {
960 DBG(4, "start no-DATA\n");
962 } else if (request
->bRequestType
& USB_DIR_IN
) {
963 DBG(4, "start IN-DATA\n");
964 musb
->ep0_stage
= MUSB_EP0_IN
;
968 DBG(4, "start OUT-DATA\n");
969 musb
->ep0_stage
= MUSB_EP0_OUT
;
974 fifo_count
= min_t(size_t, qh
->maxpacket
,
975 urb
->transfer_buffer_length
-
978 fifo_dest
= (u8
*) (urb
->transfer_buffer
979 + urb
->actual_length
);
980 DBG(3, "Sending %d byte%s to ep0 fifo %p\n",
982 (fifo_count
== 1) ? "" : "s",
984 musb_write_fifo(hw_ep
, fifo_count
, fifo_dest
);
986 urb
->actual_length
+= fifo_count
;
991 ERR("bogus ep0 stage %d\n", musb
->ep0_stage
);
999 * Handle default endpoint interrupt as host. Only called in IRQ time
1000 * from musb_interrupt().
1002 * called with controller irqlocked
1004 irqreturn_t
musb_h_ep0_irq(struct musb
*musb
)
1009 void __iomem
*mbase
= musb
->mregs
;
1010 struct musb_hw_ep
*hw_ep
= musb
->control_ep
;
1011 void __iomem
*epio
= hw_ep
->regs
;
1012 struct musb_qh
*qh
= hw_ep
->in_qh
;
1013 bool complete
= false;
1014 irqreturn_t retval
= IRQ_NONE
;
1016 /* ep0 only has one queue, "in" */
1019 musb_ep_select(mbase
, 0);
1020 csr
= musb_readw(epio
, MUSB_CSR0
);
1021 len
= (csr
& MUSB_CSR0_RXPKTRDY
)
1022 ? musb_readb(epio
, MUSB_COUNT0
)
1025 DBG(4, "<== csr0 %04x, qh %p, count %d, urb %p, stage %d\n",
1026 csr
, qh
, len
, urb
, musb
->ep0_stage
);
1028 /* if we just did status stage, we are done */
1029 if (MUSB_EP0_STATUS
== musb
->ep0_stage
) {
1030 retval
= IRQ_HANDLED
;
1034 /* prepare status */
1035 if (csr
& MUSB_CSR0_H_RXSTALL
) {
1036 DBG(6, "STALLING ENDPOINT\n");
1039 } else if (csr
& MUSB_CSR0_H_ERROR
) {
1040 DBG(2, "no response, csr0 %04x\n", csr
);
1043 } else if (csr
& MUSB_CSR0_H_NAKTIMEOUT
) {
1044 DBG(2, "control NAK timeout\n");
1046 /* NOTE: this code path would be a good place to PAUSE a
1047 * control transfer, if another one is queued, so that
1048 * ep0 is more likely to stay busy.
1050 * if (qh->ring.next != &musb->control), then
1051 * we have a candidate... NAKing is *NOT* an error
1053 musb_writew(epio
, MUSB_CSR0
, 0);
1054 retval
= IRQ_HANDLED
;
1058 DBG(6, "aborting\n");
1059 retval
= IRQ_HANDLED
;
1061 urb
->status
= status
;
1064 /* use the proper sequence to abort the transfer */
1065 if (csr
& MUSB_CSR0_H_REQPKT
) {
1066 csr
&= ~MUSB_CSR0_H_REQPKT
;
1067 musb_writew(epio
, MUSB_CSR0
, csr
);
1068 csr
&= ~MUSB_CSR0_H_NAKTIMEOUT
;
1069 musb_writew(epio
, MUSB_CSR0
, csr
);
1071 csr
|= MUSB_CSR0_FLUSHFIFO
;
1072 musb_writew(epio
, MUSB_CSR0
, csr
);
1073 musb_writew(epio
, MUSB_CSR0
, csr
);
1074 csr
&= ~MUSB_CSR0_H_NAKTIMEOUT
;
1075 musb_writew(epio
, MUSB_CSR0
, csr
);
1078 musb_writeb(epio
, MUSB_NAKLIMIT0
, 0);
1081 musb_writew(epio
, MUSB_CSR0
, 0);
1084 if (unlikely(!urb
)) {
1085 /* stop endpoint since we have no place for its data, this
1086 * SHOULD NEVER HAPPEN! */
1087 ERR("no URB for end 0\n");
1089 musb_writew(epio
, MUSB_CSR0
, MUSB_CSR0_FLUSHFIFO
);
1090 musb_writew(epio
, MUSB_CSR0
, MUSB_CSR0_FLUSHFIFO
);
1091 musb_writew(epio
, MUSB_CSR0
, 0);
1097 /* call common logic and prepare response */
1098 if (musb_h_ep0_continue(musb
, len
, urb
)) {
1099 /* more packets required */
1100 csr
= (MUSB_EP0_IN
== musb
->ep0_stage
)
1101 ? MUSB_CSR0_H_REQPKT
: MUSB_CSR0_TXPKTRDY
;
1103 /* data transfer complete; perform status phase */
1104 if (usb_pipeout(urb
->pipe
)
1105 || !urb
->transfer_buffer_length
)
1106 csr
= MUSB_CSR0_H_STATUSPKT
1107 | MUSB_CSR0_H_REQPKT
;
1109 csr
= MUSB_CSR0_H_STATUSPKT
1110 | MUSB_CSR0_TXPKTRDY
;
1112 /* flag status stage */
1113 musb
->ep0_stage
= MUSB_EP0_STATUS
;
1115 DBG(5, "ep0 STATUS, csr %04x\n", csr
);
1118 musb_writew(epio
, MUSB_CSR0
, csr
);
1119 retval
= IRQ_HANDLED
;
1121 musb
->ep0_stage
= MUSB_EP0_IDLE
;
1123 /* call completion handler if done */
1125 musb_advance_schedule(musb
, urb
, hw_ep
, 1);
1131 #ifdef CONFIG_USB_INVENTRA_DMA
1133 /* Host side TX (OUT) using Mentor DMA works as follows:
1135 - if queue was empty, Program Endpoint
1136 - ... which starts DMA to fifo in mode 1 or 0
1138 DMA Isr (transfer complete) -> TxAvail()
1139 - Stop DMA (~DmaEnab) (<--- Alert ... currently happens
1140 only in musb_cleanup_urb)
1141 - TxPktRdy has to be set in mode 0 or for
1142 short packets in mode 1.
1147 /* Service a Tx-Available or dma completion irq for the endpoint */
1148 void musb_host_tx(struct musb
*musb
, u8 epnum
)
1156 struct musb_hw_ep
*hw_ep
= musb
->endpoints
+ epnum
;
1157 void __iomem
*epio
= hw_ep
->regs
;
1158 struct musb_qh
*qh
= hw_ep
->is_shared_fifo
? hw_ep
->in_qh
1161 void __iomem
*mbase
= musb
->mregs
;
1162 struct dma_channel
*dma
;
1166 musb_ep_select(mbase
, epnum
);
1167 tx_csr
= musb_readw(epio
, MUSB_TXCSR
);
1169 /* with CPPI, DMA sometimes triggers "extra" irqs */
1171 DBG(4, "extra TX%d ready, csr %04x\n", epnum
, tx_csr
);
1176 dma
= is_dma_capable() ? hw_ep
->tx_channel
: NULL
;
1177 DBG(4, "OUT/TX%d end, csr %04x%s\n", epnum
, tx_csr
,
1178 dma
? ", dma" : "");
1180 /* check for errors */
1181 if (tx_csr
& MUSB_TXCSR_H_RXSTALL
) {
1182 /* dma was disabled, fifo flushed */
1183 DBG(3, "TX end %d stall\n", epnum
);
1185 /* stall; record URB status */
1188 } else if (tx_csr
& MUSB_TXCSR_H_ERROR
) {
1189 /* (NON-ISO) dma was disabled, fifo flushed */
1190 DBG(3, "TX 3strikes on ep=%d\n", epnum
);
1192 status
= -ETIMEDOUT
;
1194 } else if (tx_csr
& MUSB_TXCSR_H_NAKTIMEOUT
) {
1195 DBG(6, "TX end=%d device not responding\n", epnum
);
1197 /* NOTE: this code path would be a good place to PAUSE a
1198 * transfer, if there's some other (nonperiodic) tx urb
1199 * that could use this fifo. (dma complicates it...)
1201 * if (bulk && qh->ring.next != &musb->out_bulk), then
1202 * we have a candidate... NAKing is *NOT* an error
1204 musb_ep_select(mbase
, epnum
);
1205 musb_writew(epio
, MUSB_TXCSR
,
1206 MUSB_TXCSR_H_WZC_BITS
1207 | MUSB_TXCSR_TXPKTRDY
);
1212 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1213 dma
->status
= MUSB_DMA_STATUS_CORE_ABORT
;
1214 (void) musb
->dma_controller
->channel_abort(dma
);
1217 /* do the proper sequence to abort the transfer in the
1218 * usb core; the dma engine should already be stopped.
1220 musb_h_tx_flush_fifo(hw_ep
);
1221 tx_csr
&= ~(MUSB_TXCSR_AUTOSET
1222 | MUSB_TXCSR_DMAENAB
1223 | MUSB_TXCSR_H_ERROR
1224 | MUSB_TXCSR_H_RXSTALL
1225 | MUSB_TXCSR_H_NAKTIMEOUT
1228 musb_ep_select(mbase
, epnum
);
1229 musb_writew(epio
, MUSB_TXCSR
, tx_csr
);
1230 /* REVISIT may need to clear FLUSHFIFO ... */
1231 musb_writew(epio
, MUSB_TXCSR
, tx_csr
);
1232 musb_writeb(epio
, MUSB_TXINTERVAL
, 0);
1237 /* second cppi case */
1238 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1239 DBG(4, "extra TX%d ready, csr %04x\n", epnum
, tx_csr
);
1244 /* REVISIT this looks wrong... */
1245 if (!status
|| dma
|| usb_pipeisoc(pipe
)) {
1247 wLength
= dma
->actual_len
;
1249 wLength
= qh
->segsize
;
1250 qh
->offset
+= wLength
;
1252 if (usb_pipeisoc(pipe
)) {
1253 struct usb_iso_packet_descriptor
*d
;
1255 d
= urb
->iso_frame_desc
+ qh
->iso_idx
;
1256 d
->actual_length
= qh
->segsize
;
1257 if (++qh
->iso_idx
>= urb
->number_of_packets
) {
1261 buf
= urb
->transfer_buffer
+ d
->offset
;
1262 wLength
= d
->length
;
1267 /* see if we need to send more data, or ZLP */
1268 if (qh
->segsize
< qh
->maxpacket
)
1270 else if (qh
->offset
== urb
->transfer_buffer_length
1271 && !(urb
->transfer_flags
1275 buf
= urb
->transfer_buffer
1277 wLength
= urb
->transfer_buffer_length
1283 /* urb->status != -EINPROGRESS means request has been faulted,
1284 * so we must abort this transfer after cleanup
1286 if (urb
->status
!= -EINPROGRESS
) {
1289 status
= urb
->status
;
1294 urb
->status
= status
;
1295 urb
->actual_length
= qh
->offset
;
1296 musb_advance_schedule(musb
, urb
, hw_ep
, USB_DIR_OUT
);
1298 } else if (!(tx_csr
& MUSB_TXCSR_DMAENAB
)) {
1299 /* WARN_ON(!buf); */
1301 /* REVISIT: some docs say that when hw_ep->tx_double_buffered,
1302 * (and presumably, fifo is not half-full) we should write TWO
1303 * packets before updating TXCSR ... other docs disagree ...
1305 /* PIO: start next packet in this URB */
1306 if (wLength
> qh
->maxpacket
)
1307 wLength
= qh
->maxpacket
;
1308 musb_write_fifo(hw_ep
, wLength
, buf
);
1309 qh
->segsize
= wLength
;
1311 musb_ep_select(mbase
, epnum
);
1312 musb_writew(epio
, MUSB_TXCSR
,
1313 MUSB_TXCSR_H_WZC_BITS
| MUSB_TXCSR_TXPKTRDY
);
1315 DBG(1, "not complete, but dma enabled?\n");
1322 #ifdef CONFIG_USB_INVENTRA_DMA
1324 /* Host side RX (IN) using Mentor DMA works as follows:
1326 - if queue was empty, ProgramEndpoint
1327 - first IN token is sent out (by setting ReqPkt)
1328 LinuxIsr -> RxReady()
1329 /\ => first packet is received
1330 | - Set in mode 0 (DmaEnab, ~ReqPkt)
1331 | -> DMA Isr (transfer complete) -> RxReady()
1332 | - Ack receive (~RxPktRdy), turn off DMA (~DmaEnab)
1333 | - if urb not complete, send next IN token (ReqPkt)
1334 | | else complete urb.
1336 ---------------------------
1338 * Nuances of mode 1:
1339 * For short packets, no ack (+RxPktRdy) is sent automatically
1340 * (even if AutoClear is ON)
1341 * For full packets, ack (~RxPktRdy) and next IN token (+ReqPkt) is sent
1342 * automatically => major problem, as collecting the next packet becomes
1343 * difficult. Hence mode 1 is not used.
1346 * All we care about at this driver level is that
1347 * (a) all URBs terminate with REQPKT cleared and fifo(s) empty;
1348 * (b) termination conditions are: short RX, or buffer full;
1349 * (c) fault modes include
1350 * - iff URB_SHORT_NOT_OK, short RX status is -EREMOTEIO.
1351 * (and that endpoint's dma queue stops immediately)
1352 * - overflow (full, PLUS more bytes in the terminal packet)
1354 * So for example, usb-storage sets URB_SHORT_NOT_OK, and would
1355 * thus be a great candidate for using mode 1 ... for all but the
1356 * last packet of one URB's transfer.
1362 * Service an RX interrupt for the given IN endpoint; docs cover bulk, iso,
1363 * and high-bandwidth IN transfer cases.
1365 void musb_host_rx(struct musb
*musb
, u8 epnum
)
1368 struct musb_hw_ep
*hw_ep
= musb
->endpoints
+ epnum
;
1369 void __iomem
*epio
= hw_ep
->regs
;
1370 struct musb_qh
*qh
= hw_ep
->in_qh
;
1372 void __iomem
*mbase
= musb
->mregs
;
1375 bool iso_err
= false;
1378 struct dma_channel
*dma
;
1380 musb_ep_select(mbase
, epnum
);
1383 dma
= is_dma_capable() ? hw_ep
->rx_channel
: NULL
;
1387 rx_csr
= musb_readw(epio
, MUSB_RXCSR
);
1390 if (unlikely(!urb
)) {
1391 /* REVISIT -- THIS SHOULD NEVER HAPPEN ... but, at least
1392 * usbtest #11 (unlinks) triggers it regularly, sometimes
1393 * with fifo full. (Only with DMA??)
1395 DBG(3, "BOGUS RX%d ready, csr %04x, count %d\n", epnum
, val
,
1396 musb_readw(epio
, MUSB_RXCOUNT
));
1397 musb_h_flush_rxfifo(hw_ep
, MUSB_RXCSR_CLRDATATOG
);
1403 DBG(5, "<== hw %d rxcsr %04x, urb actual %d (+dma %zu)\n",
1404 epnum
, rx_csr
, urb
->actual_length
,
1405 dma
? dma
->actual_len
: 0);
1407 /* check for errors, concurrent stall & unlink is not really
1409 if (rx_csr
& MUSB_RXCSR_H_RXSTALL
) {
1410 DBG(3, "RX end %d STALL\n", epnum
);
1412 /* stall; record URB status */
1415 } else if (rx_csr
& MUSB_RXCSR_H_ERROR
) {
1416 DBG(3, "end %d RX proto error\n", epnum
);
1419 musb_writeb(epio
, MUSB_RXINTERVAL
, 0);
1421 } else if (rx_csr
& MUSB_RXCSR_DATAERROR
) {
1423 if (USB_ENDPOINT_XFER_ISOC
!= qh
->type
) {
1424 /* NOTE this code path would be a good place to PAUSE a
1425 * transfer, if there's some other (nonperiodic) rx urb
1426 * that could use this fifo. (dma complicates it...)
1428 * if (bulk && qh->ring.next != &musb->in_bulk), then
1429 * we have a candidate... NAKing is *NOT* an error
1431 DBG(6, "RX end %d NAK timeout\n", epnum
);
1432 musb_ep_select(mbase
, epnum
);
1433 musb_writew(epio
, MUSB_RXCSR
,
1434 MUSB_RXCSR_H_WZC_BITS
1435 | MUSB_RXCSR_H_REQPKT
);
1439 DBG(4, "RX end %d ISO data error\n", epnum
);
1440 /* packet error reported later */
1445 /* faults abort the transfer */
1447 /* clean up dma and collect transfer count */
1448 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1449 dma
->status
= MUSB_DMA_STATUS_CORE_ABORT
;
1450 (void) musb
->dma_controller
->channel_abort(dma
);
1451 xfer_len
= dma
->actual_len
;
1453 musb_h_flush_rxfifo(hw_ep
, MUSB_RXCSR_CLRDATATOG
);
1454 musb_writeb(epio
, MUSB_RXINTERVAL
, 0);
1459 if (unlikely(dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
)) {
1460 /* SHOULD NEVER HAPPEN ... but at least DaVinci has done it */
1461 ERR("RX%d dma busy, csr %04x\n", epnum
, rx_csr
);
1465 /* thorough shutdown for now ... given more precise fault handling
1466 * and better queueing support, we might keep a DMA pipeline going
1467 * while processing this irq for earlier completions.
1470 /* FIXME this is _way_ too much in-line logic for Mentor DMA */
1472 #ifndef CONFIG_USB_INVENTRA_DMA
1473 if (rx_csr
& MUSB_RXCSR_H_REQPKT
) {
1474 /* REVISIT this happened for a while on some short reads...
1475 * the cleanup still needs investigation... looks bad...
1476 * and also duplicates dma cleanup code above ... plus,
1477 * shouldn't this be the "half full" double buffer case?
1479 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1480 dma
->status
= MUSB_DMA_STATUS_CORE_ABORT
;
1481 (void) musb
->dma_controller
->channel_abort(dma
);
1482 xfer_len
= dma
->actual_len
;
1486 DBG(2, "RXCSR%d %04x, reqpkt, len %zu%s\n", epnum
, rx_csr
,
1487 xfer_len
, dma
? ", dma" : "");
1488 rx_csr
&= ~MUSB_RXCSR_H_REQPKT
;
1490 musb_ep_select(mbase
, epnum
);
1491 musb_writew(epio
, MUSB_RXCSR
,
1492 MUSB_RXCSR_H_WZC_BITS
| rx_csr
);
1495 if (dma
&& (rx_csr
& MUSB_RXCSR_DMAENAB
)) {
1496 xfer_len
= dma
->actual_len
;
1498 val
&= ~(MUSB_RXCSR_DMAENAB
1499 | MUSB_RXCSR_H_AUTOREQ
1500 | MUSB_RXCSR_AUTOCLEAR
1501 | MUSB_RXCSR_RXPKTRDY
);
1502 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, val
);
1504 #ifdef CONFIG_USB_INVENTRA_DMA
1505 if (usb_pipeisoc(pipe
)) {
1506 struct usb_iso_packet_descriptor
*d
;
1508 d
= urb
->iso_frame_desc
+ qh
->iso_idx
;
1509 d
->actual_length
= xfer_len
;
1511 /* even if there was an error, we did the dma
1512 * for iso_frame_desc->length
1514 if (d
->status
!= EILSEQ
&& d
->status
!= -EOVERFLOW
)
1517 if (++qh
->iso_idx
>= urb
->number_of_packets
)
1523 /* done if urb buffer is full or short packet is recd */
1524 done
= (urb
->actual_length
+ xfer_len
>=
1525 urb
->transfer_buffer_length
1526 || dma
->actual_len
< qh
->maxpacket
);
1529 /* send IN token for next packet, without AUTOREQ */
1531 val
|= MUSB_RXCSR_H_REQPKT
;
1532 musb_writew(epio
, MUSB_RXCSR
,
1533 MUSB_RXCSR_H_WZC_BITS
| val
);
1536 DBG(4, "ep %d dma %s, rxcsr %04x, rxcount %d\n", epnum
,
1537 done
? "off" : "reset",
1538 musb_readw(epio
, MUSB_RXCSR
),
1539 musb_readw(epio
, MUSB_RXCOUNT
));
1543 } else if (urb
->status
== -EINPROGRESS
) {
1544 /* if no errors, be sure a packet is ready for unloading */
1545 if (unlikely(!(rx_csr
& MUSB_RXCSR_RXPKTRDY
))) {
1547 ERR("Rx interrupt with no errors or packet!\n");
1549 /* FIXME this is another "SHOULD NEVER HAPPEN" */
1552 /* do the proper sequence to abort the transfer */
1553 musb_ep_select(mbase
, epnum
);
1554 val
&= ~MUSB_RXCSR_H_REQPKT
;
1555 musb_writew(epio
, MUSB_RXCSR
, val
);
1559 /* we are expecting IN packets */
1560 #ifdef CONFIG_USB_INVENTRA_DMA
1562 struct dma_controller
*c
;
1567 rx_count
= musb_readw(epio
, MUSB_RXCOUNT
);
1569 DBG(2, "RX%d count %d, buffer 0x%x len %d/%d\n",
1572 + urb
->actual_length
,
1574 urb
->transfer_buffer_length
);
1576 c
= musb
->dma_controller
;
1578 if (usb_pipeisoc(pipe
)) {
1580 struct usb_iso_packet_descriptor
*d
;
1582 d
= urb
->iso_frame_desc
+ qh
->iso_idx
;
1588 if (rx_count
> d
->length
) {
1590 status
= -EOVERFLOW
;
1593 DBG(2, "** OVERFLOW %d into %d\n",\
1594 rx_count
, d
->length
);
1600 buf
= urb
->transfer_dma
+ d
->offset
;
1603 buf
= urb
->transfer_dma
+
1607 dma
->desired_mode
= 0;
1609 /* because of the issue below, mode 1 will
1610 * only rarely behave with correct semantics.
1612 if ((urb
->transfer_flags
&
1614 && (urb
->transfer_buffer_length
-
1617 dma
->desired_mode
= 1;
1618 if (rx_count
< hw_ep
->max_packet_sz_rx
) {
1620 dma
->bDesiredMode
= 0;
1622 length
= urb
->transfer_buffer_length
;
1626 /* Disadvantage of using mode 1:
1627 * It's basically usable only for mass storage class; essentially all
1628 * other protocols also terminate transfers on short packets.
1631 * An extra IN token is sent at the end of the transfer (due to AUTOREQ)
1632 * If you try to use mode 1 for (transfer_buffer_length - 512), and try
1633 * to use the extra IN token to grab the last packet using mode 0, then
1634 * the problem is that you cannot be sure when the device will send the
1635 * last packet and RxPktRdy set. Sometimes the packet is recd too soon
1636 * such that it gets lost when RxCSR is re-set at the end of the mode 1
1637 * transfer, while sometimes it is recd just a little late so that if you
1638 * try to configure for mode 0 soon after the mode 1 transfer is
1639 * completed, you will find rxcount 0. Okay, so you might think why not
1640 * wait for an interrupt when the pkt is recd. Well, you won't get any!
1643 val
= musb_readw(epio
, MUSB_RXCSR
);
1644 val
&= ~MUSB_RXCSR_H_REQPKT
;
1646 if (dma
->desired_mode
== 0)
1647 val
&= ~MUSB_RXCSR_H_AUTOREQ
;
1649 val
|= MUSB_RXCSR_H_AUTOREQ
;
1650 val
|= MUSB_RXCSR_AUTOCLEAR
| MUSB_RXCSR_DMAENAB
;
1652 musb_writew(epio
, MUSB_RXCSR
,
1653 MUSB_RXCSR_H_WZC_BITS
| val
);
1655 /* REVISIT if when actual_length != 0,
1656 * transfer_buffer_length needs to be
1659 ret
= c
->channel_program(
1661 dma
->desired_mode
, buf
, length
);
1664 c
->channel_release(dma
);
1665 hw_ep
->rx_channel
= NULL
;
1667 /* REVISIT reset CSR */
1670 #endif /* Mentor DMA */
1673 done
= musb_host_packet_rx(musb
, urb
,
1675 DBG(6, "read %spacket\n", done
? "last " : "");
1680 urb
->actual_length
+= xfer_len
;
1681 qh
->offset
+= xfer_len
;
1683 if (urb
->status
== -EINPROGRESS
)
1684 urb
->status
= status
;
1685 musb_advance_schedule(musb
, urb
, hw_ep
, USB_DIR_IN
);
1689 /* schedule nodes correspond to peripheral endpoints, like an OHCI QH.
1690 * the software schedule associates multiple such nodes with a given
1691 * host side hardware endpoint + direction; scheduling may activate
1692 * that hardware endpoint.
1694 static int musb_schedule(
1701 int best_end
, epnum
;
1702 struct musb_hw_ep
*hw_ep
= NULL
;
1703 struct list_head
*head
= NULL
;
1705 /* use fixed hardware for control and bulk */
1706 if (qh
->type
== USB_ENDPOINT_XFER_CONTROL
) {
1707 head
= &musb
->control
;
1708 hw_ep
= musb
->control_ep
;
1712 /* else, periodic transfers get muxed to other endpoints */
1714 /* FIXME this doesn't consider direction, so it can only
1715 * work for one half of the endpoint hardware, and assumes
1716 * the previous cases handled all non-shared endpoints...
1719 /* we know this qh hasn't been scheduled, so all we need to do
1720 * is choose which hardware endpoint to put it on ...
1722 * REVISIT what we really want here is a regular schedule tree
1723 * like e.g. OHCI uses, but for now musb->periodic is just an
1724 * array of the _single_ logical endpoint associated with a
1725 * given physical one (identity mapping logical->physical).
1727 * that simplistic approach makes TT scheduling a lot simpler;
1728 * there is none, and thus none of its complexity...
1733 for (epnum
= 1; epnum
< musb
->nr_endpoints
; epnum
++) {
1736 if (musb
->periodic
[epnum
])
1738 hw_ep
= &musb
->endpoints
[epnum
];
1739 if (hw_ep
== musb
->bulk_ep
)
1743 diff
= hw_ep
->max_packet_sz_rx
- qh
->maxpacket
;
1745 diff
= hw_ep
->max_packet_sz_tx
- qh
->maxpacket
;
1747 if (diff
>= 0 && best_diff
> diff
) {
1752 /* use bulk reserved ep1 if no other ep is free */
1753 if (best_end
< 0 && qh
->type
== USB_ENDPOINT_XFER_BULK
) {
1754 hw_ep
= musb
->bulk_ep
;
1756 head
= &musb
->in_bulk
;
1758 head
= &musb
->out_bulk
;
1760 } else if (best_end
< 0) {
1766 hw_ep
= musb
->endpoints
+ best_end
;
1767 musb
->periodic
[best_end
] = qh
;
1768 DBG(4, "qh %p periodic slot %d\n", qh
, best_end
);
1771 idle
= list_empty(head
);
1772 list_add_tail(&qh
->ring
, head
);
1776 qh
->hep
->hcpriv
= qh
;
1778 musb_start_urb(musb
, is_in
, qh
);
1782 static int musb_urb_enqueue(
1783 struct usb_hcd
*hcd
,
1787 unsigned long flags
;
1788 struct musb
*musb
= hcd_to_musb(hcd
);
1789 struct usb_host_endpoint
*hep
= urb
->ep
;
1790 struct musb_qh
*qh
= hep
->hcpriv
;
1791 struct usb_endpoint_descriptor
*epd
= &hep
->desc
;
1796 /* host role must be active */
1797 if (!is_host_active(musb
) || !musb
->is_active
)
1800 spin_lock_irqsave(&musb
->lock
, flags
);
1801 ret
= usb_hcd_link_urb_to_ep(hcd
, urb
);
1802 spin_unlock_irqrestore(&musb
->lock
, flags
);
1806 /* DMA mapping was already done, if needed, and this urb is on
1807 * hep->urb_list ... so there's little to do unless hep wasn't
1808 * yet scheduled onto a live qh.
1810 * REVISIT best to keep hep->hcpriv valid until the endpoint gets
1811 * disabled, testing for empty qh->ring and avoiding qh setup costs
1812 * except for the first urb queued after a config change.
1819 /* Allocate and initialize qh, minimizing the work done each time
1820 * hw_ep gets reprogrammed, or with irqs blocked. Then schedule it.
1822 * REVISIT consider a dedicated qh kmem_cache, so it's harder
1823 * for bugs in other kernel code to break this driver...
1825 qh
= kzalloc(sizeof *qh
, mem_flags
);
1827 spin_lock_irqsave(&musb
->lock
, flags
);
1828 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
1829 spin_unlock_irqrestore(&musb
->lock
, flags
);
1835 INIT_LIST_HEAD(&qh
->ring
);
1838 qh
->maxpacket
= le16_to_cpu(epd
->wMaxPacketSize
);
1840 /* no high bandwidth support yet */
1841 if (qh
->maxpacket
& ~0x7ff) {
1846 qh
->epnum
= usb_endpoint_num(epd
);
1847 qh
->type
= usb_endpoint_type(epd
);
1849 /* NOTE: urb->dev->devnum is wrong during SET_ADDRESS */
1850 qh
->addr_reg
= (u8
) usb_pipedevice(urb
->pipe
);
1852 /* precompute rxtype/txtype/type0 register */
1853 type_reg
= (qh
->type
<< 4) | qh
->epnum
;
1854 switch (urb
->dev
->speed
) {
1858 case USB_SPEED_FULL
:
1864 qh
->type_reg
= type_reg
;
1866 /* Precompute RXINTERVAL/TXINTERVAL register */
1868 case USB_ENDPOINT_XFER_INT
:
1870 * Full/low speeds use the linear encoding,
1871 * high speed uses the logarithmic encoding.
1873 if (urb
->dev
->speed
<= USB_SPEED_FULL
) {
1874 interval
= max_t(u8
, epd
->bInterval
, 1);
1878 case USB_ENDPOINT_XFER_ISOC
:
1879 /* ISO always uses logarithmic encoding */
1880 interval
= min_t(u8
, epd
->bInterval
, 16);
1883 /* REVISIT we actually want to use NAK limits, hinting to the
1884 * transfer scheduling logic to try some other qh, e.g. try
1887 * interval = (USB_SPEED_HIGH == urb->dev->speed) ? 16 : 2;
1889 * The downside of disabling this is that transfer scheduling
1890 * gets VERY unfair for nonperiodic transfers; a misbehaving
1891 * peripheral could make that hurt. Or for reads, one that's
1892 * perfectly normal: network and other drivers keep reads
1893 * posted at all times, having one pending for a week should
1894 * be perfectly safe.
1896 * The upside of disabling it is avoidng transfer scheduling
1897 * code to put this aside for while.
1901 qh
->intv_reg
= interval
;
1903 /* precompute addressing for external hub/tt ports */
1904 if (musb
->is_multipoint
) {
1905 struct usb_device
*parent
= urb
->dev
->parent
;
1907 if (parent
!= hcd
->self
.root_hub
) {
1908 qh
->h_addr_reg
= (u8
) parent
->devnum
;
1910 /* set up tt info if needed */
1912 qh
->h_port_reg
= (u8
) urb
->dev
->ttport
;
1913 if (urb
->dev
->tt
->hub
)
1915 (u8
) urb
->dev
->tt
->hub
->devnum
;
1916 if (urb
->dev
->tt
->multi
)
1917 qh
->h_addr_reg
|= 0x80;
1922 /* invariant: hep->hcpriv is null OR the qh that's already scheduled.
1923 * until we get real dma queues (with an entry for each urb/buffer),
1924 * we only have work to do in the former case.
1926 spin_lock_irqsave(&musb
->lock
, flags
);
1928 /* some concurrent activity submitted another urb to hep...
1929 * odd, rare, error prone, but legal.
1934 ret
= musb_schedule(musb
, qh
,
1935 epd
->bEndpointAddress
& USB_ENDPOINT_DIR_MASK
);
1939 /* FIXME set urb->start_frame for iso/intr, it's tested in
1940 * musb_start_urb(), but otherwise only konicawc cares ...
1943 spin_unlock_irqrestore(&musb
->lock
, flags
);
1947 spin_lock_irqsave(&musb
->lock
, flags
);
1948 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
1949 spin_unlock_irqrestore(&musb
->lock
, flags
);
1957 * abort a transfer that's at the head of a hardware queue.
1958 * called with controller locked, irqs blocked
1959 * that hardware queue advances to the next transfer, unless prevented
1961 static int musb_cleanup_urb(struct urb
*urb
, struct musb_qh
*qh
, int is_in
)
1963 struct musb_hw_ep
*ep
= qh
->hw_ep
;
1964 void __iomem
*epio
= ep
->regs
;
1965 unsigned hw_end
= ep
->epnum
;
1966 void __iomem
*regs
= ep
->musb
->mregs
;
1970 musb_ep_select(regs
, hw_end
);
1972 if (is_dma_capable()) {
1973 struct dma_channel
*dma
;
1975 dma
= is_in
? ep
->rx_channel
: ep
->tx_channel
;
1977 status
= ep
->musb
->dma_controller
->channel_abort(dma
);
1979 "abort %cX%d DMA for urb %p --> %d\n",
1980 is_in
? 'R' : 'T', ep
->epnum
,
1982 urb
->actual_length
+= dma
->actual_len
;
1986 /* turn off DMA requests, discard state, stop polling ... */
1988 /* giveback saves bulk toggle */
1989 csr
= musb_h_flush_rxfifo(ep
, 0);
1991 /* REVISIT we still get an irq; should likely clear the
1992 * endpoint's irq status here to avoid bogus irqs.
1993 * clearing that status is platform-specific...
1996 musb_h_tx_flush_fifo(ep
);
1997 csr
= musb_readw(epio
, MUSB_TXCSR
);
1998 csr
&= ~(MUSB_TXCSR_AUTOSET
1999 | MUSB_TXCSR_DMAENAB
2000 | MUSB_TXCSR_H_RXSTALL
2001 | MUSB_TXCSR_H_NAKTIMEOUT
2002 | MUSB_TXCSR_H_ERROR
2003 | MUSB_TXCSR_TXPKTRDY
);
2004 musb_writew(epio
, MUSB_TXCSR
, csr
);
2005 /* REVISIT may need to clear FLUSHFIFO ... */
2006 musb_writew(epio
, MUSB_TXCSR
, csr
);
2007 /* flush cpu writebuffer */
2008 csr
= musb_readw(epio
, MUSB_TXCSR
);
2011 musb_advance_schedule(ep
->musb
, urb
, ep
, is_in
);
2015 static int musb_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
2017 struct musb
*musb
= hcd_to_musb(hcd
);
2019 struct list_head
*sched
;
2020 unsigned long flags
;
2023 DBG(4, "urb=%p, dev%d ep%d%s\n", urb
,
2024 usb_pipedevice(urb
->pipe
),
2025 usb_pipeendpoint(urb
->pipe
),
2026 usb_pipein(urb
->pipe
) ? "in" : "out");
2028 spin_lock_irqsave(&musb
->lock
, flags
);
2029 ret
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
2037 /* Any URB not actively programmed into endpoint hardware can be
2038 * immediately given back; that's any URB not at the head of an
2039 * endpoint queue, unless someday we get real DMA queues. And even
2040 * if it's at the head, it might not be known to the hardware...
2042 * Otherwise abort current transfer, pending dma, etc.; urb->status
2043 * has already been updated. This is a synchronous abort; it'd be
2044 * OK to hold off until after some IRQ, though.
2046 if (!qh
->is_ready
|| urb
->urb_list
.prev
!= &qh
->hep
->urb_list
)
2050 case USB_ENDPOINT_XFER_CONTROL
:
2051 sched
= &musb
->control
;
2053 case USB_ENDPOINT_XFER_BULK
:
2055 if (usb_pipein(urb
->pipe
))
2056 sched
= &musb
->in_bulk
;
2058 sched
= &musb
->out_bulk
;
2062 /* REVISIT when we get a schedule tree, periodic
2063 * transfers won't always be at the head of a
2064 * singleton queue...
2071 /* NOTE: qh is invalid unless !list_empty(&hep->urb_list) */
2072 if (ret
< 0 || (sched
&& qh
!= first_qh(sched
))) {
2073 int ready
= qh
->is_ready
;
2077 __musb_giveback(musb
, urb
, 0);
2078 qh
->is_ready
= ready
;
2080 /* If nothing else (usually musb_giveback) is using it
2081 * and its URB list has emptied, recycle this qh.
2083 if (ready
&& list_empty(&qh
->hep
->urb_list
)) {
2084 qh
->hep
->hcpriv
= NULL
;
2085 list_del(&qh
->ring
);
2089 ret
= musb_cleanup_urb(urb
, qh
, urb
->pipe
& USB_DIR_IN
);
2091 spin_unlock_irqrestore(&musb
->lock
, flags
);
2095 /* disable an endpoint */
2097 musb_h_disable(struct usb_hcd
*hcd
, struct usb_host_endpoint
*hep
)
2099 u8 epnum
= hep
->desc
.bEndpointAddress
;
2100 unsigned long flags
;
2101 struct musb
*musb
= hcd_to_musb(hcd
);
2102 u8 is_in
= epnum
& USB_DIR_IN
;
2105 struct list_head
*sched
;
2107 spin_lock_irqsave(&musb
->lock
, flags
);
2114 case USB_ENDPOINT_XFER_CONTROL
:
2115 sched
= &musb
->control
;
2117 case USB_ENDPOINT_XFER_BULK
:
2120 sched
= &musb
->in_bulk
;
2122 sched
= &musb
->out_bulk
;
2126 /* REVISIT when we get a schedule tree, periodic transfers
2127 * won't always be at the head of a singleton queue...
2133 /* NOTE: qh is invalid unless !list_empty(&hep->urb_list) */
2135 /* kick first urb off the hardware, if needed */
2137 if (!sched
|| qh
== first_qh(sched
)) {
2140 /* make software (then hardware) stop ASAP */
2142 urb
->status
= -ESHUTDOWN
;
2145 musb_cleanup_urb(urb
, qh
, urb
->pipe
& USB_DIR_IN
);
2147 /* Then nuke all the others ... and advance the
2148 * queue on hw_ep (e.g. bulk ring) when we're done.
2150 while (!list_empty(&hep
->urb_list
)) {
2152 urb
->status
= -ESHUTDOWN
;
2153 musb_advance_schedule(musb
, urb
, qh
->hw_ep
, is_in
);
2156 /* Just empty the queue; the hardware is busy with
2157 * other transfers, and since !qh->is_ready nothing
2158 * will activate any of these as it advances.
2160 while (!list_empty(&hep
->urb_list
))
2161 __musb_giveback(musb
, next_urb(qh
), -ESHUTDOWN
);
2164 list_del(&qh
->ring
);
2168 spin_unlock_irqrestore(&musb
->lock
, flags
);
2171 static int musb_h_get_frame_number(struct usb_hcd
*hcd
)
2173 struct musb
*musb
= hcd_to_musb(hcd
);
2175 return musb_readw(musb
->mregs
, MUSB_FRAME
);
2178 static int musb_h_start(struct usb_hcd
*hcd
)
2180 struct musb
*musb
= hcd_to_musb(hcd
);
2182 /* NOTE: musb_start() is called when the hub driver turns
2183 * on port power, or when (OTG) peripheral starts.
2185 hcd
->state
= HC_STATE_RUNNING
;
2186 musb
->port1_status
= 0;
2190 static void musb_h_stop(struct usb_hcd
*hcd
)
2192 musb_stop(hcd_to_musb(hcd
));
2193 hcd
->state
= HC_STATE_HALT
;
2196 static int musb_bus_suspend(struct usb_hcd
*hcd
)
2198 struct musb
*musb
= hcd_to_musb(hcd
);
2200 if (musb
->xceiv
.state
== OTG_STATE_A_SUSPEND
)
2203 if (is_host_active(musb
) && musb
->is_active
) {
2204 WARNING("trying to suspend as %s is_active=%i\n",
2205 otg_state_string(musb
), musb
->is_active
);
2211 static int musb_bus_resume(struct usb_hcd
*hcd
)
2213 /* resuming child port does the work */
2217 const struct hc_driver musb_hc_driver
= {
2218 .description
= "musb-hcd",
2219 .product_desc
= "MUSB HDRC host driver",
2220 .hcd_priv_size
= sizeof(struct musb
),
2221 .flags
= HCD_USB2
| HCD_MEMORY
,
2223 /* not using irq handler or reset hooks from usbcore, since
2224 * those must be shared with peripheral code for OTG configs
2227 .start
= musb_h_start
,
2228 .stop
= musb_h_stop
,
2230 .get_frame_number
= musb_h_get_frame_number
,
2232 .urb_enqueue
= musb_urb_enqueue
,
2233 .urb_dequeue
= musb_urb_dequeue
,
2234 .endpoint_disable
= musb_h_disable
,
2236 .hub_status_data
= musb_hub_status_data
,
2237 .hub_control
= musb_hub_control
,
2238 .bus_suspend
= musb_bus_suspend
,
2239 .bus_resume
= musb_bus_resume
,
2240 /* .start_port_reset = NULL, */
2241 /* .hub_irq_enable = NULL, */