repo init
[linux-rt-nao.git] / kernel / perf_counter.c
blob3b862a7988cda5180f79723073e9e77828a41fe6
1 /*
2 * Performance counter core code
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
8 * For licensing details see kernel-base/COPYING
9 */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
29 #include <asm/irq_regs.h>
32 * Each CPU has a list of per CPU counters:
34 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
36 int perf_max_counters __read_mostly = 1;
37 static int perf_reserved_percpu __read_mostly;
38 static int perf_overcommit __read_mostly = 1;
41 * Mutex for (sysadmin-configurable) counter reservations:
43 static DEFINE_MUTEX(perf_resource_mutex);
46 * Architecture provided APIs - weak aliases:
48 extern __weak const struct hw_perf_counter_ops *
49 hw_perf_counter_init(struct perf_counter *counter)
51 return NULL;
54 u64 __weak hw_perf_save_disable(void) { return 0; }
55 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
56 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
57 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
58 struct perf_cpu_context *cpuctx,
59 struct perf_counter_context *ctx, int cpu)
61 return 0;
64 void __weak perf_counter_print_debug(void) { }
66 static void
67 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
69 struct perf_counter *group_leader = counter->group_leader;
72 * Depending on whether it is a standalone or sibling counter,
73 * add it straight to the context's counter list, or to the group
74 * leader's sibling list:
76 if (counter->group_leader == counter)
77 list_add_tail(&counter->list_entry, &ctx->counter_list);
78 else {
79 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
80 group_leader->nr_siblings++;
83 list_add_rcu(&counter->event_entry, &ctx->event_list);
86 static void
87 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
89 struct perf_counter *sibling, *tmp;
91 list_del_init(&counter->list_entry);
92 list_del_rcu(&counter->event_entry);
94 if (counter->group_leader != counter)
95 counter->group_leader->nr_siblings--;
98 * If this was a group counter with sibling counters then
99 * upgrade the siblings to singleton counters by adding them
100 * to the context list directly:
102 list_for_each_entry_safe(sibling, tmp,
103 &counter->sibling_list, list_entry) {
105 list_move_tail(&sibling->list_entry, &ctx->counter_list);
106 sibling->group_leader = sibling;
110 static void
111 counter_sched_out(struct perf_counter *counter,
112 struct perf_cpu_context *cpuctx,
113 struct perf_counter_context *ctx)
115 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
116 return;
118 counter->state = PERF_COUNTER_STATE_INACTIVE;
119 counter->tstamp_stopped = ctx->time_now;
120 counter->hw_ops->disable(counter);
121 counter->oncpu = -1;
123 if (!is_software_counter(counter))
124 cpuctx->active_oncpu--;
125 ctx->nr_active--;
126 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
127 cpuctx->exclusive = 0;
130 static void
131 group_sched_out(struct perf_counter *group_counter,
132 struct perf_cpu_context *cpuctx,
133 struct perf_counter_context *ctx)
135 struct perf_counter *counter;
137 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
138 return;
140 counter_sched_out(group_counter, cpuctx, ctx);
143 * Schedule out siblings (if any):
145 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
146 counter_sched_out(counter, cpuctx, ctx);
148 if (group_counter->hw_event.exclusive)
149 cpuctx->exclusive = 0;
153 * Cross CPU call to remove a performance counter
155 * We disable the counter on the hardware level first. After that we
156 * remove it from the context list.
158 static void __perf_counter_remove_from_context(void *info)
160 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
161 struct perf_counter *counter = info;
162 struct perf_counter_context *ctx = counter->ctx;
163 unsigned long flags;
164 u64 perf_flags;
167 * If this is a task context, we need to check whether it is
168 * the current task context of this cpu. If not it has been
169 * scheduled out before the smp call arrived.
171 if (ctx->task && cpuctx->task_ctx != ctx)
172 return;
174 curr_rq_lock_irq_save(&flags);
175 spin_lock(&ctx->lock);
177 counter_sched_out(counter, cpuctx, ctx);
179 counter->task = NULL;
180 ctx->nr_counters--;
183 * Protect the list operation against NMI by disabling the
184 * counters on a global level. NOP for non NMI based counters.
186 perf_flags = hw_perf_save_disable();
187 list_del_counter(counter, ctx);
188 hw_perf_restore(perf_flags);
190 if (!ctx->task) {
192 * Allow more per task counters with respect to the
193 * reservation:
195 cpuctx->max_pertask =
196 min(perf_max_counters - ctx->nr_counters,
197 perf_max_counters - perf_reserved_percpu);
200 spin_unlock(&ctx->lock);
201 curr_rq_unlock_irq_restore(&flags);
206 * Remove the counter from a task's (or a CPU's) list of counters.
208 * Must be called with counter->mutex and ctx->mutex held.
210 * CPU counters are removed with a smp call. For task counters we only
211 * call when the task is on a CPU.
213 static void perf_counter_remove_from_context(struct perf_counter *counter)
215 struct perf_counter_context *ctx = counter->ctx;
216 struct task_struct *task = ctx->task;
218 if (!task) {
220 * Per cpu counters are removed via an smp call and
221 * the removal is always sucessful.
223 smp_call_function_single(counter->cpu,
224 __perf_counter_remove_from_context,
225 counter, 1);
226 return;
229 retry:
230 task_oncpu_function_call(task, __perf_counter_remove_from_context,
231 counter);
233 spin_lock_irq(&ctx->lock);
235 * If the context is active we need to retry the smp call.
237 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
238 spin_unlock_irq(&ctx->lock);
239 goto retry;
243 * The lock prevents that this context is scheduled in so we
244 * can remove the counter safely, if the call above did not
245 * succeed.
247 if (!list_empty(&counter->list_entry)) {
248 ctx->nr_counters--;
249 list_del_counter(counter, ctx);
250 counter->task = NULL;
252 spin_unlock_irq(&ctx->lock);
256 * Get the current time for this context.
257 * If this is a task context, we use the task's task clock,
258 * or for a per-cpu context, we use the cpu clock.
260 static u64 get_context_time(struct perf_counter_context *ctx, int update)
262 struct task_struct *curr = ctx->task;
264 if (!curr)
265 return cpu_clock(smp_processor_id());
267 return __task_delta_exec(curr, update) + curr->se.sum_exec_runtime;
271 * Update the record of the current time in a context.
273 static void update_context_time(struct perf_counter_context *ctx, int update)
275 ctx->time_now = get_context_time(ctx, update) - ctx->time_lost;
279 * Update the total_time_enabled and total_time_running fields for a counter.
281 static void update_counter_times(struct perf_counter *counter)
283 struct perf_counter_context *ctx = counter->ctx;
284 u64 run_end;
286 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
287 counter->total_time_enabled = ctx->time_now -
288 counter->tstamp_enabled;
289 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
290 run_end = counter->tstamp_stopped;
291 else
292 run_end = ctx->time_now;
293 counter->total_time_running = run_end - counter->tstamp_running;
298 * Update total_time_enabled and total_time_running for all counters in a group.
300 static void update_group_times(struct perf_counter *leader)
302 struct perf_counter *counter;
304 update_counter_times(leader);
305 list_for_each_entry(counter, &leader->sibling_list, list_entry)
306 update_counter_times(counter);
310 * Cross CPU call to disable a performance counter
312 static void __perf_counter_disable(void *info)
314 struct perf_counter *counter = info;
315 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
316 struct perf_counter_context *ctx = counter->ctx;
317 unsigned long flags;
320 * If this is a per-task counter, need to check whether this
321 * counter's task is the current task on this cpu.
323 if (ctx->task && cpuctx->task_ctx != ctx)
324 return;
326 curr_rq_lock_irq_save(&flags);
327 spin_lock(&ctx->lock);
330 * If the counter is on, turn it off.
331 * If it is in error state, leave it in error state.
333 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
334 update_context_time(ctx, 1);
335 update_counter_times(counter);
336 if (counter == counter->group_leader)
337 group_sched_out(counter, cpuctx, ctx);
338 else
339 counter_sched_out(counter, cpuctx, ctx);
340 counter->state = PERF_COUNTER_STATE_OFF;
343 spin_unlock(&ctx->lock);
344 curr_rq_unlock_irq_restore(&flags);
348 * Disable a counter.
350 static void perf_counter_disable(struct perf_counter *counter)
352 struct perf_counter_context *ctx = counter->ctx;
353 struct task_struct *task = ctx->task;
355 if (!task) {
357 * Disable the counter on the cpu that it's on
359 smp_call_function_single(counter->cpu, __perf_counter_disable,
360 counter, 1);
361 return;
364 retry:
365 task_oncpu_function_call(task, __perf_counter_disable, counter);
367 spin_lock_irq(&ctx->lock);
369 * If the counter is still active, we need to retry the cross-call.
371 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
372 spin_unlock_irq(&ctx->lock);
373 goto retry;
377 * Since we have the lock this context can't be scheduled
378 * in, so we can change the state safely.
380 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
381 update_counter_times(counter);
382 counter->state = PERF_COUNTER_STATE_OFF;
385 spin_unlock_irq(&ctx->lock);
389 * Disable a counter and all its children.
391 static void perf_counter_disable_family(struct perf_counter *counter)
393 struct perf_counter *child;
395 perf_counter_disable(counter);
398 * Lock the mutex to protect the list of children
400 mutex_lock(&counter->mutex);
401 list_for_each_entry(child, &counter->child_list, child_list)
402 perf_counter_disable(child);
403 mutex_unlock(&counter->mutex);
406 static int
407 counter_sched_in(struct perf_counter *counter,
408 struct perf_cpu_context *cpuctx,
409 struct perf_counter_context *ctx,
410 int cpu)
412 if (counter->state <= PERF_COUNTER_STATE_OFF)
413 return 0;
415 counter->state = PERF_COUNTER_STATE_ACTIVE;
416 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
418 * The new state must be visible before we turn it on in the hardware:
420 smp_wmb();
422 if (counter->hw_ops->enable(counter)) {
423 counter->state = PERF_COUNTER_STATE_INACTIVE;
424 counter->oncpu = -1;
425 return -EAGAIN;
428 counter->tstamp_running += ctx->time_now - counter->tstamp_stopped;
430 if (!is_software_counter(counter))
431 cpuctx->active_oncpu++;
432 ctx->nr_active++;
434 if (counter->hw_event.exclusive)
435 cpuctx->exclusive = 1;
437 return 0;
441 * Return 1 for a group consisting entirely of software counters,
442 * 0 if the group contains any hardware counters.
444 static int is_software_only_group(struct perf_counter *leader)
446 struct perf_counter *counter;
448 if (!is_software_counter(leader))
449 return 0;
451 list_for_each_entry(counter, &leader->sibling_list, list_entry)
452 if (!is_software_counter(counter))
453 return 0;
455 return 1;
459 * Work out whether we can put this counter group on the CPU now.
461 static int group_can_go_on(struct perf_counter *counter,
462 struct perf_cpu_context *cpuctx,
463 int can_add_hw)
466 * Groups consisting entirely of software counters can always go on.
468 if (is_software_only_group(counter))
469 return 1;
471 * If an exclusive group is already on, no other hardware
472 * counters can go on.
474 if (cpuctx->exclusive)
475 return 0;
477 * If this group is exclusive and there are already
478 * counters on the CPU, it can't go on.
480 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
481 return 0;
483 * Otherwise, try to add it if all previous groups were able
484 * to go on.
486 return can_add_hw;
489 static void add_counter_to_ctx(struct perf_counter *counter,
490 struct perf_counter_context *ctx)
492 list_add_counter(counter, ctx);
493 ctx->nr_counters++;
494 counter->prev_state = PERF_COUNTER_STATE_OFF;
495 counter->tstamp_enabled = ctx->time_now;
496 counter->tstamp_running = ctx->time_now;
497 counter->tstamp_stopped = ctx->time_now;
501 * Cross CPU call to install and enable a performance counter
503 static void __perf_install_in_context(void *info)
505 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
506 struct perf_counter *counter = info;
507 struct perf_counter_context *ctx = counter->ctx;
508 struct perf_counter *leader = counter->group_leader;
509 int cpu = smp_processor_id();
510 unsigned long flags;
511 u64 perf_flags;
512 int err;
515 * If this is a task context, we need to check whether it is
516 * the current task context of this cpu. If not it has been
517 * scheduled out before the smp call arrived.
519 if (ctx->task && cpuctx->task_ctx != ctx)
520 return;
522 curr_rq_lock_irq_save(&flags);
523 spin_lock(&ctx->lock);
524 update_context_time(ctx, 1);
527 * Protect the list operation against NMI by disabling the
528 * counters on a global level. NOP for non NMI based counters.
530 perf_flags = hw_perf_save_disable();
532 add_counter_to_ctx(counter, ctx);
535 * Don't put the counter on if it is disabled or if
536 * it is in a group and the group isn't on.
538 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
539 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
540 goto unlock;
543 * An exclusive counter can't go on if there are already active
544 * hardware counters, and no hardware counter can go on if there
545 * is already an exclusive counter on.
547 if (!group_can_go_on(counter, cpuctx, 1))
548 err = -EEXIST;
549 else
550 err = counter_sched_in(counter, cpuctx, ctx, cpu);
552 if (err) {
554 * This counter couldn't go on. If it is in a group
555 * then we have to pull the whole group off.
556 * If the counter group is pinned then put it in error state.
558 if (leader != counter)
559 group_sched_out(leader, cpuctx, ctx);
560 if (leader->hw_event.pinned) {
561 update_group_times(leader);
562 leader->state = PERF_COUNTER_STATE_ERROR;
566 if (!err && !ctx->task && cpuctx->max_pertask)
567 cpuctx->max_pertask--;
569 unlock:
570 hw_perf_restore(perf_flags);
572 spin_unlock(&ctx->lock);
573 curr_rq_unlock_irq_restore(&flags);
577 * Attach a performance counter to a context
579 * First we add the counter to the list with the hardware enable bit
580 * in counter->hw_config cleared.
582 * If the counter is attached to a task which is on a CPU we use a smp
583 * call to enable it in the task context. The task might have been
584 * scheduled away, but we check this in the smp call again.
586 * Must be called with ctx->mutex held.
588 static void
589 perf_install_in_context(struct perf_counter_context *ctx,
590 struct perf_counter *counter,
591 int cpu)
593 struct task_struct *task = ctx->task;
595 if (!task) {
597 * Per cpu counters are installed via an smp call and
598 * the install is always sucessful.
600 smp_call_function_single(cpu, __perf_install_in_context,
601 counter, 1);
602 return;
605 counter->task = task;
606 retry:
607 task_oncpu_function_call(task, __perf_install_in_context,
608 counter);
610 spin_lock_irq(&ctx->lock);
612 * we need to retry the smp call.
614 if (ctx->is_active && list_empty(&counter->list_entry)) {
615 spin_unlock_irq(&ctx->lock);
616 goto retry;
620 * The lock prevents that this context is scheduled in so we
621 * can add the counter safely, if it the call above did not
622 * succeed.
624 if (list_empty(&counter->list_entry))
625 add_counter_to_ctx(counter, ctx);
626 spin_unlock_irq(&ctx->lock);
630 * Cross CPU call to enable a performance counter
632 static void __perf_counter_enable(void *info)
634 struct perf_counter *counter = info;
635 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
636 struct perf_counter_context *ctx = counter->ctx;
637 struct perf_counter *leader = counter->group_leader;
638 unsigned long flags;
639 int err;
642 * If this is a per-task counter, need to check whether this
643 * counter's task is the current task on this cpu.
645 if (ctx->task && cpuctx->task_ctx != ctx)
646 return;
648 curr_rq_lock_irq_save(&flags);
649 spin_lock(&ctx->lock);
650 update_context_time(ctx, 1);
652 counter->prev_state = counter->state;
653 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
654 goto unlock;
655 counter->state = PERF_COUNTER_STATE_INACTIVE;
656 counter->tstamp_enabled = ctx->time_now - counter->total_time_enabled;
659 * If the counter is in a group and isn't the group leader,
660 * then don't put it on unless the group is on.
662 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
663 goto unlock;
665 if (!group_can_go_on(counter, cpuctx, 1))
666 err = -EEXIST;
667 else
668 err = counter_sched_in(counter, cpuctx, ctx,
669 smp_processor_id());
671 if (err) {
673 * If this counter can't go on and it's part of a
674 * group, then the whole group has to come off.
676 if (leader != counter)
677 group_sched_out(leader, cpuctx, ctx);
678 if (leader->hw_event.pinned) {
679 update_group_times(leader);
680 leader->state = PERF_COUNTER_STATE_ERROR;
684 unlock:
685 spin_unlock(&ctx->lock);
686 curr_rq_unlock_irq_restore(&flags);
690 * Enable a counter.
692 static void perf_counter_enable(struct perf_counter *counter)
694 struct perf_counter_context *ctx = counter->ctx;
695 struct task_struct *task = ctx->task;
697 if (!task) {
699 * Enable the counter on the cpu that it's on
701 smp_call_function_single(counter->cpu, __perf_counter_enable,
702 counter, 1);
703 return;
706 spin_lock_irq(&ctx->lock);
707 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
708 goto out;
711 * If the counter is in error state, clear that first.
712 * That way, if we see the counter in error state below, we
713 * know that it has gone back into error state, as distinct
714 * from the task having been scheduled away before the
715 * cross-call arrived.
717 if (counter->state == PERF_COUNTER_STATE_ERROR)
718 counter->state = PERF_COUNTER_STATE_OFF;
720 retry:
721 spin_unlock_irq(&ctx->lock);
722 task_oncpu_function_call(task, __perf_counter_enable, counter);
724 spin_lock_irq(&ctx->lock);
727 * If the context is active and the counter is still off,
728 * we need to retry the cross-call.
730 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
731 goto retry;
734 * Since we have the lock this context can't be scheduled
735 * in, so we can change the state safely.
737 if (counter->state == PERF_COUNTER_STATE_OFF) {
738 counter->state = PERF_COUNTER_STATE_INACTIVE;
739 counter->tstamp_enabled = ctx->time_now -
740 counter->total_time_enabled;
742 out:
743 spin_unlock_irq(&ctx->lock);
747 * Enable a counter and all its children.
749 static void perf_counter_enable_family(struct perf_counter *counter)
751 struct perf_counter *child;
753 perf_counter_enable(counter);
756 * Lock the mutex to protect the list of children
758 mutex_lock(&counter->mutex);
759 list_for_each_entry(child, &counter->child_list, child_list)
760 perf_counter_enable(child);
761 mutex_unlock(&counter->mutex);
764 void __perf_counter_sched_out(struct perf_counter_context *ctx,
765 struct perf_cpu_context *cpuctx)
767 struct perf_counter *counter;
768 u64 flags;
770 spin_lock(&ctx->lock);
771 ctx->is_active = 0;
772 if (likely(!ctx->nr_counters))
773 goto out;
774 update_context_time(ctx, 0);
776 flags = hw_perf_save_disable();
777 if (ctx->nr_active) {
778 list_for_each_entry(counter, &ctx->counter_list, list_entry)
779 group_sched_out(counter, cpuctx, ctx);
781 hw_perf_restore(flags);
782 out:
783 spin_unlock(&ctx->lock);
787 * Called from scheduler to remove the counters of the current task,
788 * with interrupts disabled.
790 * We stop each counter and update the counter value in counter->count.
792 * This does not protect us against NMI, but disable()
793 * sets the disabled bit in the control field of counter _before_
794 * accessing the counter control register. If a NMI hits, then it will
795 * not restart the counter.
797 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
799 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
800 struct perf_counter_context *ctx = &task->perf_counter_ctx;
801 struct pt_regs *regs;
803 if (likely(!cpuctx->task_ctx))
804 return;
806 regs = task_pt_regs(task);
807 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
808 __perf_counter_sched_out(ctx, cpuctx);
810 cpuctx->task_ctx = NULL;
813 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
815 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
818 static int
819 group_sched_in(struct perf_counter *group_counter,
820 struct perf_cpu_context *cpuctx,
821 struct perf_counter_context *ctx,
822 int cpu)
824 struct perf_counter *counter, *partial_group;
825 int ret;
827 if (group_counter->state == PERF_COUNTER_STATE_OFF)
828 return 0;
830 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
831 if (ret)
832 return ret < 0 ? ret : 0;
834 group_counter->prev_state = group_counter->state;
835 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
836 return -EAGAIN;
839 * Schedule in siblings as one group (if any):
841 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
842 counter->prev_state = counter->state;
843 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
844 partial_group = counter;
845 goto group_error;
849 return 0;
851 group_error:
853 * Groups can be scheduled in as one unit only, so undo any
854 * partial group before returning:
856 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
857 if (counter == partial_group)
858 break;
859 counter_sched_out(counter, cpuctx, ctx);
861 counter_sched_out(group_counter, cpuctx, ctx);
863 return -EAGAIN;
866 static void
867 __perf_counter_sched_in(struct perf_counter_context *ctx,
868 struct perf_cpu_context *cpuctx, int cpu)
870 struct perf_counter *counter;
871 u64 flags;
872 int can_add_hw = 1;
874 spin_lock(&ctx->lock);
875 ctx->is_active = 1;
876 if (likely(!ctx->nr_counters))
877 goto out;
880 * Add any time since the last sched_out to the lost time
881 * so it doesn't get included in the total_time_enabled and
882 * total_time_running measures for counters in the context.
884 ctx->time_lost = get_context_time(ctx, 0) - ctx->time_now;
886 flags = hw_perf_save_disable();
889 * First go through the list and put on any pinned groups
890 * in order to give them the best chance of going on.
892 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
893 if (counter->state <= PERF_COUNTER_STATE_OFF ||
894 !counter->hw_event.pinned)
895 continue;
896 if (counter->cpu != -1 && counter->cpu != cpu)
897 continue;
899 if (group_can_go_on(counter, cpuctx, 1))
900 group_sched_in(counter, cpuctx, ctx, cpu);
903 * If this pinned group hasn't been scheduled,
904 * put it in error state.
906 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
907 update_group_times(counter);
908 counter->state = PERF_COUNTER_STATE_ERROR;
912 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
914 * Ignore counters in OFF or ERROR state, and
915 * ignore pinned counters since we did them already.
917 if (counter->state <= PERF_COUNTER_STATE_OFF ||
918 counter->hw_event.pinned)
919 continue;
922 * Listen to the 'cpu' scheduling filter constraint
923 * of counters:
925 if (counter->cpu != -1 && counter->cpu != cpu)
926 continue;
928 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
929 if (group_sched_in(counter, cpuctx, ctx, cpu))
930 can_add_hw = 0;
933 hw_perf_restore(flags);
934 out:
935 spin_unlock(&ctx->lock);
939 * Called from scheduler to add the counters of the current task
940 * with interrupts disabled.
942 * We restore the counter value and then enable it.
944 * This does not protect us against NMI, but enable()
945 * sets the enabled bit in the control field of counter _before_
946 * accessing the counter control register. If a NMI hits, then it will
947 * keep the counter running.
949 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
951 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
952 struct perf_counter_context *ctx = &task->perf_counter_ctx;
954 __perf_counter_sched_in(ctx, cpuctx, cpu);
955 cpuctx->task_ctx = ctx;
958 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
960 struct perf_counter_context *ctx = &cpuctx->ctx;
962 __perf_counter_sched_in(ctx, cpuctx, cpu);
965 int perf_counter_task_disable(void)
967 struct task_struct *curr = current;
968 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
969 struct perf_counter *counter;
970 unsigned long flags;
971 u64 perf_flags;
972 int cpu;
974 if (likely(!ctx->nr_counters))
975 return 0;
977 curr_rq_lock_irq_save(&flags);
978 cpu = smp_processor_id();
980 /* force the update of the task clock: */
981 __task_delta_exec(curr, 1);
983 perf_counter_task_sched_out(curr, cpu);
985 spin_lock(&ctx->lock);
988 * Disable all the counters:
990 perf_flags = hw_perf_save_disable();
992 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
993 if (counter->state != PERF_COUNTER_STATE_ERROR) {
994 update_group_times(counter);
995 counter->state = PERF_COUNTER_STATE_OFF;
999 hw_perf_restore(perf_flags);
1001 spin_unlock(&ctx->lock);
1003 curr_rq_unlock_irq_restore(&flags);
1005 return 0;
1008 int perf_counter_task_enable(void)
1010 struct task_struct *curr = current;
1011 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1012 struct perf_counter *counter;
1013 unsigned long flags;
1014 u64 perf_flags;
1015 int cpu;
1017 if (likely(!ctx->nr_counters))
1018 return 0;
1020 curr_rq_lock_irq_save(&flags);
1021 cpu = smp_processor_id();
1023 /* force the update of the task clock: */
1024 __task_delta_exec(curr, 1);
1026 perf_counter_task_sched_out(curr, cpu);
1028 spin_lock(&ctx->lock);
1031 * Disable all the counters:
1033 perf_flags = hw_perf_save_disable();
1035 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1036 if (counter->state > PERF_COUNTER_STATE_OFF)
1037 continue;
1038 counter->state = PERF_COUNTER_STATE_INACTIVE;
1039 counter->tstamp_enabled = ctx->time_now -
1040 counter->total_time_enabled;
1041 counter->hw_event.disabled = 0;
1043 hw_perf_restore(perf_flags);
1045 spin_unlock(&ctx->lock);
1047 perf_counter_task_sched_in(curr, cpu);
1049 curr_rq_unlock_irq_restore(&flags);
1051 return 0;
1055 * Round-robin a context's counters:
1057 static void rotate_ctx(struct perf_counter_context *ctx)
1059 struct perf_counter *counter;
1060 u64 perf_flags;
1062 if (!ctx->nr_counters)
1063 return;
1065 spin_lock(&ctx->lock);
1067 * Rotate the first entry last (works just fine for group counters too):
1069 perf_flags = hw_perf_save_disable();
1070 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1071 list_move_tail(&counter->list_entry, &ctx->counter_list);
1072 break;
1074 hw_perf_restore(perf_flags);
1076 spin_unlock(&ctx->lock);
1079 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1081 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1082 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1083 const int rotate_percpu = 0;
1085 if (rotate_percpu)
1086 perf_counter_cpu_sched_out(cpuctx);
1087 perf_counter_task_sched_out(curr, cpu);
1089 if (rotate_percpu)
1090 rotate_ctx(&cpuctx->ctx);
1091 rotate_ctx(ctx);
1093 if (rotate_percpu)
1094 perf_counter_cpu_sched_in(cpuctx, cpu);
1095 perf_counter_task_sched_in(curr, cpu);
1099 * Cross CPU call to read the hardware counter
1101 static void __read(void *info)
1103 struct perf_counter *counter = info;
1104 struct perf_counter_context *ctx = counter->ctx;
1105 unsigned long flags;
1107 curr_rq_lock_irq_save(&flags);
1108 if (ctx->is_active)
1109 update_context_time(ctx, 1);
1110 counter->hw_ops->read(counter);
1111 update_counter_times(counter);
1112 curr_rq_unlock_irq_restore(&flags);
1115 static u64 perf_counter_read(struct perf_counter *counter)
1118 * If counter is enabled and currently active on a CPU, update the
1119 * value in the counter structure:
1121 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1122 smp_call_function_single(counter->oncpu,
1123 __read, counter, 1);
1124 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1125 update_counter_times(counter);
1128 return atomic64_read(&counter->count);
1131 static void put_context(struct perf_counter_context *ctx)
1133 if (ctx->task)
1134 put_task_struct(ctx->task);
1137 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1139 struct perf_cpu_context *cpuctx;
1140 struct perf_counter_context *ctx;
1141 struct task_struct *task;
1144 * If cpu is not a wildcard then this is a percpu counter:
1146 if (cpu != -1) {
1147 /* Must be root to operate on a CPU counter: */
1148 if (!capable(CAP_SYS_ADMIN))
1149 return ERR_PTR(-EACCES);
1151 if (cpu < 0 || cpu > num_possible_cpus())
1152 return ERR_PTR(-EINVAL);
1155 * We could be clever and allow to attach a counter to an
1156 * offline CPU and activate it when the CPU comes up, but
1157 * that's for later.
1159 if (!cpu_isset(cpu, cpu_online_map))
1160 return ERR_PTR(-ENODEV);
1162 cpuctx = &per_cpu(perf_cpu_context, cpu);
1163 ctx = &cpuctx->ctx;
1165 return ctx;
1168 rcu_read_lock();
1169 if (!pid)
1170 task = current;
1171 else
1172 task = find_task_by_vpid(pid);
1173 if (task)
1174 get_task_struct(task);
1175 rcu_read_unlock();
1177 if (!task)
1178 return ERR_PTR(-ESRCH);
1180 ctx = &task->perf_counter_ctx;
1181 ctx->task = task;
1183 /* Reuse ptrace permission checks for now. */
1184 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1185 put_context(ctx);
1186 return ERR_PTR(-EACCES);
1189 return ctx;
1192 static void free_counter_rcu(struct rcu_head *head)
1194 struct perf_counter *counter;
1196 counter = container_of(head, struct perf_counter, rcu_head);
1197 kfree(counter);
1200 static void free_counter(struct perf_counter *counter)
1202 if (counter->destroy)
1203 counter->destroy(counter);
1205 call_rcu(&counter->rcu_head, free_counter_rcu);
1209 * Called when the last reference to the file is gone.
1211 static int perf_release(struct inode *inode, struct file *file)
1213 struct perf_counter *counter = file->private_data;
1214 struct perf_counter_context *ctx = counter->ctx;
1216 file->private_data = NULL;
1218 mutex_lock(&ctx->mutex);
1219 mutex_lock(&counter->mutex);
1221 perf_counter_remove_from_context(counter);
1223 mutex_unlock(&counter->mutex);
1224 mutex_unlock(&ctx->mutex);
1226 free_counter(counter);
1227 put_context(ctx);
1229 return 0;
1233 * Read the performance counter - simple non blocking version for now
1235 static ssize_t
1236 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1238 u64 values[3];
1239 int n;
1242 * Return end-of-file for a read on a counter that is in
1243 * error state (i.e. because it was pinned but it couldn't be
1244 * scheduled on to the CPU at some point).
1246 if (counter->state == PERF_COUNTER_STATE_ERROR)
1247 return 0;
1249 mutex_lock(&counter->mutex);
1250 values[0] = perf_counter_read(counter);
1251 n = 1;
1252 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1253 values[n++] = counter->total_time_enabled +
1254 atomic64_read(&counter->child_total_time_enabled);
1255 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1256 values[n++] = counter->total_time_running +
1257 atomic64_read(&counter->child_total_time_running);
1258 mutex_unlock(&counter->mutex);
1260 if (count < n * sizeof(u64))
1261 return -EINVAL;
1262 count = n * sizeof(u64);
1264 if (copy_to_user(buf, values, count))
1265 return -EFAULT;
1267 return count;
1270 static ssize_t
1271 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1273 struct perf_counter *counter = file->private_data;
1275 return perf_read_hw(counter, buf, count);
1278 static unsigned int perf_poll(struct file *file, poll_table *wait)
1280 struct perf_counter *counter = file->private_data;
1281 struct perf_mmap_data *data;
1282 unsigned int events;
1284 rcu_read_lock();
1285 data = rcu_dereference(counter->data);
1286 if (data)
1287 events = atomic_xchg(&data->wakeup, 0);
1288 else
1289 events = POLL_HUP;
1290 rcu_read_unlock();
1292 poll_wait(file, &counter->waitq, wait);
1294 return events;
1297 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1299 struct perf_counter *counter = file->private_data;
1300 int err = 0;
1302 switch (cmd) {
1303 case PERF_COUNTER_IOC_ENABLE:
1304 perf_counter_enable_family(counter);
1305 break;
1306 case PERF_COUNTER_IOC_DISABLE:
1307 perf_counter_disable_family(counter);
1308 break;
1309 default:
1310 err = -ENOTTY;
1312 return err;
1315 static void __perf_counter_update_userpage(struct perf_counter *counter,
1316 struct perf_mmap_data *data)
1318 struct perf_counter_mmap_page *userpg = data->user_page;
1321 * Disable preemption so as to not let the corresponding user-space
1322 * spin too long if we get preempted.
1324 preempt_disable();
1325 ++userpg->lock;
1326 smp_wmb();
1327 userpg->index = counter->hw.idx;
1328 userpg->offset = atomic64_read(&counter->count);
1329 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1330 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1332 userpg->data_head = atomic_read(&data->head);
1333 smp_wmb();
1334 ++userpg->lock;
1335 preempt_enable();
1338 void perf_counter_update_userpage(struct perf_counter *counter)
1340 struct perf_mmap_data *data;
1342 rcu_read_lock();
1343 data = rcu_dereference(counter->data);
1344 if (data)
1345 __perf_counter_update_userpage(counter, data);
1346 rcu_read_unlock();
1349 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1351 struct perf_counter *counter = vma->vm_file->private_data;
1352 struct perf_mmap_data *data;
1353 int ret = VM_FAULT_SIGBUS;
1355 rcu_read_lock();
1356 data = rcu_dereference(counter->data);
1357 if (!data)
1358 goto unlock;
1360 if (vmf->pgoff == 0) {
1361 vmf->page = virt_to_page(data->user_page);
1362 } else {
1363 int nr = vmf->pgoff - 1;
1365 if ((unsigned)nr > data->nr_pages)
1366 goto unlock;
1368 vmf->page = virt_to_page(data->data_pages[nr]);
1370 get_page(vmf->page);
1371 ret = 0;
1372 unlock:
1373 rcu_read_unlock();
1375 return ret;
1378 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1380 struct perf_mmap_data *data;
1381 unsigned long size;
1382 int i;
1384 WARN_ON(atomic_read(&counter->mmap_count));
1386 size = sizeof(struct perf_mmap_data);
1387 size += nr_pages * sizeof(void *);
1389 data = kzalloc(size, GFP_KERNEL);
1390 if (!data)
1391 goto fail;
1393 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1394 if (!data->user_page)
1395 goto fail_user_page;
1397 for (i = 0; i < nr_pages; i++) {
1398 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1399 if (!data->data_pages[i])
1400 goto fail_data_pages;
1403 data->nr_pages = nr_pages;
1405 rcu_assign_pointer(counter->data, data);
1407 return 0;
1409 fail_data_pages:
1410 for (i--; i >= 0; i--)
1411 free_page((unsigned long)data->data_pages[i]);
1413 free_page((unsigned long)data->user_page);
1415 fail_user_page:
1416 kfree(data);
1418 fail:
1419 return -ENOMEM;
1422 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1424 struct perf_mmap_data *data = container_of(rcu_head,
1425 struct perf_mmap_data, rcu_head);
1426 int i;
1428 free_page((unsigned long)data->user_page);
1429 for (i = 0; i < data->nr_pages; i++)
1430 free_page((unsigned long)data->data_pages[i]);
1431 kfree(data);
1434 static void perf_mmap_data_free(struct perf_counter *counter)
1436 struct perf_mmap_data *data = counter->data;
1438 WARN_ON(atomic_read(&counter->mmap_count));
1440 rcu_assign_pointer(counter->data, NULL);
1441 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1444 static void perf_mmap_open(struct vm_area_struct *vma)
1446 struct perf_counter *counter = vma->vm_file->private_data;
1448 atomic_inc(&counter->mmap_count);
1451 static void perf_mmap_close(struct vm_area_struct *vma)
1453 struct perf_counter *counter = vma->vm_file->private_data;
1455 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1456 &counter->mmap_mutex)) {
1457 perf_mmap_data_free(counter);
1458 mutex_unlock(&counter->mmap_mutex);
1462 static struct vm_operations_struct perf_mmap_vmops = {
1463 .open = perf_mmap_open,
1464 .close = perf_mmap_close,
1465 .fault = perf_mmap_fault,
1468 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1470 struct perf_counter *counter = file->private_data;
1471 unsigned long vma_size;
1472 unsigned long nr_pages;
1473 unsigned long locked, lock_limit;
1474 int ret = 0;
1476 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1477 return -EINVAL;
1479 vma_size = vma->vm_end - vma->vm_start;
1480 nr_pages = (vma_size / PAGE_SIZE) - 1;
1483 * If we have data pages ensure they're a power-of-two number, so we
1484 * can do bitmasks instead of modulo.
1486 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1487 return -EINVAL;
1489 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1490 return -EINVAL;
1492 if (vma->vm_pgoff != 0)
1493 return -EINVAL;
1495 locked = vma_size >> PAGE_SHIFT;
1496 locked += vma->vm_mm->locked_vm;
1498 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1499 lock_limit >>= PAGE_SHIFT;
1501 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
1502 return -EPERM;
1504 mutex_lock(&counter->mmap_mutex);
1505 if (atomic_inc_not_zero(&counter->mmap_count))
1506 goto out;
1508 WARN_ON(counter->data);
1509 ret = perf_mmap_data_alloc(counter, nr_pages);
1510 if (!ret)
1511 atomic_set(&counter->mmap_count, 1);
1512 out:
1513 mutex_unlock(&counter->mmap_mutex);
1515 vma->vm_flags &= ~VM_MAYWRITE;
1516 vma->vm_flags |= VM_RESERVED;
1517 vma->vm_ops = &perf_mmap_vmops;
1519 return ret;
1522 static const struct file_operations perf_fops = {
1523 .release = perf_release,
1524 .read = perf_read,
1525 .poll = perf_poll,
1526 .unlocked_ioctl = perf_ioctl,
1527 .compat_ioctl = perf_ioctl,
1528 .mmap = perf_mmap,
1532 * Output
1535 struct perf_output_handle {
1536 struct perf_counter *counter;
1537 struct perf_mmap_data *data;
1538 unsigned int offset;
1539 unsigned int head;
1540 int wakeup;
1543 static int perf_output_begin(struct perf_output_handle *handle,
1544 struct perf_counter *counter, unsigned int size)
1546 struct perf_mmap_data *data;
1547 unsigned int offset, head;
1549 rcu_read_lock();
1550 data = rcu_dereference(counter->data);
1551 if (!data)
1552 goto out;
1554 if (!data->nr_pages)
1555 goto out;
1557 do {
1558 offset = head = atomic_read(&data->head);
1559 head += size;
1560 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1562 handle->counter = counter;
1563 handle->data = data;
1564 handle->offset = offset;
1565 handle->head = head;
1566 handle->wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1568 return 0;
1570 out:
1571 rcu_read_unlock();
1573 return -ENOSPC;
1576 static void perf_output_copy(struct perf_output_handle *handle,
1577 void *buf, unsigned int len)
1579 unsigned int pages_mask;
1580 unsigned int offset;
1581 unsigned int size;
1582 void **pages;
1584 offset = handle->offset;
1585 pages_mask = handle->data->nr_pages - 1;
1586 pages = handle->data->data_pages;
1588 do {
1589 unsigned int page_offset;
1590 int nr;
1592 nr = (offset >> PAGE_SHIFT) & pages_mask;
1593 page_offset = offset & (PAGE_SIZE - 1);
1594 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1596 memcpy(pages[nr] + page_offset, buf, size);
1598 len -= size;
1599 buf += size;
1600 offset += size;
1601 } while (len);
1603 handle->offset = offset;
1605 WARN_ON_ONCE(handle->offset > handle->head);
1608 #define perf_output_put(handle, x) \
1609 perf_output_copy((handle), &(x), sizeof(x))
1611 static void perf_output_end(struct perf_output_handle *handle, int nmi)
1613 if (handle->wakeup) {
1614 (void)atomic_xchg(&handle->data->wakeup, POLL_IN);
1615 __perf_counter_update_userpage(handle->counter, handle->data);
1616 if (nmi) {
1617 handle->counter->wakeup_pending = 1;
1618 set_perf_counter_pending();
1619 } else
1620 wake_up(&handle->counter->waitq);
1622 rcu_read_unlock();
1625 static int perf_output_write(struct perf_counter *counter, int nmi,
1626 void *buf, ssize_t size)
1628 struct perf_output_handle handle;
1629 int ret;
1631 ret = perf_output_begin(&handle, counter, size);
1632 if (ret)
1633 goto out;
1635 perf_output_copy(&handle, buf, size);
1636 perf_output_end(&handle, nmi);
1638 out:
1639 return ret;
1642 static void perf_output_simple(struct perf_counter *counter,
1643 int nmi, struct pt_regs *regs)
1645 unsigned int size;
1646 struct {
1647 struct perf_event_header header;
1648 u64 ip;
1649 u32 pid, tid;
1650 } event;
1652 event.header.type = PERF_EVENT_IP;
1653 event.ip = instruction_pointer(regs);
1655 size = sizeof(event);
1657 if (counter->hw_event.include_tid) {
1658 /* namespace issues */
1659 event.pid = current->group_leader->pid;
1660 event.tid = current->pid;
1662 event.header.type |= __PERF_EVENT_TID;
1663 } else
1664 size -= sizeof(u64);
1666 event.header.size = size;
1668 perf_output_write(counter, nmi, &event, size);
1671 static void perf_output_group(struct perf_counter *counter, int nmi)
1673 struct perf_output_handle handle;
1674 struct perf_event_header header;
1675 struct perf_counter *leader, *sub;
1676 unsigned int size;
1677 struct {
1678 u64 event;
1679 u64 counter;
1680 } entry;
1681 int ret;
1683 size = sizeof(header) + counter->nr_siblings * sizeof(entry);
1685 ret = perf_output_begin(&handle, counter, size);
1686 if (ret)
1687 return;
1689 header.type = PERF_EVENT_GROUP;
1690 header.size = size;
1692 perf_output_put(&handle, header);
1694 leader = counter->group_leader;
1695 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1696 if (sub != counter)
1697 sub->hw_ops->read(sub);
1699 entry.event = sub->hw_event.config;
1700 entry.counter = atomic64_read(&sub->count);
1702 perf_output_put(&handle, entry);
1705 perf_output_end(&handle, nmi);
1708 void perf_counter_output(struct perf_counter *counter,
1709 int nmi, struct pt_regs *regs)
1711 switch (counter->hw_event.record_type) {
1712 case PERF_RECORD_SIMPLE:
1713 return;
1715 case PERF_RECORD_IRQ:
1716 perf_output_simple(counter, nmi, regs);
1717 break;
1719 case PERF_RECORD_GROUP:
1720 perf_output_group(counter, nmi);
1721 break;
1726 * Generic software counter infrastructure
1729 static void perf_swcounter_update(struct perf_counter *counter)
1731 struct hw_perf_counter *hwc = &counter->hw;
1732 u64 prev, now;
1733 s64 delta;
1735 again:
1736 prev = atomic64_read(&hwc->prev_count);
1737 now = atomic64_read(&hwc->count);
1738 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1739 goto again;
1741 delta = now - prev;
1743 atomic64_add(delta, &counter->count);
1744 atomic64_sub(delta, &hwc->period_left);
1747 static void perf_swcounter_set_period(struct perf_counter *counter)
1749 struct hw_perf_counter *hwc = &counter->hw;
1750 s64 left = atomic64_read(&hwc->period_left);
1751 s64 period = hwc->irq_period;
1753 if (unlikely(left <= -period)) {
1754 left = period;
1755 atomic64_set(&hwc->period_left, left);
1758 if (unlikely(left <= 0)) {
1759 left += period;
1760 atomic64_add(period, &hwc->period_left);
1763 atomic64_set(&hwc->prev_count, -left);
1764 atomic64_set(&hwc->count, -left);
1767 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1769 struct perf_counter *counter;
1770 struct pt_regs *regs;
1772 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1773 counter->hw_ops->read(counter);
1775 regs = get_irq_regs();
1777 * In case we exclude kernel IPs or are somehow not in interrupt
1778 * context, provide the next best thing, the user IP.
1780 if ((counter->hw_event.exclude_kernel || !regs) &&
1781 !counter->hw_event.exclude_user)
1782 regs = task_pt_regs(current);
1784 if (regs)
1785 perf_counter_output(counter, 0, regs);
1787 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1789 return HRTIMER_RESTART;
1792 static void perf_swcounter_overflow(struct perf_counter *counter,
1793 int nmi, struct pt_regs *regs)
1795 perf_swcounter_update(counter);
1796 perf_swcounter_set_period(counter);
1797 perf_counter_output(counter, nmi, regs);
1800 static int perf_swcounter_match(struct perf_counter *counter,
1801 enum perf_event_types type,
1802 u32 event, struct pt_regs *regs)
1804 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1805 return 0;
1807 if (perf_event_raw(&counter->hw_event))
1808 return 0;
1810 if (perf_event_type(&counter->hw_event) != type)
1811 return 0;
1813 if (perf_event_id(&counter->hw_event) != event)
1814 return 0;
1816 if (counter->hw_event.exclude_user && user_mode(regs))
1817 return 0;
1819 if (counter->hw_event.exclude_kernel && !user_mode(regs))
1820 return 0;
1822 return 1;
1825 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1826 int nmi, struct pt_regs *regs)
1828 int neg = atomic64_add_negative(nr, &counter->hw.count);
1829 if (counter->hw.irq_period && !neg)
1830 perf_swcounter_overflow(counter, nmi, regs);
1833 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1834 enum perf_event_types type, u32 event,
1835 u64 nr, int nmi, struct pt_regs *regs)
1837 struct perf_counter *counter;
1839 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1840 return;
1842 rcu_read_lock();
1843 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1844 if (perf_swcounter_match(counter, type, event, regs))
1845 perf_swcounter_add(counter, nr, nmi, regs);
1847 rcu_read_unlock();
1850 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
1852 if (in_nmi())
1853 return &cpuctx->recursion[3];
1855 if (in_irq())
1856 return &cpuctx->recursion[2];
1858 if (in_softirq())
1859 return &cpuctx->recursion[1];
1861 return &cpuctx->recursion[0];
1864 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
1865 u64 nr, int nmi, struct pt_regs *regs)
1867 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
1868 int *recursion = perf_swcounter_recursion_context(cpuctx);
1870 if (*recursion)
1871 goto out;
1873 (*recursion)++;
1874 barrier();
1876 perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
1877 if (cpuctx->task_ctx) {
1878 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
1879 nr, nmi, regs);
1882 barrier();
1883 (*recursion)--;
1885 out:
1886 put_cpu_var(perf_cpu_context);
1889 void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
1891 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
1894 static void perf_swcounter_read(struct perf_counter *counter)
1896 perf_swcounter_update(counter);
1899 static int perf_swcounter_enable(struct perf_counter *counter)
1901 perf_swcounter_set_period(counter);
1902 return 0;
1905 static void perf_swcounter_disable(struct perf_counter *counter)
1907 perf_swcounter_update(counter);
1910 static const struct hw_perf_counter_ops perf_ops_generic = {
1911 .enable = perf_swcounter_enable,
1912 .disable = perf_swcounter_disable,
1913 .read = perf_swcounter_read,
1917 * Software counter: cpu wall time clock
1920 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1922 int cpu = raw_smp_processor_id();
1923 s64 prev;
1924 u64 now;
1926 now = cpu_clock(cpu);
1927 prev = atomic64_read(&counter->hw.prev_count);
1928 atomic64_set(&counter->hw.prev_count, now);
1929 atomic64_add(now - prev, &counter->count);
1932 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1934 struct hw_perf_counter *hwc = &counter->hw;
1935 int cpu = raw_smp_processor_id();
1937 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
1938 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1939 hwc->hrtimer.function = perf_swcounter_hrtimer;
1940 if (hwc->irq_period) {
1941 __hrtimer_start_range_ns(&hwc->hrtimer,
1942 ns_to_ktime(hwc->irq_period), 0,
1943 HRTIMER_MODE_REL, 0);
1946 return 0;
1949 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1951 hrtimer_cancel(&counter->hw.hrtimer);
1952 cpu_clock_perf_counter_update(counter);
1955 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1957 cpu_clock_perf_counter_update(counter);
1960 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
1961 .enable = cpu_clock_perf_counter_enable,
1962 .disable = cpu_clock_perf_counter_disable,
1963 .read = cpu_clock_perf_counter_read,
1967 * Software counter: task time clock
1971 * Called from within the scheduler:
1973 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1975 struct task_struct *curr = counter->task;
1976 u64 delta;
1978 delta = __task_delta_exec(curr, update);
1980 return curr->se.sum_exec_runtime + delta;
1983 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1985 u64 prev;
1986 s64 delta;
1988 prev = atomic64_read(&counter->hw.prev_count);
1990 atomic64_set(&counter->hw.prev_count, now);
1992 delta = now - prev;
1994 atomic64_add(delta, &counter->count);
1997 static int task_clock_perf_counter_enable(struct perf_counter *counter)
1999 struct hw_perf_counter *hwc = &counter->hw;
2001 atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
2002 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2003 hwc->hrtimer.function = perf_swcounter_hrtimer;
2004 if (hwc->irq_period) {
2005 __hrtimer_start_range_ns(&hwc->hrtimer,
2006 ns_to_ktime(hwc->irq_period), 0,
2007 HRTIMER_MODE_REL, 0);
2010 return 0;
2013 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2015 hrtimer_cancel(&counter->hw.hrtimer);
2016 task_clock_perf_counter_update(counter,
2017 task_clock_perf_counter_val(counter, 0));
2020 static void task_clock_perf_counter_read(struct perf_counter *counter)
2022 task_clock_perf_counter_update(counter,
2023 task_clock_perf_counter_val(counter, 1));
2026 static const struct hw_perf_counter_ops perf_ops_task_clock = {
2027 .enable = task_clock_perf_counter_enable,
2028 .disable = task_clock_perf_counter_disable,
2029 .read = task_clock_perf_counter_read,
2033 * Software counter: cpu migrations
2036 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2038 struct task_struct *curr = counter->ctx->task;
2040 if (curr)
2041 return curr->se.nr_migrations;
2042 return cpu_nr_migrations(smp_processor_id());
2045 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2047 u64 prev, now;
2048 s64 delta;
2050 prev = atomic64_read(&counter->hw.prev_count);
2051 now = get_cpu_migrations(counter);
2053 atomic64_set(&counter->hw.prev_count, now);
2055 delta = now - prev;
2057 atomic64_add(delta, &counter->count);
2060 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2062 cpu_migrations_perf_counter_update(counter);
2065 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2067 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2068 atomic64_set(&counter->hw.prev_count,
2069 get_cpu_migrations(counter));
2070 return 0;
2073 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2075 cpu_migrations_perf_counter_update(counter);
2078 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
2079 .enable = cpu_migrations_perf_counter_enable,
2080 .disable = cpu_migrations_perf_counter_disable,
2081 .read = cpu_migrations_perf_counter_read,
2084 #ifdef CONFIG_EVENT_PROFILE
2085 void perf_tpcounter_event(int event_id)
2087 struct pt_regs *regs = get_irq_regs();
2089 if (!regs)
2090 regs = task_pt_regs(current);
2092 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2095 extern int ftrace_profile_enable(int);
2096 extern void ftrace_profile_disable(int);
2098 static void tp_perf_counter_destroy(struct perf_counter *counter)
2100 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2103 static const struct hw_perf_counter_ops *
2104 tp_perf_counter_init(struct perf_counter *counter)
2106 int event_id = perf_event_id(&counter->hw_event);
2107 int ret;
2109 ret = ftrace_profile_enable(event_id);
2110 if (ret)
2111 return NULL;
2113 counter->destroy = tp_perf_counter_destroy;
2114 counter->hw.irq_period = counter->hw_event.irq_period;
2116 return &perf_ops_generic;
2118 #else
2119 static const struct hw_perf_counter_ops *
2120 tp_perf_counter_init(struct perf_counter *counter)
2122 return NULL;
2124 #endif
2126 static const struct hw_perf_counter_ops *
2127 sw_perf_counter_init(struct perf_counter *counter)
2129 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2130 const struct hw_perf_counter_ops *hw_ops = NULL;
2131 struct hw_perf_counter *hwc = &counter->hw;
2134 * Software counters (currently) can't in general distinguish
2135 * between user, kernel and hypervisor events.
2136 * However, context switches and cpu migrations are considered
2137 * to be kernel events, and page faults are never hypervisor
2138 * events.
2140 switch (perf_event_id(&counter->hw_event)) {
2141 case PERF_COUNT_CPU_CLOCK:
2142 hw_ops = &perf_ops_cpu_clock;
2144 if (hw_event->irq_period && hw_event->irq_period < 10000)
2145 hw_event->irq_period = 10000;
2146 break;
2147 case PERF_COUNT_TASK_CLOCK:
2149 * If the user instantiates this as a per-cpu counter,
2150 * use the cpu_clock counter instead.
2152 if (counter->ctx->task)
2153 hw_ops = &perf_ops_task_clock;
2154 else
2155 hw_ops = &perf_ops_cpu_clock;
2157 if (hw_event->irq_period && hw_event->irq_period < 10000)
2158 hw_event->irq_period = 10000;
2159 break;
2160 case PERF_COUNT_PAGE_FAULTS:
2161 case PERF_COUNT_PAGE_FAULTS_MIN:
2162 case PERF_COUNT_PAGE_FAULTS_MAJ:
2163 case PERF_COUNT_CONTEXT_SWITCHES:
2164 hw_ops = &perf_ops_generic;
2165 break;
2166 case PERF_COUNT_CPU_MIGRATIONS:
2167 if (!counter->hw_event.exclude_kernel)
2168 hw_ops = &perf_ops_cpu_migrations;
2169 break;
2172 if (hw_ops)
2173 hwc->irq_period = hw_event->irq_period;
2175 return hw_ops;
2179 * Allocate and initialize a counter structure
2181 static struct perf_counter *
2182 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2183 int cpu,
2184 struct perf_counter_context *ctx,
2185 struct perf_counter *group_leader,
2186 gfp_t gfpflags)
2188 const struct hw_perf_counter_ops *hw_ops;
2189 struct perf_counter *counter;
2191 counter = kzalloc(sizeof(*counter), gfpflags);
2192 if (!counter)
2193 return NULL;
2196 * Single counters are their own group leaders, with an
2197 * empty sibling list:
2199 if (!group_leader)
2200 group_leader = counter;
2202 mutex_init(&counter->mutex);
2203 INIT_LIST_HEAD(&counter->list_entry);
2204 INIT_LIST_HEAD(&counter->event_entry);
2205 INIT_LIST_HEAD(&counter->sibling_list);
2206 init_waitqueue_head(&counter->waitq);
2208 mutex_init(&counter->mmap_mutex);
2210 INIT_LIST_HEAD(&counter->child_list);
2212 counter->cpu = cpu;
2213 counter->hw_event = *hw_event;
2214 counter->wakeup_pending = 0;
2215 counter->group_leader = group_leader;
2216 counter->hw_ops = NULL;
2217 counter->ctx = ctx;
2219 counter->state = PERF_COUNTER_STATE_INACTIVE;
2220 if (hw_event->disabled)
2221 counter->state = PERF_COUNTER_STATE_OFF;
2223 hw_ops = NULL;
2225 if (perf_event_raw(hw_event)) {
2226 hw_ops = hw_perf_counter_init(counter);
2227 goto done;
2230 switch (perf_event_type(hw_event)) {
2231 case PERF_TYPE_HARDWARE:
2232 hw_ops = hw_perf_counter_init(counter);
2233 break;
2235 case PERF_TYPE_SOFTWARE:
2236 hw_ops = sw_perf_counter_init(counter);
2237 break;
2239 case PERF_TYPE_TRACEPOINT:
2240 hw_ops = tp_perf_counter_init(counter);
2241 break;
2244 if (!hw_ops) {
2245 kfree(counter);
2246 return NULL;
2248 done:
2249 counter->hw_ops = hw_ops;
2251 return counter;
2255 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2257 * @hw_event_uptr: event type attributes for monitoring/sampling
2258 * @pid: target pid
2259 * @cpu: target cpu
2260 * @group_fd: group leader counter fd
2262 SYSCALL_DEFINE5(perf_counter_open,
2263 const struct perf_counter_hw_event __user *, hw_event_uptr,
2264 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2266 struct perf_counter *counter, *group_leader;
2267 struct perf_counter_hw_event hw_event;
2268 struct perf_counter_context *ctx;
2269 struct file *counter_file = NULL;
2270 struct file *group_file = NULL;
2271 int fput_needed = 0;
2272 int fput_needed2 = 0;
2273 int ret;
2275 /* for future expandability... */
2276 if (flags)
2277 return -EINVAL;
2279 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2280 return -EFAULT;
2283 * Get the target context (task or percpu):
2285 ctx = find_get_context(pid, cpu);
2286 if (IS_ERR(ctx))
2287 return PTR_ERR(ctx);
2290 * Look up the group leader (we will attach this counter to it):
2292 group_leader = NULL;
2293 if (group_fd != -1) {
2294 ret = -EINVAL;
2295 group_file = fget_light(group_fd, &fput_needed);
2296 if (!group_file)
2297 goto err_put_context;
2298 if (group_file->f_op != &perf_fops)
2299 goto err_put_context;
2301 group_leader = group_file->private_data;
2303 * Do not allow a recursive hierarchy (this new sibling
2304 * becoming part of another group-sibling):
2306 if (group_leader->group_leader != group_leader)
2307 goto err_put_context;
2309 * Do not allow to attach to a group in a different
2310 * task or CPU context:
2312 if (group_leader->ctx != ctx)
2313 goto err_put_context;
2315 * Only a group leader can be exclusive or pinned
2317 if (hw_event.exclusive || hw_event.pinned)
2318 goto err_put_context;
2321 ret = -EINVAL;
2322 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2323 GFP_KERNEL);
2324 if (!counter)
2325 goto err_put_context;
2327 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2328 if (ret < 0)
2329 goto err_free_put_context;
2331 counter_file = fget_light(ret, &fput_needed2);
2332 if (!counter_file)
2333 goto err_free_put_context;
2335 counter->filp = counter_file;
2336 mutex_lock(&ctx->mutex);
2337 perf_install_in_context(ctx, counter, cpu);
2338 mutex_unlock(&ctx->mutex);
2340 fput_light(counter_file, fput_needed2);
2342 out_fput:
2343 fput_light(group_file, fput_needed);
2345 return ret;
2347 err_free_put_context:
2348 kfree(counter);
2350 err_put_context:
2351 put_context(ctx);
2353 goto out_fput;
2357 * Initialize the perf_counter context in a task_struct:
2359 static void
2360 __perf_counter_init_context(struct perf_counter_context *ctx,
2361 struct task_struct *task)
2363 memset(ctx, 0, sizeof(*ctx));
2364 spin_lock_init(&ctx->lock);
2365 mutex_init(&ctx->mutex);
2366 INIT_LIST_HEAD(&ctx->counter_list);
2367 INIT_LIST_HEAD(&ctx->event_list);
2368 ctx->task = task;
2372 * inherit a counter from parent task to child task:
2374 static struct perf_counter *
2375 inherit_counter(struct perf_counter *parent_counter,
2376 struct task_struct *parent,
2377 struct perf_counter_context *parent_ctx,
2378 struct task_struct *child,
2379 struct perf_counter *group_leader,
2380 struct perf_counter_context *child_ctx)
2382 struct perf_counter *child_counter;
2385 * Instead of creating recursive hierarchies of counters,
2386 * we link inherited counters back to the original parent,
2387 * which has a filp for sure, which we use as the reference
2388 * count:
2390 if (parent_counter->parent)
2391 parent_counter = parent_counter->parent;
2393 child_counter = perf_counter_alloc(&parent_counter->hw_event,
2394 parent_counter->cpu, child_ctx,
2395 group_leader, GFP_KERNEL);
2396 if (!child_counter)
2397 return NULL;
2400 * Link it up in the child's context:
2402 child_counter->task = child;
2403 add_counter_to_ctx(child_counter, child_ctx);
2405 child_counter->parent = parent_counter;
2407 * inherit into child's child as well:
2409 child_counter->hw_event.inherit = 1;
2412 * Get a reference to the parent filp - we will fput it
2413 * when the child counter exits. This is safe to do because
2414 * we are in the parent and we know that the filp still
2415 * exists and has a nonzero count:
2417 atomic_long_inc(&parent_counter->filp->f_count);
2420 * Link this into the parent counter's child list
2422 mutex_lock(&parent_counter->mutex);
2423 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2426 * Make the child state follow the state of the parent counter,
2427 * not its hw_event.disabled bit. We hold the parent's mutex,
2428 * so we won't race with perf_counter_{en,dis}able_family.
2430 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2431 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2432 else
2433 child_counter->state = PERF_COUNTER_STATE_OFF;
2435 mutex_unlock(&parent_counter->mutex);
2437 return child_counter;
2440 static int inherit_group(struct perf_counter *parent_counter,
2441 struct task_struct *parent,
2442 struct perf_counter_context *parent_ctx,
2443 struct task_struct *child,
2444 struct perf_counter_context *child_ctx)
2446 struct perf_counter *leader;
2447 struct perf_counter *sub;
2449 leader = inherit_counter(parent_counter, parent, parent_ctx,
2450 child, NULL, child_ctx);
2451 if (!leader)
2452 return -ENOMEM;
2453 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2454 if (!inherit_counter(sub, parent, parent_ctx,
2455 child, leader, child_ctx))
2456 return -ENOMEM;
2458 return 0;
2461 static void sync_child_counter(struct perf_counter *child_counter,
2462 struct perf_counter *parent_counter)
2464 u64 parent_val, child_val;
2466 parent_val = atomic64_read(&parent_counter->count);
2467 child_val = atomic64_read(&child_counter->count);
2470 * Add back the child's count to the parent's count:
2472 atomic64_add(child_val, &parent_counter->count);
2473 atomic64_add(child_counter->total_time_enabled,
2474 &parent_counter->child_total_time_enabled);
2475 atomic64_add(child_counter->total_time_running,
2476 &parent_counter->child_total_time_running);
2479 * Remove this counter from the parent's list
2481 mutex_lock(&parent_counter->mutex);
2482 list_del_init(&child_counter->child_list);
2483 mutex_unlock(&parent_counter->mutex);
2486 * Release the parent counter, if this was the last
2487 * reference to it.
2489 fput(parent_counter->filp);
2492 static void
2493 __perf_counter_exit_task(struct task_struct *child,
2494 struct perf_counter *child_counter,
2495 struct perf_counter_context *child_ctx)
2497 struct perf_counter *parent_counter;
2498 struct perf_counter *sub, *tmp;
2501 * If we do not self-reap then we have to wait for the
2502 * child task to unschedule (it will happen for sure),
2503 * so that its counter is at its final count. (This
2504 * condition triggers rarely - child tasks usually get
2505 * off their CPU before the parent has a chance to
2506 * get this far into the reaping action)
2508 if (child != current) {
2509 wait_task_inactive(child, 0);
2510 list_del_init(&child_counter->list_entry);
2511 update_counter_times(child_counter);
2512 } else {
2513 struct perf_cpu_context *cpuctx;
2514 unsigned long flags;
2515 u64 perf_flags;
2518 * Disable and unlink this counter.
2520 * Be careful about zapping the list - IRQ/NMI context
2521 * could still be processing it:
2523 curr_rq_lock_irq_save(&flags);
2524 perf_flags = hw_perf_save_disable();
2526 cpuctx = &__get_cpu_var(perf_cpu_context);
2528 group_sched_out(child_counter, cpuctx, child_ctx);
2529 update_counter_times(child_counter);
2531 list_del_init(&child_counter->list_entry);
2533 child_ctx->nr_counters--;
2535 hw_perf_restore(perf_flags);
2536 curr_rq_unlock_irq_restore(&flags);
2539 parent_counter = child_counter->parent;
2541 * It can happen that parent exits first, and has counters
2542 * that are still around due to the child reference. These
2543 * counters need to be zapped - but otherwise linger.
2545 if (parent_counter) {
2546 sync_child_counter(child_counter, parent_counter);
2547 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2548 list_entry) {
2549 if (sub->parent) {
2550 sync_child_counter(sub, sub->parent);
2551 free_counter(sub);
2554 free_counter(child_counter);
2559 * When a child task exits, feed back counter values to parent counters.
2561 * Note: we may be running in child context, but the PID is not hashed
2562 * anymore so new counters will not be added.
2564 void perf_counter_exit_task(struct task_struct *child)
2566 struct perf_counter *child_counter, *tmp;
2567 struct perf_counter_context *child_ctx;
2569 child_ctx = &child->perf_counter_ctx;
2571 if (likely(!child_ctx->nr_counters))
2572 return;
2574 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2575 list_entry)
2576 __perf_counter_exit_task(child, child_counter, child_ctx);
2580 * Initialize the perf_counter context in task_struct
2582 void perf_counter_init_task(struct task_struct *child)
2584 struct perf_counter_context *child_ctx, *parent_ctx;
2585 struct perf_counter *counter;
2586 struct task_struct *parent = current;
2588 child_ctx = &child->perf_counter_ctx;
2589 parent_ctx = &parent->perf_counter_ctx;
2591 __perf_counter_init_context(child_ctx, child);
2594 * This is executed from the parent task context, so inherit
2595 * counters that have been marked for cloning:
2598 if (likely(!parent_ctx->nr_counters))
2599 return;
2602 * Lock the parent list. No need to lock the child - not PID
2603 * hashed yet and not running, so nobody can access it.
2605 mutex_lock(&parent_ctx->mutex);
2608 * We dont have to disable NMIs - we are only looking at
2609 * the list, not manipulating it:
2611 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2612 if (!counter->hw_event.inherit)
2613 continue;
2615 if (inherit_group(counter, parent,
2616 parent_ctx, child, child_ctx))
2617 break;
2620 mutex_unlock(&parent_ctx->mutex);
2623 static void __cpuinit perf_counter_init_cpu(int cpu)
2625 struct perf_cpu_context *cpuctx;
2627 cpuctx = &per_cpu(perf_cpu_context, cpu);
2628 __perf_counter_init_context(&cpuctx->ctx, NULL);
2630 mutex_lock(&perf_resource_mutex);
2631 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2632 mutex_unlock(&perf_resource_mutex);
2634 hw_perf_counter_setup(cpu);
2637 #ifdef CONFIG_HOTPLUG_CPU
2638 static void __perf_counter_exit_cpu(void *info)
2640 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2641 struct perf_counter_context *ctx = &cpuctx->ctx;
2642 struct perf_counter *counter, *tmp;
2644 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2645 __perf_counter_remove_from_context(counter);
2647 static void perf_counter_exit_cpu(int cpu)
2649 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2650 struct perf_counter_context *ctx = &cpuctx->ctx;
2652 mutex_lock(&ctx->mutex);
2653 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2654 mutex_unlock(&ctx->mutex);
2656 #else
2657 static inline void perf_counter_exit_cpu(int cpu) { }
2658 #endif
2660 static int __cpuinit
2661 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2663 unsigned int cpu = (long)hcpu;
2665 switch (action) {
2667 case CPU_UP_PREPARE:
2668 case CPU_UP_PREPARE_FROZEN:
2669 perf_counter_init_cpu(cpu);
2670 break;
2672 case CPU_DOWN_PREPARE:
2673 case CPU_DOWN_PREPARE_FROZEN:
2674 perf_counter_exit_cpu(cpu);
2675 break;
2677 default:
2678 break;
2681 return NOTIFY_OK;
2684 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2685 .notifier_call = perf_cpu_notify,
2688 static int __init perf_counter_init(void)
2690 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2691 (void *)(long)smp_processor_id());
2692 register_cpu_notifier(&perf_cpu_nb);
2694 return 0;
2696 early_initcall(perf_counter_init);
2698 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2700 return sprintf(buf, "%d\n", perf_reserved_percpu);
2703 static ssize_t
2704 perf_set_reserve_percpu(struct sysdev_class *class,
2705 const char *buf,
2706 size_t count)
2708 struct perf_cpu_context *cpuctx;
2709 unsigned long val;
2710 int err, cpu, mpt;
2712 err = strict_strtoul(buf, 10, &val);
2713 if (err)
2714 return err;
2715 if (val > perf_max_counters)
2716 return -EINVAL;
2718 mutex_lock(&perf_resource_mutex);
2719 perf_reserved_percpu = val;
2720 for_each_online_cpu(cpu) {
2721 cpuctx = &per_cpu(perf_cpu_context, cpu);
2722 spin_lock_irq(&cpuctx->ctx.lock);
2723 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2724 perf_max_counters - perf_reserved_percpu);
2725 cpuctx->max_pertask = mpt;
2726 spin_unlock_irq(&cpuctx->ctx.lock);
2728 mutex_unlock(&perf_resource_mutex);
2730 return count;
2733 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2735 return sprintf(buf, "%d\n", perf_overcommit);
2738 static ssize_t
2739 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2741 unsigned long val;
2742 int err;
2744 err = strict_strtoul(buf, 10, &val);
2745 if (err)
2746 return err;
2747 if (val > 1)
2748 return -EINVAL;
2750 mutex_lock(&perf_resource_mutex);
2751 perf_overcommit = val;
2752 mutex_unlock(&perf_resource_mutex);
2754 return count;
2757 static SYSDEV_CLASS_ATTR(
2758 reserve_percpu,
2759 0644,
2760 perf_show_reserve_percpu,
2761 perf_set_reserve_percpu
2764 static SYSDEV_CLASS_ATTR(
2765 overcommit,
2766 0644,
2767 perf_show_overcommit,
2768 perf_set_overcommit
2771 static struct attribute *perfclass_attrs[] = {
2772 &attr_reserve_percpu.attr,
2773 &attr_overcommit.attr,
2774 NULL
2777 static struct attribute_group perfclass_attr_group = {
2778 .attrs = perfclass_attrs,
2779 .name = "perf_counters",
2782 static int __init perf_counter_sysfs_init(void)
2784 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2785 &perfclass_attr_group);
2787 device_initcall(perf_counter_sysfs_init);