4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/kprobes.h>
52 #include <linux/mutex.h>
53 #include <linux/init.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr
;
74 EXPORT_SYMBOL(max_mapnr
);
75 EXPORT_SYMBOL(mem_map
);
78 unsigned long num_physpages
;
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
88 EXPORT_SYMBOL(num_physpages
);
89 EXPORT_SYMBOL(high_memory
);
92 * Randomize the address space (stacks, mmaps, brk, etc.).
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
97 int randomize_va_space __read_mostly
=
98 #ifdef CONFIG_COMPAT_BRK
104 static int __init
disable_randmaps(char *s
)
106 randomize_va_space
= 0;
109 __setup("norandmaps", disable_randmaps
);
113 * If a p?d_bad entry is found while walking page tables, report
114 * the error, before resetting entry to p?d_none. Usually (but
115 * very seldom) called out from the p?d_none_or_clear_bad macros.
118 void pgd_clear_bad(pgd_t
*pgd
)
124 void pud_clear_bad(pud_t
*pud
)
130 void pmd_clear_bad(pmd_t
*pmd
)
137 * Note: this doesn't free the actual pages themselves. That
138 * has been handled earlier when unmapping all the memory regions.
140 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
)
142 pgtable_t token
= pmd_pgtable(*pmd
);
144 pte_free_tlb(tlb
, token
);
148 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
149 unsigned long addr
, unsigned long end
,
150 unsigned long floor
, unsigned long ceiling
)
157 pmd
= pmd_offset(pud
, addr
);
159 next
= pmd_addr_end(addr
, end
);
160 if (pmd_none_or_clear_bad(pmd
))
162 free_pte_range(tlb
, pmd
);
163 } while (pmd
++, addr
= next
, addr
!= end
);
173 if (end
- 1 > ceiling
- 1)
176 pmd
= pmd_offset(pud
, start
);
178 pmd_free_tlb(tlb
, pmd
);
181 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
182 unsigned long addr
, unsigned long end
,
183 unsigned long floor
, unsigned long ceiling
)
190 pud
= pud_offset(pgd
, addr
);
192 next
= pud_addr_end(addr
, end
);
193 if (pud_none_or_clear_bad(pud
))
195 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
196 } while (pud
++, addr
= next
, addr
!= end
);
202 ceiling
&= PGDIR_MASK
;
206 if (end
- 1 > ceiling
- 1)
209 pud
= pud_offset(pgd
, start
);
211 pud_free_tlb(tlb
, pud
);
215 * This function frees user-level page tables of a process.
217 * Must be called with pagetable lock held.
219 void free_pgd_range(struct mmu_gather
*tlb
,
220 unsigned long addr
, unsigned long end
,
221 unsigned long floor
, unsigned long ceiling
)
228 * The next few lines have given us lots of grief...
230 * Why are we testing PMD* at this top level? Because often
231 * there will be no work to do at all, and we'd prefer not to
232 * go all the way down to the bottom just to discover that.
234 * Why all these "- 1"s? Because 0 represents both the bottom
235 * of the address space and the top of it (using -1 for the
236 * top wouldn't help much: the masks would do the wrong thing).
237 * The rule is that addr 0 and floor 0 refer to the bottom of
238 * the address space, but end 0 and ceiling 0 refer to the top
239 * Comparisons need to use "end - 1" and "ceiling - 1" (though
240 * that end 0 case should be mythical).
242 * Wherever addr is brought up or ceiling brought down, we must
243 * be careful to reject "the opposite 0" before it confuses the
244 * subsequent tests. But what about where end is brought down
245 * by PMD_SIZE below? no, end can't go down to 0 there.
247 * Whereas we round start (addr) and ceiling down, by different
248 * masks at different levels, in order to test whether a table
249 * now has no other vmas using it, so can be freed, we don't
250 * bother to round floor or end up - the tests don't need that.
264 if (end
- 1 > ceiling
- 1)
270 pgd
= pgd_offset(tlb
->mm
, addr
);
272 next
= pgd_addr_end(addr
, end
);
273 if (pgd_none_or_clear_bad(pgd
))
275 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
276 } while (pgd
++, addr
= next
, addr
!= end
);
279 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
280 unsigned long floor
, unsigned long ceiling
)
283 struct vm_area_struct
*next
= vma
->vm_next
;
284 unsigned long addr
= vma
->vm_start
;
287 * Hide vma from rmap and vmtruncate before freeing pgtables
289 anon_vma_unlink(vma
);
290 unlink_file_vma(vma
);
292 if (is_vm_hugetlb_page(vma
)) {
293 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
294 floor
, next
? next
->vm_start
: ceiling
);
297 * Optimization: gather nearby vmas into one call down
299 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
300 && !is_vm_hugetlb_page(next
)) {
303 anon_vma_unlink(vma
);
304 unlink_file_vma(vma
);
306 free_pgd_range(tlb
, addr
, vma
->vm_end
,
307 floor
, next
? next
->vm_start
: ceiling
);
313 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
315 pgtable_t
new = pte_alloc_one(mm
, address
);
320 * Ensure all pte setup (eg. pte page lock and page clearing) are
321 * visible before the pte is made visible to other CPUs by being
322 * put into page tables.
324 * The other side of the story is the pointer chasing in the page
325 * table walking code (when walking the page table without locking;
326 * ie. most of the time). Fortunately, these data accesses consist
327 * of a chain of data-dependent loads, meaning most CPUs (alpha
328 * being the notable exception) will already guarantee loads are
329 * seen in-order. See the alpha page table accessors for the
330 * smp_read_barrier_depends() barriers in page table walking code.
332 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
334 spin_lock(&mm
->page_table_lock
);
335 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
337 pmd_populate(mm
, pmd
, new);
340 spin_unlock(&mm
->page_table_lock
);
346 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
348 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
352 smp_wmb(); /* See comment in __pte_alloc */
354 spin_lock(&init_mm
.page_table_lock
);
355 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
356 pmd_populate_kernel(&init_mm
, pmd
, new);
359 spin_unlock(&init_mm
.page_table_lock
);
361 pte_free_kernel(&init_mm
, new);
365 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
368 add_mm_counter(mm
, file_rss
, file_rss
);
370 add_mm_counter(mm
, anon_rss
, anon_rss
);
374 * This function is called to print an error when a bad pte
375 * is found. For example, we might have a PFN-mapped pte in
376 * a region that doesn't allow it.
378 * The calling function must still handle the error.
380 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
381 pte_t pte
, struct page
*page
)
383 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
384 pud_t
*pud
= pud_offset(pgd
, addr
);
385 pmd_t
*pmd
= pmd_offset(pud
, addr
);
386 struct address_space
*mapping
;
388 static unsigned long resume
;
389 static unsigned long nr_shown
;
390 static unsigned long nr_unshown
;
393 * Allow a burst of 60 reports, then keep quiet for that minute;
394 * or allow a steady drip of one report per second.
396 if (nr_shown
== 60) {
397 if (time_before(jiffies
, resume
)) {
403 "BUG: Bad page map: %lu messages suppressed\n",
410 resume
= jiffies
+ 60 * HZ
;
412 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
413 index
= linear_page_index(vma
, addr
);
416 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
418 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
421 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
422 page
, (void *)page
->flags
, page_count(page
),
423 page_mapcount(page
), page
->mapping
, page
->index
);
426 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
427 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
429 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
432 print_symbol(KERN_ALERT
"vma->vm_ops->fault: %s\n",
433 (unsigned long)vma
->vm_ops
->fault
);
434 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
435 print_symbol(KERN_ALERT
"vma->vm_file->f_op->mmap: %s\n",
436 (unsigned long)vma
->vm_file
->f_op
->mmap
);
438 add_taint(TAINT_BAD_PAGE
);
441 static inline int is_cow_mapping(unsigned int flags
)
443 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
447 * vm_normal_page -- This function gets the "struct page" associated with a pte.
449 * "Special" mappings do not wish to be associated with a "struct page" (either
450 * it doesn't exist, or it exists but they don't want to touch it). In this
451 * case, NULL is returned here. "Normal" mappings do have a struct page.
453 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
454 * pte bit, in which case this function is trivial. Secondly, an architecture
455 * may not have a spare pte bit, which requires a more complicated scheme,
458 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
459 * special mapping (even if there are underlying and valid "struct pages").
460 * COWed pages of a VM_PFNMAP are always normal.
462 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
463 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
464 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
465 * mapping will always honor the rule
467 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
469 * And for normal mappings this is false.
471 * This restricts such mappings to be a linear translation from virtual address
472 * to pfn. To get around this restriction, we allow arbitrary mappings so long
473 * as the vma is not a COW mapping; in that case, we know that all ptes are
474 * special (because none can have been COWed).
477 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
479 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
480 * page" backing, however the difference is that _all_ pages with a struct
481 * page (that is, those where pfn_valid is true) are refcounted and considered
482 * normal pages by the VM. The disadvantage is that pages are refcounted
483 * (which can be slower and simply not an option for some PFNMAP users). The
484 * advantage is that we don't have to follow the strict linearity rule of
485 * PFNMAP mappings in order to support COWable mappings.
488 #ifdef __HAVE_ARCH_PTE_SPECIAL
489 # define HAVE_PTE_SPECIAL 1
491 # define HAVE_PTE_SPECIAL 0
493 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
496 unsigned long pfn
= pte_pfn(pte
);
498 if (HAVE_PTE_SPECIAL
) {
499 if (likely(!pte_special(pte
)))
501 if (!(vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
)))
502 print_bad_pte(vma
, addr
, pte
, NULL
);
506 /* !HAVE_PTE_SPECIAL case follows: */
508 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
509 if (vma
->vm_flags
& VM_MIXEDMAP
) {
515 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
516 if (pfn
== vma
->vm_pgoff
+ off
)
518 if (!is_cow_mapping(vma
->vm_flags
))
524 if (unlikely(pfn
> highest_memmap_pfn
)) {
525 print_bad_pte(vma
, addr
, pte
, NULL
);
530 * NOTE! We still have PageReserved() pages in the page tables.
531 * eg. VDSO mappings can cause them to exist.
534 return pfn_to_page(pfn
);
538 * copy one vm_area from one task to the other. Assumes the page tables
539 * already present in the new task to be cleared in the whole range
540 * covered by this vma.
544 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
545 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
546 unsigned long addr
, int *rss
)
548 unsigned long vm_flags
= vma
->vm_flags
;
549 pte_t pte
= *src_pte
;
552 /* pte contains position in swap or file, so copy. */
553 if (unlikely(!pte_present(pte
))) {
554 if (!pte_file(pte
)) {
555 swp_entry_t entry
= pte_to_swp_entry(pte
);
557 swap_duplicate(entry
);
558 /* make sure dst_mm is on swapoff's mmlist. */
559 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
560 spin_lock(&mmlist_lock
);
561 if (list_empty(&dst_mm
->mmlist
))
562 list_add(&dst_mm
->mmlist
,
564 spin_unlock(&mmlist_lock
);
566 if (is_write_migration_entry(entry
) &&
567 is_cow_mapping(vm_flags
)) {
569 * COW mappings require pages in both parent
570 * and child to be set to read.
572 make_migration_entry_read(&entry
);
573 pte
= swp_entry_to_pte(entry
);
574 set_pte_at(src_mm
, addr
, src_pte
, pte
);
581 * If it's a COW mapping, write protect it both
582 * in the parent and the child
584 if (is_cow_mapping(vm_flags
)) {
585 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
586 pte
= pte_wrprotect(pte
);
590 * If it's a shared mapping, mark it clean in
593 if (vm_flags
& VM_SHARED
)
594 pte
= pte_mkclean(pte
);
595 pte
= pte_mkold(pte
);
597 page
= vm_normal_page(vma
, addr
, pte
);
600 page_dup_rmap(page
, vma
, addr
);
601 rss
[!!PageAnon(page
)]++;
605 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
608 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
609 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
610 unsigned long addr
, unsigned long end
)
612 pte_t
*src_pte
, *dst_pte
;
613 spinlock_t
*src_ptl
, *dst_ptl
;
619 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
622 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
623 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
624 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
625 arch_enter_lazy_mmu_mode();
629 * We are holding two locks at this point - either of them
630 * could generate latencies in another task on another CPU.
632 if (progress
>= 32) {
634 if (need_resched() ||
635 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
638 if (pte_none(*src_pte
)) {
642 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
644 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
646 arch_leave_lazy_mmu_mode();
647 spin_unlock(src_ptl
);
648 pte_unmap_nested(src_pte
- 1);
649 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
650 pte_unmap_unlock(dst_pte
- 1, dst_ptl
);
657 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
658 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
659 unsigned long addr
, unsigned long end
)
661 pmd_t
*src_pmd
, *dst_pmd
;
664 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
667 src_pmd
= pmd_offset(src_pud
, addr
);
669 next
= pmd_addr_end(addr
, end
);
670 if (pmd_none_or_clear_bad(src_pmd
))
672 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
675 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
679 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
680 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
681 unsigned long addr
, unsigned long end
)
683 pud_t
*src_pud
, *dst_pud
;
686 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
689 src_pud
= pud_offset(src_pgd
, addr
);
691 next
= pud_addr_end(addr
, end
);
692 if (pud_none_or_clear_bad(src_pud
))
694 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
697 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
701 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
702 struct vm_area_struct
*vma
)
704 pgd_t
*src_pgd
, *dst_pgd
;
706 unsigned long addr
= vma
->vm_start
;
707 unsigned long end
= vma
->vm_end
;
711 * Don't copy ptes where a page fault will fill them correctly.
712 * Fork becomes much lighter when there are big shared or private
713 * readonly mappings. The tradeoff is that copy_page_range is more
714 * efficient than faulting.
716 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
721 if (is_vm_hugetlb_page(vma
))
722 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
724 if (unlikely(is_pfn_mapping(vma
))) {
726 * We do not free on error cases below as remove_vma
727 * gets called on error from higher level routine
729 ret
= track_pfn_vma_copy(vma
);
735 * We need to invalidate the secondary MMU mappings only when
736 * there could be a permission downgrade on the ptes of the
737 * parent mm. And a permission downgrade will only happen if
738 * is_cow_mapping() returns true.
740 if (is_cow_mapping(vma
->vm_flags
))
741 mmu_notifier_invalidate_range_start(src_mm
, addr
, end
);
744 dst_pgd
= pgd_offset(dst_mm
, addr
);
745 src_pgd
= pgd_offset(src_mm
, addr
);
747 next
= pgd_addr_end(addr
, end
);
748 if (pgd_none_or_clear_bad(src_pgd
))
750 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
755 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
757 if (is_cow_mapping(vma
->vm_flags
))
758 mmu_notifier_invalidate_range_end(src_mm
,
763 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
764 struct vm_area_struct
*vma
, pmd_t
*pmd
,
765 unsigned long addr
, unsigned long end
,
766 long *zap_work
, struct zap_details
*details
)
768 struct mm_struct
*mm
= tlb
->mm
;
774 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
775 arch_enter_lazy_mmu_mode();
778 if (pte_none(ptent
)) {
783 (*zap_work
) -= PAGE_SIZE
;
785 if (pte_present(ptent
)) {
788 page
= vm_normal_page(vma
, addr
, ptent
);
789 if (unlikely(details
) && page
) {
791 * unmap_shared_mapping_pages() wants to
792 * invalidate cache without truncating:
793 * unmap shared but keep private pages.
795 if (details
->check_mapping
&&
796 details
->check_mapping
!= page
->mapping
)
799 * Each page->index must be checked when
800 * invalidating or truncating nonlinear.
802 if (details
->nonlinear_vma
&&
803 (page
->index
< details
->first_index
||
804 page
->index
> details
->last_index
))
807 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
809 tlb_remove_tlb_entry(tlb
, pte
, addr
);
812 if (unlikely(details
) && details
->nonlinear_vma
813 && linear_page_index(details
->nonlinear_vma
,
814 addr
) != page
->index
)
815 set_pte_at(mm
, addr
, pte
,
816 pgoff_to_pte(page
->index
));
820 if (pte_dirty(ptent
))
821 set_page_dirty(page
);
822 if (pte_young(ptent
) &&
823 likely(!VM_SequentialReadHint(vma
)))
824 mark_page_accessed(page
);
827 page_remove_rmap(page
);
828 if (unlikely(page_mapcount(page
) < 0))
829 print_bad_pte(vma
, addr
, ptent
, page
);
830 tlb_remove_page(tlb
, page
);
834 * If details->check_mapping, we leave swap entries;
835 * if details->nonlinear_vma, we leave file entries.
837 if (unlikely(details
))
839 if (pte_file(ptent
)) {
840 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
841 print_bad_pte(vma
, addr
, ptent
, NULL
);
843 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent
))))
844 print_bad_pte(vma
, addr
, ptent
, NULL
);
845 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
846 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
848 add_mm_rss(mm
, file_rss
, anon_rss
);
849 arch_leave_lazy_mmu_mode();
850 pte_unmap_unlock(pte
- 1, ptl
);
855 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
856 struct vm_area_struct
*vma
, pud_t
*pud
,
857 unsigned long addr
, unsigned long end
,
858 long *zap_work
, struct zap_details
*details
)
863 pmd
= pmd_offset(pud
, addr
);
865 next
= pmd_addr_end(addr
, end
);
866 if (pmd_none_or_clear_bad(pmd
)) {
870 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
872 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
877 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
878 struct vm_area_struct
*vma
, pgd_t
*pgd
,
879 unsigned long addr
, unsigned long end
,
880 long *zap_work
, struct zap_details
*details
)
885 pud
= pud_offset(pgd
, addr
);
887 next
= pud_addr_end(addr
, end
);
888 if (pud_none_or_clear_bad(pud
)) {
892 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
894 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
899 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
900 struct vm_area_struct
*vma
,
901 unsigned long addr
, unsigned long end
,
902 long *zap_work
, struct zap_details
*details
)
907 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
911 tlb_start_vma(tlb
, vma
);
912 pgd
= pgd_offset(vma
->vm_mm
, addr
);
914 next
= pgd_addr_end(addr
, end
);
915 if (pgd_none_or_clear_bad(pgd
)) {
919 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
921 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
922 tlb_end_vma(tlb
, vma
);
927 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_RT)
928 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
931 * No preempt: go for improved straight-line efficiency
932 * on PREEMPT_RT this is not a critical latency-path.
934 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
938 * unmap_vmas - unmap a range of memory covered by a list of vma's
939 * @tlbp: address of the caller's struct mmu_gather
940 * @vma: the starting vma
941 * @start_addr: virtual address at which to start unmapping
942 * @end_addr: virtual address at which to end unmapping
943 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
944 * @details: details of nonlinear truncation or shared cache invalidation
946 * Returns the end address of the unmapping (restart addr if interrupted).
948 * Unmap all pages in the vma list.
950 * We aim to not hold locks for too long (for scheduling latency reasons).
951 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
952 * return the ending mmu_gather to the caller.
954 * Only addresses between `start' and `end' will be unmapped.
956 * The VMA list must be sorted in ascending virtual address order.
958 * unmap_vmas() assumes that the caller will flush the whole unmapped address
959 * range after unmap_vmas() returns. So the only responsibility here is to
960 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
961 * drops the lock and schedules.
963 unsigned long unmap_vmas(struct mmu_gather
*tlb
,
964 struct vm_area_struct
*vma
, unsigned long start_addr
,
965 unsigned long end_addr
, unsigned long *nr_accounted
,
966 struct zap_details
*details
)
968 long zap_work
= ZAP_BLOCK_SIZE
;
969 unsigned long start
= start_addr
;
970 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
971 struct mm_struct
*mm
= vma
->vm_mm
;
973 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
974 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
977 start
= max(vma
->vm_start
, start_addr
);
978 if (start
>= vma
->vm_end
)
980 end
= min(vma
->vm_end
, end_addr
);
981 if (end
<= vma
->vm_start
)
984 if (vma
->vm_flags
& VM_ACCOUNT
)
985 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
987 if (unlikely(is_pfn_mapping(vma
)))
988 untrack_pfn_vma(vma
, 0, 0);
990 while (start
!= end
) {
991 if (unlikely(is_vm_hugetlb_page(vma
))) {
993 * It is undesirable to test vma->vm_file as it
994 * should be non-null for valid hugetlb area.
995 * However, vm_file will be NULL in the error
996 * cleanup path of do_mmap_pgoff. When
997 * hugetlbfs ->mmap method fails,
998 * do_mmap_pgoff() nullifies vma->vm_file
999 * before calling this function to clean up.
1000 * Since no pte has actually been setup, it is
1001 * safe to do nothing in this case.
1004 unmap_hugepage_range(vma
, start
, end
, NULL
);
1005 zap_work
-= (end
- start
) /
1006 pages_per_huge_page(hstate_vma(vma
));
1011 start
= unmap_page_range(tlb
, vma
,
1012 start
, end
, &zap_work
, details
);
1015 BUG_ON(start
!= end
);
1019 if (need_resched() ||
1020 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
1026 zap_work
= ZAP_BLOCK_SIZE
;
1030 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1031 return start
; /* which is now the end (or restart) address */
1035 * zap_page_range - remove user pages in a given range
1036 * @vma: vm_area_struct holding the applicable pages
1037 * @address: starting address of pages to zap
1038 * @size: number of bytes to zap
1039 * @details: details of nonlinear truncation or shared cache invalidation
1041 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
1042 unsigned long size
, struct zap_details
*details
)
1044 struct mm_struct
*mm
= vma
->vm_mm
;
1045 struct mmu_gather tlb
;
1046 unsigned long end
= address
+ size
;
1047 unsigned long nr_accounted
= 0;
1050 tlb_gather_mmu(&tlb
, mm
, 0);
1051 update_hiwater_rss(mm
);
1052 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
1053 tlb_finish_mmu(&tlb
, address
, end
);
1058 * zap_vma_ptes - remove ptes mapping the vma
1059 * @vma: vm_area_struct holding ptes to be zapped
1060 * @address: starting address of pages to zap
1061 * @size: number of bytes to zap
1063 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1065 * The entire address range must be fully contained within the vma.
1067 * Returns 0 if successful.
1069 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1072 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1073 !(vma
->vm_flags
& VM_PFNMAP
))
1075 zap_page_range(vma
, address
, size
, NULL
);
1078 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1081 * Do a quick page-table lookup for a single page.
1083 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1092 struct mm_struct
*mm
= vma
->vm_mm
;
1094 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1095 if (!IS_ERR(page
)) {
1096 BUG_ON(flags
& FOLL_GET
);
1101 pgd
= pgd_offset(mm
, address
);
1102 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1105 pud
= pud_offset(pgd
, address
);
1108 if (pud_huge(*pud
)) {
1109 BUG_ON(flags
& FOLL_GET
);
1110 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1113 if (unlikely(pud_bad(*pud
)))
1116 pmd
= pmd_offset(pud
, address
);
1119 if (pmd_huge(*pmd
)) {
1120 BUG_ON(flags
& FOLL_GET
);
1121 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1124 if (unlikely(pmd_bad(*pmd
)))
1127 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1130 if (!pte_present(pte
))
1132 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1134 page
= vm_normal_page(vma
, address
, pte
);
1135 if (unlikely(!page
))
1138 if (flags
& FOLL_GET
)
1140 if (flags
& FOLL_TOUCH
) {
1141 if ((flags
& FOLL_WRITE
) &&
1142 !pte_dirty(pte
) && !PageDirty(page
))
1143 set_page_dirty(page
);
1144 mark_page_accessed(page
);
1147 pte_unmap_unlock(ptep
, ptl
);
1152 pte_unmap_unlock(ptep
, ptl
);
1153 return ERR_PTR(-EFAULT
);
1156 pte_unmap_unlock(ptep
, ptl
);
1159 /* Fall through to ZERO_PAGE handling */
1162 * When core dumping an enormous anonymous area that nobody
1163 * has touched so far, we don't want to allocate page tables.
1165 if (flags
& FOLL_ANON
) {
1166 page
= ZERO_PAGE(0);
1167 if (flags
& FOLL_GET
)
1169 BUG_ON(flags
& FOLL_WRITE
);
1174 /* Can we do the FOLL_ANON optimization? */
1175 static inline int use_zero_page(struct vm_area_struct
*vma
)
1178 * We don't want to optimize FOLL_ANON for make_pages_present()
1179 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1180 * we want to get the page from the page tables to make sure
1181 * that we serialize and update with any other user of that
1184 if (vma
->vm_flags
& (VM_LOCKED
| VM_SHARED
))
1187 * And if we have a fault routine, it's not an anonymous region.
1189 return !vma
->vm_ops
|| !vma
->vm_ops
->fault
;
1194 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1195 unsigned long start
, int len
, int flags
,
1196 struct page
**pages
, struct vm_area_struct
**vmas
)
1199 unsigned int vm_flags
= 0;
1200 int write
= !!(flags
& GUP_FLAGS_WRITE
);
1201 int force
= !!(flags
& GUP_FLAGS_FORCE
);
1202 int ignore
= !!(flags
& GUP_FLAGS_IGNORE_VMA_PERMISSIONS
);
1203 int ignore_sigkill
= !!(flags
& GUP_FLAGS_IGNORE_SIGKILL
);
1208 * Require read or write permissions.
1209 * If 'force' is set, we only require the "MAY" flags.
1211 vm_flags
= write
? (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1212 vm_flags
&= force
? (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1216 struct vm_area_struct
*vma
;
1217 unsigned int foll_flags
;
1219 vma
= find_extend_vma(mm
, start
);
1220 if (!vma
&& in_gate_area(tsk
, start
)) {
1221 unsigned long pg
= start
& PAGE_MASK
;
1222 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1228 /* user gate pages are read-only */
1229 if (!ignore
&& write
)
1230 return i
? : -EFAULT
;
1232 pgd
= pgd_offset_k(pg
);
1234 pgd
= pgd_offset_gate(mm
, pg
);
1235 BUG_ON(pgd_none(*pgd
));
1236 pud
= pud_offset(pgd
, pg
);
1237 BUG_ON(pud_none(*pud
));
1238 pmd
= pmd_offset(pud
, pg
);
1240 return i
? : -EFAULT
;
1241 pte
= pte_offset_map(pmd
, pg
);
1242 if (pte_none(*pte
)) {
1244 return i
? : -EFAULT
;
1247 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1262 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1263 (!ignore
&& !(vm_flags
& vma
->vm_flags
)))
1264 return i
? : -EFAULT
;
1266 if (is_vm_hugetlb_page(vma
)) {
1267 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1268 &start
, &len
, i
, write
);
1272 foll_flags
= FOLL_TOUCH
;
1274 foll_flags
|= FOLL_GET
;
1275 if (!write
&& use_zero_page(vma
))
1276 foll_flags
|= FOLL_ANON
;
1282 * If we have a pending SIGKILL, don't keep faulting
1283 * pages and potentially allocating memory, unless
1284 * current is handling munlock--e.g., on exit. In
1285 * that case, we are not allocating memory. Rather,
1286 * we're only unlocking already resident/mapped pages.
1288 if (unlikely(!ignore_sigkill
&&
1289 fatal_signal_pending(current
)))
1290 return i
? i
: -ERESTARTSYS
;
1293 foll_flags
|= FOLL_WRITE
;
1296 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1298 ret
= handle_mm_fault(mm
, vma
, start
,
1299 foll_flags
& FOLL_WRITE
);
1300 if (ret
& VM_FAULT_ERROR
) {
1301 if (ret
& VM_FAULT_OOM
)
1302 return i
? i
: -ENOMEM
;
1303 else if (ret
& VM_FAULT_SIGBUS
)
1304 return i
? i
: -EFAULT
;
1307 if (ret
& VM_FAULT_MAJOR
)
1313 * The VM_FAULT_WRITE bit tells us that
1314 * do_wp_page has broken COW when necessary,
1315 * even if maybe_mkwrite decided not to set
1316 * pte_write. We can thus safely do subsequent
1317 * page lookups as if they were reads. But only
1318 * do so when looping for pte_write is futile:
1319 * in some cases userspace may also be wanting
1320 * to write to the gotten user page, which a
1321 * read fault here might prevent (a readonly
1322 * page might get reCOWed by userspace write).
1324 if ((ret
& VM_FAULT_WRITE
) &&
1325 !(vma
->vm_flags
& VM_WRITE
))
1326 foll_flags
&= ~FOLL_WRITE
;
1331 return i
? i
: PTR_ERR(page
);
1335 flush_anon_page(vma
, page
, start
);
1336 flush_dcache_page(page
);
1343 } while (len
&& start
< vma
->vm_end
);
1348 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1349 unsigned long start
, int len
, int write
, int force
,
1350 struct page
**pages
, struct vm_area_struct
**vmas
)
1355 flags
|= GUP_FLAGS_WRITE
;
1357 flags
|= GUP_FLAGS_FORCE
;
1359 return __get_user_pages(tsk
, mm
,
1364 EXPORT_SYMBOL(get_user_pages
);
1366 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1369 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1370 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1372 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1374 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1380 * This is the old fallback for page remapping.
1382 * For historical reasons, it only allows reserved pages. Only
1383 * old drivers should use this, and they needed to mark their
1384 * pages reserved for the old functions anyway.
1386 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1387 struct page
*page
, pgprot_t prot
)
1389 struct mm_struct
*mm
= vma
->vm_mm
;
1398 flush_dcache_page(page
);
1399 pte
= get_locked_pte(mm
, addr
, &ptl
);
1403 if (!pte_none(*pte
))
1406 /* Ok, finally just insert the thing.. */
1408 inc_mm_counter(mm
, file_rss
);
1409 page_add_file_rmap(page
);
1410 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1413 pte_unmap_unlock(pte
, ptl
);
1416 pte_unmap_unlock(pte
, ptl
);
1422 * vm_insert_page - insert single page into user vma
1423 * @vma: user vma to map to
1424 * @addr: target user address of this page
1425 * @page: source kernel page
1427 * This allows drivers to insert individual pages they've allocated
1430 * The page has to be a nice clean _individual_ kernel allocation.
1431 * If you allocate a compound page, you need to have marked it as
1432 * such (__GFP_COMP), or manually just split the page up yourself
1433 * (see split_page()).
1435 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1436 * took an arbitrary page protection parameter. This doesn't allow
1437 * that. Your vma protection will have to be set up correctly, which
1438 * means that if you want a shared writable mapping, you'd better
1439 * ask for a shared writable mapping!
1441 * The page does not need to be reserved.
1443 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1446 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1448 if (!page_count(page
))
1450 vma
->vm_flags
|= VM_INSERTPAGE
;
1451 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1453 EXPORT_SYMBOL(vm_insert_page
);
1455 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1456 unsigned long pfn
, pgprot_t prot
)
1458 struct mm_struct
*mm
= vma
->vm_mm
;
1464 pte
= get_locked_pte(mm
, addr
, &ptl
);
1468 if (!pte_none(*pte
))
1471 /* Ok, finally just insert the thing.. */
1472 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1473 set_pte_at(mm
, addr
, pte
, entry
);
1474 update_mmu_cache(vma
, addr
, entry
); /* XXX: why not for insert_page? */
1478 pte_unmap_unlock(pte
, ptl
);
1484 * vm_insert_pfn - insert single pfn into user vma
1485 * @vma: user vma to map to
1486 * @addr: target user address of this page
1487 * @pfn: source kernel pfn
1489 * Similar to vm_inert_page, this allows drivers to insert individual pages
1490 * they've allocated into a user vma. Same comments apply.
1492 * This function should only be called from a vm_ops->fault handler, and
1493 * in that case the handler should return NULL.
1495 * vma cannot be a COW mapping.
1497 * As this is called only for pages that do not currently exist, we
1498 * do not need to flush old virtual caches or the TLB.
1500 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1504 pgprot_t pgprot
= vma
->vm_page_prot
;
1506 * Technically, architectures with pte_special can avoid all these
1507 * restrictions (same for remap_pfn_range). However we would like
1508 * consistency in testing and feature parity among all, so we should
1509 * try to keep these invariants in place for everybody.
1511 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1512 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1513 (VM_PFNMAP
|VM_MIXEDMAP
));
1514 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1515 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1517 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1519 if (track_pfn_vma_new(vma
, &pgprot
, pfn
, PAGE_SIZE
))
1522 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1525 untrack_pfn_vma(vma
, pfn
, PAGE_SIZE
);
1529 EXPORT_SYMBOL(vm_insert_pfn
);
1531 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1534 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1536 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1540 * If we don't have pte special, then we have to use the pfn_valid()
1541 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1542 * refcount the page if pfn_valid is true (hence insert_page rather
1545 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1548 page
= pfn_to_page(pfn
);
1549 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1551 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1553 EXPORT_SYMBOL(vm_insert_mixed
);
1556 * maps a range of physical memory into the requested pages. the old
1557 * mappings are removed. any references to nonexistent pages results
1558 * in null mappings (currently treated as "copy-on-access")
1560 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1561 unsigned long addr
, unsigned long end
,
1562 unsigned long pfn
, pgprot_t prot
)
1567 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1570 arch_enter_lazy_mmu_mode();
1572 BUG_ON(!pte_none(*pte
));
1573 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1575 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1576 arch_leave_lazy_mmu_mode();
1577 pte_unmap_unlock(pte
- 1, ptl
);
1581 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1582 unsigned long addr
, unsigned long end
,
1583 unsigned long pfn
, pgprot_t prot
)
1588 pfn
-= addr
>> PAGE_SHIFT
;
1589 pmd
= pmd_alloc(mm
, pud
, addr
);
1593 next
= pmd_addr_end(addr
, end
);
1594 if (remap_pte_range(mm
, pmd
, addr
, next
,
1595 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1597 } while (pmd
++, addr
= next
, addr
!= end
);
1601 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1602 unsigned long addr
, unsigned long end
,
1603 unsigned long pfn
, pgprot_t prot
)
1608 pfn
-= addr
>> PAGE_SHIFT
;
1609 pud
= pud_alloc(mm
, pgd
, addr
);
1613 next
= pud_addr_end(addr
, end
);
1614 if (remap_pmd_range(mm
, pud
, addr
, next
,
1615 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1617 } while (pud
++, addr
= next
, addr
!= end
);
1622 * remap_pfn_range - remap kernel memory to userspace
1623 * @vma: user vma to map to
1624 * @addr: target user address to start at
1625 * @pfn: physical address of kernel memory
1626 * @size: size of map area
1627 * @prot: page protection flags for this mapping
1629 * Note: this is only safe if the mm semaphore is held when called.
1631 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1632 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1636 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1637 struct mm_struct
*mm
= vma
->vm_mm
;
1641 * Physically remapped pages are special. Tell the
1642 * rest of the world about it:
1643 * VM_IO tells people not to look at these pages
1644 * (accesses can have side effects).
1645 * VM_RESERVED is specified all over the place, because
1646 * in 2.4 it kept swapout's vma scan off this vma; but
1647 * in 2.6 the LRU scan won't even find its pages, so this
1648 * flag means no more than count its pages in reserved_vm,
1649 * and omit it from core dump, even when VM_IO turned off.
1650 * VM_PFNMAP tells the core MM that the base pages are just
1651 * raw PFN mappings, and do not have a "struct page" associated
1654 * There's a horrible special case to handle copy-on-write
1655 * behaviour that some programs depend on. We mark the "original"
1656 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1658 if (addr
== vma
->vm_start
&& end
== vma
->vm_end
) {
1659 vma
->vm_pgoff
= pfn
;
1660 vma
->vm_flags
|= VM_PFN_AT_MMAP
;
1661 } else if (is_cow_mapping(vma
->vm_flags
))
1664 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1666 err
= track_pfn_vma_new(vma
, &prot
, pfn
, PAGE_ALIGN(size
));
1669 * To indicate that track_pfn related cleanup is not
1670 * needed from higher level routine calling unmap_vmas
1672 vma
->vm_flags
&= ~(VM_IO
| VM_RESERVED
| VM_PFNMAP
);
1673 vma
->vm_flags
&= ~VM_PFN_AT_MMAP
;
1677 BUG_ON(addr
>= end
);
1678 pfn
-= addr
>> PAGE_SHIFT
;
1679 pgd
= pgd_offset(mm
, addr
);
1680 flush_cache_range(vma
, addr
, end
);
1682 next
= pgd_addr_end(addr
, end
);
1683 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1684 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1687 } while (pgd
++, addr
= next
, addr
!= end
);
1690 untrack_pfn_vma(vma
, pfn
, PAGE_ALIGN(size
));
1694 EXPORT_SYMBOL(remap_pfn_range
);
1696 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1697 unsigned long addr
, unsigned long end
,
1698 pte_fn_t fn
, void *data
)
1703 spinlock_t
*uninitialized_var(ptl
);
1705 pte
= (mm
== &init_mm
) ?
1706 pte_alloc_kernel(pmd
, addr
) :
1707 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1711 BUG_ON(pmd_huge(*pmd
));
1713 arch_enter_lazy_mmu_mode();
1715 token
= pmd_pgtable(*pmd
);
1718 err
= fn(pte
, token
, addr
, data
);
1721 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1723 arch_leave_lazy_mmu_mode();
1726 pte_unmap_unlock(pte
-1, ptl
);
1730 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1731 unsigned long addr
, unsigned long end
,
1732 pte_fn_t fn
, void *data
)
1738 BUG_ON(pud_huge(*pud
));
1740 pmd
= pmd_alloc(mm
, pud
, addr
);
1744 next
= pmd_addr_end(addr
, end
);
1745 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1748 } while (pmd
++, addr
= next
, addr
!= end
);
1752 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1753 unsigned long addr
, unsigned long end
,
1754 pte_fn_t fn
, void *data
)
1760 pud
= pud_alloc(mm
, pgd
, addr
);
1764 next
= pud_addr_end(addr
, end
);
1765 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1768 } while (pud
++, addr
= next
, addr
!= end
);
1773 * Scan a region of virtual memory, filling in page tables as necessary
1774 * and calling a provided function on each leaf page table.
1776 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1777 unsigned long size
, pte_fn_t fn
, void *data
)
1781 unsigned long start
= addr
, end
= addr
+ size
;
1784 BUG_ON(addr
>= end
);
1785 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1786 pgd
= pgd_offset(mm
, addr
);
1788 next
= pgd_addr_end(addr
, end
);
1789 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1792 } while (pgd
++, addr
= next
, addr
!= end
);
1793 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1796 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1799 * handle_pte_fault chooses page fault handler according to an entry
1800 * which was read non-atomically. Before making any commitment, on
1801 * those architectures or configurations (e.g. i386 with PAE) which
1802 * might give a mix of unmatched parts, do_swap_page and do_file_page
1803 * must check under lock before unmapping the pte and proceeding
1804 * (but do_wp_page is only called after already making such a check;
1805 * and do_anonymous_page and do_no_page can safely check later on).
1807 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1808 pte_t
*page_table
, pte_t orig_pte
)
1811 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1812 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1813 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1815 same
= pte_same(*page_table
, orig_pte
);
1819 pte_unmap(page_table
);
1824 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1825 * servicing faults for write access. In the normal case, do always want
1826 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1827 * that do not have writing enabled, when used by access_process_vm.
1829 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1831 if (likely(vma
->vm_flags
& VM_WRITE
))
1832 pte
= pte_mkwrite(pte
);
1836 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1839 * If the source page was a PFN mapping, we don't have
1840 * a "struct page" for it. We do a best-effort copy by
1841 * just copying from the original user address. If that
1842 * fails, we just zero-fill it. Live with it.
1844 if (unlikely(!src
)) {
1845 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
1846 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1849 * This really shouldn't fail, because the page is there
1850 * in the page tables. But it might just be unreadable,
1851 * in which case we just give up and fill the result with
1854 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1855 memset(kaddr
, 0, PAGE_SIZE
);
1856 kunmap_atomic(kaddr
, KM_USER0
);
1857 flush_dcache_page(dst
);
1859 copy_user_highpage(dst
, src
, va
, vma
);
1863 * This routine handles present pages, when users try to write
1864 * to a shared page. It is done by copying the page to a new address
1865 * and decrementing the shared-page counter for the old page.
1867 * Note that this routine assumes that the protection checks have been
1868 * done by the caller (the low-level page fault routine in most cases).
1869 * Thus we can safely just mark it writable once we've done any necessary
1872 * We also mark the page dirty at this point even though the page will
1873 * change only once the write actually happens. This avoids a few races,
1874 * and potentially makes it more efficient.
1876 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1877 * but allow concurrent faults), with pte both mapped and locked.
1878 * We return with mmap_sem still held, but pte unmapped and unlocked.
1880 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1881 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1882 spinlock_t
*ptl
, pte_t orig_pte
)
1884 struct page
*old_page
, *new_page
;
1886 int reuse
= 0, ret
= 0;
1887 int page_mkwrite
= 0;
1888 struct page
*dirty_page
= NULL
;
1890 old_page
= vm_normal_page(vma
, address
, orig_pte
);
1893 * VM_MIXEDMAP !pfn_valid() case
1895 * We should not cow pages in a shared writeable mapping.
1896 * Just mark the pages writable as we can't do any dirty
1897 * accounting on raw pfn maps.
1899 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
1900 (VM_WRITE
|VM_SHARED
))
1906 * Take out anonymous pages first, anonymous shared vmas are
1907 * not dirty accountable.
1909 if (PageAnon(old_page
)) {
1910 if (!trylock_page(old_page
)) {
1911 page_cache_get(old_page
);
1912 pte_unmap_unlock(page_table
, ptl
);
1913 lock_page(old_page
);
1914 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
1916 if (!pte_same(*page_table
, orig_pte
)) {
1917 unlock_page(old_page
);
1918 page_cache_release(old_page
);
1921 page_cache_release(old_page
);
1923 reuse
= reuse_swap_page(old_page
);
1924 unlock_page(old_page
);
1925 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
1926 (VM_WRITE
|VM_SHARED
))) {
1928 * Only catch write-faults on shared writable pages,
1929 * read-only shared pages can get COWed by
1930 * get_user_pages(.write=1, .force=1).
1932 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
1933 struct vm_fault vmf
;
1936 vmf
.virtual_address
= (void __user
*)(address
&
1938 vmf
.pgoff
= old_page
->index
;
1939 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
1940 vmf
.page
= old_page
;
1943 * Notify the address space that the page is about to
1944 * become writable so that it can prohibit this or wait
1945 * for the page to get into an appropriate state.
1947 * We do this without the lock held, so that it can
1948 * sleep if it needs to.
1950 page_cache_get(old_page
);
1951 pte_unmap_unlock(page_table
, ptl
);
1953 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
1955 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
1957 goto unwritable_page
;
1959 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
1960 lock_page(old_page
);
1961 if (!old_page
->mapping
) {
1962 ret
= 0; /* retry the fault */
1963 unlock_page(old_page
);
1964 goto unwritable_page
;
1967 VM_BUG_ON(!PageLocked(old_page
));
1970 * Since we dropped the lock we need to revalidate
1971 * the PTE as someone else may have changed it. If
1972 * they did, we just return, as we can count on the
1973 * MMU to tell us if they didn't also make it writable.
1975 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
1977 if (!pte_same(*page_table
, orig_pte
)) {
1978 unlock_page(old_page
);
1979 page_cache_release(old_page
);
1985 dirty_page
= old_page
;
1986 get_page(dirty_page
);
1992 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1993 entry
= pte_mkyoung(orig_pte
);
1994 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1995 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
1996 update_mmu_cache(vma
, address
, entry
);
1997 ret
|= VM_FAULT_WRITE
;
2002 * Ok, we need to copy. Oh, well..
2004 page_cache_get(old_page
);
2006 pte_unmap_unlock(page_table
, ptl
);
2008 if (unlikely(anon_vma_prepare(vma
)))
2010 VM_BUG_ON(old_page
== ZERO_PAGE(0));
2011 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2015 * Don't let another task, with possibly unlocked vma,
2016 * keep the mlocked page.
2018 if ((vma
->vm_flags
& VM_LOCKED
) && old_page
) {
2019 lock_page(old_page
); /* for LRU manipulation */
2020 clear_page_mlock(old_page
);
2021 unlock_page(old_page
);
2023 cow_user_page(new_page
, old_page
, address
, vma
);
2024 __SetPageUptodate(new_page
);
2026 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2030 * Re-check the pte - we dropped the lock
2032 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2033 if (likely(pte_same(*page_table
, orig_pte
))) {
2035 if (!PageAnon(old_page
)) {
2036 dec_mm_counter(mm
, file_rss
);
2037 inc_mm_counter(mm
, anon_rss
);
2040 inc_mm_counter(mm
, anon_rss
);
2041 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2042 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2043 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2045 * Clear the pte entry and flush it first, before updating the
2046 * pte with the new entry. This will avoid a race condition
2047 * seen in the presence of one thread doing SMC and another
2050 ptep_clear_flush_notify(vma
, address
, page_table
);
2051 page_add_new_anon_rmap(new_page
, vma
, address
);
2052 set_pte_at(mm
, address
, page_table
, entry
);
2053 update_mmu_cache(vma
, address
, entry
);
2056 * Only after switching the pte to the new page may
2057 * we remove the mapcount here. Otherwise another
2058 * process may come and find the rmap count decremented
2059 * before the pte is switched to the new page, and
2060 * "reuse" the old page writing into it while our pte
2061 * here still points into it and can be read by other
2064 * The critical issue is to order this
2065 * page_remove_rmap with the ptp_clear_flush above.
2066 * Those stores are ordered by (if nothing else,)
2067 * the barrier present in the atomic_add_negative
2068 * in page_remove_rmap.
2070 * Then the TLB flush in ptep_clear_flush ensures that
2071 * no process can access the old page before the
2072 * decremented mapcount is visible. And the old page
2073 * cannot be reused until after the decremented
2074 * mapcount is visible. So transitively, TLBs to
2075 * old page will be flushed before it can be reused.
2077 page_remove_rmap(old_page
);
2080 /* Free the old page.. */
2081 new_page
= old_page
;
2082 ret
|= VM_FAULT_WRITE
;
2084 mem_cgroup_uncharge_page(new_page
);
2087 page_cache_release(new_page
);
2089 page_cache_release(old_page
);
2091 pte_unmap_unlock(page_table
, ptl
);
2094 * Yes, Virginia, this is actually required to prevent a race
2095 * with clear_page_dirty_for_io() from clearing the page dirty
2096 * bit after it clear all dirty ptes, but before a racing
2097 * do_wp_page installs a dirty pte.
2099 * do_no_page is protected similarly.
2101 if (!page_mkwrite
) {
2102 wait_on_page_locked(dirty_page
);
2103 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2105 put_page(dirty_page
);
2107 struct address_space
*mapping
= dirty_page
->mapping
;
2109 set_page_dirty(dirty_page
);
2110 unlock_page(dirty_page
);
2111 page_cache_release(dirty_page
);
2114 * Some device drivers do not set page.mapping
2115 * but still dirty their pages
2117 balance_dirty_pages_ratelimited(mapping
);
2121 /* file_update_time outside page_lock */
2123 file_update_time(vma
->vm_file
);
2127 page_cache_release(new_page
);
2131 unlock_page(old_page
);
2132 page_cache_release(old_page
);
2134 page_cache_release(old_page
);
2136 return VM_FAULT_OOM
;
2139 page_cache_release(old_page
);
2144 * Helper functions for unmap_mapping_range().
2146 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2148 * We have to restart searching the prio_tree whenever we drop the lock,
2149 * since the iterator is only valid while the lock is held, and anyway
2150 * a later vma might be split and reinserted earlier while lock dropped.
2152 * The list of nonlinear vmas could be handled more efficiently, using
2153 * a placeholder, but handle it in the same way until a need is shown.
2154 * It is important to search the prio_tree before nonlinear list: a vma
2155 * may become nonlinear and be shifted from prio_tree to nonlinear list
2156 * while the lock is dropped; but never shifted from list to prio_tree.
2158 * In order to make forward progress despite restarting the search,
2159 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2160 * quickly skip it next time around. Since the prio_tree search only
2161 * shows us those vmas affected by unmapping the range in question, we
2162 * can't efficiently keep all vmas in step with mapping->truncate_count:
2163 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2164 * mapping->truncate_count and vma->vm_truncate_count are protected by
2167 * In order to make forward progress despite repeatedly restarting some
2168 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2169 * and restart from that address when we reach that vma again. It might
2170 * have been split or merged, shrunk or extended, but never shifted: so
2171 * restart_addr remains valid so long as it remains in the vma's range.
2172 * unmap_mapping_range forces truncate_count to leap over page-aligned
2173 * values so we can save vma's restart_addr in its truncate_count field.
2175 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2177 static void reset_vma_truncate_counts(struct address_space
*mapping
)
2179 struct vm_area_struct
*vma
;
2180 struct prio_tree_iter iter
;
2182 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
2183 vma
->vm_truncate_count
= 0;
2184 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
2185 vma
->vm_truncate_count
= 0;
2188 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2189 unsigned long start_addr
, unsigned long end_addr
,
2190 struct zap_details
*details
)
2192 unsigned long restart_addr
;
2196 * files that support invalidating or truncating portions of the
2197 * file from under mmaped areas must have their ->fault function
2198 * return a locked page (and set VM_FAULT_LOCKED in the return).
2199 * This provides synchronisation against concurrent unmapping here.
2203 restart_addr
= vma
->vm_truncate_count
;
2204 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
2205 start_addr
= restart_addr
;
2206 if (start_addr
>= end_addr
) {
2207 /* Top of vma has been split off since last time */
2208 vma
->vm_truncate_count
= details
->truncate_count
;
2213 restart_addr
= zap_page_range(vma
, start_addr
,
2214 end_addr
- start_addr
, details
);
2215 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
2217 if (restart_addr
>= end_addr
) {
2218 /* We have now completed this vma: mark it so */
2219 vma
->vm_truncate_count
= details
->truncate_count
;
2223 /* Note restart_addr in vma's truncate_count field */
2224 vma
->vm_truncate_count
= restart_addr
;
2229 spin_unlock(details
->i_mmap_lock
);
2231 spin_lock(details
->i_mmap_lock
);
2235 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
2236 struct zap_details
*details
)
2238 struct vm_area_struct
*vma
;
2239 struct prio_tree_iter iter
;
2240 pgoff_t vba
, vea
, zba
, zea
;
2243 vma_prio_tree_foreach(vma
, &iter
, root
,
2244 details
->first_index
, details
->last_index
) {
2245 /* Skip quickly over those we have already dealt with */
2246 if (vma
->vm_truncate_count
== details
->truncate_count
)
2249 vba
= vma
->vm_pgoff
;
2250 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2251 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2252 zba
= details
->first_index
;
2255 zea
= details
->last_index
;
2259 if (unmap_mapping_range_vma(vma
,
2260 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2261 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2267 static inline void unmap_mapping_range_list(struct list_head
*head
,
2268 struct zap_details
*details
)
2270 struct vm_area_struct
*vma
;
2273 * In nonlinear VMAs there is no correspondence between virtual address
2274 * offset and file offset. So we must perform an exhaustive search
2275 * across *all* the pages in each nonlinear VMA, not just the pages
2276 * whose virtual address lies outside the file truncation point.
2279 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
2280 /* Skip quickly over those we have already dealt with */
2281 if (vma
->vm_truncate_count
== details
->truncate_count
)
2283 details
->nonlinear_vma
= vma
;
2284 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
2285 vma
->vm_end
, details
) < 0)
2291 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2292 * @mapping: the address space containing mmaps to be unmapped.
2293 * @holebegin: byte in first page to unmap, relative to the start of
2294 * the underlying file. This will be rounded down to a PAGE_SIZE
2295 * boundary. Note that this is different from vmtruncate(), which
2296 * must keep the partial page. In contrast, we must get rid of
2298 * @holelen: size of prospective hole in bytes. This will be rounded
2299 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2301 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2302 * but 0 when invalidating pagecache, don't throw away private data.
2304 void unmap_mapping_range(struct address_space
*mapping
,
2305 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2307 struct zap_details details
;
2308 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2309 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2311 /* Check for overflow. */
2312 if (sizeof(holelen
) > sizeof(hlen
)) {
2314 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2315 if (holeend
& ~(long long)ULONG_MAX
)
2316 hlen
= ULONG_MAX
- hba
+ 1;
2319 details
.check_mapping
= even_cows
? NULL
: mapping
;
2320 details
.nonlinear_vma
= NULL
;
2321 details
.first_index
= hba
;
2322 details
.last_index
= hba
+ hlen
- 1;
2323 if (details
.last_index
< details
.first_index
)
2324 details
.last_index
= ULONG_MAX
;
2325 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
2327 spin_lock(&mapping
->i_mmap_lock
);
2329 /* Protect against endless unmapping loops */
2330 mapping
->truncate_count
++;
2331 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
2332 if (mapping
->truncate_count
== 0)
2333 reset_vma_truncate_counts(mapping
);
2334 mapping
->truncate_count
++;
2336 details
.truncate_count
= mapping
->truncate_count
;
2338 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2339 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2340 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2341 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2342 spin_unlock(&mapping
->i_mmap_lock
);
2344 EXPORT_SYMBOL(unmap_mapping_range
);
2347 * vmtruncate - unmap mappings "freed" by truncate() syscall
2348 * @inode: inode of the file used
2349 * @offset: file offset to start truncating
2351 * NOTE! We have to be ready to update the memory sharing
2352 * between the file and the memory map for a potential last
2353 * incomplete page. Ugly, but necessary.
2355 int vmtruncate(struct inode
* inode
, loff_t offset
)
2357 if (inode
->i_size
< offset
) {
2358 unsigned long limit
;
2360 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
2361 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
2363 if (offset
> inode
->i_sb
->s_maxbytes
)
2365 i_size_write(inode
, offset
);
2367 struct address_space
*mapping
= inode
->i_mapping
;
2370 * truncation of in-use swapfiles is disallowed - it would
2371 * cause subsequent swapout to scribble on the now-freed
2374 if (IS_SWAPFILE(inode
))
2376 i_size_write(inode
, offset
);
2379 * unmap_mapping_range is called twice, first simply for
2380 * efficiency so that truncate_inode_pages does fewer
2381 * single-page unmaps. However after this first call, and
2382 * before truncate_inode_pages finishes, it is possible for
2383 * private pages to be COWed, which remain after
2384 * truncate_inode_pages finishes, hence the second
2385 * unmap_mapping_range call must be made for correctness.
2387 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2388 truncate_inode_pages(mapping
, offset
);
2389 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2392 if (inode
->i_op
->truncate
)
2393 inode
->i_op
->truncate(inode
);
2397 send_sig(SIGXFSZ
, current
, 0);
2401 EXPORT_SYMBOL(vmtruncate
);
2403 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
2405 struct address_space
*mapping
= inode
->i_mapping
;
2408 * If the underlying filesystem is not going to provide
2409 * a way to truncate a range of blocks (punch a hole) -
2410 * we should return failure right now.
2412 if (!inode
->i_op
->truncate_range
)
2415 mutex_lock(&inode
->i_mutex
);
2416 down_write(&inode
->i_alloc_sem
);
2417 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2418 truncate_inode_pages_range(mapping
, offset
, end
);
2419 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2420 inode
->i_op
->truncate_range(inode
, offset
, end
);
2421 up_write(&inode
->i_alloc_sem
);
2422 mutex_unlock(&inode
->i_mutex
);
2428 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2429 * but allow concurrent faults), and pte mapped but not yet locked.
2430 * We return with mmap_sem still held, but pte unmapped and unlocked.
2432 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2433 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2434 int write_access
, pte_t orig_pte
)
2440 struct mem_cgroup
*ptr
= NULL
;
2443 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2446 entry
= pte_to_swp_entry(orig_pte
);
2447 if (is_migration_entry(entry
)) {
2448 migration_entry_wait(mm
, pmd
, address
);
2451 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2452 page
= lookup_swap_cache(entry
);
2454 grab_swap_token(); /* Contend for token _before_ read-in */
2455 page
= swapin_readahead(entry
,
2456 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2459 * Back out if somebody else faulted in this pte
2460 * while we released the pte lock.
2462 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2463 if (likely(pte_same(*page_table
, orig_pte
)))
2465 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2469 /* Had to read the page from swap area: Major fault */
2470 ret
= VM_FAULT_MAJOR
;
2471 count_vm_event(PGMAJFAULT
);
2474 mark_page_accessed(page
);
2477 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2479 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
2486 * Back out if somebody else already faulted in this pte.
2488 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2489 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2492 if (unlikely(!PageUptodate(page
))) {
2493 ret
= VM_FAULT_SIGBUS
;
2498 * The page isn't present yet, go ahead with the fault.
2500 * Be careful about the sequence of operations here.
2501 * To get its accounting right, reuse_swap_page() must be called
2502 * while the page is counted on swap but not yet in mapcount i.e.
2503 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2504 * must be called after the swap_free(), or it will never succeed.
2505 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2506 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2507 * in page->private. In this case, a record in swap_cgroup is silently
2508 * discarded at swap_free().
2511 inc_mm_counter(mm
, anon_rss
);
2512 pte
= mk_pte(page
, vma
->vm_page_prot
);
2513 if (write_access
&& reuse_swap_page(page
)) {
2514 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2517 flush_icache_page(vma
, page
);
2518 set_pte_at(mm
, address
, page_table
, pte
);
2519 page_add_anon_rmap(page
, vma
, address
);
2520 /* It's better to call commit-charge after rmap is established */
2521 mem_cgroup_commit_charge_swapin(page
, ptr
);
2524 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2525 try_to_free_swap(page
);
2529 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2530 if (ret
& VM_FAULT_ERROR
)
2531 ret
&= VM_FAULT_ERROR
;
2535 /* No need to invalidate - it was non-present before */
2536 update_mmu_cache(vma
, address
, pte
);
2538 pte_unmap_unlock(page_table
, ptl
);
2542 mem_cgroup_cancel_charge_swapin(ptr
);
2543 pte_unmap_unlock(page_table
, ptl
);
2545 page_cache_release(page
);
2550 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2551 * but allow concurrent faults), and pte mapped but not yet locked.
2552 * We return with mmap_sem still held, but pte unmapped and unlocked.
2554 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2555 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2562 /* Allocate our own private page. */
2563 pte_unmap(page_table
);
2565 if (unlikely(anon_vma_prepare(vma
)))
2567 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2570 __SetPageUptodate(page
);
2572 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
2575 entry
= mk_pte(page
, vma
->vm_page_prot
);
2576 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2578 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2579 if (!pte_none(*page_table
))
2581 inc_mm_counter(mm
, anon_rss
);
2582 page_add_new_anon_rmap(page
, vma
, address
);
2583 set_pte_at(mm
, address
, page_table
, entry
);
2585 /* No need to invalidate - it was non-present before */
2586 update_mmu_cache(vma
, address
, entry
);
2588 pte_unmap_unlock(page_table
, ptl
);
2591 mem_cgroup_uncharge_page(page
);
2592 page_cache_release(page
);
2595 page_cache_release(page
);
2597 return VM_FAULT_OOM
;
2601 * __do_fault() tries to create a new page mapping. It aggressively
2602 * tries to share with existing pages, but makes a separate copy if
2603 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2604 * the next page fault.
2606 * As this is called only for pages that do not currently exist, we
2607 * do not need to flush old virtual caches or the TLB.
2609 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2610 * but allow concurrent faults), and pte neither mapped nor locked.
2611 * We return with mmap_sem still held, but pte unmapped and unlocked.
2613 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2614 unsigned long address
, pmd_t
*pmd
,
2615 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2623 struct page
*dirty_page
= NULL
;
2624 struct vm_fault vmf
;
2626 int page_mkwrite
= 0;
2628 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2633 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2634 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2638 * For consistency in subsequent calls, make the faulted page always
2641 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2642 lock_page(vmf
.page
);
2644 VM_BUG_ON(!PageLocked(vmf
.page
));
2647 * Should we do an early C-O-W break?
2650 if (flags
& FAULT_FLAG_WRITE
) {
2651 if (!(vma
->vm_flags
& VM_SHARED
)) {
2653 if (unlikely(anon_vma_prepare(vma
))) {
2657 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2663 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
)) {
2665 page_cache_release(page
);
2670 * Don't let another task, with possibly unlocked vma,
2671 * keep the mlocked page.
2673 if (vma
->vm_flags
& VM_LOCKED
)
2674 clear_page_mlock(vmf
.page
);
2675 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2676 __SetPageUptodate(page
);
2679 * If the page will be shareable, see if the backing
2680 * address space wants to know that the page is about
2681 * to become writable
2683 if (vma
->vm_ops
->page_mkwrite
) {
2687 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2688 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2690 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2692 goto unwritable_page
;
2694 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2696 if (!page
->mapping
) {
2697 ret
= 0; /* retry the fault */
2699 goto unwritable_page
;
2702 VM_BUG_ON(!PageLocked(page
));
2709 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2712 * This silly early PAGE_DIRTY setting removes a race
2713 * due to the bad i386 page protection. But it's valid
2714 * for other architectures too.
2716 * Note that if write_access is true, we either now have
2717 * an exclusive copy of the page, or this is a shared mapping,
2718 * so we can make it writable and dirty to avoid having to
2719 * handle that later.
2721 /* Only go through if we didn't race with anybody else... */
2722 if (likely(pte_same(*page_table
, orig_pte
))) {
2723 flush_icache_page(vma
, page
);
2724 entry
= mk_pte(page
, vma
->vm_page_prot
);
2725 if (flags
& FAULT_FLAG_WRITE
)
2726 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2728 inc_mm_counter(mm
, anon_rss
);
2729 page_add_new_anon_rmap(page
, vma
, address
);
2731 inc_mm_counter(mm
, file_rss
);
2732 page_add_file_rmap(page
);
2733 if (flags
& FAULT_FLAG_WRITE
) {
2735 get_page(dirty_page
);
2738 set_pte_at(mm
, address
, page_table
, entry
);
2740 /* no need to invalidate: a not-present page won't be cached */
2741 update_mmu_cache(vma
, address
, entry
);
2744 mem_cgroup_uncharge_page(page
);
2746 page_cache_release(page
);
2748 anon
= 1; /* no anon but release faulted_page */
2751 pte_unmap_unlock(page_table
, ptl
);
2755 struct address_space
*mapping
= page
->mapping
;
2757 if (set_page_dirty(dirty_page
))
2759 unlock_page(dirty_page
);
2760 put_page(dirty_page
);
2761 if (page_mkwrite
&& mapping
) {
2763 * Some device drivers do not set page.mapping but still
2766 balance_dirty_pages_ratelimited(mapping
);
2769 /* file_update_time outside page_lock */
2771 file_update_time(vma
->vm_file
);
2773 unlock_page(vmf
.page
);
2775 page_cache_release(vmf
.page
);
2781 page_cache_release(page
);
2785 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2786 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2787 int write_access
, pte_t orig_pte
)
2789 pgoff_t pgoff
= (((address
& PAGE_MASK
)
2790 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2791 unsigned int flags
= (write_access
? FAULT_FLAG_WRITE
: 0);
2793 pte_unmap(page_table
);
2794 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2798 * Fault of a previously existing named mapping. Repopulate the pte
2799 * from the encoded file_pte if possible. This enables swappable
2802 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2803 * but allow concurrent faults), and pte mapped but not yet locked.
2804 * We return with mmap_sem still held, but pte unmapped and unlocked.
2806 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2807 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2808 int write_access
, pte_t orig_pte
)
2810 unsigned int flags
= FAULT_FLAG_NONLINEAR
|
2811 (write_access
? FAULT_FLAG_WRITE
: 0);
2814 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2817 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
2819 * Page table corrupted: show pte and kill process.
2821 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2822 return VM_FAULT_OOM
;
2825 pgoff
= pte_to_pgoff(orig_pte
);
2826 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2830 * These routines also need to handle stuff like marking pages dirty
2831 * and/or accessed for architectures that don't do it in hardware (most
2832 * RISC architectures). The early dirtying is also good on the i386.
2834 * There is also a hook called "update_mmu_cache()" that architectures
2835 * with external mmu caches can use to update those (ie the Sparc or
2836 * PowerPC hashed page tables that act as extended TLBs).
2838 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2839 * but allow concurrent faults), and pte mapped but not yet locked.
2840 * We return with mmap_sem still held, but pte unmapped and unlocked.
2842 static inline int handle_pte_fault(struct mm_struct
*mm
,
2843 struct vm_area_struct
*vma
, unsigned long address
,
2844 pte_t
*pte
, pmd_t
*pmd
, int write_access
)
2850 if (!pte_present(entry
)) {
2851 if (pte_none(entry
)) {
2853 if (likely(vma
->vm_ops
->fault
))
2854 return do_linear_fault(mm
, vma
, address
,
2855 pte
, pmd
, write_access
, entry
);
2857 return do_anonymous_page(mm
, vma
, address
,
2858 pte
, pmd
, write_access
);
2860 if (pte_file(entry
))
2861 return do_nonlinear_fault(mm
, vma
, address
,
2862 pte
, pmd
, write_access
, entry
);
2863 return do_swap_page(mm
, vma
, address
,
2864 pte
, pmd
, write_access
, entry
);
2867 ptl
= pte_lockptr(mm
, pmd
);
2869 if (unlikely(!pte_same(*pte
, entry
)))
2872 if (!pte_write(entry
))
2873 return do_wp_page(mm
, vma
, address
,
2874 pte
, pmd
, ptl
, entry
);
2875 entry
= pte_mkdirty(entry
);
2877 entry
= pte_mkyoung(entry
);
2878 if (ptep_set_access_flags(vma
, address
, pte
, entry
, write_access
)) {
2879 update_mmu_cache(vma
, address
, entry
);
2882 * This is needed only for protection faults but the arch code
2883 * is not yet telling us if this is a protection fault or not.
2884 * This still avoids useless tlb flushes for .text page faults
2888 flush_tlb_page(vma
, address
);
2891 pte_unmap_unlock(pte
, ptl
);
2895 void pagefault_disable(void)
2897 current
->pagefault_disabled
++;
2899 * make sure to have issued the store before a pagefault
2904 EXPORT_SYMBOL(pagefault_disable
);
2906 void pagefault_enable(void)
2909 * make sure to issue those last loads/stores before enabling
2910 * the pagefault handler again.
2913 current
->pagefault_disabled
--;
2915 EXPORT_SYMBOL(pagefault_enable
);
2918 * By the time we get here, we already hold the mm semaphore
2920 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2921 unsigned long address
, int write_access
)
2928 __set_current_state(TASK_RUNNING
);
2930 count_vm_event(PGFAULT
);
2932 if (unlikely(is_vm_hugetlb_page(vma
)))
2933 return hugetlb_fault(mm
, vma
, address
, write_access
);
2935 pgd
= pgd_offset(mm
, address
);
2936 pud
= pud_alloc(mm
, pgd
, address
);
2938 return VM_FAULT_OOM
;
2939 pmd
= pmd_alloc(mm
, pud
, address
);
2941 return VM_FAULT_OOM
;
2942 pte
= pte_alloc_map(mm
, pmd
, address
);
2944 return VM_FAULT_OOM
;
2946 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, write_access
);
2949 #ifndef __PAGETABLE_PUD_FOLDED
2951 * Allocate page upper directory.
2952 * We've already handled the fast-path in-line.
2954 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
2956 pud_t
*new = pud_alloc_one(mm
, address
);
2960 smp_wmb(); /* See comment in __pte_alloc */
2962 spin_lock(&mm
->page_table_lock
);
2963 if (pgd_present(*pgd
)) /* Another has populated it */
2966 pgd_populate(mm
, pgd
, new);
2967 spin_unlock(&mm
->page_table_lock
);
2970 #endif /* __PAGETABLE_PUD_FOLDED */
2972 #ifndef __PAGETABLE_PMD_FOLDED
2974 * Allocate page middle directory.
2975 * We've already handled the fast-path in-line.
2977 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
2979 pmd_t
*new = pmd_alloc_one(mm
, address
);
2983 smp_wmb(); /* See comment in __pte_alloc */
2985 spin_lock(&mm
->page_table_lock
);
2986 #ifndef __ARCH_HAS_4LEVEL_HACK
2987 if (pud_present(*pud
)) /* Another has populated it */
2990 pud_populate(mm
, pud
, new);
2992 if (pgd_present(*pud
)) /* Another has populated it */
2995 pgd_populate(mm
, pud
, new);
2996 #endif /* __ARCH_HAS_4LEVEL_HACK */
2997 spin_unlock(&mm
->page_table_lock
);
3000 #endif /* __PAGETABLE_PMD_FOLDED */
3002 int make_pages_present(unsigned long addr
, unsigned long end
)
3004 int ret
, len
, write
;
3005 struct vm_area_struct
* vma
;
3007 vma
= find_vma(current
->mm
, addr
);
3010 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
3011 BUG_ON(addr
>= end
);
3012 BUG_ON(end
> vma
->vm_end
);
3013 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
3014 ret
= get_user_pages(current
, current
->mm
, addr
,
3015 len
, write
, 0, NULL
, NULL
);
3018 return ret
== len
? 0 : -EFAULT
;
3021 #if !defined(__HAVE_ARCH_GATE_AREA)
3023 #if defined(AT_SYSINFO_EHDR)
3024 static struct vm_area_struct gate_vma
;
3026 static int __init
gate_vma_init(void)
3028 gate_vma
.vm_mm
= NULL
;
3029 gate_vma
.vm_start
= FIXADDR_USER_START
;
3030 gate_vma
.vm_end
= FIXADDR_USER_END
;
3031 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3032 gate_vma
.vm_page_prot
= __P101
;
3034 * Make sure the vDSO gets into every core dump.
3035 * Dumping its contents makes post-mortem fully interpretable later
3036 * without matching up the same kernel and hardware config to see
3037 * what PC values meant.
3039 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
3042 __initcall(gate_vma_init
);
3045 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
3047 #ifdef AT_SYSINFO_EHDR
3054 int in_gate_area_no_task(unsigned long addr
)
3056 #ifdef AT_SYSINFO_EHDR
3057 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3063 #endif /* __HAVE_ARCH_GATE_AREA */
3065 #ifdef CONFIG_HAVE_IOREMAP_PROT
3066 int follow_phys(struct vm_area_struct
*vma
,
3067 unsigned long address
, unsigned int flags
,
3068 unsigned long *prot
, resource_size_t
*phys
)
3075 resource_size_t phys_addr
= 0;
3076 struct mm_struct
*mm
= vma
->vm_mm
;
3079 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3082 pgd
= pgd_offset(mm
, address
);
3083 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3086 pud
= pud_offset(pgd
, address
);
3087 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3090 pmd
= pmd_offset(pud
, address
);
3091 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3094 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3098 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3103 if (!pte_present(pte
))
3105 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3107 phys_addr
= pte_pfn(pte
);
3108 phys_addr
<<= PAGE_SHIFT
; /* Shift here to avoid overflow on PAE */
3110 *prot
= pgprot_val(pte_pgprot(pte
));
3115 pte_unmap_unlock(ptep
, ptl
);
3120 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3121 void *buf
, int len
, int write
)
3123 resource_size_t phys_addr
;
3124 unsigned long prot
= 0;
3125 void __iomem
*maddr
;
3126 int offset
= addr
& (PAGE_SIZE
-1);
3128 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3131 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3133 memcpy_toio(maddr
+ offset
, buf
, len
);
3135 memcpy_fromio(buf
, maddr
+ offset
, len
);
3143 * Access another process' address space.
3144 * Source/target buffer must be kernel space,
3145 * Do not walk the page table directly, use get_user_pages
3147 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
3149 struct mm_struct
*mm
;
3150 struct vm_area_struct
*vma
;
3151 void *old_buf
= buf
;
3153 mm
= get_task_mm(tsk
);
3157 down_read(&mm
->mmap_sem
);
3158 /* ignore errors, just check how much was successfully transferred */
3160 int bytes
, ret
, offset
;
3162 struct page
*page
= NULL
;
3164 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3165 write
, 1, &page
, &vma
);
3168 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3169 * we can access using slightly different code.
3171 #ifdef CONFIG_HAVE_IOREMAP_PROT
3172 vma
= find_vma(mm
, addr
);
3175 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3176 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3184 offset
= addr
& (PAGE_SIZE
-1);
3185 if (bytes
> PAGE_SIZE
-offset
)
3186 bytes
= PAGE_SIZE
-offset
;
3190 copy_to_user_page(vma
, page
, addr
,
3191 maddr
+ offset
, buf
, bytes
);
3192 set_page_dirty_lock(page
);
3194 copy_from_user_page(vma
, page
, addr
,
3195 buf
, maddr
+ offset
, bytes
);
3198 page_cache_release(page
);
3204 up_read(&mm
->mmap_sem
);
3207 return buf
- old_buf
;
3211 * Print the name of a VMA.
3213 void print_vma_addr(char *prefix
, unsigned long ip
)
3215 struct mm_struct
*mm
= current
->mm
;
3216 struct vm_area_struct
*vma
;
3219 * Do not print if we are in atomic
3220 * contexts (in exception stacks, etc.):
3222 if (preempt_count())
3225 down_read(&mm
->mmap_sem
);
3226 vma
= find_vma(mm
, ip
);
3227 if (vma
&& vma
->vm_file
) {
3228 struct file
*f
= vma
->vm_file
;
3229 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3233 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3236 s
= strrchr(p
, '/');
3239 printk("%s%s[%lx+%lx]", prefix
, p
,
3241 vma
->vm_end
- vma
->vm_start
);
3242 free_page((unsigned long)buf
);
3245 up_read(¤t
->mm
->mmap_sem
);
3248 #ifdef CONFIG_PROVE_LOCKING
3249 void might_fault(void)
3252 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3253 * holding the mmap_sem, this is safe because kernel memory doesn't
3254 * get paged out, therefore we'll never actually fault, and the
3255 * below annotations will generate false positives.
3257 if (segment_eq(get_fs(), KERNEL_DS
))
3262 * it would be nicer only to annotate paths which are not under
3263 * pagefault_disable, however that requires a larger audit and
3264 * providing helpers like get_user_atomic.
3266 if (!in_atomic() && current
->mm
)
3267 might_lock_read(¤t
->mm
->mmap_sem
);
3269 EXPORT_SYMBOL(might_fault
);