repo init
[linux-rt-nao.git] / mm / memory.c
blob5b6ff604d41ec6f5cbfd62f2a7b09a754c5c6521
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/kprobes.h>
52 #include <linux/mutex.h>
53 #include <linux/init.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
63 #include <asm/tlb.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
67 #include "internal.h"
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr;
72 struct page *mem_map;
74 EXPORT_SYMBOL(max_mapnr);
75 EXPORT_SYMBOL(mem_map);
76 #endif
78 unsigned long num_physpages;
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
86 void * high_memory;
88 EXPORT_SYMBOL(num_physpages);
89 EXPORT_SYMBOL(high_memory);
92 * Randomize the address space (stacks, mmaps, brk, etc.).
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
97 int randomize_va_space __read_mostly =
98 #ifdef CONFIG_COMPAT_BRK
100 #else
102 #endif
104 static int __init disable_randmaps(char *s)
106 randomize_va_space = 0;
107 return 1;
109 __setup("norandmaps", disable_randmaps);
113 * If a p?d_bad entry is found while walking page tables, report
114 * the error, before resetting entry to p?d_none. Usually (but
115 * very seldom) called out from the p?d_none_or_clear_bad macros.
118 void pgd_clear_bad(pgd_t *pgd)
120 pgd_ERROR(*pgd);
121 pgd_clear(pgd);
124 void pud_clear_bad(pud_t *pud)
126 pud_ERROR(*pud);
127 pud_clear(pud);
130 void pmd_clear_bad(pmd_t *pmd)
132 pmd_ERROR(*pmd);
133 pmd_clear(pmd);
137 * Note: this doesn't free the actual pages themselves. That
138 * has been handled earlier when unmapping all the memory regions.
140 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
142 pgtable_t token = pmd_pgtable(*pmd);
143 pmd_clear(pmd);
144 pte_free_tlb(tlb, token);
145 tlb->mm->nr_ptes--;
148 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
149 unsigned long addr, unsigned long end,
150 unsigned long floor, unsigned long ceiling)
152 pmd_t *pmd;
153 unsigned long next;
154 unsigned long start;
156 start = addr;
157 pmd = pmd_offset(pud, addr);
158 do {
159 next = pmd_addr_end(addr, end);
160 if (pmd_none_or_clear_bad(pmd))
161 continue;
162 free_pte_range(tlb, pmd);
163 } while (pmd++, addr = next, addr != end);
165 start &= PUD_MASK;
166 if (start < floor)
167 return;
168 if (ceiling) {
169 ceiling &= PUD_MASK;
170 if (!ceiling)
171 return;
173 if (end - 1 > ceiling - 1)
174 return;
176 pmd = pmd_offset(pud, start);
177 pud_clear(pud);
178 pmd_free_tlb(tlb, pmd);
181 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
182 unsigned long addr, unsigned long end,
183 unsigned long floor, unsigned long ceiling)
185 pud_t *pud;
186 unsigned long next;
187 unsigned long start;
189 start = addr;
190 pud = pud_offset(pgd, addr);
191 do {
192 next = pud_addr_end(addr, end);
193 if (pud_none_or_clear_bad(pud))
194 continue;
195 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
196 } while (pud++, addr = next, addr != end);
198 start &= PGDIR_MASK;
199 if (start < floor)
200 return;
201 if (ceiling) {
202 ceiling &= PGDIR_MASK;
203 if (!ceiling)
204 return;
206 if (end - 1 > ceiling - 1)
207 return;
209 pud = pud_offset(pgd, start);
210 pgd_clear(pgd);
211 pud_free_tlb(tlb, pud);
215 * This function frees user-level page tables of a process.
217 * Must be called with pagetable lock held.
219 void free_pgd_range(struct mmu_gather *tlb,
220 unsigned long addr, unsigned long end,
221 unsigned long floor, unsigned long ceiling)
223 pgd_t *pgd;
224 unsigned long next;
225 unsigned long start;
228 * The next few lines have given us lots of grief...
230 * Why are we testing PMD* at this top level? Because often
231 * there will be no work to do at all, and we'd prefer not to
232 * go all the way down to the bottom just to discover that.
234 * Why all these "- 1"s? Because 0 represents both the bottom
235 * of the address space and the top of it (using -1 for the
236 * top wouldn't help much: the masks would do the wrong thing).
237 * The rule is that addr 0 and floor 0 refer to the bottom of
238 * the address space, but end 0 and ceiling 0 refer to the top
239 * Comparisons need to use "end - 1" and "ceiling - 1" (though
240 * that end 0 case should be mythical).
242 * Wherever addr is brought up or ceiling brought down, we must
243 * be careful to reject "the opposite 0" before it confuses the
244 * subsequent tests. But what about where end is brought down
245 * by PMD_SIZE below? no, end can't go down to 0 there.
247 * Whereas we round start (addr) and ceiling down, by different
248 * masks at different levels, in order to test whether a table
249 * now has no other vmas using it, so can be freed, we don't
250 * bother to round floor or end up - the tests don't need that.
253 addr &= PMD_MASK;
254 if (addr < floor) {
255 addr += PMD_SIZE;
256 if (!addr)
257 return;
259 if (ceiling) {
260 ceiling &= PMD_MASK;
261 if (!ceiling)
262 return;
264 if (end - 1 > ceiling - 1)
265 end -= PMD_SIZE;
266 if (addr > end - 1)
267 return;
269 start = addr;
270 pgd = pgd_offset(tlb->mm, addr);
271 do {
272 next = pgd_addr_end(addr, end);
273 if (pgd_none_or_clear_bad(pgd))
274 continue;
275 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
276 } while (pgd++, addr = next, addr != end);
279 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
280 unsigned long floor, unsigned long ceiling)
282 while (vma) {
283 struct vm_area_struct *next = vma->vm_next;
284 unsigned long addr = vma->vm_start;
287 * Hide vma from rmap and vmtruncate before freeing pgtables
289 anon_vma_unlink(vma);
290 unlink_file_vma(vma);
292 if (is_vm_hugetlb_page(vma)) {
293 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
294 floor, next? next->vm_start: ceiling);
295 } else {
297 * Optimization: gather nearby vmas into one call down
299 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
300 && !is_vm_hugetlb_page(next)) {
301 vma = next;
302 next = vma->vm_next;
303 anon_vma_unlink(vma);
304 unlink_file_vma(vma);
306 free_pgd_range(tlb, addr, vma->vm_end,
307 floor, next? next->vm_start: ceiling);
309 vma = next;
313 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
315 pgtable_t new = pte_alloc_one(mm, address);
316 if (!new)
317 return -ENOMEM;
320 * Ensure all pte setup (eg. pte page lock and page clearing) are
321 * visible before the pte is made visible to other CPUs by being
322 * put into page tables.
324 * The other side of the story is the pointer chasing in the page
325 * table walking code (when walking the page table without locking;
326 * ie. most of the time). Fortunately, these data accesses consist
327 * of a chain of data-dependent loads, meaning most CPUs (alpha
328 * being the notable exception) will already guarantee loads are
329 * seen in-order. See the alpha page table accessors for the
330 * smp_read_barrier_depends() barriers in page table walking code.
332 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
334 spin_lock(&mm->page_table_lock);
335 if (!pmd_present(*pmd)) { /* Has another populated it ? */
336 mm->nr_ptes++;
337 pmd_populate(mm, pmd, new);
338 new = NULL;
340 spin_unlock(&mm->page_table_lock);
341 if (new)
342 pte_free(mm, new);
343 return 0;
346 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
348 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
349 if (!new)
350 return -ENOMEM;
352 smp_wmb(); /* See comment in __pte_alloc */
354 spin_lock(&init_mm.page_table_lock);
355 if (!pmd_present(*pmd)) { /* Has another populated it ? */
356 pmd_populate_kernel(&init_mm, pmd, new);
357 new = NULL;
359 spin_unlock(&init_mm.page_table_lock);
360 if (new)
361 pte_free_kernel(&init_mm, new);
362 return 0;
365 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
367 if (file_rss)
368 add_mm_counter(mm, file_rss, file_rss);
369 if (anon_rss)
370 add_mm_counter(mm, anon_rss, anon_rss);
374 * This function is called to print an error when a bad pte
375 * is found. For example, we might have a PFN-mapped pte in
376 * a region that doesn't allow it.
378 * The calling function must still handle the error.
380 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
381 pte_t pte, struct page *page)
383 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
384 pud_t *pud = pud_offset(pgd, addr);
385 pmd_t *pmd = pmd_offset(pud, addr);
386 struct address_space *mapping;
387 pgoff_t index;
388 static unsigned long resume;
389 static unsigned long nr_shown;
390 static unsigned long nr_unshown;
393 * Allow a burst of 60 reports, then keep quiet for that minute;
394 * or allow a steady drip of one report per second.
396 if (nr_shown == 60) {
397 if (time_before(jiffies, resume)) {
398 nr_unshown++;
399 return;
401 if (nr_unshown) {
402 printk(KERN_ALERT
403 "BUG: Bad page map: %lu messages suppressed\n",
404 nr_unshown);
405 nr_unshown = 0;
407 nr_shown = 0;
409 if (nr_shown++ == 0)
410 resume = jiffies + 60 * HZ;
412 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
413 index = linear_page_index(vma, addr);
415 printk(KERN_ALERT
416 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
417 current->comm,
418 (long long)pte_val(pte), (long long)pmd_val(*pmd));
419 if (page) {
420 printk(KERN_ALERT
421 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
422 page, (void *)page->flags, page_count(page),
423 page_mapcount(page), page->mapping, page->index);
425 printk(KERN_ALERT
426 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
427 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
429 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
431 if (vma->vm_ops)
432 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
433 (unsigned long)vma->vm_ops->fault);
434 if (vma->vm_file && vma->vm_file->f_op)
435 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
436 (unsigned long)vma->vm_file->f_op->mmap);
437 dump_stack();
438 add_taint(TAINT_BAD_PAGE);
441 static inline int is_cow_mapping(unsigned int flags)
443 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
447 * vm_normal_page -- This function gets the "struct page" associated with a pte.
449 * "Special" mappings do not wish to be associated with a "struct page" (either
450 * it doesn't exist, or it exists but they don't want to touch it). In this
451 * case, NULL is returned here. "Normal" mappings do have a struct page.
453 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
454 * pte bit, in which case this function is trivial. Secondly, an architecture
455 * may not have a spare pte bit, which requires a more complicated scheme,
456 * described below.
458 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
459 * special mapping (even if there are underlying and valid "struct pages").
460 * COWed pages of a VM_PFNMAP are always normal.
462 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
463 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
464 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
465 * mapping will always honor the rule
467 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
469 * And for normal mappings this is false.
471 * This restricts such mappings to be a linear translation from virtual address
472 * to pfn. To get around this restriction, we allow arbitrary mappings so long
473 * as the vma is not a COW mapping; in that case, we know that all ptes are
474 * special (because none can have been COWed).
477 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
479 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
480 * page" backing, however the difference is that _all_ pages with a struct
481 * page (that is, those where pfn_valid is true) are refcounted and considered
482 * normal pages by the VM. The disadvantage is that pages are refcounted
483 * (which can be slower and simply not an option for some PFNMAP users). The
484 * advantage is that we don't have to follow the strict linearity rule of
485 * PFNMAP mappings in order to support COWable mappings.
488 #ifdef __HAVE_ARCH_PTE_SPECIAL
489 # define HAVE_PTE_SPECIAL 1
490 #else
491 # define HAVE_PTE_SPECIAL 0
492 #endif
493 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
494 pte_t pte)
496 unsigned long pfn = pte_pfn(pte);
498 if (HAVE_PTE_SPECIAL) {
499 if (likely(!pte_special(pte)))
500 goto check_pfn;
501 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
502 print_bad_pte(vma, addr, pte, NULL);
503 return NULL;
506 /* !HAVE_PTE_SPECIAL case follows: */
508 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
509 if (vma->vm_flags & VM_MIXEDMAP) {
510 if (!pfn_valid(pfn))
511 return NULL;
512 goto out;
513 } else {
514 unsigned long off;
515 off = (addr - vma->vm_start) >> PAGE_SHIFT;
516 if (pfn == vma->vm_pgoff + off)
517 return NULL;
518 if (!is_cow_mapping(vma->vm_flags))
519 return NULL;
523 check_pfn:
524 if (unlikely(pfn > highest_memmap_pfn)) {
525 print_bad_pte(vma, addr, pte, NULL);
526 return NULL;
530 * NOTE! We still have PageReserved() pages in the page tables.
531 * eg. VDSO mappings can cause them to exist.
533 out:
534 return pfn_to_page(pfn);
538 * copy one vm_area from one task to the other. Assumes the page tables
539 * already present in the new task to be cleared in the whole range
540 * covered by this vma.
543 static inline void
544 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
545 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
546 unsigned long addr, int *rss)
548 unsigned long vm_flags = vma->vm_flags;
549 pte_t pte = *src_pte;
550 struct page *page;
552 /* pte contains position in swap or file, so copy. */
553 if (unlikely(!pte_present(pte))) {
554 if (!pte_file(pte)) {
555 swp_entry_t entry = pte_to_swp_entry(pte);
557 swap_duplicate(entry);
558 /* make sure dst_mm is on swapoff's mmlist. */
559 if (unlikely(list_empty(&dst_mm->mmlist))) {
560 spin_lock(&mmlist_lock);
561 if (list_empty(&dst_mm->mmlist))
562 list_add(&dst_mm->mmlist,
563 &src_mm->mmlist);
564 spin_unlock(&mmlist_lock);
566 if (is_write_migration_entry(entry) &&
567 is_cow_mapping(vm_flags)) {
569 * COW mappings require pages in both parent
570 * and child to be set to read.
572 make_migration_entry_read(&entry);
573 pte = swp_entry_to_pte(entry);
574 set_pte_at(src_mm, addr, src_pte, pte);
577 goto out_set_pte;
581 * If it's a COW mapping, write protect it both
582 * in the parent and the child
584 if (is_cow_mapping(vm_flags)) {
585 ptep_set_wrprotect(src_mm, addr, src_pte);
586 pte = pte_wrprotect(pte);
590 * If it's a shared mapping, mark it clean in
591 * the child
593 if (vm_flags & VM_SHARED)
594 pte = pte_mkclean(pte);
595 pte = pte_mkold(pte);
597 page = vm_normal_page(vma, addr, pte);
598 if (page) {
599 get_page(page);
600 page_dup_rmap(page, vma, addr);
601 rss[!!PageAnon(page)]++;
604 out_set_pte:
605 set_pte_at(dst_mm, addr, dst_pte, pte);
608 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
609 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
610 unsigned long addr, unsigned long end)
612 pte_t *src_pte, *dst_pte;
613 spinlock_t *src_ptl, *dst_ptl;
614 int progress = 0;
615 int rss[2];
617 again:
618 rss[1] = rss[0] = 0;
619 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
620 if (!dst_pte)
621 return -ENOMEM;
622 src_pte = pte_offset_map_nested(src_pmd, addr);
623 src_ptl = pte_lockptr(src_mm, src_pmd);
624 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
625 arch_enter_lazy_mmu_mode();
627 do {
629 * We are holding two locks at this point - either of them
630 * could generate latencies in another task on another CPU.
632 if (progress >= 32) {
633 progress = 0;
634 if (need_resched() ||
635 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
636 break;
638 if (pte_none(*src_pte)) {
639 progress++;
640 continue;
642 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
643 progress += 8;
644 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
646 arch_leave_lazy_mmu_mode();
647 spin_unlock(src_ptl);
648 pte_unmap_nested(src_pte - 1);
649 add_mm_rss(dst_mm, rss[0], rss[1]);
650 pte_unmap_unlock(dst_pte - 1, dst_ptl);
651 cond_resched();
652 if (addr != end)
653 goto again;
654 return 0;
657 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
658 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
659 unsigned long addr, unsigned long end)
661 pmd_t *src_pmd, *dst_pmd;
662 unsigned long next;
664 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
665 if (!dst_pmd)
666 return -ENOMEM;
667 src_pmd = pmd_offset(src_pud, addr);
668 do {
669 next = pmd_addr_end(addr, end);
670 if (pmd_none_or_clear_bad(src_pmd))
671 continue;
672 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
673 vma, addr, next))
674 return -ENOMEM;
675 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
676 return 0;
679 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
680 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
681 unsigned long addr, unsigned long end)
683 pud_t *src_pud, *dst_pud;
684 unsigned long next;
686 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
687 if (!dst_pud)
688 return -ENOMEM;
689 src_pud = pud_offset(src_pgd, addr);
690 do {
691 next = pud_addr_end(addr, end);
692 if (pud_none_or_clear_bad(src_pud))
693 continue;
694 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
695 vma, addr, next))
696 return -ENOMEM;
697 } while (dst_pud++, src_pud++, addr = next, addr != end);
698 return 0;
701 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
702 struct vm_area_struct *vma)
704 pgd_t *src_pgd, *dst_pgd;
705 unsigned long next;
706 unsigned long addr = vma->vm_start;
707 unsigned long end = vma->vm_end;
708 int ret;
711 * Don't copy ptes where a page fault will fill them correctly.
712 * Fork becomes much lighter when there are big shared or private
713 * readonly mappings. The tradeoff is that copy_page_range is more
714 * efficient than faulting.
716 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
717 if (!vma->anon_vma)
718 return 0;
721 if (is_vm_hugetlb_page(vma))
722 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
724 if (unlikely(is_pfn_mapping(vma))) {
726 * We do not free on error cases below as remove_vma
727 * gets called on error from higher level routine
729 ret = track_pfn_vma_copy(vma);
730 if (ret)
731 return ret;
735 * We need to invalidate the secondary MMU mappings only when
736 * there could be a permission downgrade on the ptes of the
737 * parent mm. And a permission downgrade will only happen if
738 * is_cow_mapping() returns true.
740 if (is_cow_mapping(vma->vm_flags))
741 mmu_notifier_invalidate_range_start(src_mm, addr, end);
743 ret = 0;
744 dst_pgd = pgd_offset(dst_mm, addr);
745 src_pgd = pgd_offset(src_mm, addr);
746 do {
747 next = pgd_addr_end(addr, end);
748 if (pgd_none_or_clear_bad(src_pgd))
749 continue;
750 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
751 vma, addr, next))) {
752 ret = -ENOMEM;
753 break;
755 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
757 if (is_cow_mapping(vma->vm_flags))
758 mmu_notifier_invalidate_range_end(src_mm,
759 vma->vm_start, end);
760 return ret;
763 static unsigned long zap_pte_range(struct mmu_gather *tlb,
764 struct vm_area_struct *vma, pmd_t *pmd,
765 unsigned long addr, unsigned long end,
766 long *zap_work, struct zap_details *details)
768 struct mm_struct *mm = tlb->mm;
769 pte_t *pte;
770 spinlock_t *ptl;
771 int file_rss = 0;
772 int anon_rss = 0;
774 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
775 arch_enter_lazy_mmu_mode();
776 do {
777 pte_t ptent = *pte;
778 if (pte_none(ptent)) {
779 (*zap_work)--;
780 continue;
783 (*zap_work) -= PAGE_SIZE;
785 if (pte_present(ptent)) {
786 struct page *page;
788 page = vm_normal_page(vma, addr, ptent);
789 if (unlikely(details) && page) {
791 * unmap_shared_mapping_pages() wants to
792 * invalidate cache without truncating:
793 * unmap shared but keep private pages.
795 if (details->check_mapping &&
796 details->check_mapping != page->mapping)
797 continue;
799 * Each page->index must be checked when
800 * invalidating or truncating nonlinear.
802 if (details->nonlinear_vma &&
803 (page->index < details->first_index ||
804 page->index > details->last_index))
805 continue;
807 ptent = ptep_get_and_clear_full(mm, addr, pte,
808 tlb->fullmm);
809 tlb_remove_tlb_entry(tlb, pte, addr);
810 if (unlikely(!page))
811 continue;
812 if (unlikely(details) && details->nonlinear_vma
813 && linear_page_index(details->nonlinear_vma,
814 addr) != page->index)
815 set_pte_at(mm, addr, pte,
816 pgoff_to_pte(page->index));
817 if (PageAnon(page))
818 anon_rss--;
819 else {
820 if (pte_dirty(ptent))
821 set_page_dirty(page);
822 if (pte_young(ptent) &&
823 likely(!VM_SequentialReadHint(vma)))
824 mark_page_accessed(page);
825 file_rss--;
827 page_remove_rmap(page);
828 if (unlikely(page_mapcount(page) < 0))
829 print_bad_pte(vma, addr, ptent, page);
830 tlb_remove_page(tlb, page);
831 continue;
834 * If details->check_mapping, we leave swap entries;
835 * if details->nonlinear_vma, we leave file entries.
837 if (unlikely(details))
838 continue;
839 if (pte_file(ptent)) {
840 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
841 print_bad_pte(vma, addr, ptent, NULL);
842 } else if
843 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
844 print_bad_pte(vma, addr, ptent, NULL);
845 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
846 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
848 add_mm_rss(mm, file_rss, anon_rss);
849 arch_leave_lazy_mmu_mode();
850 pte_unmap_unlock(pte - 1, ptl);
852 return addr;
855 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
856 struct vm_area_struct *vma, pud_t *pud,
857 unsigned long addr, unsigned long end,
858 long *zap_work, struct zap_details *details)
860 pmd_t *pmd;
861 unsigned long next;
863 pmd = pmd_offset(pud, addr);
864 do {
865 next = pmd_addr_end(addr, end);
866 if (pmd_none_or_clear_bad(pmd)) {
867 (*zap_work)--;
868 continue;
870 next = zap_pte_range(tlb, vma, pmd, addr, next,
871 zap_work, details);
872 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
874 return addr;
877 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
878 struct vm_area_struct *vma, pgd_t *pgd,
879 unsigned long addr, unsigned long end,
880 long *zap_work, struct zap_details *details)
882 pud_t *pud;
883 unsigned long next;
885 pud = pud_offset(pgd, addr);
886 do {
887 next = pud_addr_end(addr, end);
888 if (pud_none_or_clear_bad(pud)) {
889 (*zap_work)--;
890 continue;
892 next = zap_pmd_range(tlb, vma, pud, addr, next,
893 zap_work, details);
894 } while (pud++, addr = next, (addr != end && *zap_work > 0));
896 return addr;
899 static unsigned long unmap_page_range(struct mmu_gather *tlb,
900 struct vm_area_struct *vma,
901 unsigned long addr, unsigned long end,
902 long *zap_work, struct zap_details *details)
904 pgd_t *pgd;
905 unsigned long next;
907 if (details && !details->check_mapping && !details->nonlinear_vma)
908 details = NULL;
910 BUG_ON(addr >= end);
911 tlb_start_vma(tlb, vma);
912 pgd = pgd_offset(vma->vm_mm, addr);
913 do {
914 next = pgd_addr_end(addr, end);
915 if (pgd_none_or_clear_bad(pgd)) {
916 (*zap_work)--;
917 continue;
919 next = zap_pud_range(tlb, vma, pgd, addr, next,
920 zap_work, details);
921 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
922 tlb_end_vma(tlb, vma);
924 return addr;
927 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_RT)
928 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
929 #else
931 * No preempt: go for improved straight-line efficiency
932 * on PREEMPT_RT this is not a critical latency-path.
934 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
935 #endif
938 * unmap_vmas - unmap a range of memory covered by a list of vma's
939 * @tlbp: address of the caller's struct mmu_gather
940 * @vma: the starting vma
941 * @start_addr: virtual address at which to start unmapping
942 * @end_addr: virtual address at which to end unmapping
943 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
944 * @details: details of nonlinear truncation or shared cache invalidation
946 * Returns the end address of the unmapping (restart addr if interrupted).
948 * Unmap all pages in the vma list.
950 * We aim to not hold locks for too long (for scheduling latency reasons).
951 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
952 * return the ending mmu_gather to the caller.
954 * Only addresses between `start' and `end' will be unmapped.
956 * The VMA list must be sorted in ascending virtual address order.
958 * unmap_vmas() assumes that the caller will flush the whole unmapped address
959 * range after unmap_vmas() returns. So the only responsibility here is to
960 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
961 * drops the lock and schedules.
963 unsigned long unmap_vmas(struct mmu_gather *tlb,
964 struct vm_area_struct *vma, unsigned long start_addr,
965 unsigned long end_addr, unsigned long *nr_accounted,
966 struct zap_details *details)
968 long zap_work = ZAP_BLOCK_SIZE;
969 unsigned long start = start_addr;
970 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
971 struct mm_struct *mm = vma->vm_mm;
973 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
974 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
975 unsigned long end;
977 start = max(vma->vm_start, start_addr);
978 if (start >= vma->vm_end)
979 continue;
980 end = min(vma->vm_end, end_addr);
981 if (end <= vma->vm_start)
982 continue;
984 if (vma->vm_flags & VM_ACCOUNT)
985 *nr_accounted += (end - start) >> PAGE_SHIFT;
987 if (unlikely(is_pfn_mapping(vma)))
988 untrack_pfn_vma(vma, 0, 0);
990 while (start != end) {
991 if (unlikely(is_vm_hugetlb_page(vma))) {
993 * It is undesirable to test vma->vm_file as it
994 * should be non-null for valid hugetlb area.
995 * However, vm_file will be NULL in the error
996 * cleanup path of do_mmap_pgoff. When
997 * hugetlbfs ->mmap method fails,
998 * do_mmap_pgoff() nullifies vma->vm_file
999 * before calling this function to clean up.
1000 * Since no pte has actually been setup, it is
1001 * safe to do nothing in this case.
1003 if (vma->vm_file) {
1004 unmap_hugepage_range(vma, start, end, NULL);
1005 zap_work -= (end - start) /
1006 pages_per_huge_page(hstate_vma(vma));
1009 start = end;
1010 } else
1011 start = unmap_page_range(tlb, vma,
1012 start, end, &zap_work, details);
1014 if (zap_work > 0) {
1015 BUG_ON(start != end);
1016 break;
1019 if (need_resched() ||
1020 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1021 if (i_mmap_lock)
1022 goto out;
1023 cond_resched();
1026 zap_work = ZAP_BLOCK_SIZE;
1029 out:
1030 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1031 return start; /* which is now the end (or restart) address */
1035 * zap_page_range - remove user pages in a given range
1036 * @vma: vm_area_struct holding the applicable pages
1037 * @address: starting address of pages to zap
1038 * @size: number of bytes to zap
1039 * @details: details of nonlinear truncation or shared cache invalidation
1041 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1042 unsigned long size, struct zap_details *details)
1044 struct mm_struct *mm = vma->vm_mm;
1045 struct mmu_gather tlb;
1046 unsigned long end = address + size;
1047 unsigned long nr_accounted = 0;
1049 lru_add_drain();
1050 tlb_gather_mmu(&tlb, mm, 0);
1051 update_hiwater_rss(mm);
1052 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1053 tlb_finish_mmu(&tlb, address, end);
1054 return end;
1058 * zap_vma_ptes - remove ptes mapping the vma
1059 * @vma: vm_area_struct holding ptes to be zapped
1060 * @address: starting address of pages to zap
1061 * @size: number of bytes to zap
1063 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1065 * The entire address range must be fully contained within the vma.
1067 * Returns 0 if successful.
1069 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1070 unsigned long size)
1072 if (address < vma->vm_start || address + size > vma->vm_end ||
1073 !(vma->vm_flags & VM_PFNMAP))
1074 return -1;
1075 zap_page_range(vma, address, size, NULL);
1076 return 0;
1078 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1081 * Do a quick page-table lookup for a single page.
1083 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1084 unsigned int flags)
1086 pgd_t *pgd;
1087 pud_t *pud;
1088 pmd_t *pmd;
1089 pte_t *ptep, pte;
1090 spinlock_t *ptl;
1091 struct page *page;
1092 struct mm_struct *mm = vma->vm_mm;
1094 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1095 if (!IS_ERR(page)) {
1096 BUG_ON(flags & FOLL_GET);
1097 goto out;
1100 page = NULL;
1101 pgd = pgd_offset(mm, address);
1102 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1103 goto no_page_table;
1105 pud = pud_offset(pgd, address);
1106 if (pud_none(*pud))
1107 goto no_page_table;
1108 if (pud_huge(*pud)) {
1109 BUG_ON(flags & FOLL_GET);
1110 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1111 goto out;
1113 if (unlikely(pud_bad(*pud)))
1114 goto no_page_table;
1116 pmd = pmd_offset(pud, address);
1117 if (pmd_none(*pmd))
1118 goto no_page_table;
1119 if (pmd_huge(*pmd)) {
1120 BUG_ON(flags & FOLL_GET);
1121 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1122 goto out;
1124 if (unlikely(pmd_bad(*pmd)))
1125 goto no_page_table;
1127 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1129 pte = *ptep;
1130 if (!pte_present(pte))
1131 goto no_page;
1132 if ((flags & FOLL_WRITE) && !pte_write(pte))
1133 goto unlock;
1134 page = vm_normal_page(vma, address, pte);
1135 if (unlikely(!page))
1136 goto bad_page;
1138 if (flags & FOLL_GET)
1139 get_page(page);
1140 if (flags & FOLL_TOUCH) {
1141 if ((flags & FOLL_WRITE) &&
1142 !pte_dirty(pte) && !PageDirty(page))
1143 set_page_dirty(page);
1144 mark_page_accessed(page);
1146 unlock:
1147 pte_unmap_unlock(ptep, ptl);
1148 out:
1149 return page;
1151 bad_page:
1152 pte_unmap_unlock(ptep, ptl);
1153 return ERR_PTR(-EFAULT);
1155 no_page:
1156 pte_unmap_unlock(ptep, ptl);
1157 if (!pte_none(pte))
1158 return page;
1159 /* Fall through to ZERO_PAGE handling */
1160 no_page_table:
1162 * When core dumping an enormous anonymous area that nobody
1163 * has touched so far, we don't want to allocate page tables.
1165 if (flags & FOLL_ANON) {
1166 page = ZERO_PAGE(0);
1167 if (flags & FOLL_GET)
1168 get_page(page);
1169 BUG_ON(flags & FOLL_WRITE);
1171 return page;
1174 /* Can we do the FOLL_ANON optimization? */
1175 static inline int use_zero_page(struct vm_area_struct *vma)
1178 * We don't want to optimize FOLL_ANON for make_pages_present()
1179 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1180 * we want to get the page from the page tables to make sure
1181 * that we serialize and update with any other user of that
1182 * mapping.
1184 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1185 return 0;
1187 * And if we have a fault routine, it's not an anonymous region.
1189 return !vma->vm_ops || !vma->vm_ops->fault;
1194 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1195 unsigned long start, int len, int flags,
1196 struct page **pages, struct vm_area_struct **vmas)
1198 int i;
1199 unsigned int vm_flags = 0;
1200 int write = !!(flags & GUP_FLAGS_WRITE);
1201 int force = !!(flags & GUP_FLAGS_FORCE);
1202 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1203 int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
1205 if (len <= 0)
1206 return 0;
1208 * Require read or write permissions.
1209 * If 'force' is set, we only require the "MAY" flags.
1211 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1212 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1213 i = 0;
1215 do {
1216 struct vm_area_struct *vma;
1217 unsigned int foll_flags;
1219 vma = find_extend_vma(mm, start);
1220 if (!vma && in_gate_area(tsk, start)) {
1221 unsigned long pg = start & PAGE_MASK;
1222 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1223 pgd_t *pgd;
1224 pud_t *pud;
1225 pmd_t *pmd;
1226 pte_t *pte;
1228 /* user gate pages are read-only */
1229 if (!ignore && write)
1230 return i ? : -EFAULT;
1231 if (pg > TASK_SIZE)
1232 pgd = pgd_offset_k(pg);
1233 else
1234 pgd = pgd_offset_gate(mm, pg);
1235 BUG_ON(pgd_none(*pgd));
1236 pud = pud_offset(pgd, pg);
1237 BUG_ON(pud_none(*pud));
1238 pmd = pmd_offset(pud, pg);
1239 if (pmd_none(*pmd))
1240 return i ? : -EFAULT;
1241 pte = pte_offset_map(pmd, pg);
1242 if (pte_none(*pte)) {
1243 pte_unmap(pte);
1244 return i ? : -EFAULT;
1246 if (pages) {
1247 struct page *page = vm_normal_page(gate_vma, start, *pte);
1248 pages[i] = page;
1249 if (page)
1250 get_page(page);
1252 pte_unmap(pte);
1253 if (vmas)
1254 vmas[i] = gate_vma;
1255 i++;
1256 start += PAGE_SIZE;
1257 len--;
1258 continue;
1261 if (!vma ||
1262 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1263 (!ignore && !(vm_flags & vma->vm_flags)))
1264 return i ? : -EFAULT;
1266 if (is_vm_hugetlb_page(vma)) {
1267 i = follow_hugetlb_page(mm, vma, pages, vmas,
1268 &start, &len, i, write);
1269 continue;
1272 foll_flags = FOLL_TOUCH;
1273 if (pages)
1274 foll_flags |= FOLL_GET;
1275 if (!write && use_zero_page(vma))
1276 foll_flags |= FOLL_ANON;
1278 do {
1279 struct page *page;
1282 * If we have a pending SIGKILL, don't keep faulting
1283 * pages and potentially allocating memory, unless
1284 * current is handling munlock--e.g., on exit. In
1285 * that case, we are not allocating memory. Rather,
1286 * we're only unlocking already resident/mapped pages.
1288 if (unlikely(!ignore_sigkill &&
1289 fatal_signal_pending(current)))
1290 return i ? i : -ERESTARTSYS;
1292 if (write)
1293 foll_flags |= FOLL_WRITE;
1295 cond_resched();
1296 while (!(page = follow_page(vma, start, foll_flags))) {
1297 int ret;
1298 ret = handle_mm_fault(mm, vma, start,
1299 foll_flags & FOLL_WRITE);
1300 if (ret & VM_FAULT_ERROR) {
1301 if (ret & VM_FAULT_OOM)
1302 return i ? i : -ENOMEM;
1303 else if (ret & VM_FAULT_SIGBUS)
1304 return i ? i : -EFAULT;
1305 BUG();
1307 if (ret & VM_FAULT_MAJOR)
1308 tsk->maj_flt++;
1309 else
1310 tsk->min_flt++;
1313 * The VM_FAULT_WRITE bit tells us that
1314 * do_wp_page has broken COW when necessary,
1315 * even if maybe_mkwrite decided not to set
1316 * pte_write. We can thus safely do subsequent
1317 * page lookups as if they were reads. But only
1318 * do so when looping for pte_write is futile:
1319 * in some cases userspace may also be wanting
1320 * to write to the gotten user page, which a
1321 * read fault here might prevent (a readonly
1322 * page might get reCOWed by userspace write).
1324 if ((ret & VM_FAULT_WRITE) &&
1325 !(vma->vm_flags & VM_WRITE))
1326 foll_flags &= ~FOLL_WRITE;
1328 cond_resched();
1330 if (IS_ERR(page))
1331 return i ? i : PTR_ERR(page);
1332 if (pages) {
1333 pages[i] = page;
1335 flush_anon_page(vma, page, start);
1336 flush_dcache_page(page);
1338 if (vmas)
1339 vmas[i] = vma;
1340 i++;
1341 start += PAGE_SIZE;
1342 len--;
1343 } while (len && start < vma->vm_end);
1344 } while (len);
1345 return i;
1348 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1349 unsigned long start, int len, int write, int force,
1350 struct page **pages, struct vm_area_struct **vmas)
1352 int flags = 0;
1354 if (write)
1355 flags |= GUP_FLAGS_WRITE;
1356 if (force)
1357 flags |= GUP_FLAGS_FORCE;
1359 return __get_user_pages(tsk, mm,
1360 start, len, flags,
1361 pages, vmas);
1364 EXPORT_SYMBOL(get_user_pages);
1366 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1367 spinlock_t **ptl)
1369 pgd_t * pgd = pgd_offset(mm, addr);
1370 pud_t * pud = pud_alloc(mm, pgd, addr);
1371 if (pud) {
1372 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1373 if (pmd)
1374 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1376 return NULL;
1380 * This is the old fallback for page remapping.
1382 * For historical reasons, it only allows reserved pages. Only
1383 * old drivers should use this, and they needed to mark their
1384 * pages reserved for the old functions anyway.
1386 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1387 struct page *page, pgprot_t prot)
1389 struct mm_struct *mm = vma->vm_mm;
1390 int retval;
1391 pte_t *pte;
1392 spinlock_t *ptl;
1394 retval = -EINVAL;
1395 if (PageAnon(page))
1396 goto out;
1397 retval = -ENOMEM;
1398 flush_dcache_page(page);
1399 pte = get_locked_pte(mm, addr, &ptl);
1400 if (!pte)
1401 goto out;
1402 retval = -EBUSY;
1403 if (!pte_none(*pte))
1404 goto out_unlock;
1406 /* Ok, finally just insert the thing.. */
1407 get_page(page);
1408 inc_mm_counter(mm, file_rss);
1409 page_add_file_rmap(page);
1410 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1412 retval = 0;
1413 pte_unmap_unlock(pte, ptl);
1414 return retval;
1415 out_unlock:
1416 pte_unmap_unlock(pte, ptl);
1417 out:
1418 return retval;
1422 * vm_insert_page - insert single page into user vma
1423 * @vma: user vma to map to
1424 * @addr: target user address of this page
1425 * @page: source kernel page
1427 * This allows drivers to insert individual pages they've allocated
1428 * into a user vma.
1430 * The page has to be a nice clean _individual_ kernel allocation.
1431 * If you allocate a compound page, you need to have marked it as
1432 * such (__GFP_COMP), or manually just split the page up yourself
1433 * (see split_page()).
1435 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1436 * took an arbitrary page protection parameter. This doesn't allow
1437 * that. Your vma protection will have to be set up correctly, which
1438 * means that if you want a shared writable mapping, you'd better
1439 * ask for a shared writable mapping!
1441 * The page does not need to be reserved.
1443 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1444 struct page *page)
1446 if (addr < vma->vm_start || addr >= vma->vm_end)
1447 return -EFAULT;
1448 if (!page_count(page))
1449 return -EINVAL;
1450 vma->vm_flags |= VM_INSERTPAGE;
1451 return insert_page(vma, addr, page, vma->vm_page_prot);
1453 EXPORT_SYMBOL(vm_insert_page);
1455 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1456 unsigned long pfn, pgprot_t prot)
1458 struct mm_struct *mm = vma->vm_mm;
1459 int retval;
1460 pte_t *pte, entry;
1461 spinlock_t *ptl;
1463 retval = -ENOMEM;
1464 pte = get_locked_pte(mm, addr, &ptl);
1465 if (!pte)
1466 goto out;
1467 retval = -EBUSY;
1468 if (!pte_none(*pte))
1469 goto out_unlock;
1471 /* Ok, finally just insert the thing.. */
1472 entry = pte_mkspecial(pfn_pte(pfn, prot));
1473 set_pte_at(mm, addr, pte, entry);
1474 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1476 retval = 0;
1477 out_unlock:
1478 pte_unmap_unlock(pte, ptl);
1479 out:
1480 return retval;
1484 * vm_insert_pfn - insert single pfn into user vma
1485 * @vma: user vma to map to
1486 * @addr: target user address of this page
1487 * @pfn: source kernel pfn
1489 * Similar to vm_inert_page, this allows drivers to insert individual pages
1490 * they've allocated into a user vma. Same comments apply.
1492 * This function should only be called from a vm_ops->fault handler, and
1493 * in that case the handler should return NULL.
1495 * vma cannot be a COW mapping.
1497 * As this is called only for pages that do not currently exist, we
1498 * do not need to flush old virtual caches or the TLB.
1500 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1501 unsigned long pfn)
1503 int ret;
1504 pgprot_t pgprot = vma->vm_page_prot;
1506 * Technically, architectures with pte_special can avoid all these
1507 * restrictions (same for remap_pfn_range). However we would like
1508 * consistency in testing and feature parity among all, so we should
1509 * try to keep these invariants in place for everybody.
1511 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1512 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1513 (VM_PFNMAP|VM_MIXEDMAP));
1514 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1515 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1517 if (addr < vma->vm_start || addr >= vma->vm_end)
1518 return -EFAULT;
1519 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1520 return -EINVAL;
1522 ret = insert_pfn(vma, addr, pfn, pgprot);
1524 if (ret)
1525 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1527 return ret;
1529 EXPORT_SYMBOL(vm_insert_pfn);
1531 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1532 unsigned long pfn)
1534 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1536 if (addr < vma->vm_start || addr >= vma->vm_end)
1537 return -EFAULT;
1540 * If we don't have pte special, then we have to use the pfn_valid()
1541 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1542 * refcount the page if pfn_valid is true (hence insert_page rather
1543 * than insert_pfn).
1545 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1546 struct page *page;
1548 page = pfn_to_page(pfn);
1549 return insert_page(vma, addr, page, vma->vm_page_prot);
1551 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1553 EXPORT_SYMBOL(vm_insert_mixed);
1556 * maps a range of physical memory into the requested pages. the old
1557 * mappings are removed. any references to nonexistent pages results
1558 * in null mappings (currently treated as "copy-on-access")
1560 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1561 unsigned long addr, unsigned long end,
1562 unsigned long pfn, pgprot_t prot)
1564 pte_t *pte;
1565 spinlock_t *ptl;
1567 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1568 if (!pte)
1569 return -ENOMEM;
1570 arch_enter_lazy_mmu_mode();
1571 do {
1572 BUG_ON(!pte_none(*pte));
1573 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1574 pfn++;
1575 } while (pte++, addr += PAGE_SIZE, addr != end);
1576 arch_leave_lazy_mmu_mode();
1577 pte_unmap_unlock(pte - 1, ptl);
1578 return 0;
1581 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1582 unsigned long addr, unsigned long end,
1583 unsigned long pfn, pgprot_t prot)
1585 pmd_t *pmd;
1586 unsigned long next;
1588 pfn -= addr >> PAGE_SHIFT;
1589 pmd = pmd_alloc(mm, pud, addr);
1590 if (!pmd)
1591 return -ENOMEM;
1592 do {
1593 next = pmd_addr_end(addr, end);
1594 if (remap_pte_range(mm, pmd, addr, next,
1595 pfn + (addr >> PAGE_SHIFT), prot))
1596 return -ENOMEM;
1597 } while (pmd++, addr = next, addr != end);
1598 return 0;
1601 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1602 unsigned long addr, unsigned long end,
1603 unsigned long pfn, pgprot_t prot)
1605 pud_t *pud;
1606 unsigned long next;
1608 pfn -= addr >> PAGE_SHIFT;
1609 pud = pud_alloc(mm, pgd, addr);
1610 if (!pud)
1611 return -ENOMEM;
1612 do {
1613 next = pud_addr_end(addr, end);
1614 if (remap_pmd_range(mm, pud, addr, next,
1615 pfn + (addr >> PAGE_SHIFT), prot))
1616 return -ENOMEM;
1617 } while (pud++, addr = next, addr != end);
1618 return 0;
1622 * remap_pfn_range - remap kernel memory to userspace
1623 * @vma: user vma to map to
1624 * @addr: target user address to start at
1625 * @pfn: physical address of kernel memory
1626 * @size: size of map area
1627 * @prot: page protection flags for this mapping
1629 * Note: this is only safe if the mm semaphore is held when called.
1631 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1632 unsigned long pfn, unsigned long size, pgprot_t prot)
1634 pgd_t *pgd;
1635 unsigned long next;
1636 unsigned long end = addr + PAGE_ALIGN(size);
1637 struct mm_struct *mm = vma->vm_mm;
1638 int err;
1641 * Physically remapped pages are special. Tell the
1642 * rest of the world about it:
1643 * VM_IO tells people not to look at these pages
1644 * (accesses can have side effects).
1645 * VM_RESERVED is specified all over the place, because
1646 * in 2.4 it kept swapout's vma scan off this vma; but
1647 * in 2.6 the LRU scan won't even find its pages, so this
1648 * flag means no more than count its pages in reserved_vm,
1649 * and omit it from core dump, even when VM_IO turned off.
1650 * VM_PFNMAP tells the core MM that the base pages are just
1651 * raw PFN mappings, and do not have a "struct page" associated
1652 * with them.
1654 * There's a horrible special case to handle copy-on-write
1655 * behaviour that some programs depend on. We mark the "original"
1656 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1658 if (addr == vma->vm_start && end == vma->vm_end) {
1659 vma->vm_pgoff = pfn;
1660 vma->vm_flags |= VM_PFN_AT_MMAP;
1661 } else if (is_cow_mapping(vma->vm_flags))
1662 return -EINVAL;
1664 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1666 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1667 if (err) {
1669 * To indicate that track_pfn related cleanup is not
1670 * needed from higher level routine calling unmap_vmas
1672 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1673 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1674 return -EINVAL;
1677 BUG_ON(addr >= end);
1678 pfn -= addr >> PAGE_SHIFT;
1679 pgd = pgd_offset(mm, addr);
1680 flush_cache_range(vma, addr, end);
1681 do {
1682 next = pgd_addr_end(addr, end);
1683 err = remap_pud_range(mm, pgd, addr, next,
1684 pfn + (addr >> PAGE_SHIFT), prot);
1685 if (err)
1686 break;
1687 } while (pgd++, addr = next, addr != end);
1689 if (err)
1690 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1692 return err;
1694 EXPORT_SYMBOL(remap_pfn_range);
1696 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1697 unsigned long addr, unsigned long end,
1698 pte_fn_t fn, void *data)
1700 pte_t *pte;
1701 int err;
1702 pgtable_t token;
1703 spinlock_t *uninitialized_var(ptl);
1705 pte = (mm == &init_mm) ?
1706 pte_alloc_kernel(pmd, addr) :
1707 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1708 if (!pte)
1709 return -ENOMEM;
1711 BUG_ON(pmd_huge(*pmd));
1713 arch_enter_lazy_mmu_mode();
1715 token = pmd_pgtable(*pmd);
1717 do {
1718 err = fn(pte, token, addr, data);
1719 if (err)
1720 break;
1721 } while (pte++, addr += PAGE_SIZE, addr != end);
1723 arch_leave_lazy_mmu_mode();
1725 if (mm != &init_mm)
1726 pte_unmap_unlock(pte-1, ptl);
1727 return err;
1730 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1731 unsigned long addr, unsigned long end,
1732 pte_fn_t fn, void *data)
1734 pmd_t *pmd;
1735 unsigned long next;
1736 int err;
1738 BUG_ON(pud_huge(*pud));
1740 pmd = pmd_alloc(mm, pud, addr);
1741 if (!pmd)
1742 return -ENOMEM;
1743 do {
1744 next = pmd_addr_end(addr, end);
1745 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1746 if (err)
1747 break;
1748 } while (pmd++, addr = next, addr != end);
1749 return err;
1752 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1753 unsigned long addr, unsigned long end,
1754 pte_fn_t fn, void *data)
1756 pud_t *pud;
1757 unsigned long next;
1758 int err;
1760 pud = pud_alloc(mm, pgd, addr);
1761 if (!pud)
1762 return -ENOMEM;
1763 do {
1764 next = pud_addr_end(addr, end);
1765 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1766 if (err)
1767 break;
1768 } while (pud++, addr = next, addr != end);
1769 return err;
1773 * Scan a region of virtual memory, filling in page tables as necessary
1774 * and calling a provided function on each leaf page table.
1776 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1777 unsigned long size, pte_fn_t fn, void *data)
1779 pgd_t *pgd;
1780 unsigned long next;
1781 unsigned long start = addr, end = addr + size;
1782 int err;
1784 BUG_ON(addr >= end);
1785 mmu_notifier_invalidate_range_start(mm, start, end);
1786 pgd = pgd_offset(mm, addr);
1787 do {
1788 next = pgd_addr_end(addr, end);
1789 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1790 if (err)
1791 break;
1792 } while (pgd++, addr = next, addr != end);
1793 mmu_notifier_invalidate_range_end(mm, start, end);
1794 return err;
1796 EXPORT_SYMBOL_GPL(apply_to_page_range);
1799 * handle_pte_fault chooses page fault handler according to an entry
1800 * which was read non-atomically. Before making any commitment, on
1801 * those architectures or configurations (e.g. i386 with PAE) which
1802 * might give a mix of unmatched parts, do_swap_page and do_file_page
1803 * must check under lock before unmapping the pte and proceeding
1804 * (but do_wp_page is only called after already making such a check;
1805 * and do_anonymous_page and do_no_page can safely check later on).
1807 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1808 pte_t *page_table, pte_t orig_pte)
1810 int same = 1;
1811 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1812 if (sizeof(pte_t) > sizeof(unsigned long)) {
1813 spinlock_t *ptl = pte_lockptr(mm, pmd);
1814 spin_lock(ptl);
1815 same = pte_same(*page_table, orig_pte);
1816 spin_unlock(ptl);
1818 #endif
1819 pte_unmap(page_table);
1820 return same;
1824 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1825 * servicing faults for write access. In the normal case, do always want
1826 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1827 * that do not have writing enabled, when used by access_process_vm.
1829 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1831 if (likely(vma->vm_flags & VM_WRITE))
1832 pte = pte_mkwrite(pte);
1833 return pte;
1836 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1839 * If the source page was a PFN mapping, we don't have
1840 * a "struct page" for it. We do a best-effort copy by
1841 * just copying from the original user address. If that
1842 * fails, we just zero-fill it. Live with it.
1844 if (unlikely(!src)) {
1845 void *kaddr = kmap_atomic(dst, KM_USER0);
1846 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1849 * This really shouldn't fail, because the page is there
1850 * in the page tables. But it might just be unreadable,
1851 * in which case we just give up and fill the result with
1852 * zeroes.
1854 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1855 memset(kaddr, 0, PAGE_SIZE);
1856 kunmap_atomic(kaddr, KM_USER0);
1857 flush_dcache_page(dst);
1858 } else
1859 copy_user_highpage(dst, src, va, vma);
1863 * This routine handles present pages, when users try to write
1864 * to a shared page. It is done by copying the page to a new address
1865 * and decrementing the shared-page counter for the old page.
1867 * Note that this routine assumes that the protection checks have been
1868 * done by the caller (the low-level page fault routine in most cases).
1869 * Thus we can safely just mark it writable once we've done any necessary
1870 * COW.
1872 * We also mark the page dirty at this point even though the page will
1873 * change only once the write actually happens. This avoids a few races,
1874 * and potentially makes it more efficient.
1876 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1877 * but allow concurrent faults), with pte both mapped and locked.
1878 * We return with mmap_sem still held, but pte unmapped and unlocked.
1880 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1881 unsigned long address, pte_t *page_table, pmd_t *pmd,
1882 spinlock_t *ptl, pte_t orig_pte)
1884 struct page *old_page, *new_page;
1885 pte_t entry;
1886 int reuse = 0, ret = 0;
1887 int page_mkwrite = 0;
1888 struct page *dirty_page = NULL;
1890 old_page = vm_normal_page(vma, address, orig_pte);
1891 if (!old_page) {
1893 * VM_MIXEDMAP !pfn_valid() case
1895 * We should not cow pages in a shared writeable mapping.
1896 * Just mark the pages writable as we can't do any dirty
1897 * accounting on raw pfn maps.
1899 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1900 (VM_WRITE|VM_SHARED))
1901 goto reuse;
1902 goto gotten;
1906 * Take out anonymous pages first, anonymous shared vmas are
1907 * not dirty accountable.
1909 if (PageAnon(old_page)) {
1910 if (!trylock_page(old_page)) {
1911 page_cache_get(old_page);
1912 pte_unmap_unlock(page_table, ptl);
1913 lock_page(old_page);
1914 page_table = pte_offset_map_lock(mm, pmd, address,
1915 &ptl);
1916 if (!pte_same(*page_table, orig_pte)) {
1917 unlock_page(old_page);
1918 page_cache_release(old_page);
1919 goto unlock;
1921 page_cache_release(old_page);
1923 reuse = reuse_swap_page(old_page);
1924 unlock_page(old_page);
1925 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1926 (VM_WRITE|VM_SHARED))) {
1928 * Only catch write-faults on shared writable pages,
1929 * read-only shared pages can get COWed by
1930 * get_user_pages(.write=1, .force=1).
1932 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1933 struct vm_fault vmf;
1934 int tmp;
1936 vmf.virtual_address = (void __user *)(address &
1937 PAGE_MASK);
1938 vmf.pgoff = old_page->index;
1939 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1940 vmf.page = old_page;
1943 * Notify the address space that the page is about to
1944 * become writable so that it can prohibit this or wait
1945 * for the page to get into an appropriate state.
1947 * We do this without the lock held, so that it can
1948 * sleep if it needs to.
1950 page_cache_get(old_page);
1951 pte_unmap_unlock(page_table, ptl);
1953 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
1954 if (unlikely(tmp &
1955 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
1956 ret = tmp;
1957 goto unwritable_page;
1959 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
1960 lock_page(old_page);
1961 if (!old_page->mapping) {
1962 ret = 0; /* retry the fault */
1963 unlock_page(old_page);
1964 goto unwritable_page;
1966 } else
1967 VM_BUG_ON(!PageLocked(old_page));
1970 * Since we dropped the lock we need to revalidate
1971 * the PTE as someone else may have changed it. If
1972 * they did, we just return, as we can count on the
1973 * MMU to tell us if they didn't also make it writable.
1975 page_table = pte_offset_map_lock(mm, pmd, address,
1976 &ptl);
1977 if (!pte_same(*page_table, orig_pte)) {
1978 unlock_page(old_page);
1979 page_cache_release(old_page);
1980 goto unlock;
1983 page_mkwrite = 1;
1985 dirty_page = old_page;
1986 get_page(dirty_page);
1987 reuse = 1;
1990 if (reuse) {
1991 reuse:
1992 flush_cache_page(vma, address, pte_pfn(orig_pte));
1993 entry = pte_mkyoung(orig_pte);
1994 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1995 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1996 update_mmu_cache(vma, address, entry);
1997 ret |= VM_FAULT_WRITE;
1998 goto unlock;
2002 * Ok, we need to copy. Oh, well..
2004 page_cache_get(old_page);
2005 gotten:
2006 pte_unmap_unlock(page_table, ptl);
2008 if (unlikely(anon_vma_prepare(vma)))
2009 goto oom;
2010 VM_BUG_ON(old_page == ZERO_PAGE(0));
2011 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2012 if (!new_page)
2013 goto oom;
2015 * Don't let another task, with possibly unlocked vma,
2016 * keep the mlocked page.
2018 if ((vma->vm_flags & VM_LOCKED) && old_page) {
2019 lock_page(old_page); /* for LRU manipulation */
2020 clear_page_mlock(old_page);
2021 unlock_page(old_page);
2023 cow_user_page(new_page, old_page, address, vma);
2024 __SetPageUptodate(new_page);
2026 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2027 goto oom_free_new;
2030 * Re-check the pte - we dropped the lock
2032 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2033 if (likely(pte_same(*page_table, orig_pte))) {
2034 if (old_page) {
2035 if (!PageAnon(old_page)) {
2036 dec_mm_counter(mm, file_rss);
2037 inc_mm_counter(mm, anon_rss);
2039 } else
2040 inc_mm_counter(mm, anon_rss);
2041 flush_cache_page(vma, address, pte_pfn(orig_pte));
2042 entry = mk_pte(new_page, vma->vm_page_prot);
2043 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2045 * Clear the pte entry and flush it first, before updating the
2046 * pte with the new entry. This will avoid a race condition
2047 * seen in the presence of one thread doing SMC and another
2048 * thread doing COW.
2050 ptep_clear_flush_notify(vma, address, page_table);
2051 page_add_new_anon_rmap(new_page, vma, address);
2052 set_pte_at(mm, address, page_table, entry);
2053 update_mmu_cache(vma, address, entry);
2054 if (old_page) {
2056 * Only after switching the pte to the new page may
2057 * we remove the mapcount here. Otherwise another
2058 * process may come and find the rmap count decremented
2059 * before the pte is switched to the new page, and
2060 * "reuse" the old page writing into it while our pte
2061 * here still points into it and can be read by other
2062 * threads.
2064 * The critical issue is to order this
2065 * page_remove_rmap with the ptp_clear_flush above.
2066 * Those stores are ordered by (if nothing else,)
2067 * the barrier present in the atomic_add_negative
2068 * in page_remove_rmap.
2070 * Then the TLB flush in ptep_clear_flush ensures that
2071 * no process can access the old page before the
2072 * decremented mapcount is visible. And the old page
2073 * cannot be reused until after the decremented
2074 * mapcount is visible. So transitively, TLBs to
2075 * old page will be flushed before it can be reused.
2077 page_remove_rmap(old_page);
2080 /* Free the old page.. */
2081 new_page = old_page;
2082 ret |= VM_FAULT_WRITE;
2083 } else
2084 mem_cgroup_uncharge_page(new_page);
2086 if (new_page)
2087 page_cache_release(new_page);
2088 if (old_page)
2089 page_cache_release(old_page);
2090 unlock:
2091 pte_unmap_unlock(page_table, ptl);
2092 if (dirty_page) {
2094 * Yes, Virginia, this is actually required to prevent a race
2095 * with clear_page_dirty_for_io() from clearing the page dirty
2096 * bit after it clear all dirty ptes, but before a racing
2097 * do_wp_page installs a dirty pte.
2099 * do_no_page is protected similarly.
2101 if (!page_mkwrite) {
2102 wait_on_page_locked(dirty_page);
2103 set_page_dirty_balance(dirty_page, page_mkwrite);
2105 put_page(dirty_page);
2106 if (page_mkwrite) {
2107 struct address_space *mapping = dirty_page->mapping;
2109 set_page_dirty(dirty_page);
2110 unlock_page(dirty_page);
2111 page_cache_release(dirty_page);
2112 if (mapping) {
2114 * Some device drivers do not set page.mapping
2115 * but still dirty their pages
2117 balance_dirty_pages_ratelimited(mapping);
2121 /* file_update_time outside page_lock */
2122 if (vma->vm_file)
2123 file_update_time(vma->vm_file);
2125 return ret;
2126 oom_free_new:
2127 page_cache_release(new_page);
2128 oom:
2129 if (old_page) {
2130 if (page_mkwrite) {
2131 unlock_page(old_page);
2132 page_cache_release(old_page);
2134 page_cache_release(old_page);
2136 return VM_FAULT_OOM;
2138 unwritable_page:
2139 page_cache_release(old_page);
2140 return ret;
2144 * Helper functions for unmap_mapping_range().
2146 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2148 * We have to restart searching the prio_tree whenever we drop the lock,
2149 * since the iterator is only valid while the lock is held, and anyway
2150 * a later vma might be split and reinserted earlier while lock dropped.
2152 * The list of nonlinear vmas could be handled more efficiently, using
2153 * a placeholder, but handle it in the same way until a need is shown.
2154 * It is important to search the prio_tree before nonlinear list: a vma
2155 * may become nonlinear and be shifted from prio_tree to nonlinear list
2156 * while the lock is dropped; but never shifted from list to prio_tree.
2158 * In order to make forward progress despite restarting the search,
2159 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2160 * quickly skip it next time around. Since the prio_tree search only
2161 * shows us those vmas affected by unmapping the range in question, we
2162 * can't efficiently keep all vmas in step with mapping->truncate_count:
2163 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2164 * mapping->truncate_count and vma->vm_truncate_count are protected by
2165 * i_mmap_lock.
2167 * In order to make forward progress despite repeatedly restarting some
2168 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2169 * and restart from that address when we reach that vma again. It might
2170 * have been split or merged, shrunk or extended, but never shifted: so
2171 * restart_addr remains valid so long as it remains in the vma's range.
2172 * unmap_mapping_range forces truncate_count to leap over page-aligned
2173 * values so we can save vma's restart_addr in its truncate_count field.
2175 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2177 static void reset_vma_truncate_counts(struct address_space *mapping)
2179 struct vm_area_struct *vma;
2180 struct prio_tree_iter iter;
2182 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2183 vma->vm_truncate_count = 0;
2184 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2185 vma->vm_truncate_count = 0;
2188 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2189 unsigned long start_addr, unsigned long end_addr,
2190 struct zap_details *details)
2192 unsigned long restart_addr;
2193 int need_break;
2196 * files that support invalidating or truncating portions of the
2197 * file from under mmaped areas must have their ->fault function
2198 * return a locked page (and set VM_FAULT_LOCKED in the return).
2199 * This provides synchronisation against concurrent unmapping here.
2202 again:
2203 restart_addr = vma->vm_truncate_count;
2204 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2205 start_addr = restart_addr;
2206 if (start_addr >= end_addr) {
2207 /* Top of vma has been split off since last time */
2208 vma->vm_truncate_count = details->truncate_count;
2209 return 0;
2213 restart_addr = zap_page_range(vma, start_addr,
2214 end_addr - start_addr, details);
2215 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2217 if (restart_addr >= end_addr) {
2218 /* We have now completed this vma: mark it so */
2219 vma->vm_truncate_count = details->truncate_count;
2220 if (!need_break)
2221 return 0;
2222 } else {
2223 /* Note restart_addr in vma's truncate_count field */
2224 vma->vm_truncate_count = restart_addr;
2225 if (!need_break)
2226 goto again;
2229 spin_unlock(details->i_mmap_lock);
2230 cond_resched();
2231 spin_lock(details->i_mmap_lock);
2232 return -EINTR;
2235 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2236 struct zap_details *details)
2238 struct vm_area_struct *vma;
2239 struct prio_tree_iter iter;
2240 pgoff_t vba, vea, zba, zea;
2242 restart:
2243 vma_prio_tree_foreach(vma, &iter, root,
2244 details->first_index, details->last_index) {
2245 /* Skip quickly over those we have already dealt with */
2246 if (vma->vm_truncate_count == details->truncate_count)
2247 continue;
2249 vba = vma->vm_pgoff;
2250 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2251 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2252 zba = details->first_index;
2253 if (zba < vba)
2254 zba = vba;
2255 zea = details->last_index;
2256 if (zea > vea)
2257 zea = vea;
2259 if (unmap_mapping_range_vma(vma,
2260 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2261 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2262 details) < 0)
2263 goto restart;
2267 static inline void unmap_mapping_range_list(struct list_head *head,
2268 struct zap_details *details)
2270 struct vm_area_struct *vma;
2273 * In nonlinear VMAs there is no correspondence between virtual address
2274 * offset and file offset. So we must perform an exhaustive search
2275 * across *all* the pages in each nonlinear VMA, not just the pages
2276 * whose virtual address lies outside the file truncation point.
2278 restart:
2279 list_for_each_entry(vma, head, shared.vm_set.list) {
2280 /* Skip quickly over those we have already dealt with */
2281 if (vma->vm_truncate_count == details->truncate_count)
2282 continue;
2283 details->nonlinear_vma = vma;
2284 if (unmap_mapping_range_vma(vma, vma->vm_start,
2285 vma->vm_end, details) < 0)
2286 goto restart;
2291 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2292 * @mapping: the address space containing mmaps to be unmapped.
2293 * @holebegin: byte in first page to unmap, relative to the start of
2294 * the underlying file. This will be rounded down to a PAGE_SIZE
2295 * boundary. Note that this is different from vmtruncate(), which
2296 * must keep the partial page. In contrast, we must get rid of
2297 * partial pages.
2298 * @holelen: size of prospective hole in bytes. This will be rounded
2299 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2300 * end of the file.
2301 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2302 * but 0 when invalidating pagecache, don't throw away private data.
2304 void unmap_mapping_range(struct address_space *mapping,
2305 loff_t const holebegin, loff_t const holelen, int even_cows)
2307 struct zap_details details;
2308 pgoff_t hba = holebegin >> PAGE_SHIFT;
2309 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2311 /* Check for overflow. */
2312 if (sizeof(holelen) > sizeof(hlen)) {
2313 long long holeend =
2314 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2315 if (holeend & ~(long long)ULONG_MAX)
2316 hlen = ULONG_MAX - hba + 1;
2319 details.check_mapping = even_cows? NULL: mapping;
2320 details.nonlinear_vma = NULL;
2321 details.first_index = hba;
2322 details.last_index = hba + hlen - 1;
2323 if (details.last_index < details.first_index)
2324 details.last_index = ULONG_MAX;
2325 details.i_mmap_lock = &mapping->i_mmap_lock;
2327 spin_lock(&mapping->i_mmap_lock);
2329 /* Protect against endless unmapping loops */
2330 mapping->truncate_count++;
2331 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2332 if (mapping->truncate_count == 0)
2333 reset_vma_truncate_counts(mapping);
2334 mapping->truncate_count++;
2336 details.truncate_count = mapping->truncate_count;
2338 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2339 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2340 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2341 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2342 spin_unlock(&mapping->i_mmap_lock);
2344 EXPORT_SYMBOL(unmap_mapping_range);
2347 * vmtruncate - unmap mappings "freed" by truncate() syscall
2348 * @inode: inode of the file used
2349 * @offset: file offset to start truncating
2351 * NOTE! We have to be ready to update the memory sharing
2352 * between the file and the memory map for a potential last
2353 * incomplete page. Ugly, but necessary.
2355 int vmtruncate(struct inode * inode, loff_t offset)
2357 if (inode->i_size < offset) {
2358 unsigned long limit;
2360 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2361 if (limit != RLIM_INFINITY && offset > limit)
2362 goto out_sig;
2363 if (offset > inode->i_sb->s_maxbytes)
2364 goto out_big;
2365 i_size_write(inode, offset);
2366 } else {
2367 struct address_space *mapping = inode->i_mapping;
2370 * truncation of in-use swapfiles is disallowed - it would
2371 * cause subsequent swapout to scribble on the now-freed
2372 * blocks.
2374 if (IS_SWAPFILE(inode))
2375 return -ETXTBSY;
2376 i_size_write(inode, offset);
2379 * unmap_mapping_range is called twice, first simply for
2380 * efficiency so that truncate_inode_pages does fewer
2381 * single-page unmaps. However after this first call, and
2382 * before truncate_inode_pages finishes, it is possible for
2383 * private pages to be COWed, which remain after
2384 * truncate_inode_pages finishes, hence the second
2385 * unmap_mapping_range call must be made for correctness.
2387 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2388 truncate_inode_pages(mapping, offset);
2389 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2392 if (inode->i_op->truncate)
2393 inode->i_op->truncate(inode);
2394 return 0;
2396 out_sig:
2397 send_sig(SIGXFSZ, current, 0);
2398 out_big:
2399 return -EFBIG;
2401 EXPORT_SYMBOL(vmtruncate);
2403 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2405 struct address_space *mapping = inode->i_mapping;
2408 * If the underlying filesystem is not going to provide
2409 * a way to truncate a range of blocks (punch a hole) -
2410 * we should return failure right now.
2412 if (!inode->i_op->truncate_range)
2413 return -ENOSYS;
2415 mutex_lock(&inode->i_mutex);
2416 down_write(&inode->i_alloc_sem);
2417 unmap_mapping_range(mapping, offset, (end - offset), 1);
2418 truncate_inode_pages_range(mapping, offset, end);
2419 unmap_mapping_range(mapping, offset, (end - offset), 1);
2420 inode->i_op->truncate_range(inode, offset, end);
2421 up_write(&inode->i_alloc_sem);
2422 mutex_unlock(&inode->i_mutex);
2424 return 0;
2428 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2429 * but allow concurrent faults), and pte mapped but not yet locked.
2430 * We return with mmap_sem still held, but pte unmapped and unlocked.
2432 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2433 unsigned long address, pte_t *page_table, pmd_t *pmd,
2434 int write_access, pte_t orig_pte)
2436 spinlock_t *ptl;
2437 struct page *page;
2438 swp_entry_t entry;
2439 pte_t pte;
2440 struct mem_cgroup *ptr = NULL;
2441 int ret = 0;
2443 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2444 goto out;
2446 entry = pte_to_swp_entry(orig_pte);
2447 if (is_migration_entry(entry)) {
2448 migration_entry_wait(mm, pmd, address);
2449 goto out;
2451 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2452 page = lookup_swap_cache(entry);
2453 if (!page) {
2454 grab_swap_token(); /* Contend for token _before_ read-in */
2455 page = swapin_readahead(entry,
2456 GFP_HIGHUSER_MOVABLE, vma, address);
2457 if (!page) {
2459 * Back out if somebody else faulted in this pte
2460 * while we released the pte lock.
2462 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2463 if (likely(pte_same(*page_table, orig_pte)))
2464 ret = VM_FAULT_OOM;
2465 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2466 goto unlock;
2469 /* Had to read the page from swap area: Major fault */
2470 ret = VM_FAULT_MAJOR;
2471 count_vm_event(PGMAJFAULT);
2474 mark_page_accessed(page);
2476 lock_page(page);
2477 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2479 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2480 ret = VM_FAULT_OOM;
2481 unlock_page(page);
2482 goto out;
2486 * Back out if somebody else already faulted in this pte.
2488 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2489 if (unlikely(!pte_same(*page_table, orig_pte)))
2490 goto out_nomap;
2492 if (unlikely(!PageUptodate(page))) {
2493 ret = VM_FAULT_SIGBUS;
2494 goto out_nomap;
2498 * The page isn't present yet, go ahead with the fault.
2500 * Be careful about the sequence of operations here.
2501 * To get its accounting right, reuse_swap_page() must be called
2502 * while the page is counted on swap but not yet in mapcount i.e.
2503 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2504 * must be called after the swap_free(), or it will never succeed.
2505 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2506 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2507 * in page->private. In this case, a record in swap_cgroup is silently
2508 * discarded at swap_free().
2511 inc_mm_counter(mm, anon_rss);
2512 pte = mk_pte(page, vma->vm_page_prot);
2513 if (write_access && reuse_swap_page(page)) {
2514 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2515 write_access = 0;
2517 flush_icache_page(vma, page);
2518 set_pte_at(mm, address, page_table, pte);
2519 page_add_anon_rmap(page, vma, address);
2520 /* It's better to call commit-charge after rmap is established */
2521 mem_cgroup_commit_charge_swapin(page, ptr);
2523 swap_free(entry);
2524 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2525 try_to_free_swap(page);
2526 unlock_page(page);
2528 if (write_access) {
2529 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2530 if (ret & VM_FAULT_ERROR)
2531 ret &= VM_FAULT_ERROR;
2532 goto out;
2535 /* No need to invalidate - it was non-present before */
2536 update_mmu_cache(vma, address, pte);
2537 unlock:
2538 pte_unmap_unlock(page_table, ptl);
2539 out:
2540 return ret;
2541 out_nomap:
2542 mem_cgroup_cancel_charge_swapin(ptr);
2543 pte_unmap_unlock(page_table, ptl);
2544 unlock_page(page);
2545 page_cache_release(page);
2546 return ret;
2550 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2551 * but allow concurrent faults), and pte mapped but not yet locked.
2552 * We return with mmap_sem still held, but pte unmapped and unlocked.
2554 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2555 unsigned long address, pte_t *page_table, pmd_t *pmd,
2556 int write_access)
2558 struct page *page;
2559 spinlock_t *ptl;
2560 pte_t entry;
2562 /* Allocate our own private page. */
2563 pte_unmap(page_table);
2565 if (unlikely(anon_vma_prepare(vma)))
2566 goto oom;
2567 page = alloc_zeroed_user_highpage_movable(vma, address);
2568 if (!page)
2569 goto oom;
2570 __SetPageUptodate(page);
2572 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2573 goto oom_free_page;
2575 entry = mk_pte(page, vma->vm_page_prot);
2576 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2578 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2579 if (!pte_none(*page_table))
2580 goto release;
2581 inc_mm_counter(mm, anon_rss);
2582 page_add_new_anon_rmap(page, vma, address);
2583 set_pte_at(mm, address, page_table, entry);
2585 /* No need to invalidate - it was non-present before */
2586 update_mmu_cache(vma, address, entry);
2587 unlock:
2588 pte_unmap_unlock(page_table, ptl);
2589 return 0;
2590 release:
2591 mem_cgroup_uncharge_page(page);
2592 page_cache_release(page);
2593 goto unlock;
2594 oom_free_page:
2595 page_cache_release(page);
2596 oom:
2597 return VM_FAULT_OOM;
2601 * __do_fault() tries to create a new page mapping. It aggressively
2602 * tries to share with existing pages, but makes a separate copy if
2603 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2604 * the next page fault.
2606 * As this is called only for pages that do not currently exist, we
2607 * do not need to flush old virtual caches or the TLB.
2609 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2610 * but allow concurrent faults), and pte neither mapped nor locked.
2611 * We return with mmap_sem still held, but pte unmapped and unlocked.
2613 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2614 unsigned long address, pmd_t *pmd,
2615 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2617 pte_t *page_table;
2618 spinlock_t *ptl;
2619 struct page *page;
2620 pte_t entry;
2621 int anon = 0;
2622 int charged = 0;
2623 struct page *dirty_page = NULL;
2624 struct vm_fault vmf;
2625 int ret;
2626 int page_mkwrite = 0;
2628 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2629 vmf.pgoff = pgoff;
2630 vmf.flags = flags;
2631 vmf.page = NULL;
2633 ret = vma->vm_ops->fault(vma, &vmf);
2634 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2635 return ret;
2638 * For consistency in subsequent calls, make the faulted page always
2639 * locked.
2641 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2642 lock_page(vmf.page);
2643 else
2644 VM_BUG_ON(!PageLocked(vmf.page));
2647 * Should we do an early C-O-W break?
2649 page = vmf.page;
2650 if (flags & FAULT_FLAG_WRITE) {
2651 if (!(vma->vm_flags & VM_SHARED)) {
2652 anon = 1;
2653 if (unlikely(anon_vma_prepare(vma))) {
2654 ret = VM_FAULT_OOM;
2655 goto out;
2657 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2658 vma, address);
2659 if (!page) {
2660 ret = VM_FAULT_OOM;
2661 goto out;
2663 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2664 ret = VM_FAULT_OOM;
2665 page_cache_release(page);
2666 goto out;
2668 charged = 1;
2670 * Don't let another task, with possibly unlocked vma,
2671 * keep the mlocked page.
2673 if (vma->vm_flags & VM_LOCKED)
2674 clear_page_mlock(vmf.page);
2675 copy_user_highpage(page, vmf.page, address, vma);
2676 __SetPageUptodate(page);
2677 } else {
2679 * If the page will be shareable, see if the backing
2680 * address space wants to know that the page is about
2681 * to become writable
2683 if (vma->vm_ops->page_mkwrite) {
2684 int tmp;
2686 unlock_page(page);
2687 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2688 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2689 if (unlikely(tmp &
2690 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2691 ret = tmp;
2692 goto unwritable_page;
2694 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2695 lock_page(page);
2696 if (!page->mapping) {
2697 ret = 0; /* retry the fault */
2698 unlock_page(page);
2699 goto unwritable_page;
2701 } else
2702 VM_BUG_ON(!PageLocked(page));
2703 page_mkwrite = 1;
2709 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2712 * This silly early PAGE_DIRTY setting removes a race
2713 * due to the bad i386 page protection. But it's valid
2714 * for other architectures too.
2716 * Note that if write_access is true, we either now have
2717 * an exclusive copy of the page, or this is a shared mapping,
2718 * so we can make it writable and dirty to avoid having to
2719 * handle that later.
2721 /* Only go through if we didn't race with anybody else... */
2722 if (likely(pte_same(*page_table, orig_pte))) {
2723 flush_icache_page(vma, page);
2724 entry = mk_pte(page, vma->vm_page_prot);
2725 if (flags & FAULT_FLAG_WRITE)
2726 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2727 if (anon) {
2728 inc_mm_counter(mm, anon_rss);
2729 page_add_new_anon_rmap(page, vma, address);
2730 } else {
2731 inc_mm_counter(mm, file_rss);
2732 page_add_file_rmap(page);
2733 if (flags & FAULT_FLAG_WRITE) {
2734 dirty_page = page;
2735 get_page(dirty_page);
2738 set_pte_at(mm, address, page_table, entry);
2740 /* no need to invalidate: a not-present page won't be cached */
2741 update_mmu_cache(vma, address, entry);
2742 } else {
2743 if (charged)
2744 mem_cgroup_uncharge_page(page);
2745 if (anon)
2746 page_cache_release(page);
2747 else
2748 anon = 1; /* no anon but release faulted_page */
2751 pte_unmap_unlock(page_table, ptl);
2753 out:
2754 if (dirty_page) {
2755 struct address_space *mapping = page->mapping;
2757 if (set_page_dirty(dirty_page))
2758 page_mkwrite = 1;
2759 unlock_page(dirty_page);
2760 put_page(dirty_page);
2761 if (page_mkwrite && mapping) {
2763 * Some device drivers do not set page.mapping but still
2764 * dirty their pages
2766 balance_dirty_pages_ratelimited(mapping);
2769 /* file_update_time outside page_lock */
2770 if (vma->vm_file)
2771 file_update_time(vma->vm_file);
2772 } else {
2773 unlock_page(vmf.page);
2774 if (anon)
2775 page_cache_release(vmf.page);
2778 return ret;
2780 unwritable_page:
2781 page_cache_release(page);
2782 return ret;
2785 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2786 unsigned long address, pte_t *page_table, pmd_t *pmd,
2787 int write_access, pte_t orig_pte)
2789 pgoff_t pgoff = (((address & PAGE_MASK)
2790 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2791 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2793 pte_unmap(page_table);
2794 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2798 * Fault of a previously existing named mapping. Repopulate the pte
2799 * from the encoded file_pte if possible. This enables swappable
2800 * nonlinear vmas.
2802 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2803 * but allow concurrent faults), and pte mapped but not yet locked.
2804 * We return with mmap_sem still held, but pte unmapped and unlocked.
2806 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2807 unsigned long address, pte_t *page_table, pmd_t *pmd,
2808 int write_access, pte_t orig_pte)
2810 unsigned int flags = FAULT_FLAG_NONLINEAR |
2811 (write_access ? FAULT_FLAG_WRITE : 0);
2812 pgoff_t pgoff;
2814 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2815 return 0;
2817 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2819 * Page table corrupted: show pte and kill process.
2821 print_bad_pte(vma, address, orig_pte, NULL);
2822 return VM_FAULT_OOM;
2825 pgoff = pte_to_pgoff(orig_pte);
2826 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2830 * These routines also need to handle stuff like marking pages dirty
2831 * and/or accessed for architectures that don't do it in hardware (most
2832 * RISC architectures). The early dirtying is also good on the i386.
2834 * There is also a hook called "update_mmu_cache()" that architectures
2835 * with external mmu caches can use to update those (ie the Sparc or
2836 * PowerPC hashed page tables that act as extended TLBs).
2838 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2839 * but allow concurrent faults), and pte mapped but not yet locked.
2840 * We return with mmap_sem still held, but pte unmapped and unlocked.
2842 static inline int handle_pte_fault(struct mm_struct *mm,
2843 struct vm_area_struct *vma, unsigned long address,
2844 pte_t *pte, pmd_t *pmd, int write_access)
2846 pte_t entry;
2847 spinlock_t *ptl;
2849 entry = *pte;
2850 if (!pte_present(entry)) {
2851 if (pte_none(entry)) {
2852 if (vma->vm_ops) {
2853 if (likely(vma->vm_ops->fault))
2854 return do_linear_fault(mm, vma, address,
2855 pte, pmd, write_access, entry);
2857 return do_anonymous_page(mm, vma, address,
2858 pte, pmd, write_access);
2860 if (pte_file(entry))
2861 return do_nonlinear_fault(mm, vma, address,
2862 pte, pmd, write_access, entry);
2863 return do_swap_page(mm, vma, address,
2864 pte, pmd, write_access, entry);
2867 ptl = pte_lockptr(mm, pmd);
2868 spin_lock(ptl);
2869 if (unlikely(!pte_same(*pte, entry)))
2870 goto unlock;
2871 if (write_access) {
2872 if (!pte_write(entry))
2873 return do_wp_page(mm, vma, address,
2874 pte, pmd, ptl, entry);
2875 entry = pte_mkdirty(entry);
2877 entry = pte_mkyoung(entry);
2878 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2879 update_mmu_cache(vma, address, entry);
2880 } else {
2882 * This is needed only for protection faults but the arch code
2883 * is not yet telling us if this is a protection fault or not.
2884 * This still avoids useless tlb flushes for .text page faults
2885 * with threads.
2887 if (write_access)
2888 flush_tlb_page(vma, address);
2890 unlock:
2891 pte_unmap_unlock(pte, ptl);
2892 return 0;
2895 void pagefault_disable(void)
2897 current->pagefault_disabled++;
2899 * make sure to have issued the store before a pagefault
2900 * can hit.
2902 barrier();
2904 EXPORT_SYMBOL(pagefault_disable);
2906 void pagefault_enable(void)
2909 * make sure to issue those last loads/stores before enabling
2910 * the pagefault handler again.
2912 barrier();
2913 current->pagefault_disabled--;
2915 EXPORT_SYMBOL(pagefault_enable);
2918 * By the time we get here, we already hold the mm semaphore
2920 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2921 unsigned long address, int write_access)
2923 pgd_t *pgd;
2924 pud_t *pud;
2925 pmd_t *pmd;
2926 pte_t *pte;
2928 __set_current_state(TASK_RUNNING);
2930 count_vm_event(PGFAULT);
2932 if (unlikely(is_vm_hugetlb_page(vma)))
2933 return hugetlb_fault(mm, vma, address, write_access);
2935 pgd = pgd_offset(mm, address);
2936 pud = pud_alloc(mm, pgd, address);
2937 if (!pud)
2938 return VM_FAULT_OOM;
2939 pmd = pmd_alloc(mm, pud, address);
2940 if (!pmd)
2941 return VM_FAULT_OOM;
2942 pte = pte_alloc_map(mm, pmd, address);
2943 if (!pte)
2944 return VM_FAULT_OOM;
2946 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2949 #ifndef __PAGETABLE_PUD_FOLDED
2951 * Allocate page upper directory.
2952 * We've already handled the fast-path in-line.
2954 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2956 pud_t *new = pud_alloc_one(mm, address);
2957 if (!new)
2958 return -ENOMEM;
2960 smp_wmb(); /* See comment in __pte_alloc */
2962 spin_lock(&mm->page_table_lock);
2963 if (pgd_present(*pgd)) /* Another has populated it */
2964 pud_free(mm, new);
2965 else
2966 pgd_populate(mm, pgd, new);
2967 spin_unlock(&mm->page_table_lock);
2968 return 0;
2970 #endif /* __PAGETABLE_PUD_FOLDED */
2972 #ifndef __PAGETABLE_PMD_FOLDED
2974 * Allocate page middle directory.
2975 * We've already handled the fast-path in-line.
2977 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2979 pmd_t *new = pmd_alloc_one(mm, address);
2980 if (!new)
2981 return -ENOMEM;
2983 smp_wmb(); /* See comment in __pte_alloc */
2985 spin_lock(&mm->page_table_lock);
2986 #ifndef __ARCH_HAS_4LEVEL_HACK
2987 if (pud_present(*pud)) /* Another has populated it */
2988 pmd_free(mm, new);
2989 else
2990 pud_populate(mm, pud, new);
2991 #else
2992 if (pgd_present(*pud)) /* Another has populated it */
2993 pmd_free(mm, new);
2994 else
2995 pgd_populate(mm, pud, new);
2996 #endif /* __ARCH_HAS_4LEVEL_HACK */
2997 spin_unlock(&mm->page_table_lock);
2998 return 0;
3000 #endif /* __PAGETABLE_PMD_FOLDED */
3002 int make_pages_present(unsigned long addr, unsigned long end)
3004 int ret, len, write;
3005 struct vm_area_struct * vma;
3007 vma = find_vma(current->mm, addr);
3008 if (!vma)
3009 return -ENOMEM;
3010 write = (vma->vm_flags & VM_WRITE) != 0;
3011 BUG_ON(addr >= end);
3012 BUG_ON(end > vma->vm_end);
3013 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3014 ret = get_user_pages(current, current->mm, addr,
3015 len, write, 0, NULL, NULL);
3016 if (ret < 0)
3017 return ret;
3018 return ret == len ? 0 : -EFAULT;
3021 #if !defined(__HAVE_ARCH_GATE_AREA)
3023 #if defined(AT_SYSINFO_EHDR)
3024 static struct vm_area_struct gate_vma;
3026 static int __init gate_vma_init(void)
3028 gate_vma.vm_mm = NULL;
3029 gate_vma.vm_start = FIXADDR_USER_START;
3030 gate_vma.vm_end = FIXADDR_USER_END;
3031 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3032 gate_vma.vm_page_prot = __P101;
3034 * Make sure the vDSO gets into every core dump.
3035 * Dumping its contents makes post-mortem fully interpretable later
3036 * without matching up the same kernel and hardware config to see
3037 * what PC values meant.
3039 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3040 return 0;
3042 __initcall(gate_vma_init);
3043 #endif
3045 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3047 #ifdef AT_SYSINFO_EHDR
3048 return &gate_vma;
3049 #else
3050 return NULL;
3051 #endif
3054 int in_gate_area_no_task(unsigned long addr)
3056 #ifdef AT_SYSINFO_EHDR
3057 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3058 return 1;
3059 #endif
3060 return 0;
3063 #endif /* __HAVE_ARCH_GATE_AREA */
3065 #ifdef CONFIG_HAVE_IOREMAP_PROT
3066 int follow_phys(struct vm_area_struct *vma,
3067 unsigned long address, unsigned int flags,
3068 unsigned long *prot, resource_size_t *phys)
3070 pgd_t *pgd;
3071 pud_t *pud;
3072 pmd_t *pmd;
3073 pte_t *ptep, pte;
3074 spinlock_t *ptl;
3075 resource_size_t phys_addr = 0;
3076 struct mm_struct *mm = vma->vm_mm;
3077 int ret = -EINVAL;
3079 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3080 goto out;
3082 pgd = pgd_offset(mm, address);
3083 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3084 goto out;
3086 pud = pud_offset(pgd, address);
3087 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3088 goto out;
3090 pmd = pmd_offset(pud, address);
3091 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3092 goto out;
3094 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3095 if (pmd_huge(*pmd))
3096 goto out;
3098 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
3099 if (!ptep)
3100 goto out;
3102 pte = *ptep;
3103 if (!pte_present(pte))
3104 goto unlock;
3105 if ((flags & FOLL_WRITE) && !pte_write(pte))
3106 goto unlock;
3107 phys_addr = pte_pfn(pte);
3108 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
3110 *prot = pgprot_val(pte_pgprot(pte));
3111 *phys = phys_addr;
3112 ret = 0;
3114 unlock:
3115 pte_unmap_unlock(ptep, ptl);
3116 out:
3117 return ret;
3120 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3121 void *buf, int len, int write)
3123 resource_size_t phys_addr;
3124 unsigned long prot = 0;
3125 void __iomem *maddr;
3126 int offset = addr & (PAGE_SIZE-1);
3128 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3129 return -EINVAL;
3131 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3132 if (write)
3133 memcpy_toio(maddr + offset, buf, len);
3134 else
3135 memcpy_fromio(buf, maddr + offset, len);
3136 iounmap(maddr);
3138 return len;
3140 #endif
3143 * Access another process' address space.
3144 * Source/target buffer must be kernel space,
3145 * Do not walk the page table directly, use get_user_pages
3147 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3149 struct mm_struct *mm;
3150 struct vm_area_struct *vma;
3151 void *old_buf = buf;
3153 mm = get_task_mm(tsk);
3154 if (!mm)
3155 return 0;
3157 down_read(&mm->mmap_sem);
3158 /* ignore errors, just check how much was successfully transferred */
3159 while (len) {
3160 int bytes, ret, offset;
3161 void *maddr;
3162 struct page *page = NULL;
3164 ret = get_user_pages(tsk, mm, addr, 1,
3165 write, 1, &page, &vma);
3166 if (ret <= 0) {
3168 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3169 * we can access using slightly different code.
3171 #ifdef CONFIG_HAVE_IOREMAP_PROT
3172 vma = find_vma(mm, addr);
3173 if (!vma)
3174 break;
3175 if (vma->vm_ops && vma->vm_ops->access)
3176 ret = vma->vm_ops->access(vma, addr, buf,
3177 len, write);
3178 if (ret <= 0)
3179 #endif
3180 break;
3181 bytes = ret;
3182 } else {
3183 bytes = len;
3184 offset = addr & (PAGE_SIZE-1);
3185 if (bytes > PAGE_SIZE-offset)
3186 bytes = PAGE_SIZE-offset;
3188 maddr = kmap(page);
3189 if (write) {
3190 copy_to_user_page(vma, page, addr,
3191 maddr + offset, buf, bytes);
3192 set_page_dirty_lock(page);
3193 } else {
3194 copy_from_user_page(vma, page, addr,
3195 buf, maddr + offset, bytes);
3197 kunmap(page);
3198 page_cache_release(page);
3200 len -= bytes;
3201 buf += bytes;
3202 addr += bytes;
3204 up_read(&mm->mmap_sem);
3205 mmput(mm);
3207 return buf - old_buf;
3211 * Print the name of a VMA.
3213 void print_vma_addr(char *prefix, unsigned long ip)
3215 struct mm_struct *mm = current->mm;
3216 struct vm_area_struct *vma;
3219 * Do not print if we are in atomic
3220 * contexts (in exception stacks, etc.):
3222 if (preempt_count())
3223 return;
3225 down_read(&mm->mmap_sem);
3226 vma = find_vma(mm, ip);
3227 if (vma && vma->vm_file) {
3228 struct file *f = vma->vm_file;
3229 char *buf = (char *)__get_free_page(GFP_KERNEL);
3230 if (buf) {
3231 char *p, *s;
3233 p = d_path(&f->f_path, buf, PAGE_SIZE);
3234 if (IS_ERR(p))
3235 p = "?";
3236 s = strrchr(p, '/');
3237 if (s)
3238 p = s+1;
3239 printk("%s%s[%lx+%lx]", prefix, p,
3240 vma->vm_start,
3241 vma->vm_end - vma->vm_start);
3242 free_page((unsigned long)buf);
3245 up_read(&current->mm->mmap_sem);
3248 #ifdef CONFIG_PROVE_LOCKING
3249 void might_fault(void)
3252 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3253 * holding the mmap_sem, this is safe because kernel memory doesn't
3254 * get paged out, therefore we'll never actually fault, and the
3255 * below annotations will generate false positives.
3257 if (segment_eq(get_fs(), KERNEL_DS))
3258 return;
3260 might_sleep();
3262 * it would be nicer only to annotate paths which are not under
3263 * pagefault_disable, however that requires a larger audit and
3264 * providing helpers like get_user_atomic.
3266 if (!in_atomic() && current->mm)
3267 might_lock_read(&current->mm->mmap_sem);
3269 EXPORT_SYMBOL(might_fault);
3270 #endif